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Summary  

The variation of strength of composite parts with size is referred to as the size 

effect, and it can be observed in the presence of notches such as circular open holes. 

In woven composites, when the characteristic size of the interlocking tows of 

fibers and the notches is comparable, the material heterogeneity and stress 

concentration interact, giving rise to a complex stress field. Existing analysis of 

open-hole strength however focuses on unidirectional composites and does not 

model this effect. This study proposes to investigate the size effect on circular 

open-hole strength of a woven twill composite using a novel experimental-

numerical approach, capable of preserving the mesoscale material heterogeneity 

captured by full-field Digital Image Correlation (DIC) measurements, and to use 

this information as the basis for a statistical reliability method. 

An innovative simplified mesoscale model was thus developed, which recaptures 

the heterogeneity of the woven material. The aim was to obtain a full stress field 

corresponding to the DIC-measured experimental strain field. First, the 

experimental strains were obtained via uniaxial tensile testing of open-hole 

specimens. Local material orientation was mapped in every individual specimen 

using a semi-automated image processing script, and applied to a shell model of 

each specimen. The mesoscopic elastic material properties of the material were 

identified with a data-driven FEMU optimization method, which minimized the 

difference between the experimental DIC strains, and the one predicted by the 

model itself. This model was able to replicate the effect of the woven pattern of the 

fabric in a computationally efficient way. 

A probabilistic mesoscale method was then developed to model the size effect. A 

three-parameter Weibull-based statistical model was devised to model the 



IV 

probability of failure from the mesoscale FEM calculated stress distribution and 

the volume of the part. An equivalent stress formulation was used to capture the 

relevant failure modes, and its maximum value within the specimen volume was 

the random variable of the model. The parameters of the statistical model and of 

the equivalent stress were calibrated with an optimization process from 

experimental data. 

The methodology was successfully applied to study the effect of specimen width 

and width-to-diameter ratio on the open-hole strength of a twill CFRP material. 

The elastic properties identified for the material at the mesoscale were analogous 

to that of a unidirectional composite. The calibrated model was subsequently used 

to analyze the stress concentration and localization induced by circular notches 

with various widths and width-to-diameter ratios. Thanks to the stress data, the 

macroscale-level behavior was interpreted as the combination of two opposing 

mesoscale-level effects, stress concentration and stress localization. An observable 

size effect was produced with varying specimen width, whereas the scaling of 

width to hole diameter ratio in the range considered did not. The statistical model 

was found to accurately describe the experimental observations, efficiently 

reproducing an inverse size effect: wider specimens lead to a lower probability of 

failure, regardless of hole size. 
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INTRODUCTION 

Chapter 1  

Introduction 

Size effect is the phenomenon of scaling of a material’s mechanical property with 

structure dimensions. This effect can occur in the tensile strength of long-fiber-

reinforced composite materials, where it typically decreases with increasing 

structure size [1]. In general, size effect is observed in brittle and quasi-brittle 

materials [2], of which high-modulus fiber composites are an example. In these 

materials, failure is governed by the presence of statistically distributed defects. 

Given two volumes of material at the same stress level, the larger one has a higher 

chance of containing a flaw critical enough to initiate the failure. In other words, 

the probability of encountering a failure-inducing defect depends on the volume of 

the material considered [3]. 

The tensile strength of hole-notched composites under tension is a classic example 

of size effect, often studied in the literature. A circular notch shape is usually 

selected, due to its relevance in fastening applications like bolted connections or 

riveting. Existing methods usually require either very extensive experimental 

campaigns to derive semi-empirical laws, or numerical models with complex 

damage models to predict the initiation of failure. Furthermore, almost invariably 

unidirectional fiber composites are considered. Woven fiber composites introduce 

further challenges to the study, as their heterogeneous structure at the mesoscale 

can interact with notches and generate stress fields that are non-trivial to model. 

This work proposes to advance the knowledge of the open-hole size effect on 

tensile strength in twill weave composites with a statistical method that considers 

the mesoscale heterogeneity of these materials. The method, based on the Weibull 
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weakest link principle, allows bypassing the definition of complex interacting 

failure models. A novel experimental-numerical approach to the study of woven 

composites provides the necessary mesoscale stress data. 

This introductory chapter is structured as follows. Section 1.1 delineates the main 

problem through a review of existing literature. The subsequent three sections 

synthetically present one by one the main aspects underpinning the methodology 

developed in this thesis. Section 1.2 introduces briefly the Digital Image Correlation 

measurement technique, and then presents some applications relevant to this 

work. Section 1.3 gives an overview of the statistical modeling of composite 

strength after the Weibull strength theory. Section 1.4 discusses woven fabric 

composites and how they can be modeled. At the end of the chapter Section 1.5 

states the objectives of this thesis, defines the various steps in the methodology, 

and lays out the organization of this work. 

1.1 Open-hole size effect in composite materials 

The problem of the open-hole size effect in composite materials has been 

investigated using a number of different approaches, which may be broadly 

classified as follows: 

• Experimental campaigns [4,5], also paired with full-field strain field 

analysis [6–8]; 

• Semi-empirical methods [9–11], with empirical formulations based on 

observed failures that model the tensile strength of open-hole specimens. 

The most common criteria are the point stress and the average stress ones, 

developed by Whitney and Nuismer in 1974 [9,12], whose purpose is to 

predict the decrease in strength at specimen or component level. These 

criteria have been extended to different composites in various studies [13–

16], or used to validate numerical studies [17]. 

• Finite element methods that address the complexity of the problem by 

incorporating different damage models, aiming to describe the interaction 

of failure modes (e.g., delamination, in-plane cracking) and validating 

numerical results with experimental ones [18–26]; advanced finite element 

methods have also been used [27–30]; 

• Hybrid methods that integrate experimental observation with numerical 

models, using Digital Image Correlation (DIC) for full-field measurement 

of the strain [31]; 
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• Analytical methods that derive the exact stress field around the notch, 

using equilibrium and constitutive equations to predict the component 

failure [32]. 

In this work experiments and finite element modeling are used as the basis for a 

statistical approach. 

Almost the entirety of the existing studies has focused on unidirectional [4–

7,16,18–25,27–31] or biaxial [14,15] fiber composites. Analysis of fabric composites 

however presents additional challenges compared to unidirectional laminates, in 

that there is an interaction between the stress concentration and the 

heterogeneous structure of the woven lamina. Specifically, almost no studies 

consider twill fabric, one of the most commonly used in composite manufacturing. 

While there is literature on simulating twill composites with an open hole [33] and 

application of more conventional semi-empirical methods [13–15], there is a 

knowledge gap on the size effect in these composites considering their 

heterogeneous structure. This work will apply the developed methodology, well-

suited to the study of woven composites, to a twill fabric CFRP. 

The factors influencing size effect that are most commonly studied include the 

stacking sequence ([15,23,26,31]), laminate thickness [22,25]), also distinguishing 

between ply- and sublaminate-level scaling ([4,18,19]), hole diameter ([4,5,19–

21,24]), and the type of reinforcement fibers ([14,15,26]). For this study, width and 

width-to-diameter ratio were selected. 

1.2 Application of Digital Image Correlation to the study 

of composites 

Digital Image Correlation (DIC) is a non-contact, image-based measurement 

method, used to measure the full shape, displacement, and deformation fields of an 

object. DIC has become increasingly popular in mechanical testing in the past 20 

years, thanks to the availability of good quality digital cameras and ready-to-use 

commercial DIC software. At its core DIC uses an image matching algorithm 

correlating a small portion of a reference image, called a subset, and a displaced 

and/or deformed version in another. The motion and deformation fields are thus 

identified. The algorithm works by minimizing the difference in grey values 

between the subset in the reference and deformed image; for application to 

mechanical deformation measurement, DIC incorporates shape functions similar 

to those used in the finite element method, able to handle complex deformation 

and rotations [34]. For the image matching algorithm to function properly, the 

imaged object needs to have high-contrast, isotropic, non-repeating features—

ideally a random texture, which has the highest information content. Usually, these 
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textures resemble laser speckle patterns, and are applied by painting, so that they 

form a coating that deforms with the object. 

When processing images from a single camera, DIC is able to measure 

displacement and deformations in-plane only, and is known as 2D DIC. Calibration 

for 2D DIC involves simply measuring the size in pixels in the recorded image of a 

feature with known dimensions. While having the upside of simplicity, 2D DIC is 

sensitive to any out-of-plane movements, including accidental shifts of the camera 

system. They will be registered as fictitious in-plane displacements, and will be 

very difficult to separate from the actual ones. 

3D DIC overcomes these limitations by using a stereoscopic camera system, 

essentially combining photogrammetry and digital image correlation [35]. By 

recording simultaneously the same point with a second camera, a 3D displacement 

vector can be recovered from two 2-dimensional ones. A more complex calibration 

process is needed, to establish the coordinate transformation between the two 

camera systems and the external global reference system. This is normally done by 

imaging a grid of high-contrast points with known spacing. 

DIC can be used to replace traditional contact strain measurements such as strain 

gauges or extensometers, with the definite advantages of being a non-contact and 

non-point measurement. The full-field capabilities of DIC are useful when 

characterizing heterogeneous materials, where high spatial resolution data is 

needed, and for identification of micromechanical material properties [36]. The 

study of stress concentration in composite materials, with their intrinsic 

heterogeneity and anisotropy, has also greatly benefited from full-field techniques 

like DIC; digital image correlation [37], but also electronic speckle pattern 

interferometry [38], and the grid method [6,7] have been used as well. Figure 1  

shows an example of a heterogeneous longitudinal stress field in a notched uniaxial 

tension specimen made from woven composite, obtained with DIC. A common 

application of DIC measurements to this problem is for validating a finite element 

analysis, by comparing the measured strain field with the numerical results 

[18,23,27]. The DIC strain field can be used in tandem with a finite element model, 

such as to analyze the already discussed open-hole tensile problem in twill 

composite [33]. 

Another application of the full-field capability of DIC concerns the determination 

of material model parameters, using integrated experimental-numerical 

approaches [14,35,39–41]. These methods are typically a variant of the numerical 

scheme known as Finite Element Model-Updating. In these methods, a Finite 

Element Model (FEM) is solved iteratively. The strains outputted at every step are 

compared with the experimental ones using an appropriate objective function, 

formulated for the specific problem. An optimization algorithm then updates the 

values of the material model parameters to be identified, aiming to minimize the 
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objective function. Upon reaching a predetermined convergence criterion, the 

resulting parameters are the calibrated material properties [22]. An approach of 

this type was used by [26] at proof-of-concept level with synthetic data to 

determine the material properties of composite constituents at the microscale 

level. A FEMU scheme was implemented in this work to obtain mesoscale material 

properties. 

 
 

(a) (b) 

Figure 1. Strain field in an open-hole woven composite specimen in uniaxial tensile test, obtained 
with Digital Image Correlation (DIC). (a) whole specimen, (b) detail of the notch area. 

1.3 Statistical modeling of strength in composites 

The Weibull distribution is the most widely used model to describe the strength 

of brittle materials. As touched on before, this strength theory assumes that the 

failure of brittle material is caused by statistically distributed flaws. In what is 

commonly known as the weakest-link principle, a component is as strong as its 

weakest element. 

In its simplest, two-parameter form, the probability of failure 𝐹 of a component 

after Weibull theory is expressed as: 

𝐹 = 1 − exp [− (𝑉
𝜎

𝜎0
)

𝑚

], (1) 

where V is the volume of the component under uniform stress σ, σ0 is its 

characteristic strength per unit volume of the material, and 𝑚 is the shape 

parameter of the distribution (also known as Weibull modulus), associated with 

the variability of the material [42]. 



6 

INTRODUCTION 

This statistical distribution has been applied with good results to model the 

strength of composite laminates [43,44]. It has been used as well to model the 

scaling of the strength of composite components observed in experiments [1,45]. 

The ultimate strength of individual carbon fibers has been observed to follow a 

Weibull distribution [46,47]. Statistical models for fiber bundles have been 

proposed to correlate the (microscale) strength of an individual fiber with 

(mesoscale) one of the fiber tows. For example, in [48] the unidirectional 

composite strength is described starting from the Weibull-distributed single fiber 

strength by a hierarchical bundle model. 

The statistical method proposed in this work is developed from the one introduced 

in [49,50] to model the size effect in fatigue. This approach, which can be fruitfully 

adapted to describe at the mesoscale the problem in question, is based on the 

discretization of the part in sub-volumes which is operated by a finite element 

model. The weakest-link principle is then used to estimate the strength of the 

woven composite. 

1.4 Overview of structure and modeling of woven textile 

composites 

Textile composites are a subcategory of long-fiber-reinforced composites, in which 

the reinforcement is constituted by a large number of individual bundles of fibers 

(also known as tows) held together in a fabric by weaving or knitting. A fabric 

structure makes it possible to have fibers in multiple directions within a single ply. 

Among the most commonly encountered fabric weaves are plain weave, satin, and 

twill. In general, a more structured weave such as plain weave is more stable and 

symmetrical. A looser one such as satin is very drapeable, has lower crimping on 

the fibers, and is more porous for better impregnation. Twill, being between these 

two extremes, offers a good balance of properties [51]. 

Textile reinforcements are often chosen over unidirectional (UD) reinforcements 

due to their multiple advantages: they are cheaper to manufacture, more stable 

during processing, have superior drapeability, and better impact, fatigue, and 

corrosion resistance properties [52]. On the other hand, their complex structure, 

heterogeneous in fiber direction both in and out of the laminate plane, makes it 

more difficult to predict their behavior and model their mechanical response.  

To address this, in the past decades there has been considerable effort to develop 

models that consider the structure of woven composites mesoscale level, at an ever-

increasing level of detail. Among the earliest, the mosaic model, based on classical 

laminate theory by Chou and Ishikawa [53], which was further refined by several 

other studies [54–56]. While most works focused on plain weave fabric 
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composites, there have been several on twill weave ones, both analytical [57] and 

numerical [58–61]. 

However, most of these models use a micro- or mesoscale-level approach as a 

stepping stone to obtain homogenized properties for the entire lamina, and the 

stress analysis is carried out at the macroscale. While woven composite plies can 

be successfully considered as a transversely isotropic material at the macroscopic 

scale, at a level close to that of their representative volume element (RVE), the 

effects of material heterogeneity could be non-negligible as they overlap with 

others, such as the already mentioned stress concentration from notches. The scale 

of notches at which this interaction takes place—a few millimeters—is exactly the 

one considered in most notched strength studies, since it is relevant to fastening 

applications. This interaction is evident in the experimental longitudinal strain 

field in the notched specimen in Figure 1. In Figure 2 the stress field in the same 

component has been obtained with a homogenized and a mesoscale orientation-

aware model; both the distribution of the stresses in the ply and the maximum 

value (661 MPa versus 829 MPa) are vastly different. 

  
(a) (b) 

Figure 2. FEM longitudinal stress field in an open-hole woven composite specimen in uniaxial 
tensile test, (a) with homogeneous material (b) with mesoscale-level oriented material. 

Many modern 3D numerical models of fabrics are too complex to be applied to 

whole component analysis. This work used a new simplified mesoscale model to 

study open-hole tensile testing of composite coupons on a scale similar to that 

visible in Figure 2b. 
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1.5 Objectives of the thesis 

The central objective of this work is to develop a statistical approach to describe 

the open-hole notch size effect on the ultimate tensile strength of woven 

composites. The methodology is applied specifically to a twill weave CFRP 

laminate material, with specimen width and width-to-diameter ratio selected as 

the scaling parameters. 

Fundamental to the methodology is an innovative integrated experimental-

numerical approach, that faithfully captures the full stress fields in the tested 

specimen. This enables the study of the hole size effect at the local level. 

The proposed methodology involves the following steps: 

1. Acquisition of experimental data through uniaxial tensile testing of open-

hole specimens. Stereoscopic cameras and 3D DIC are used to record 

reliable full-field strain data. 

2. Construction of a heterogeneous 2D shell finite element model, that 

contains mesoscale information on the local material orientation in the 

woven composite and is able to reproduce the strain and stress fields at the 

same level of detail. A semi-automated script, utilizing image processing 

and DIC position data, is used to map the material orientation of each 

individual specimen, subdividing it into the unidirectional tow material in 

the two orthogonal directions. The material properties for this model are 

determined through data-driven optimization rather than specialized 

testing. To this end, a FEMU method is developed, which minimizes the 

difference between the DIC-measured and FEM-calculated strain fields to 

calibrate mesoscale elastic properties. 

3. Simulation of all the mechanical tests performed, using the mesoscale 

model calibrated with the DIC-FEMU process, to collect substantial full 

stress field data. 

4. Development of a statistical model based on Weibull theory and the 

weakest link principle. Building on the newly obtained stress data, the 

model allows the study of size effect on the strength of the constituent tow 

material at the mesoscale level. Model parameters are determined via 

optimization, minimizing the error between empirical and model-

calculated probabilities of failure. 

The structure of the rest of this work follows the steps of the proposed 

methodology. Chapter 2 details the material selected, the manufacturing of the 

specimens, the mechanical tests performed, and DIC analysis. Chapter 3 describes 

the construction of the mesoscale FEM model, and the data-driven material 

parameters identification through the DIC-FEMU method. In Chapter 4 the 
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results of the simulation of all tests using the optimized models are discussed, and 

they are used to reinterpret the size effect phenomenon at mesoscale. Chapter 5 

details the development, tuning, and results of the statistical model of size effect 

on strength, which uses the stress field data obtained through the FEM models. 

Finally, Chapter 6 draws the conclusions of the study. 

 





 

MECHANICAL TESTING 

Chapter 2  

Mechanical testing 

This chapter details the mechanical testing campaign on the twill woven 

composite material. Testing was designed and carried out to provide the 

experimental data foundation for the following numerical and statistical study of 

the strength size effect in woven composites, as well as to provide experimental 

validation. 

The chapter is organized as follows. In Section 2.1 the material and specimen design 

are described. The testing equipment and procedures, as well as the measurement 

systems and the DIC analysis, are discussed in Section 2.2. Finally, in Section 2.3 

the results of the tests are presented. 

2.1 Material and specimen characteristics 

2.1.1 Test and specimen design 

The test procedure and specimen designs were adapted from the open-hole tensile 

strength testing standard ASTM D5766M-11 “Standard Test Method for Open-

Hole Tensile Strength of Polymer Matrix Composite Laminates” [62]. This method 

establishes a uniaxial tension test of a balanced and symmetric laminate specimen, 

with a centrally located hole. The testing procedure itself is largely derived from 

the ASTM Test Method D3039M-17 “Standard Test Method for Tensile Properties 

of Polymer Matrix Composite Materials” [63], widely used in the mechanical 
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characterization of composite materials. The technical details of the test procedure 

used in this work are discussed in Section 2.2. 

The specimens tested are rectangular coupons cut from a flat composite laminate 

and measuring 250 mm long (l) by 24 mm wide (w), with a hole in their center. A 

manufacturing drawing of a representative specimen is shown in Figure 3, with 

dimensions indicated by letters, which reference Table 1. 

 

 
Figure 3—Drawing of a representative specimen. Refer to Table 1 for the numerical values of the 

dimensions for the various specimen types. 

Table 1. Dimensions of all specimen types tested: length l, width w, hole diameter D, and width-to-
diameter ratio. 

Specimen l [mm] w [mm] D [mm] w/D 

C20 250 24 Unnotched — 

C21 250 24 2 ±0.02 12 

C22 250 24 4 ±0.04 6 

C23 250 24 8 ±0.08 3 

C31 250 36 3 ±0.03 12 

C32 250 36 6 ±0.06 6 

C33 250 36 12 ±0.12 3 
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Two different geometrical scaling factors were considered: width w and width-to-

diameter ratio w/D. A total of six different notched specimen types were therefore 

tested. In addition, unnotched specimens in the narrower of the two widths were 

also manufactured and tested, to provide baseline results and for use in material 

characterization. Table 1 gives an overview of the nominal specimen dimensions 

and corresponding nomenclature. The values of the width-to-diameter ratio 

considered in this study span from three to twelve. The central value, 𝑤/𝐷 = 6, is 

the one suggested by ASTM D5766M. A factor of 2 was chosen to derive the other 

two ratios, so that hole size remains at a scale comparable to that of the fiber tows. 

At this scale there is the most interaction between material heterogeneity and 

notch, and the mesoscale analysis that will be undertaken is most significant. 

Specimen nomenclature is codified as follows: the letter C, followed by a number 

indicating the width (2 for 24 mm and 3 for 36 mm), and by a second number from 

1 to 3 indicating increasing hole diameters (1 for a w/D ratio of 12, 2 for a w/D of 6, 

and 3 for a w/D of 3). Each specimen is then individually numbered. For example, 

specimen C23_1 is the first of the 24 mm wide specimens tested, with a hole 

diameter of 8 mm and a 𝑤/𝐷 = 3. 

 

2.1.2 Material characteristics and manufacturing 

The material system selected for this study is a carbon fiber-reinforced epoxy 

prepreg, supplied by Microtex Composites, and commercially known as GG630 

T125 12K 37%. This composite material is quite versatile and has diverse 

applications, including the automotive, sports equipment, nautical, and civil 

engineering fields. Although a prepreg was used in the production of the 

specimens, the base fabric is also suited to numerous other production processes 

such as hand lay-up, vacuum infusion, and RTM. 

More in detail, the GG630 T125 12K reinforcement is a carbon fiber fabric, woven 

in a 2 × 2 twill pattern and with an area density of 630 g/m2. Both warp and weft 

consist of 12K-filament bundles of carbon fibers, resulting in a balanced fabric. The 

matrix is a thermosetting epoxy resin, commercially known as E3-150N. 

A laminate with [0/90/0] stacking sequence was manufactured by hand layup on a 

flat metal mold and autoclave curing, following the curing cycle shown in Figure 4. 

The resulting composite plate is shown in Figure 5a. The average cured thickness 

for the laminate measured 2 mm. 

The specimens were cut from the composite plate using a Kent KMV 11 EL CNC 

vertical milling machine. While the specimens were still joined to the plate, 

circular holes with the specified diameters were machined into them, using drill 

bits. A CNC machine was preferred to other machining methods, such as waterjet 
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cutting, for its ability to provide precise location tolerances of the hole within the 

specimen. The composite plate during the milling process is shown in Figure 5b. 

 

 
Figure 4. The autoclave curing cycle used in the production of the specimens. 

 

  
(a) (b) 

Figure 5. Manufacturing of the specimens: (a) the composite plate during quality control, (b) the 
same plate during the milling operations. 
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2.2 Tensile testing  

2.2.1 Equipment and setup 

Uniaxial tensile tests on the specimens were carried out on an Instron 8001 

hydraulic universal testing machine in the laboratory of the Department of 

Mechanical and Aerospace Engineering of Politecnico di Torino. This machine is 

equipped with hydraulic grips with serrated faces. 

 

 
Figure 6. The testing setup. 

During the tests, the following measurements were recorded: 

• Load, using the testing machine’s ±100 kN Instron load cell. 

• Crosshead displacement, using the testing machine’s onboard transducer. 

• Position, displacements, and strains on the whole specimen surface, using 

Digital Image Correlation. 

A stereo camera system was employed to image the entirety of the specimen 

throughout all tests. The system was based on two Basler Ace acA4096-30um 

cameras, each equipped with a 1-inch Sony IMX267LLR 8.9 MP monochromatic 

CMOS sensor. A lens selector software tool, MachVis, was used to identify the best 

lens combination for the application. Specifically, this was a Rodenstock Rodagon 

80 mm ƒ/4 C-mount lens paired with a 48 mm long extension tube and a manual 
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focusing ring. The acquisition system was completed by a Hedler DX15 daylight 

flood light with a 150 W HMI gas discharge lamp, necessary for uniform 

illumination of the specimen. Figure 9a shows a specimen in the test fixture as 

imaged by the principal of the two cameras, and Figure 6 an overview of the testing 

setup. 

A schematic of the acquisition and test control system is visible in Figure 7, and its 

functioning will be described in the following. At the center, a data acquisition unit 

(DAQ) links together the testing machine side of the system with the DIC imaging 

system. Each side uses a workstation for control by the operator and data storage. 

The software Vic-Snap 9 by Correlated Solutions was used on the DIC workstation 

for camera control and data acquisition. The DAQ unit, based on the programming 

received from the DIC workstation, triggers at an operator-selected frequency the 

two stereo system cameras through an I/O connection to take pictures. At the same 

time, it acquires the load cell and crosshead displacement signals from the testing 

machine, through analog inputs, and outputs it to the acquisition workstation. The 

images acquired by the cameras are transmitted to the acquisition workstation 

directly through USB 3.0 cables. This allows recording load and displacement data 

perfectly synchronized with each captured frame and, after DIC post-processing, 

with full-field specimen strain information 

 
Figure 7. Diagram of the acquisition system. 

DIC analysis requires the specimen surface to be covered in a high-contrast random 

pattern. The specimens were therefore airbrushed with a black speckle pattern on 

a white base (Figure 9b). Using a professional airbrush ensures reproducible 

speckling results, as this tool can be consistently set up for every test with the same 

air pressure, nozzle diameter, air, and paint flow. This provides both the ability to 

achieve a desired speckle fineness and to apply it consistently to different 
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specimens, even if not tested at the same time. Proper technique for speckle 

application involves maintaining a constant distance from the specimen and 

constant overlap in the spraying passes. If such care is taken, the resulting speckle 

is very uniform. For this work, the speckle pattern was applied using an airbrush 

with a nozzle diameter of 0.2 mm. The resulting pattern has a mean speckle 

diameter of 0.25 mm. 

No tabs were bonded to the specimens, since the open-hole stress concentration 

was sufficient to induce failure on the midpoint of the free span. However, 

excessive grip pressure can still cause a significant multiaxial stress state in the 

specimen in the vicinity of the fixture, and invalidate the uniaxial tension 

hypothesis as well as alter the strain field recorded by DIC. To avoid this, through 

set-up testing of sacrificial specimens, the grip closing pressure was set to the 

lowest value which guaranteed no specimen slippage during the whole test. 

2.2.2 Procedure 

Several operations needed to be conducted in advance of the tensile test proper: 

• Width and thickness of all specimens were measured, in three different 

locations along the free span as instructed by ASTM D3039M. The average 

of these three measurements was considered for the calculation of 

mechanical properties. The length of the free span of the specimen was 

defined by the distance between the test machine grips, which was set at 

145 mm when crosshead displacement was zeroed at the start of the testing. 

• For stereo system calibration, a calibration target with 7 mm grid spacing 

was imaged in various positions and angles inside the field of view of the 

cameras. Example calibration images as captured by the two cameras are 

visible in Figure 8. 

  
Figure 8. Stereo camera system calibration images. 
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• Pictures of each bare specimen on the test fixture were taken with the DIC 

cameras before applying the base paint and speckle pattern (Figure 9), in 

the same position where it would be placed during testing. These pictures 

were later used to build the FEM model, as will be described in Chapter 3. 

The tensile tests were conducted in displacement control, at a constant, quasi-

static displacement rate of 2 mm/min. The camera recording frame rate— and 

therefore also load and displacement recording rate—was set to 4 fps. The test 

was ended by the failure of the specimen. At least three specimens were tested 

for each specimen type.  

 

 

Figure 9. The same specimen in the test fixture, without and with speckle pattern. 

2.2.3 DIC post-processing 

After having been recorded, the speckle images of the tested specimens were 

processed using Correlated Solution’s VIC 3D 9 commercial digital image 

correlation software. 

The post-processing procedure used and the parameters selected will be briefly 

described here. The first step in the processing was the calibration of the stereo 

camera system, performed via a utility of the software (Figure 10). The dots on the 

target grid are matched on each pair of camera images, and calibration parameters 

are calculated from all images and averaged. A score is calculated for each pair, 

representing the difference in pixels from the calibrated model-calculated position 

of the dots and the actual registered one. In this case, the pairs of images with the 
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highest scores were manually removed from the sequence, until reaching a 

satisfactory calibration score under 0.04. 

The same calibration data could be saved and used for all specimens tested. Care 

had to be taken to use the autocorrect calibration function before processing each 

test, to account for slight variations between the tests due to minor shifts in the 

relative position of the cameras and specimen. The area-of-interest (AOI) where 

image correlation was performed was the whole visible speckled camera-facing 

surface of the specimen, defined in the software as a rectangle from which a circle 

(the notch) is subtracted. 

 
Figure 10. Stereo DIC calibration utility. 

The definition of the AOI does not require precision, as the correlation of subsets 

where no speckle is present is lost when processing the first frame captured, and 

does not affect the rest of the analysis. 

A built-in VIC 3D tool was used to select subset size (Figure 11). The tool helps 

identify the minimum size of subset which guarantees a distinctive enough pattern 

to match in each frame, for an assumed level of noise from the camera. An optimal 

value of subset size of 31 pixels was used for all specimens, attesting to the 

consistency of the speckling procedure used. The step between the subsets was set 

at 6 px, which is less than 1/3 of the subset size following recommendations by 

Schreier et al. [34]. 

After the selection of the AOI and of the subset parameters, the correlation analysis 

was run. No initial guess was required since the specimen geometry does not 

feature surface curvature. The main correlation options used in the analysis are 

visible in a screen capture of the selection window in Figure 12a. 
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Figure 11. Subset size selection. 

 

  
(a) (b) 

Figure 12. Digital image correlation analysis parameters in VIC 3D: (a) correlation options and (b) 
post-processing options. 

The following options were selected: 

• The Gaussian weights option applies center weighting to the subset pixels, 

and improves the balance of spatial and displacement resolution. 

• 8-tap sub-pixel spline interpolation gives better displacement results at the 

cost of extra computational time. 
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• The zero-normalized correlation criterion has the advantage of being 

unaffected by any lighting changes during the test. 

• Low-pass filtering removes high-frequency noise from the image that 

would produce aliasing in smaller speckles. 

• Lastly, the fill boundary option was very important in this application of 

DIC. When this box is checked, VIC 3D attempts to fill the area between 

the last full-sized subset and the edge of the AOI, where no information is 

available, by using smaller subsets. This recaptures very meaningful 

information, since strain concentration is maximum on the edge of the 

notch. 

Thresholding parameters, used to remove suboptimal data, are not reported here 

as test conditions were ideal and no changes in the default values were necessary. 

For post-processing, calculation of the Lagrange strain tensor was selected, with a 

filter size of 5. This is a decay filter that smooths the calculated strains over the 

selected number of data points equal to filter size, thereby reducing noise. 

The relevant variables output by VIC 3D for each data point in each frame were: 

• 𝑥 and 𝑦 [pixel], position in the raw image. 

• 𝑋, 𝑌, and 𝑍 [mm], position in the calibrated frame of reference. The X-axis 

is the horizontal axis, 𝑌 the vertical axis along which tensile load is applied, 

and 𝑍 the out-of-plane axis. 

• Sigma [pixel], the standard deviation of confidence in the correlation. It is 

0 if correlation is perfect, and takes higher values if either noise or 

decorrelation occur.  

• 𝑢 and 𝑣 [pixel], the 𝑥- and 𝑦-axis displacement from the reference image. 

• 𝑈, 𝑉, and 𝑊 [mm], the 𝑋-, 𝑌-, and 𝑍-axis displacements from the reference 

image in the calibrated frame of reference. 

• 𝑒𝑥𝑥, 𝑒𝑦𝑦, and 𝑒𝑥𝑦, strains in the 𝑋-direction, 𝑌-direction and in shear. 

No further post-processing was carried out in VIC 3D. All data was exported in 

MATLAB format for analysis. 

2.3 Testing results 

2.3.1 Characterization of the homogeneous material 

A material characterization of the whole laminate was conducted as an initial step 

using the unnotched specimens, to get baseline mechanical properties of the 
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homogenized composite material. The ASTM D3039M-17 test standard was 

followed to obtain tensile properties, and the test procedure was similar to that 

used for the open-hole testing. ±45 angle-ply specimens were also tested with a 

similar procedure, to obtain shear modulus according to test standard D3518M-18 

“Standard Test Method for in-Plane Shear Response of Polymer Matrix Composite 

Materials by Tensile Test of a ±45° Laminate” [64]. Four repeats of the tensile and 

shear test were carried out, on unnotched, 24 mm wide specimens named 

respectively from C20_1 to C20_4 and from A20_1 to A20_4. 

The load-displacement and engineering stress-strain curves for the unnotched 

tensile specimens are plotted in Figure 13. Engineering stress was calculated by 

dividing the recorded load by the measured cross-section of the specimen, while 

the strain is the average of recorded DIC longitudinal 𝜀𝑦𝑦 strain over the entire 

area-of-interest on the surface of the specimen. 

 

  
(a) (b) 

Figure 13. Load-displacement curves (a) and stress-strain curves (b) for the unnotched specimens, 
tested per ASTM D3039M-17. 

The experimental curves are linear, with limited non-linearity immediately before 

failure, and repeatability of the results is good. The average tensile mechanical 

properties of the laminate are collected in Table 2, together with their standard 

deviation and coefficient of variance. At the macroscale the material is orthotropic, 

and therefore the properties are identical in the two fiber directions (0° and 90°). 

Table 2. Tensile properties of the laminate, determined per ASTM D3039M-17. 

Property Mean value Standard deviation COV % 

E 54.34 GPa 0.52 GPa 1.0 

UTS 732.80 MPa 0.02 MPa 2.3 

𝝊 0.078 0.016 20.1 

G 3.32 GPa 0.10 GPa 3.1 
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2.3.2 Experimental open-hole testing curves 

All tested specimens experienced brittle failure mode along a line passing through 

the hole. Some examples of failed specimens are shown in Figure 14. Load-

displacement curves recorded for the notched specimens are plotted in Figure 15. 

For ease of interpretation, an image of the corresponding type of specimen is shown 

next to each cluster of failure points. This plot uses data from the test machine’s 

load cell and displacement transducer. Here, the different specimen types display 

different stiffnesses and maximum loads. Both properties decrease following hole 

size, as expected. Stress-strain curves for the notched specimens tested are 

reported in Figure 16. The longitudinal engineering stress used in this plot is 

calculated per ASTM D5766M-11, by dividing the recorded load by the gross 

(unnotched) cross-section of the specimen. The longitudinal strain is calculated by 

averaging the DIC 𝜀𝑦𝑦 strain over the entire area-of-interest. 

Regardless of hole diameter, all specimens of the same width show a similar tensile 

modulus. On the other hand, the nominal ultimate tensile strength of the 

specimens is affected by hole size. Repeatability is good, with specimens showing 

consistent stiffness and relatively low dispersion in the failure stress. All specimens 

showed mostly linear behavior throughout the test. The brittleness of this material 

is apparent from the stress-strain curves, which are linear until sudden failure, a 

typical behavior from a high-modulus fiber composite.  

 

   
(a) (b) (c) 

Figure 14. Specimens after failure. (a), C21_2; (b) C22_1; (c) C33_2. 
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(a)  

 
(b) 

Figure 15. Load-displacement curves for the notched specimens, (a) 24 mm wide, (b) 36 mm wide. 
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(a)  

 
(b) 

Figure 16. Stress-strain curves for the notched specimens, (a) 24 mm wide, (b) 36 mm wide. 
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2.3.3 Analysis of the DIC-determined strain field 

An example of DIC-determined strain fields for a notched specimen is shown in 

Figure 17. Longitudinal strain is the highest in entity overall. In this strain 

direction, the characteristic structure of 2 × 2 twill fabric, with diagonal bands of 

vertical tows alternating with horizontal tows, is translated into clearly visible 

high-strain diagonal bands, corresponding to the longitudinal tows. Less intense 

high-strain bands along the opposite diagonal direction are due to the intermediate 

90° angle ply. Examining the area around the round notch, it can be observed how 

this diagonal material distribution and the open-hole interact. The high strain 

caused by the notch extends into the longitudinally oriented material. The strain 

concentration is notably not symmetrical with respect to the hole. Such a strain 

distribution cannot be adequately described using a homogeneous material model. 

Moving on to the transverse strain (Figure 17b), its values are the lowest and show 

little banding and concentration effects. Finally, the shear strains (Figure 17c) are 

mostly generated in 45° directions around the hole and fall close to zero moving 

away from it. The shear strain field again appears to be less affected by the material 

distribution than the longitudinal one. 

 

   
(a)  (b)  (c)  

Figure 17. DIC-determined strain fields: (a) longitudinal strain, (b) transverse strain, (c) shear 
strain. 

In the following chapter, these strain maps will be used to determine the tow-level 

elastic parameters of the material. 
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Chapter 3  

Data-driven calibration of the 

mechanical properties 

In this chapter, the mesoscale modeling of the woven composite and relative 

methodology for identification of the material properties via a FEMU method will 

be detailed. This data-driven identification process exploits DIC strain data from 

tensile testing of a plain, unnotched C20-type specimen. Essential to the process is 

a FE model able to reproduce the strain field with a resolution on par with that of 

DIC, which in turn requires knowledge (a “mapping”) of the local material 

orientation in the composite. 

Section 2.13.1 illustrates the strategy adopted to model the woven composite. The 

mapping of the material orientation necessary for this model is described in Section 

3.2. The implementation of the finite element model is described in Section 3.3. 

Lastly, Section 3.4 presents the FEMU method for the identification of the material 

properties and its results. 

3.1 Modeling of the woven composite 

In woven composites a complex strain distribution can be observed with full-field 

measurement methods, which originates from the interlocking structure of 

orthotropic bundles of fiber (known as tows) in vertical (warp) and horizontal 

(weft) directions. This structure is visible as it appears on the surface of the 

specimen in Figure 18a, and schematically in Figure 18b. 
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For a model to correctly predict the strain and stress localization, this distribution 

must be adequately described. A common way to model composite laminates in a 

simplified form is using 2D shell elements. In such a model, the mesoscale-level 

heterogeneity can be described by locally changing material directions—or, in 

other words, dividing the component into two orthotropic materials with identical 

properties and orthogonal orientations. 

 
  

(a) (b) (c) 

Figure 18. A 2 × 2 twill weave unit cell. (a) DIC camera imaging of the specimen; (b) idealized 
representation; (c) 2D model, with oriented material and two layers to represent the fabric 
structure. Global and local material directions are shown in black and orange respectively. 

Furthermore, in the most simplified representation, the cross-section in any point 

of a twill fabric is constituted by a warp and a weft tow overlapping with 

perpendicular fiber directions, as visible from the micrograph in Figure 19. This can 

be recaptured in the model by juxtaposing two layers with opposite material 

distributions (Figure 18c), constructing the most simplified 2D model of the three-

dimensional woven structure. In this work, this was implemented as two layers of 

integration points in a single shell. This approach allows a sizeable reduction in 

computational effort when compared to more standard multiscale models. 

Properties of the constituent material, while not identifiable through classic 

mechanical testing, have been obtained by minimizing the difference between the 

experimental and numerical full-field strains. 

 
Figure 19. Micrograph of the cross-section of the tested laminate 
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The reference systems used in the following are two. With reference to Figure 18c, 

𝑥 − 𝑦 is the global system, consistent with the definition used discussing DIC 

processing in Chapter 3, where 𝑦 is the tensile loading direction; while 1 − 2 is the 

local material orientation, where 1 is the “fiber direction” and 2 the “matrix 

direction”. For example, the longitudinal stress in the loading direction 𝜎𝑦𝑦 is, 

depending on material orientation, a fiber direction stress 𝜎1 in vertical tows or a 

matrix direction stress 𝜎2 in horizontal tows. 

3.2 Construction of the material map 

The stereoscopic 3D DIC data obtained as described in Section 2.2.3 comprises 

position, displacement, and strain. This section describes how local material 

orientation (a “material orientation map”) is added to this collection of 

information. The semi-automated image processing-based procedure, summarized 

in Figure 20, is the subject of this section. 

 
Figure 20. Construction of the material map. 

3.2.1 Principle of operation 

The reflectivity of carbon fibers is directional and depends on the angle of incidence 

of light. With reference to the bidirectional reflectivity diagram in Figure 21, it is 

maximum when the beam is parallel to the fiber direction, and the angle 𝜃𝑖  is null 

[65]. It is maximum as well as when the light source is perpendicular to the source, 

and the incidence angle 𝜑𝑖 is null. 

 
Figure 21. Bidirectional reflectivity [66]. 

Fiber direction 
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It is therefore possible, by appropriately placing a light source and camera, to make 

the tows of fibers emerging to the surface of the woven composite specimen appear 

brighter when oriented along the vertical direction than in the horizontal one. This 

may be appreciated in the specimen pictured in Figure 22. 

This difference in brightness can be exploited to identify the orientation of carbon 

fiber tows in an image of the specimen captured with the camera system described 

in Section 2.2.1. Each image recorded during the test is a 4112 × 2178 array of 

integers, codifying the grey level with values between 0 (white) and 255 (black). 

Using a clustering algorithm operating on the grey level, the tows of fibers oriented 

in the vertical direction can be isolated in the image. For each separate cluster, the 

position of its centroid within the array, i.e. its position within the image, can be 

computed. The centroids of the clusters thus isolated are assumed to be the centers 

of the fiber tows. The remaining information needed to build a material orientation 

map is the position of every tow centroid within the specimen, which is provided 

by 3D DIC data. 

 

Figure 22. Reference specimen image and speckle image, with aligned reference systems. 

The position in both pixels (arrays 𝑥 and 𝑦) and in millimeters (arrays 𝑋 and 𝑌) 

within the image are known for every subset for which image correlation has been 

run. These may be interpolated and processed so that the position within the 

specimen is known for every pixel in the image, as visible in Figure 22, where the 

DIC area-of-interest is overlayed on both the speckled and non-speckled specimen. 
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3.2.2 The material mapping algorithm 

This section describes in detail the algorithm for the construction of the material 

map, which was implemented in MATLAB R2021b.  

The procedure starts by importing the image of the specimen and the DIC position 

data, which are then centered in the midpoint of the specimen. Next, the kmeans 

function, native to MATLAB, is used to perform a 𝑘-means clustering of the 

specimen image. The 𝑘-means clustering algorithm, also known as Lloyd’s 

algorithm [67], iteratively partitions a number of data points in exactly 𝑘 clusters. 

In this case, the data points are the pixels of the grayscale image, which are divided 

into 𝑘 = 3 clusters. These roughly correspond to the vertically oriented fiber tows, 

horizontally oriented tows, and surrounding matrix. Of the three clusters, the one 

containing the lowest amount of data points corresponds to bright areas in the 

image, i.e. the vertical tows. By merging the two other clusters, good tow 

identification is achieved. The clustered image is shown in false colors in Figure 

23a, with blue corresponding to the vertical tows. A Gaussian filter is then applied 

to reduce noise (Figure 23b). 

   
(a) (b) (c) 

Figure 23. Tow identification process on the grayscale specimen image. (a), after 𝑘-means 
clustering; (b) after filtering; (c) overlaying in yellow of the cluster centroids on the original image. 

The clustered image is then binarized and, using the MATLAB function regionprops, 

the “tow” cluster is partitioned into individual blue regions in Figure 23b, each 

corresponding to a vertical tow. This function also calculates the position of the 

centroid of each region. The centroids are visible in Figure 23c, overlayed over the 

original grayscale image. A manual step is subsequently needed, to remove false 

positives around the edges of the specimen, and centroids corresponding to 

incomplete tows on the edges of the specimen. Finally, tow centroid positions are 
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converted from pixel coordinates to in-specimen metric calibrated 𝑋 − 𝑌 

coordinates. 

The map of tow centroids thus obtained is, however, not exact. There are variations 

in the position of each, due to their imperfect shape, minor variations in weave 

geometry during the production process, and measurement errors. However, an 

exact grid is preferable for two main reasons. First, regardless of shape, all fiber 

tows contain the same number of fibers, and are therefore best represented by the 

same amount of material. Second, the purpose of this map is not to analyze the 

quality of the fabric weave, but to provide material information to a FEM model, 

which is geometrically exact. 

A uniformly spaced grid of calculated tow centroids is therefore constructed and 

fitted to the experimentally individuated centroids with an optimization 

algorithm. An example of this is visible in Figure 24a, with the identified tows 

plotted as blue dots and the grid in red circles. The spacing parameters, i.e. the 

distance between two adjacent centroids, are first estimated from of three diagonal 

rows of centroids. The selection of these three rows is a second operation requiring 

human intervention. An optimization process is then used to determine the correct 

spacing parameters of the grid, as well as an in-plane rotation angle. This 

optimization algorithm works by minimizing the sum of the distances between 

each experimentally individuated identified centroid and the closest centroid in 

the exact grid. 

 

   

(a) (b) (c) 

Figure 24—Construction of the material map: (a), best fit of a uniformly spaced grid to the 
experimentally identified centroids; (b) the identified tows overlayed over the original image; (c) 
the final material map. 
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In the next and final step, the full map of the two material orientations is 

constructed by building rectangles around the tow centers (Figure 24b), each 

encompassing the portion of material that belongs to a tow. The dimensions of 

these rectangles are calculated from the optimized grid spacing. An example of the 

resulting material map is plotted in Figure 24c. 

In conclusion, it should be remarked that this process is almost entirely automated. 

As pointed out in the description, only two operator interventions are required: 

elimination of edge cluster centroids, and selection of centroids for estimation of 

grid spacing. 

3.3 The finite element model 

A description of the finite element model of the tensile specimen will be given in 

this section. The model is built for finite element solver LS-Dyna Implicit, using 

scripts in MATLAB and Python programming languages, as well as the open-

source mesh-generating software GMSH v.4.8.4.  

The structured FEM mesh (Figure 25) is initially generated from a fully 

parametrized geometry in GMSH, and then translated to LS-Dyna keyword 

format. It is composed of a single layer of 4-node Belythscko-Tsay shell elements. 

 

 

(b) 

 

(a) (c) 

Figure 25. Finite element model of the unnotched specimen. (a) front view of the model; (b) 
representation showing the layers of integration points with the different materials visible, and the 
corresponding plies in the real material; (c) detail of the thickened shell showing the thickness of 
every integration point.  
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Six through-thickness integration points are used to represent the three composite 

layers, as detailed in Section 3.1, and the material is specified per every integration 

point. Each of the three plies in the real composite is modeled via two through-

thickness integration points in the shells (Figure 25b), with alternating materials, 

representing the interwoven tows of fibers in a simplified fashion. A mesh 

convergence study was conducted to identify the appropriate mesh size, leading to 

a mesh size of 0.5 mm. Thus, every rectangular tow in the woven texture is 

represented by 10 × 20 elements. 

In the testing machine, the specimen is gripped at the upper and lower ends by 

hydraulic grips, with the lower one being mobile. In the model, the load is 

introduced as a rigid body load via a row of rigid shell elements (light blue in Figure 

25a) which share nodes with the lower end of the specimen. The gripping of the 

specimen in the testing machine is replicated via a fully constrained boundary 

condition on its uppermost row of nodes, and by constraining all DOFs except for 

displacement in 𝑌 direction on the rigid elements. In the material property 

identification process, the specimen is loaded by imposing the same linear load 

curve recorded in the experimental test. 

The material model used is an orthotropic linear elastic one expressly developed 

for composite materials, *MAT_54 (MAT_ENHANCED_COMPOSITE_DAMAGE) 

from the LS-Dyna material library. Table 3 shows the first two cards of the material, 

which contain the relevant elastic parameters, and the corresponding symbols used 

in this work. 

Table 3. Material cards 1 and 2 of LS-Dyna material *MAT_54 [68]. 

MID RO EA EB (EC) PRBA (PRCA) (PRCB) 

Material 
ID 

Mass 
density 

Young’s 
modulus 
– long. 

direction 

Young’s 
modulus 
– transv. 
direction 

Young’s 
modulus 
– normal 
direction 

Poisson’s 
ratio –

𝑏𝑎-
direction 

— — 

  𝑬𝟏 𝑬𝟐  𝝂𝟏𝟐   

        

GAB GBC GCA (KF) AOPT 2WAY TI — 

Shear 
modulus 

– 𝑎𝑏-
direction 

— — — — — — — 

𝑮        

 

At this stage the FEM mesh has no material orientation specified. A Python 

“mapping” script is used to assign the appropriate material direction to each 
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integration point according to the map described in Section 3.2. This script parses 

all the (non-rigid) shell elements, computes their centroid in in-specimen 

coordinates, and assigns to each integration point the material orientation found 

in that location on the material map. The material properties themselves were 

identified with an optimization process, described in detail in the following 

section. 

It is worth noting that, as for the material mapping algorithm, the construction of 

the FE model is almost entirely automated via Python and MATLAB scripts. 

3.4 FEMU optimization of mechanical properties 

3.4.1 The material property optimization algorithm 

A flowchart of the optimization algorithm for data-driven identification of the 

elastic material properties is shown in Figure 26. 

The objective is to identify the material parameters by minimizing the difference 

between the strains measured with DIC on the specimen surface and the 

corresponding strains in the FE model, i.e. the ones computed in the topmost 

integration points of all elements. 

The algorithm is implemented in MATLAB R2021b and uses several Python scripts 

to interface with the LS-Dyna solver and FE results. At the center of the algorithm 

is a surrogate optimization solver from the MATLAB global optimization toolbox, 

surrogateopt, which was selected for its ability to converge to a global minimum and 

suitability for problems with objective functions that are time-consuming to 

evaluate [69]. 

The material parameters to be optimized are stored in a vector 𝑝: 

𝑝 =  [𝐸1,  𝐸2,  𝐺,  𝜐12], (2) 

where the symbols correspond to the ones listed in Table 3. 

The optimization algorithm takes as input data the three DIC-measured strain 

fields on the specimen surface, the material map constructed as illustrated in 

Section 3.2, and the raw FEM mesh described in Section 3.3. The DIC-measured 

strain fields are respectively the transverse (𝜀𝑥𝑥_𝐷𝐼𝐶), longitudinal (𝜀𝑦𝑦_𝐷𝐼𝐶), and 

shear (𝜀𝑥𝑦_𝐷𝐼𝐶) strains, obtained in the post-processing detailed in Section 2.2.3 

and exported to MATLAB format. In order to make them comparable, DIC and 

FEM strains are linearly interpolated over a common grid of points, with a spacing 

comparable to that of the DIC subsets. Exit conditions, an initial guess for the 

optimized variables 𝑝0, as well as lower and upper bounds are also required by the 

optimization algorithm. 
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Figure 26. Flowchart of the optimization algorithm for reverse identification of the material 
properties. 

First, the Python mapping script constructs the oriented material model, by 

defining according to the material map the material orientation in every integration 

point of every element. The LS-Dyna solver is then run. Results are extracted to 

MATLAB via a Python script, which makes use of the open-source lasso-python 

library [70]. The resulting FE-calculated and DIC-measured strain fields are then 

interpolated on the common grid. 

The objective function to be minimized by the optimization algorithm can then be 

calculated. The function consists of the summation over the full grid of point-by-

point quadratic differences between the three experimental and calculated 

longitudinal, transverse, and shear strain fields. Since the loading is unidirectional, 

the amplitude strains in the loading direction were an order of magnitude greater 
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than those in the transverse direction. To give all the strain fields equal weight the 

strain field differences were normalized over their respective experimental RMS 

values. Mathematically, the objective function 𝐶 is therefore formulated as: 

𝐶 =  ∑ ((
𝜀𝑥𝑥

𝐹𝐸  − 𝜀𝑥𝑥
𝐷𝐼𝐶  

𝑅𝑀𝑆(𝜀𝑥𝑥
𝐷𝐼𝐶)

)

2

+ (
𝜀𝑦𝑦

𝐹𝐸  − 𝜀𝑦𝑦
𝐷𝐼𝐶  

𝑅𝑀𝑆(𝜀𝑦𝑦
𝐷𝐼𝐶)

)

2

+ (
𝜀𝑥𝑦

𝐹𝐸  − 𝜀𝑥𝑦
𝐷𝐼𝐶  

𝑅𝑀𝑆(𝜀𝑥𝑦
𝐷𝐼𝐶)

)

2

) , (3) 

where 𝜀𝑥𝑥, 𝜀𝑦𝑦, and 𝜀𝑥𝑦, are the transverse, longitudinal, and plane shear strain 

fields, respectively, the  𝐹𝐸  and  𝐷𝐼𝐶  superscripts indicate numerical and 

experimental DIC grid-interpolated strain fields, 𝑅𝑀𝑆(𝜀) is the root mean square 

of the strain field 𝜀; and 𝛴 is the summation over all the common strain field grid 

points. Based on the value of the objective function, the surrogate optimization 

algorithm determines the next value of 𝑝, which is written in the FE model and a 

new iteration begins. The output of the algorithm is a vector of optimized 

properties 𝑝𝑜𝑝𝑡. 

 

3.5 Optimized material properties 

The elastic material properties resulting from the optimization process are 

reported in Table 4. These same values will be used in the finite element 

simulations in the remainder of this work. A comparison of the experimental and 

numerical longitudinal strain fields after optimization is shown in Figure 27. It can 

be appreciated how the model captures well the diagonal strain banding typical of 

woven twill composites. 

Table 4. Elastic material properties obtained from the optimization algorithm. 

Property E  [GPa] E  [GPa] G   [GPa] 𝛖   

Value 102.388 15.519 1.891 0.050 

 

A brief discussion of the properties is given here. It is interesting to note how the 

average of longitudinal and transverse moduli 𝐸1 and 𝐸2, �̅� = 58.95 𝐺𝑃𝑎, is close 

to the value of the modulus of the homogenized material 𝐸 = 54.34 𝐺𝑃𝑎 (Table 

2). Effective separation of the horizontal and vertical tows in the material mapping 

stage was found to be critical to good mesoscale elastic parameter calibration. 

Failure to achieve this separation resulted in the longitudinal and transverse elastic 

moduli converging toward this average value. 
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(a) (b) 

Figure 27. Longitudinal strain fields in unnotched specimen C20_4: (a) experimental, (b) 
numerical, after parameter optimization. 

The operation of mapping the material orientation is equivalent to reducing it to a 

unidirectional composite (the individual fiber tows) from which it is constituted. 

The transverse elastic modulus 𝐸2 obtained is comparable to the typical one for 

such a material, however the longitudinal modulus 𝐸1 is somewhat lower than 

usual. This discrepancy can be attributed to the formulation of the finite element 

model. Fiber bundles are not entirely planar, but rather curve in the through-

thickness direction due to the woven structure of the composite. This results in a 

local change of the elastic property along the bundle itself, according to the 

curvature of the bundle: in the in-plane direction, the stiffness of the bundle 

decreases. In the finite element model all elements in the fiber tow have the same 

properties, and this geometrical change in elastic properties does not take place. It 

is therefore reflected in lower longitudinal elastic properties than those typical of 

unidirectional carbon fiber composite. Tow curvature, however, does not influence 

the elastic properties of the transverse tows. The value of the transverse modulus 

obtained therefore aligns with that typical of unidirectional composite. 

In the following chapter, the material properties thus obtained will be used to 

model tensile tests on open-hole specimens. 



 

NUMERICAL MODELING AND STRESS ANALYSIS 

Chapter 4  

Numerical modeling and stress 

analysis 

This chapter presents the results of the simulation of all open-hole tensile tests 

with calibrated mesoscale FE models. 

Section 4.1 contains a discussion of the simulation and results. In Section 4.2 the 

stress fields thus obtained are used to analyze at the mesoscale the effect of 

width/diameter scaling. 

4.1 Simulation of the open-hole tensile tests 

4.1.1 The numerical model 

The finite element model of each tested specimen was constructed with a 

procedure similar to that of the material property identification model, i.e. with a 

material map obtained with the automated procedure from Section 3.2 applied to 

the FE model from Section 3.3. Therefore, in this section only the points of 

difference with the previously described model will be discussed. 

Since a quantity of tests on similar specimen geometries had to be simulated, a 

Python script was used to automatically generate FE models from basic LS-Dyna 

files, ready to be solved and complete with the desired geometrical dimensions, 

mesh size, material orientation distribution, loading data, and material parameters. 

Figure 28a shows the geometry which underpinned the structured mesh of every 
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specimen, parametrized and constructed in GMSH. The same base geometry was 

used for all six types of specimens, by changing dimensional parameters. The 

meshed geometry for a C22 specimen is visible in Figure 28b. Base mesh size away 

from the hole was 0.5 mm, in order to have 10 × 20 elements for each tow of the 

woven twill texture. The structured mesh was refined around the hole, with a 

minimum size of 0.05 mm—constant for all specimen types. 

The material properties used in the models were those determined with the 

optimization process detailed in Chapter 3 and reported in Table 4. As in the 

FEMU process, the model was loaded with the experimentally recorded load curve. 

Experimental loads and displacements at failure recorded for each specimen tested 

are reported in Table 5. 

 
 

(a) (b) 

Figure 28. FEM model of the open-hole specimens: (a) parametrized geometry, (b) meshed model. 

4.1.2 Results of numerical modeling 

The last two columns of Table 5 list the displacement at failure in the numerical 

model and its percentage error with the experimental measurement. The error was 

computed as the difference between the experimental and numerical 
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displacements, normalized over the experimental displacement. The results show 

an average absolute error of 3.81% and a standard deviation of 3.03%. 

Table 5. Experimental failure load, experimental failure displacement, FEM failure displacement, 
and the percentage error between the last two for each specimen. 

Specimen Pexp, max [kN] dexp [mm] dFEM [mm] d err% 

C21_1 30.929 −1.631 −1.616 0.96% 

C21_2 30.976 −1.663 −1.622 2.49% 

C21_3 30.778 −1.656 −1.608 2.92% 

C22_1 26.811 −1.528 −1.430 6.44% 

C22_2 25.768 −1.427 −1.374 3.71% 

C22_3 25.768 −1.461 −1.372 6.04% 

C23_1 20.957 −1.385 −1.209 12.69% 

C23_2 20.749 −1.276 −1.200 5.96% 

C23_3 22.075 −1.366 −1.277 6.47% 

C31_1 48.570 −1.654 −1.701 −2.85% 

C31_2 50.791 −1.740 −1.778 −2.17% 

C31_3 47.376 −1.593 −1.657 −4.01% 

C32_1 39.633 −1.424 −1.428 −0.25% 

C32_2 37.551 −1.357 −1.353 0.35% 

C32_3 41.111 −1.452 −1.481 −2.00% 

C33_1 32.262 −1.380 −1.303 5.54% 

C33_2 31.440 −1.302 −1.270 2.41% 

C33_3 31.150 −1.286 −1.270 1.25% 

 

In Figure 30 the load and displacement curves from all the simulated tensile tests 

are compared with the experimental ones. The same is done in Figure 31 for the 

stress and strain curves. Here the experimental strain is the average over the entire 

DIC AOI, while the numerical one is the average over the topmost integration 

point, corresponding to the surface of the specimen. Stresses are calculated as 

engineering stresses on the gross unnotched cross-section. 

The mesoscale finite element model captures accurately the global elastic behavior 

of the tested specimens, thus validating the material properties obtained separately 

via calibration from an unnotched specimen. This can also be appreciated on a 

mesoscopic level as shown in Figure 29, through the comparative analysis of the 

strain fields in the longitudinal direction. The model reproduces to a good degree 

the surface strain variations due to the material heterogeneity and its interaction 

with the strain intensification in the vicinity of the circular notch. The diagonal 
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banding effect in the strain field stemming from the twill structure is also well 

represented, as is the secondary opposite direction diagonal banding due to the 90° 

middle ply. 

The slightly nonlinear trend of the experimental stress-strain curves in the 

proximity of the final failure results in a minor discrepancy to the finite element 

model. The FE model indeed did not contain a damage law and assumed an elastic 

behavior until the final failure, for the sake of simplicity. 

 

 
Figure 29. Example of a comparison (specifically, for Specimen C22_2) between experimentally and 
numerically determined longitudinal strain maps. 
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Figure 30. Comparison of experimental and numerical load-displacement curves for all the 

specimens tested. 
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Figure 31. Comparison of experimental and numerical average longitudinal stress-strain curves for 

all the specimens tested. 
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4.2 Reinterpretation of stress concentration 

A mesoscale analysis of stress concentration on a subset of the tested specimens is 

presented in this section. In particular, the FEM stress fields at failure in 

representatives of each of the six specimen types were considered. 

4.2.1 Failure properties 

The analysis focused on failure stresses in the specimens at failure. For each 

individual specimen, these were extracted from the FEM stresses at a loading state 

corresponding to the experimental failure one.  

It should be noted that in the following, consistently with the diagram in Figure 

18c on page 28, 𝑥 and 𝑦 denote the global directions, with 𝑦 being the longitudinal, 

tensile loading one; while 1 and 2 are the local material directions in each 

unidirectional fiber tow, with 1 being the fiber direction, and 2 the matrix 

direction. 

The base material properties were extracted from a C20 plain specimen. Failure was 

modeled with the Hashin criterion, which is implemented in the material model 

selected, *MAT_54 of LS-Dyna. The choice of this criterion is consistent with each 

tow being a unidirectional fiber composite. Several hypotheses on failure were 

made, based on the particular unidirectional loading condition and the nature of 

the composite’s constituent material: 

1. The stresses responsible for failure are longitudinal stress 𝜎𝑦𝑦 and shear 

stress 𝜏𝑥𝑦; 

2. In vertically oriented tows, aligned with the loading direction, the main 

tensile stresses 𝜎𝑦𝑦 are in the longitudinal (“fiber”) direction of the 

material. Failure is due to fiber breakage. The corresponding failure 

criterion is: 

𝑒𝑓
2 = (

𝜎𝑦𝑦

𝑆1
)

2

− 1  𝑒𝑓
2 ≥ 0

 
⇔ failure, (4) 

where 𝜎𝑦𝑦 is the longitudinal stress, 𝑆1 represents the longitudinal tensile 

strength of the tow material, and 𝑒𝑓 is the failure index in the fiber 

direction. 

3. In horizontally oriented tows, the main tensile stresses 𝜎𝑦𝑦 are in the 

transverse (“matrix”) direction of the material. Failure is due to matrix 

failure caused by tensile stresses combined with shear stresses. The failure 

criterion is: 
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𝑒𝑚
2 = (

𝜎𝑦𝑦

𝑆2
)

2

+ (
𝜏𝑥𝑦

𝑆12
)

2

− 1  𝑒𝑚
2 ≥ 0

 
⇔ failure, (5) 

where 𝜎𝑦𝑦 and 𝜏𝑥𝑦 denote longitudinal and shear stresses, 𝑆2 is the 

transverse tensile strength of the tow material, 𝑆12 is the shear strength of 

the tow material, and 𝑒𝑚 is the failure index in the matrix direction. 

The three material strength parameters, 𝑆1, 𝑆2, and 𝑆12, were evaluated by 

analyzing the maximum stress state in the numerical model, on a ply-by-ply basis. 

The stress state of notched specimens was studied with a similar approach. From 

the validated mesoscale FEM, the stress concentration, the location of the most 

severely loaded elements, and the volume of material affected by stress 

concentration were recovered. This information was used to investigate the size 

effect due to stress concentration. 

The failure strengths identified for the constituent material following the 

procedure described are summed up in Table 6. 

Table 6. Failure properties for each specimen considered. 

Specimen 𝑺𝟏 [MPa] 𝑺𝟐 [MPa] 𝑺𝟏𝟐 [MPa] 

C20 2131 370 117 

C21 3680 625 123 

C22 3646 584 162 

C23 3906 623 187 

C31 4223 702 163 

C32 4119 668 197 

C33 4512 758 217 

 

In line with the hypotheses on failure, the maximum longitudinal stress always 

occurred in elements within longitudinal (vertical) tows, whereas maximum 

transverse and shear stresses were always in horizontal tows. 

4.2.2 Volumes affected by the concentration 

To assess the level of stress intensification, the volume of material affected by the 

notch was calculated. The definition of this volume is the sum of the volumes of 

material belonging to integration points where stress at failure surpassed the 

remote stresses in the specimen. These remote stresses (𝜎1
∞ and 𝜎2

∞, with 

subscripts specifying the local material direction) were defined in turn as the 

maximum stresses observed in regions of the specimen away from both the fixture 

and the stress concentration areas, spanning the width of the specimen and 
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multiples in size of the characteristic dimension of the tows. Affected volumes 

were considered separately for vertical and horizontal tows. Figure 32 shows a 

mapping of the percentage of the volume of every element affected by the stress 

concentration, for the notched specimens included in the analysis. Table 7 collects 

the values calculated for each notched specimen. Here “Volume 1” and “Volume 2” 

indicate the volume undergoing stress concentration along material directions 1 

and 2.  

 

 

(a) 

 

 

(b) 

Figure 32. Maps of the volume of material affected by stress concentration, in (a) vertical and (b) 
horizontal tows, in the considered specimens. 
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Table 7. Volumes affected by the stress concentration, in vertical tows and horizontal tows. 

Specimen 
Volume 1 

[mm3] 
Volume 2 

[mm3] 
Total volume 

[mm3] 

C21 5.04 3.77 8.80 

C22 22.15 11.39 33.55 

C23 58.83 47.13 105.96 

C31 10.21 6.74 16.95 

C32 44.00 33.01 77.01 

C33 93.60 82.15 175.75 

 

The scaling of the affected volume with the hole diameter can be observed. It is also 

possible to examine the interaction of the stress concentration with the 

heterogeneous material. The stress concentration is more localized in the 

specimens C21, C31, and C22, where at 2 mm, 3 mm, and 4 mm diameter 

respectively, the notches are smaller than the 5 mm tow size. Conversely in 

specimen C31, C23, and C33, where the hole diameter is larger than the tow size, 

the notch extends across multiple tows and breaks up more than one diagonal row 

of tows. Bundles of vertical fibers completely interrupted by the notch are 

unloaded; instead, load has to be transferred by shear stresses to the tows on either 

side of the notch. This less effective use of the material causes a broader 

distribution of affected volume. 

 

4.2.3 Stress ratios 

A separate analysis may be conducted on the individual highest stressed elements, 

rather than on all the affected ones. In Figure 33 the highest stress integration 

points are plotted on the 𝜎𝑦𝑦–𝜏𝑥𝑦 plane (fiber direction in the material) and 𝜎𝑥𝑥–

𝜏𝑥𝑦 plane (matrix direction in the material), for the three 24 mm specimens 

considered (Figure 33a) and the three 36 mm ones (Figure 33b). All stress states of 

the elements in the unnotched specimen at failure are also plotted as a point cloud 

in grey. 

There is a clear distinction in the stress states found in the vertical and the 

horizontal tows. The former carry the highest fiber-direction tensile stresses, and 

the latter the highest matrix tensile and shear stresses. It is worth pointing out how 

every single element in the unnotched specimen is at significantly lower stress 

levels, in spite of its apparent higher ultimate tensile strength. 
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(a) 

 

 
(b) 

Figure 33. The stress states of the most heavily loaded elements at failure, plotted on the 𝜎𝑦𝑦–𝜏𝑥𝑦 

plane, and on the 𝜎𝑥𝑥–𝜏𝑥𝑦 plane. (a) 24 mm specimens, (b) 36 mm specimens. The grey point cloud 

contains all stress states in the unnotched C20 specimen. 

 

What can be garnered from these two analyses is that the circular hole causes in 

the stress field two distinct effects: 

1. Stress concentration. The volume affected by the notch scales up with its 

diameter. As a result of this, there is an increased probability of a finding 

defect large enough to cause failure, which decreases the load-bearing 

ability. As a matter of fact, the nominal strength of the notched specimen, 

defined as the ratio between maximum load and the nominal notched cross-

section, decreases with increasing hole diameters. It is possible to gauge 

this effect by comparing the remote longitudinal stress 𝜎1
∞, as detailed 

earlier, with the maximum longitudinal stress in the whole specimen 𝜎1
𝑀𝐴𝑋 .  
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This results in the non-dimensional stress ratio 𝜎1 𝑟𝑎𝑡𝑖𝑜: 

𝜎1 𝑟𝑎𝑡𝑖𝑜 =
𝜎1

∞

𝜎1
𝑀𝐴𝑋 . (6) 

2. Stress localization. In the vicinity of the notch, there is a sharp rise in stress 

in a limited volume, leading to an observed localized material strength 

increment. This effect can be quantified by the ratio of the longitudinal 

tensile strength of the material in the notched specimens 𝑆1 to the 

corresponding property in the unnotched specimen, denoted as 𝑆1
0. This 

results in the non-dimensional stress ratio S1 𝑟𝑎𝑡𝑖𝑜: 

𝑆1 𝑟𝑎𝑡𝑖𝑜 =
𝑆1

𝑆1
0. (7) 

 

For clarity, the origin of these stresses combined into these two ratios is 

represented in Figure 34. The reference unnotched specimen is to the left, and a 

notched specimen is to the right. 

 

Figure 34. Computation of the stress ratios 𝜎1 𝑟𝑎𝑡𝑖𝑜 and 𝑆1 𝑟𝑎𝑡𝑖𝑜 . 

At specimen level, the global tensile behavior is the result of a superposition of 

these two effects, one adding and the other detracting from mechanical strength. 

To highlight this, the non-dimensional stress ratios describing the two effects are 

plotted in Figure 35a with different hole diameters highlighted. Here the same 

quantities are represented by the same color, while line type indicates the specimen 

width—solid for 24 mm and dotted for 36 mm. The yellow curves, 𝜎1 𝑟𝑎𝑡𝑖𝑜, 

characterize the stress concentration. For increasing hole diameter there is a 

decrease in the ratio between the remote stress and maximum stress, induced by 

an intensification of the stress and a larger affected area. 
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Figure 35. The two mesoscale effects on stress ratios plotted for increasing hole diameters, for both 
specimen groups: 24 mm specimens with solid lines, and 36 mm ones with dotted lines. 

The ratios between the notched and unnotched tensile strength of the material 

𝑆1 𝑟𝑎𝑡𝑖𝑜 are plotted in blue. A roughly 2.5-fold increase in the local strength of the 

tow material in 24 mm specimens, rising to 2.9 for 36 mm ones. The local strength 

increases in parallel with the hole diameter. 

The two effects can be combined by dividing the strength increase by the stress 

intensification, as depicted by the green curves. The latter follow closely the black 

dashed lines, representing the reduction in nominal ultimate tensile strength 

𝑈𝑇𝑆𝑛𝑜𝑚 compared to the unnotched value 𝑈𝑇𝑆𝑛𝑜𝑚
0 : 

𝑈𝑇𝑆𝑟𝑎𝑡𝑖𝑜 =
𝑈𝑇𝑆𝑛𝑜𝑚

𝑈𝑇𝑆𝑛𝑜𝑚
0  . (8) 

This ultimate tensile strength ratio is the quantity typically used in specimen-level 

analysis of open-hole stress concentration. An interpretation of the good 

agreement of the respective 𝑆1 ∗ 𝜎1 𝑟𝑎𝑡𝑖𝑜 and 𝑈𝑇𝑆𝑛𝑜𝑚 curves for the two width 

groups of specimens, is a correspondence between a mesoscale-level and a 

macroscale-level stress concentration curve. 

With increasing notch diameters there is an observable decrease in slope in the 

nominal stress curve. Knowing the two effects described previously, this change in 

slope may be now interpreted as a change in their relative weight, which occurs 

with hole size scaling. For a growing hole diameter, the decrement of local material 

strength caused by to the larger affected area is outweighed by the parallel 

increment due to stress localization. 
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Chapter 5  

Statistical modeling of open-hole 

tensile strength 

This chapter describes how the strength of a single tow has been studied through 

a statistical approach, leveraging the knowledge of stress states in the woven 

composite specimens obtained from the mesoscale finite element models. 

Section 5.1 deals with the derivation of the statistical model, while Section 5.2 

details the optimization strategy for the identification of its parameters. Finally, 

Section 5.3 presents the results of the statistical model. 

5.1 Derivation of the statistical model 

The component of total volume 𝑉, in this case the open-hole tensile specimen, can 

be subdivided into 𝑛 elementary elements (Figure 36). The 𝑖-th element is 

characterized by a volume 𝑣𝑖  and a characteristic strength 𝜎𝑓,𝑖, and is undergoing a 

stress state 𝜎𝑖 . 

It is assumed that the strength of the element, whose constituent material is a 

brittle, high-modulus fiber unidirectional composite, follows a Weibull 

distribution: 

𝜎𝑓,𝑖 ≈ 𝑤𝑒𝑖𝑏(𝜂𝑖 , 𝛽), (9) 
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where 𝜂𝑖  is the size parameter, related to the characteristic strength per unit 

volume, and 𝛽 the shape parameter, associated with material strength variability. 

 
Figure 36. Discretization of the specimen in elementary volumes. 

5.1.1 The equivalent stress 

As assessed in the previous chapter, the stress state in the twill composite material 

studied during open-hole tensile testing is complex, due to the stress 

concentration induced by the presence of the notch, further altered by the 

heterogeneous material distribution. In order to appropriately take this into 

consideration while simultaneously reducing the problem dimensionality to fit the 

statistical model, an equivalent stress was introduced for the orthotropic material 

which represents the single tow. 

The formulation of the equivalent stress is analogous to the Tsai–Hill failure 

criterion. Like this criterion, it comprises four quadratic terms, accounting for 

longitudinal (fiber direction) tensile stress, transverse (matrix direction) tensile 

stress, their interaction, and shear stress. The definition of the equivalent stress 𝜎𝑒𝑞  

for the 𝑖-th element is therefore the following: 

𝜎𝑒𝑞,𝑖
2 =  𝜑1

2 𝜎1,𝑖
2 + 𝜑2

2 𝜎2,𝑖
2 +  𝜑3

2 𝜎1,𝑖
  𝜎2,𝑖

 + 𝜑4
2 𝜎12,𝑖

2  , (10) 

where 𝜎1,𝑖, 𝜎2,𝑖, and 𝜎12,𝑖 are, respectively, the fiber-direction tensile, transverse 

tensile, and shear stress in the 𝑖-th element; while 𝜑1, 𝜑2, 𝜑3, and 𝜑4 are parameters 

to be estimated from experimental results, which are related to the material 

strength. 

In the rest of this chapter, the scale effect that determines the variation of the 

material strength with the critical volume (which is, the volume experiencing 

critical stress) will be modeled by expressing statistically the limit value of the 

equivalent stress of the tow material. 
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5.1.2 The statistical size effect 

To model the relationship that links critical volumes and material strength it is 

necessary to know the stress field in the structure object of study. Given that the 

dimensions of the notch and fiber tows are comparable, the size effect is modeled 

at the mesoscale level. This requires determining the stress field and the critical 

volume at mesoscale using the FE model described in Chapter 3 and applied to all 

tested specimens in Chapter 4. 

The approach introduced here adapts the statistical methodology presented in 

[50], originally developed for modeling the size effect in the fatigue behavior of 

components. As prefaced, the random variable is the maximum equivalent stress in 

the component 𝜎𝑒𝑞,𝑚𝑎𝑥 . The volume of the part—here, the open-hole tensile 

specimen—is discretized through a linear elastic finite element model in sub-

volumes, each characterized by an equivalent stress, 𝜎𝑒𝑞,𝑖. The failure probability 

of the sub-volume scales with the equivalent stress. Additionally, in accordance 

with the weakest-link principle, the larger a sub-volume with a specific equivalent 

stress is, the higher the probability of failure. Assuming the equivalent failure 

stress, 𝜎𝑓,𝑖, of an individual element follows a Weibull distribution [1], the 

reliability of a single element is given by: 

𝑅𝜎𝑓,𝑖
(𝜎𝑒𝑞,𝑖) = exp [− (

𝜎𝑒𝑞,𝑖

𝜂𝑖
)

𝛽

] , (11) 

where 𝛽 and 𝜂𝑖  represent respectively the shape and scale parameters of the 

Weibull distribution. The relationship between the element reliability and its 

volume, 𝑣𝑖 , is modeled by the following expression: 

𝜂𝑖 =  𝛼 (𝑣𝑖)
𝛾 , (12) 

where 𝛼 and 𝛾 are two parameters that must be estimated from experimental data. 

Taking now into consideration a part or component, such as the open-hole 

specimen, composed of 𝑛 elements, its reliability 𝑅𝑝𝑎𝑟𝑡 following the weakest-link 

principle is:  

 𝑅𝑝𝑎𝑟𝑡 =  𝑃[(𝜎𝑓,1 > 𝜎𝑒𝑞,1) 𝑎𝑛𝑑 … (𝜎𝑓,𝑖 > 𝜎𝑒𝑞,𝑖) 𝑎𝑛𝑑 … (𝜎𝑓,𝑛 > 𝜎𝑒𝑞,𝑛)] =  

  =  𝑃[𝜎𝑓,1 > 𝜎𝑒𝑞,1] ∙ … ∙ 𝑃[𝜎𝑓,𝑖 > 𝜎𝑒𝑞,𝑖] ∙ … ∙ 𝑃[𝜎𝑓,𝑛 > 𝜎𝑒𝑞,𝑛] =  

=  ∏ 𝑅𝜎𝑓,𝑖
(𝜎𝑒𝑞,𝑖)

𝑛𝑒𝑙

𝑖=1

 . (13) 
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In the following the ratio of each element’s equivalent stress, 𝜎𝑒𝑞,𝑖, to the maximum 

in the entire component, 𝜎𝑒𝑞,𝑚𝑎𝑥, will be denoted as: 

𝜎𝑒𝑞,𝑟𝑎𝑡𝑖𝑜,𝑖 =
𝜎𝑒𝑞,𝑖

𝜎𝑒𝑞,𝑚𝑎𝑥
 , (14) 

By substituting Equation (11) in (13), applying a logarithmic transformation, and 

introducing the variable 𝜎𝑒𝑞,𝑟𝑎𝑡𝑖𝑜,𝑖 defined in (14), the probability of failure of the 

part, 𝐹𝑝𝑎𝑟𝑡, can be expressed as: 

𝐹𝑝𝑎𝑟𝑡(𝜎𝑒𝑞,𝑚𝑎𝑥) = 1 − 𝑅𝑝𝑎𝑟𝑡 = 1 − 𝑒𝑥𝑝 [−(𝜎𝑒𝑞,𝑚𝑎𝑥)
𝛽

 ∑
(𝜎𝑒𝑞,𝑟𝑎𝑡𝑖𝑜,𝑖)

𝛽

𝛼 (𝑣𝑖)
𝛿

𝑛𝑒𝑙

𝑖=1

]. (15) 

Here 𝑣𝑖  and 𝜎𝑒𝑞,𝑟𝑎𝑡𝑖𝑜,𝑖 are, respectively, the volume and the equivalent stress ratio 

in the 𝑖-th out of 𝑛 elements, into which the component is divided. Additionally, 𝛼, 

𝛽, and 𝛿 =  𝛽 ∙ 𝛾 are three parameters. 

5.2 Identification of the model parameters 

An optimization procedure is used to identify from the experimental data the three 

model parameters 𝛼, 𝛽, and 𝛿, as well as the four 𝜑 parameters for the equivalent 

stress formulation. The foundation of this procedure and its practical 

implementation are discussed in the following two sections. 

5.2.1 Principle of operation 

The stress fields computed in the FEM at failure load are initially used to calculate 

the experimental maximum equivalent stress within every tested specimen with 

Equation (10). The empirical cumulative distribution function (CDF) of these 

observations, or 𝐹𝑒𝑥𝑝, is estimated by applying Benard’s approximation of the 

median rank [71]: 

𝐹𝑒𝑥𝑝 =  
𝑖 −  0.3

𝑁 +  0.4
 , (16) 

where 𝑖 denotes the rank of the observation and 𝑁 the total number of tests. 

The model-calculated probability of failure, 𝐹𝑚𝑜𝑑 , must be as close as possible to 

the empirical one, 𝐹𝑒𝑥𝑝, in order for the model to correctly represent this 

distribution. In an 𝐹𝑒𝑥𝑝–𝐹𝑚𝑜𝑑  probability–probability plot, this means that all 

points are situated on the bisector of the first quadrant. The statistical model 

parameters may therefore be identified by minimizing the following objective 

function: 
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𝑅2 =  
𝑅𝑆𝑆

𝑇𝑆𝑆
 . (17) 

Here RSS is the residual sum of squares and TSS the total sum of squares in a P-P 

plot, where the calculated probability of failure acts as the independent variable 

and the empirical probability as the dependent variable. 

5.2.2 Description of the optimization algorithm 

A flowchart of the algorithm for optimization of the statistical model parameters 

is shown in Figure 37. The algorithm was set up in MATLAB R2021b. The objective 

function was minimized using the MATLAB function fminsearch, which implements 

the Nelder–Mead simplex algorithm [72]. 

 
Figure 37. Flowchart of the algorithm used to identify the statistical model parameters. 



58 

STATISTICAL MODELING OF OPEN-HOLE TENSILE STRENGTH 

The optimization algorithm requires as input the stress fields in each tested 

specimen. These are extracted from the results of LS-Dyna solver, which in turn 

takes in the optimized material parameters, experimental failure loads, and 

mapped FEM models described in Chapters 3 and 4. The element volumes in each 

specimen are also extracted from the mapped models. 

A function calculates the equivalent stress in every element of each specimen 

according to Equation (10), from the stress fields and initial guess stress 

formulation parameters ( 𝜑1, … , 𝜑4)0. Equivalent stresses together with the 

element volumes are passed on to a second function, which calculates the model 

probability of failure 𝐹𝑚𝑜𝑑  according to (15). 

The objective function to be minimized by the optimization algorithm can then be 

calculated. Based on its value, the fminsearch algorithm determines the next value of 

the parameters (𝛼, 𝛽, 𝛿)𝑗, and ( 𝜑1, … , 𝜑4)𝑗., which are passed to the equivalent 

stress calculation function and the 𝐹𝑚𝑜𝑑  calculation function respectively, and a 

new iteration begins. Once exit conditions are met, the output are vectors of 

optimized parameter vectors (𝛼, 𝛽, 𝛿)𝑜𝑝𝑡, and ( 𝜑1, … , 𝜑4)𝑜𝑝𝑡. 

 

5.3 Results of the statistical model 

Because only three replications per width-to-diameter ratio were available, the 

specimens were categorized into two groups on the basis of their width. This 

dimension was considered as the dominant factor affecting the scale parameter, an 

assumption supported by the model's findings discussed later. Therefore, two 

separate empirical and model-estimated statistical distributions were constructed: 

one for the 24 mm wide specimens, and another for the 36 mm wide specimens. 

As mentioned before, the goodness of fit of the model to the empirical data may be 

evaluated through a probability–probability plot, which compares two cumulative 

distribution functions. The probability–probability plot of the model-estimated 

CDF (𝐹𝑚𝑜𝑑), after having optimized the four parameters, versus the experimental 

empirical CDF (𝐹𝑒𝑥𝑝), for the two specimen types, is shown in Figure 38. 

The coefficient of determination for the statistical model predictions compared to 

the experimental data is 𝑅2 = 94%, as visible in Figure 38. This confirms that the 

calibrated model accurately captures the size effect controlling the failure of the 

open-hole specimens. While all data points lie close to the bisector, the model 

tends to slightly underestimate the probability for the wider specimens, and to 

overestimate it for the narrower ones. 
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Figure 38. Probability–probability plot of the model-estimated CDF (𝐹𝑚𝑜𝑑) versus the 
experimental empirical CDF (𝐹𝑒𝑥𝑝) for the 36 mm wide (in orange) and 24 mm wide specimens (in 

blue). Also shown is the coefficient of determination, 𝑅2, of the least squares fit of the bisector to 
the data points. 

The model parameters determined through the optimization procedure are 

tabulated below: Table 8 lists the four equivalent stress parameters, and Table 9 

the three statistical model parameters. 

Table 8. Values of the four parameters of the equivalent stress formulation, which were estimated 
from the experimental data. 

𝝋𝟏 𝝋𝟑 𝝋𝟑 𝝋𝟒 

0.0613 0.5823 0.3033 1.1198 

Table 9. Values of the three parameters of the statistical model, which were estimated from the 
experimental data. 

𝜶 𝜷 𝜹 

0.0712 14.6509 −31.5353 

 

The combination of the stresses into the equivalent stress formulation is governed 

by four 𝜑 parameters in Table 8. It can be noted how the value of the coefficient to 

the stresses in fiber direction 𝜎1, 𝜑1, is smaller by an order of magnitude than the 

other terms. This ratio reflects that between the longitudinal and transverse 

stresses in the specimen and can be interpreted as a similar relative significance of 

both in the failure mechanism. 
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The cumulative distribution functions yielded by the calibrated model are plotted 

in Figure 39, one for each specimen width. An inverse size effect is evident from the 

curves. The critical equivalent stress in the wider specimens (w = 36 mm) for any 

given value of the probability of failure is lower than the one estimated for the 

narrower specimens (w = 24 mm). 

An explanation for the size effect observed could be found in specimen geometry 

and material heterogeneity. The highest stresses generated around the hole are 

located in the tows in the longitudinal direction. The relative size of the tow to the 

hole decreases for an upscaled specimen, e.g. in a 36 mm wide compared to a 24 

mm wide one. Because of the larger relative radius of the hole compared to tow size, 

the effective stress concentration factor for the tows around the hole is lowered. As 

a result, the distribution of stresses is improved in close vicinity to the hole, and 

the same material sees an increase in its load-bearing ability. An analogous effect 

takes place in the transverse tows. It is known that quasi-brittle behavior can be 

induced in brittle materials by introducing material heterogeneity [2]. In the 

present case, the UD carbon fiber reinforced composite constituting the tows has 

been made heterogeneous by weaving it into a twill fabric, and this effect is 

enhanced by considering larger (wider) specimens. 

 
Figure 39. Plot of the model cumulative distribution, as a function of the maximum equivalent 

stress, for both the 24 mm and 36 mm specimen types. Markers are used to denote the 
experimental observation. 

Different markers are used in the plot to indicate the various specimen width-to-

diameter ratios. The approach taken considered only the specimen width as the 

prevalent scaling factor in the size effect. The observed distribution of the 

specimen hole diameters within each group validates this assumption, with the 

mixing of hole sizes along the curve suggesting a lower influence of width-to-

diameter on size effect in the range of dimensions considered. This is most evident 
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for the wider specimens. For instance, a specimen with the smallest notch diameter 

in its width group, C31, exhibits the third highest equivalent stress, while a 

specimen with the largest relative notch diameter, C33, has the third lowest 

equivalent stress. 

 





 

FINAL CONSIDERATIONS 

Chapter 6  

Final considerations 

This chapter provides a summary of the results of this work. It includes Section 6.1, 

summarizing what has been achieved and the conclusions drawn, and Section 6.2, 

which discusses potential future research developments. 

6.1 Conclusions 

The objective of this work was to develop a statistical model to study the size effect 

on ultimate strength in open-hole woven composites. The methodology was 

successfully applied to a 2 × 2 twill CFRP composite, and scaling in width as well 

as width-to-diameter ratios were investigated. Conclusions will be drawn from the 

two main areas of this work: the mesoscale FEM modeling of the material from 

experimental data, and the statistical modeling using FEM stress data. 

6.1.1 Mesoscale model 

A 2D shell model that describes the material at mesoscale level was developed, in 

order to study the complex stress field from open-hole concentration in a twill 

weave composite material. Open-hole tensile tests were first conducted, measuring 

surface strain data with digital image correlation (DIC). A new semi-automated 

method using image processing techniques and DIC position data for mapping the 

material orientation at tow level was set up, and used to build FEM models 

representative of each individual tested specimen. This process subdivides the 

transversally isotropic fabric lamina in its orthotropic tows, with material 
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orientation depending on the weave pattern. Tow-level material properties were 

obtained via a FEMU reverse identification process, by minimizing the error 

between the numerical and experimental-DIC strain. 

The model proved effective in reproducing the complex stress and strain 

distributions in the twill weave composite material under open-hole tensile load, 

and it was validated against experimental test results. Since the proposed approach 

constructs the numerical model from an image of the actual specimen, captured 

directly on the tensile test fixture by the same camera apparatus used for DIC, the 

spatial correspondence of experimentally and numerically determined strain fields 

is inherently ensured. The numerical stress field provided by the model is dual in 

resolution and alignment with the experimental DIC strain field. This fact, in 

addition to the limited computational cost of the model, makes it particularly 

suitable for the implementation of reverse identification of material parameters and 

Finite Element Model Updating (FEMU) methods. 

One downside of the model's simplicity is its inability to capture the undulation of 

the fiber tows resulting from to crimping in the textile, due to its simplified 

bidimensional nature. This translates in longitudinal elastic properties of the tows 

which are slightly lower than those of a pure unidirectional composite, as they are 

the average properties of the tow in the lamina plane. 

A definite advantage of the proposed approach over traditional multiscale ones is 

the ability to conduct a mesoscale-level stress analysis without needing 

microscale-level material properties. This entirely avoids the complex preparation 

and testing of specimens of individual tows, fibers, or matrix. Instead, only 

standard coupon-level tests are performed, leveraging the spatial resolution of DIC 

rather than smaller-scale tests for enhanced detail.  

6.1.2 Statistical model 

Building on the stress data made available by the mesoscale modeling of the 

composite, a statistical model has been proposed that describes the mesoscale size 

effect on the strength of open-hole woven-reinforcement composites under 

tension. 

The statistical model developed is based on discretizing the component into sub-

volumes, each subjected to a uniform stress level. The sub-volumes are the elements 

of the mesoscale finite element model described in the previous section, with 

experimentally measured local orientation of the woven fiber reinforcement, and 

the stress in each element is computed from this model. To reduce dimensionality 

while still considering all stress components, an equivalent stress is defined at the 

material mesoscale level. This equivalent stress consists of four quadratic terms, 

similarly to the Tsai–Hill failure criterion. The random variable in the statistical 

model is the maximum equivalent stress in the component, whose probability is 
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controlled by the scale effect. The statistical model, calibrated using experimental 

results of open-hole tensile tests, displayed significant accuracy in reproducing the 

mesoscopic scale effect that governs the failure of fiber tows. 

A foundation of the proposed method is the mesoscale finite element model that 

considers both the interaction in the stress fields due to the material heterogeneity 

and the stress intensification caused by the notch. Only through a model with this 

level of detail it is possible to extract stress fields representative of the actual stress 

state in the component or specimen. Starting from the mesoscale stress field, the 

statistical model accurately predicts the empirical failure probability, achieving a 

94% coefficient of determination. The model predicts a lower critical equivalent 

stress in wider specimens at a specified probability of failure. 

Summarizing, the proposed method is an effective tool for predicting component 

strength while accounting for both the material heterogeneity and the scale effect 

that controls the failure of the carbon fiber tows constituting the woven composite. 

6.2 Possible future developments 

The research work presented here has the potential to lead to further 

developments. Three paths are suggested and briefly explored in this section. 

1. While the simplicity of the mesoscale model is one of its main assets, some 

applications—especially at a scale smaller than the one considered—might 

require higher resolution. The model may be improved and made able to 

duplicate the undulation of tows in and out of the lamina plane by grading 

the elastic properties inside each fiber tow. Additional detail in the strain 

field may thus be provided without adding excessive complexity. The 

grading could follow a pre-defined function from existing laminate theory-

based models of fabric weaves, such as [57]. Alternatively, an optimization 

technique similar to that developed in this work could be used, with DIC 

data and a numerical model, but operating on a single unit cell of the fabric. 

2. The proposed methodology, while used in this work to study the size effect 

of circular notches, may potentially be applied to the stress analysis or 

statistical reliability study of any mechanical problem where considering 

mesoscale material heterogeneity in woven fiber composites is 

advantageous. Examples of similar applications are studying the effect of 

ply shift on open-hole stress concentration, the study of other shapes and 

locations of notches, the interaction of multiple notches, or different types 

of woven reinforcements, including hybrid ones. In particular, this same 

study could be extended into a comparative one by considering the same 

size effect in specimens with similar constituent fiber and matrix but 

different fabric weaves, such as plain weave or satin. 



66 

FINAL CONSIDERATIONS 

3. A possible development of the statistical model is the homogenization of 

the mesoscale model into a homogeneous, macroscale one, producing a 

readily usable design criterion for composite components with open-hole 

notches. Thus, starting with simple standardized tests on specimens of the 

same material used in designing composite parts, mesoscale-level 

information on reliability would be garnered through the experimental-

numerical methodology developed here, and used to calibrate the reliability 

model. It would then be converted back into a macroscale reliability 

criterion to be used in mechanical design with conventional material 

modeling of composite material. 
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