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Abstract
Survival analysis is a crucial tool in healthcare, allowing us to understand and predict time-to-event
occurrences using statistical and machine-learning techniques. As deep learning gains traction in this
domain, a specific challenge emerges: neural network-based survival models often produce discrete-
time outputs, with the number of discretization points being much fewer than the unique time points
in the dataset, leading to potentially inaccurate survival functions. To this end, our study explores
post-processing techniques for survival functions. Specifically, interpolation and smoothing can act as
effective regularization, enhancing performance metrics integrated over time, such as the Integrated
Brier Score and the Cumulative Area-Under-the-Curve. We employed various regularization techniques
on diverse real-world healthcare datasets to validate this claim. Empirical results suggest a significant
performance improvement when using these post-processing techniques, underscoring their potential as
a robust enhancement for neural network-based survival models. These findings suggest that integrating
the strengths of neural networks with the non-discrete nature of survival tasks can yield more accurate
and reliable survival predictions in clinical scenarios.
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1. Introduction

Survival analysis [1] is a field of statistics concerned with modeling time-to-event data. Its
primary objective is to construct a survival function 𝑆 depending on time 𝑡 tailored to a particular
subject, representing the probability of not experiencing a particular event of interest up to
𝑡, such as disease onset, death, or hospital discharge. Thus, a survival function is formally
denoted as 𝑆(𝑡) = 𝑃(𝑇 > 𝑡). The analysis of time-to-event data is of paramount importance in
healthcare, facilitating the identification of patient risk factors over time. Distinctively, survival
analysis differs from conventional machine learning tasks such as classification and regression
due to its ability to handle censored data points – instances where the event of interest has not
yet occurred for a particular subject. This characteristic is common in clinical data, given the
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prolonged, complex, and privacy-constrained nature of data collection, which challenges the
applicability of data-intensive machine learning models.

Recent advancements in survival applications exploit neural network-based deep learning
techniques, emphasizing their ability to model the non-linear relationships between patient
features and time-to-event records. Their utility has been demonstrated in various studies [2,
3, 4, 5, 6], emphasizing their generalization advantage over traditional statistical approaches
and matching the expressive power of ensemble methods [7, 8, 9]. However, most common
neural network architectures involve a set of discrete outputs, necessitating specific processing
to adapt to the continuous nature of survival analysis. To this end, numerous coping strategies
between discrete-output neural networks and survival analysis have been introduced. Most
techniques focus on time discretization [5], enabling neural networks to encapsulate time-event
associations for a limited set of time points. Instead, few methodologies directly tackle time-
continuous survival functions and are based on proportional hazard [2] or piece-wise constant
hazard [5, 10].

In our research, we conduct a thorough examination of multiple interpolation methods to
determine if post-processing interpolation can augment the efficacy of discrete-output neural
networks. Specifically, we delve into three interpolation techniques: linear, piece-wise expo-
nential, and spline-based, applying them to the state-of-the-art neural survival models. We
investigate whether performance gaps are relevant between interpolated and non-interpolated
versions of the same survival model. Our investigation employs time-dependent survival metrics
to gauge the efficacy of neural-based models, namely the Integrated Brier Score (IBS) and the
Cumulative Area-Under-the-Curve (Cumulative AUC). Our empirical analysis, validated across
several real-world healthcare datasets, indicates that interpolation supports the generalization
capability of neural-based survival models. This improvement is particularly relevant when the
number of discretization bins and, consequently, neural network outputs is substantially smaller
than the dataset’s sample count. This scenario commonly arises in practical applications where
the dataset size considerably outweighs the neural network’s output neurons.

In summary, our research offers a comprehensive empirical analysis of interpolation methods
tailored for neural-based survival models. We explore the potential advantages of incorporating
a post-processing interpolation phase based on simple operations with negligible computational
overhead. These insights bear significant implications for the clinical applicability of survival
models, suggesting that a simple interpolation step can markedly boost the generalizability of a
neural-based survival model.

2. Background

This section provides the necessary background on survival analysis as a machine-learning
problem, alongside the description of the survival metrics to assess model performance that
will be investigated in subsequent experimental evaluation.



2.1. Survival Analysis

Survival analysis tackles time-to-event modeling, leveraging both statistical and machine-
learning methodologies. It plays a pivotal role in interpreting clinical data, forecasting occur-
rences such as the onset of a disease, relapses, mortality, and hospital discharges. By harnessing
patient information, the aim is to formulate a time-dependent parametric function, 𝑆(𝑡), that
denotes the probability of a subject not encountering a specified event up to a given time,
expressed as

𝑆(𝑡) = 𝑃(𝑇 > 𝑡). (1)

This non-increasing function starts with a value of 1 at 𝑡 = 0, approaching 0 as 𝑡 tends to infinity.
Instead of 𝑆(𝑡), several survival methods estimate the instantaneous hazard rate for each

individual, called hazard function:

ℎ(𝑡) = lim
𝛿𝑡→0

𝑃(𝑡 ≤ 𝑇 < 𝑡 + 𝛿𝑡|𝑇 ≥ 𝑡)
𝛿𝑡

. (2)

From the hazard function, the survival function can be derived as

𝑆(𝑡) = exp(−𝐻(𝑡)) (3)

where 𝐻(𝑡) represents the integral of ℎ over the interval from 0 to 𝑡.
What sets survival analysis apart from conventional machine learning tasks, like classification

or regression, is its ability to analyze censored data points. Such data represent subjects who
have not encountered the specified event during the data collection period. Hence, survival
datasets comprise triplets: (x𝑖, 𝛿𝑖, 𝑡𝑖), where (i) x𝑖 indicates the feature vector for subject 𝑖; (ii) 𝛿𝑖 is
a binary flag, which is set to 0 if the sample is censored; and (iii) 𝑡𝑖 designates either the event’s
time or the censoring time, depending on the value of 𝛿𝑖. This is the most common scenario in
survival problems, referred to as right censoring. Throughout this paper, our discussions will
refer to the right censoring context.

The most prevalent models used for deriving survival functions include the non-parametric
Kaplan-Meier model [11] and the linear Cox model [12]. Machine learning-enhanced non-linear
extensions typically employ ensemble strategies [7, 13] and neural networks, which will be
analyzed in Section 3.

2.2. Metrics in Survival Analysis

The most common metrics used to evaluate the predictive power of survival models are the
Concordance Index (C-Index), the IBS, and the Cumulative AUC. The C-Index [14] measures
the agreement between the predicted survival outcomes from a model and the actual observed
outcomes for pairs of samples. Specifically, for each time point, the predicted outcome is
determined by the model’s survival probability or risk score, while the true outcome reflects
the event status – 1 for non-censored and 0 for censored samples. Only pairs with times
𝑡1 < 𝑡2 and events 𝑒1, 𝑒2 where 𝑒1 is non-censored are considered comparable. The C-Index
measures the proportion of comparable pairs that are concordant, meaning the sample with
the higher predicted survival probability outlives the other. This measure can be interpreted as



the probability that, for two randomly chosen individuals, the one with the higher risk score
will experience the event first. A C-Index value of 0.5 signifies random predictions, whereas 1
indicates perfect concordance. While easy to interpret, the C-Index does not provide information
about model calibration.

Alongside the C-Index, another common metric for assessing survival models is the Brier
Score (BS) [15], which quantifies both precision and calibration of predicted survival outcomes.
The BS computes the squared difference between the actual event occurrence (1 for the event
and 0 otherwise) and the predicted survival probability for a specific time instant. Ideally, a BS
value should be close to 0, indicating perfect prediction. The IBS integrates the Brier scores
over various times, giving an overall temporal performance evaluation of the model. The IBS
summarizes the model’s ability to capture accurate event probabilities. However, its evaluation
can be affected by the integration range and the time density of available samples.

The third most common metric for survival models is the Cumulative AUC. While the AUC
is traditionally a classification metric, its application extends to survival studies with time-
dependent outcomes [16]. In this context, the AUC examines the predicted survival probabilities
against observed event statuses over several time instants. Samples that are censored before
or during this period are treated as negative events. The Cumulative AUC integrates these
time-dependent AUC values, with 1 indicating perfection in prediction.

To adjust for censoring biases, the Inverse Probability of Censoring Weighting (IPCW)
method [14, 17] is employed. Here, each sample is assigned a weight based on its inverse
censoring probability at a given time. Observations with high censoring likelihoods get more
weight, and vice versa for low-censoring observations. This weighting helps to counteract
potential biases due to the event censoring distribution. Also, each of the metrics described
focuses on a specific aspect of survival models. Therefore, for a comprehensive evaluation of
the overall quality of a survival model, multiple metrics must be taken into account.

3. Related Work

In recent years, deep learning increased the expressive capability of traditional survival models.
The first works were devoted to the extension of one of the most prominent survival models:
the Cox model [12]. The Cox model defines a hazard function based on the assumption that the
relative risk between subjects remains unchanged over time (proportional hazard assumption):

ℎ(𝑡|x𝑖) = ℎ0(𝑡) exp(x𝑇𝑖 𝛽), (4)

where ℎ0(𝑡) is the baseline hazard common across all subjects, and exp(x𝑇𝑖 𝛽) is a subject-specific
factor that modifies the baseline hazard based on an individual’s risk profile. The classic Cox
model assumes the existence of a linear relationship between features and subject hazard with
the risk multiplier being the exponential of the dot product of features and weights.

A substantial extension of the Cox model is DeepSurv [2]. Here, the linear relationship
between features and risks is replaced with a deep neural network, capturing non-linear in-
teractions between features and the hazard function. It leverages the same differentiable loss
function as the original Cox model for training, called partial log-likelihood. This loss function
is tailored to train models based on the proportional hazard assumption.



However, the proportional hazards assumption, though rendering models straightforward
and interpretable, can sometimes hamper their generalization. In fact, many real-world datasets
do not respect this assumption, rendering such models less effective. A paradigm shift in neural
survival models emerged with time discretization techniques [5]. These techniques allowed
neural networks to directly approximate discretized hazard and survival functions. Among the
models following this approach, DeepHit [3] employs sigmoid activations to estimate discrete
probabilities for designated event times. DeepHit is specifically tailored to compute probabilities
for multiple competing events, predicting which event occurs first. In fact, its loss function is
designed not only to improve the model’s accuracy but also to predict event occurrence in the
most probable order.

Drawing inspiration from the Multi-Task Logistic Regression (MTLR) approach [18], Neural
Multi-Task Logistic Regression (N-MTLR) [19] employs multiple neural-based logistic regression
heads to predict event occurrence probability for each time step. These outputs are subsequently
normalized using a softmax function to yield event probabilities.

Finally, the Logistic Hazard model [20, 5] frames the survival problem discretely, transforming
it into a sequence of binary classification tasks. Each task predicts the risk for an event
occurrence at a given time interval. The model captures time-dependent effects through a
multi-output neural network employing softmax activations, making it a robust choice for
handling time-varying effects in survival analysis.

An alternative approach from [5, 10] instead of discretizing the survival function, assumes the
hazard function to be piece-wise constant. This method, called PC-Hazard, produces continuous
survival functions framed as piece-wise exponentials. Thus, PC-Hazard adapts any regression
model to a survival model, trainable with the Poisson regression technique.

4. Interpolation Methods

In survival models based on neural networks, the discrete outputs, or anchor points, define
the value of the survival function for a set of specific time instants. This section provides a
description of several interpolation techniques designed to bridge the gap between discrete
survival functions and continuous metric evaluation. Consider a set of 𝐵 time instants, each
corresponding to the limit of a discretization bin, {𝜏1, 𝜏2, … , 𝜏𝐵}, such that 0 < 𝜏1 < 𝜏2 < ⋯ < 𝜏𝐵.
Then, a survival model based on neural networks produces a set of outputs {𝑠1, 𝑠2, … , 𝑠𝐵}, such
that 1 ≥ 𝑠1 ≥ 𝑠2 ≥ ⋯ ≥ 𝑠𝐵 ≥ 0. The set of pairs (𝜏𝑖, 𝑠𝑖) corresponds to the anchor points leveraged
by the interpolation methods to obtain a continuous survival function. In order to allow the
interpolation to attain the properties of survival functions, we consider the pairs (0, 1) and (𝜏∞, 0)
to always be part of the set of anchor points. Figure 1 illustrates the considered interpolation
techniques evaluated on a set of fixed anchor points.

4.1. Step-wise Interpolation

Most works apply step-wise interpolation to produce continuous outputs from the set of anchor
points produced by a survival model. In particular, given a time instant 𝑡 ∈ [𝜏𝑖, 𝜏𝑖+1), this simple
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Figure 1: Interpolation techniques involved in this study. The fixed anchor points are drawn in yellow
for 𝑡 = 2, 3, 6, 7, and 9. The first two plots from the left refer to step-wise interpolations considering the
following or previous anchor points, respectively. The third plot illustrates a linear interpolation. The
fourth is a piece-wise exponential, inspired by the PC-Hazard model [5, 10]. The final plot interpolates
the anchor points with a monotonic cubic spline.

type of interpolation defines the value of a survival function as

𝑆(𝑡) = 𝑠𝑖 (5)

which corresponds to the value of the closest anchor points with a lower corresponding time.
We call this interpolation method Step FWD, indicating that the anchor point is propagated
forward in the survival function. In the following analyses, we also employ an alternative
approach, called Step BWD, which propagates the next closest anchor point backward in the
survival function as

𝑆(𝑡) = 𝑠𝑖+1. (6)

The idea of Step BWD is to focus on future event instances rather than the immediate past.
It might be relevant in situations where interventions or treatments are planned, and the
anticipation of the next event risk is more clinically significant than the immediate past.

4.2. Linear Interpolation

The most straightforward extension to the step-wise interpolation techniques is to define the
interpolation point on the line connecting the considered anchor points. A linearly-interpolated
survival function is defined as

𝑆(𝑡) = 𝑠𝑖 +
𝑡 − 𝑡𝑖

𝑡𝑖+1 − 𝑡𝑖
(𝑠𝑖+1 − 𝑠𝑖) . (7)

4.3. Piece-wise Exponential Interpolation

This interpolation method is inspired by the piece-wise constant hazard model [5, 10]. This
method, referred to as PWE, assumes the hazard function to be constant within each time
interval. Then, according to Eq. (3), the survival function results in a piece-wise exponential
function. The interpolation is computed as

𝑆(𝑡) = 𝑠𝑖 exp (𝜆𝑖 ⋅
𝑡 − 𝑡𝑖

𝑡𝑖+1 − 𝑡𝑖
) (8)

where
𝜆𝑖 = ln (

𝑠𝑖+1
𝑠𝑖

) . (9)



4.4. Monotonic Cubic Spline Interpolation

The Hermite spline with monotonicity constraints [21] is a spline-based interpolation method
to fit a set of anchor points with a non-increasing smooth function maintaining a continu-
ous derivative. The Fritsch–Carlson method enables the construction of survival functions
with a smooth transition between anchor points. In the subsequent sections, we refer to this
interpolation technique as Spline.

The idea is to constrain the tangents of the Hermit spline in such a way that the resulting
piece-wise function is monotonic. To this end, the Fritsch–Carlson method starts from the
secant lines between successive anchor points

𝛿𝑖 =
𝑠𝑖+1 − 𝑠𝑖
𝑡𝑖+1 − 𝑡𝑖

(10)

and initializes the average of the secants as

𝑚𝑖 =
1
2
(𝛿𝑖−1 + 𝛿𝑖), (11)

assuming 𝑚1 = 𝛿1 and 𝑚𝐵 = 𝛿𝐵. For pairs of anchors where 𝑠𝑖 = 𝑠𝑖+1, let 𝑚𝑖 = 0. For all the other
pairs, instead, let

𝛼𝑖 =
𝑚𝑖
𝛿𝑖

and 𝛽𝑖 =
𝑚𝑖+1
𝛿𝑖

. (12)

A sufficient condition to ensure monotonicity is to set, for 𝛼𝑖 > 3 or 𝛽𝑖 > 3,

𝑚𝑖 = 3𝛿𝑖. (13)

At this point, the values of tangents 𝑚𝑖 guarantee that a Hermit spline passing through the
anchor points is non-increasing. The survival function is computed as

𝑆(𝜇) = (2𝜇3 − 3𝜇2 + 1)𝑠𝑖 + (𝜇3 − 2𝜇2 + 𝜇)𝑚𝑖 + (−2𝜇3 + 3𝜇2)𝑠𝑖+1 + (𝜇3 − 𝜇2)𝑚𝑖+1 (14)

where
𝜇 =

𝑡 − 𝑡𝑖
𝑡𝑖+1 − 𝑡𝑖

. (15)

5. Experiments

This section collects the experimental methodology and results to validate our claims about
interpolation techniques for neural-based survival models. In particular, we describe the datasets
involved in the experiments, the training and inference procedure, and the final results obtained.
We highlight that each of the datasets involved is publicly accessible and used in several survival
studies for benchmarking purposes [22, 8, 9]. To allow for reproducibility, we made the source
code of the experiments publicly available1.

1https://github.com/archettialberto/interpolation_for_deep_survival_analysis

https://github.com/archettialberto/interpolation_for_deep_survival_analysis


Table 1
Summary statistics of the survival datasets involved in the experiments.

Dataset Samples Censored Numerical Features Categorical Features

WHAS500 [23] 461 38% 7 9
GBSG2 [24] 686 44% 5 3
METABRIC [25, 2] 1904 58% 5 3
TCGA-BRCA [26] 1048 14% 1 38

5.1. Datasets

This section describes the datasets processed throughout the experiments:

• WorcesterHeart Attack Study (WHAS500) [23]: This dataset focuses on cardiovascular
health, specifically patients who have experienced myocardial infarction. Given that
heart diseases are one of the leading causes of mortality worldwide, models built on this
dataset can help in risk prediction, better understanding of prognostic factors, and overall
improved patient management strategies.

• German Breast Cancer Study Group (GBSG2) [24]: Cancer recurrence is a significant
concern for patients who have undergone treatment. The GBSG2 dataset provides insights
into factors that may affect recurrence, especially in the context of hormone treatments.
The dataset’s focus on covariates like age, menopausal status, and tumor-specific details
makes it a rich source for modeling and predictions, which can directly influence treatment
decisions.

• Molecular Taxonomy of Breast Cancer International Consortium
(METABRIC) [25, 2]: This dataset offers clinical attributes related to patients
experiencing breast cancer. It is part of a larger project offering genomic data, paving the
way for personalized treatment plans by taking into account the genetic variations that
might influence survival rates.

• The Cancer Genome Atlas Program - Breast Cancer Study (TCGA-BRCA) [26]:
The TCGA provides a comprehensive view of the genomic changes across various cancer
types. Among the data collection projects revolving around TCGA, BRCA focuses on
breast-invasive carcinoma, offering insights into the variations in survival outcomes
based on geographic regions and their associated clinical practices. This dataset comes
from a dataset suite for medical federated learning, called Flamby [26]. In this study, we
do not consider the federated aspect, aggregating the regional clients into a single cluster
of individuals.

Table 1 collects the summary statistics of these datasets, with a focus on their sample dimen-
sionality, censorship percentages, and feature types.

5.2. Experimental Setup

This section delineates the methodological approach utilized to assess the efficacy of interpola-
tion as a post-processing measure in survival models based on neural networks. The datasets



employed for our evaluation, specifically WHAS500, GBSG2, METABRIC, and TCGA-BRCA,
are detailed in Section 5.1. Data from these datasets were uniformly sampled to formulate
both training and test splits, comprising 80% and 20% of the overall samples, respectively. Sub-
sequently, the training subset underwent an additional 80-20% split to generate a validation
subset.

The experiments involved four state-of-the-art neural network-based models from survival
analysis: DeepSurv, DeepHit, Logistic Hazard, and N-MTLR, each thoroughly described in
Section 3. Notably, DeepSurv is the only model based on the proportional hazard assumption,
whereas the others rely on an explicit definition of discrete time bins. Concerning these
discretization points, we adopted a uniform splitting approach, increasing the anchor count
with every experiment. The tested numbers of anchors are 5, 10, 50, 100, 500, and 1000. These
numbers hold for non-proportional models only, as DeepSurv has a fixed number of anchors,
corresponding to the points of the baseline function, shared across all subjects.

Each model comprises a two-layer fully connected neural network with a number of inputs
equal to the dataset features and a hidden layer size of 32. Each layer is followed by a ReLU
activation function and a dropout regularization layer with 0.1 probability. The number of
outputs is 1 for DeepSurv and equal to the number of anchor points for all the other models.
In the experiments, models are trained using the Adam optimizer with a learning rate of 0.01.
Training executed till convergence for a maximum of 300 epochs, adopting an early stopping
strategy on the validation set with a 10-epoch patience threshold. The selected batch size was
fixed at 128.

In the subsequent inference phase, survival functions were derived from the anchor points
of each model, after an interpolation step leveraging the methods outlined in Section 4 – Step
BWD, Step FWD, Linear, PWE, and Spline. For each trained model paired with an interpolation
strategy, the C-Index, the IBS, and the Cumulative AUC with IPCW weighting were evaluated,
as described in Section 2.2. The IBS and the Cumulative AUC were integrated over the 25th
and 75th percentiles of the test times, to limit the noise that could be introduced by the lower
sample density at the endpoints of the time spectrum. Finally, to limit the effects of randomness,
each single experiment was repeated 30 times, averaging the final results.

5.3. Results

In this section, we present and discuss the empirical results derived from our experiments with
various interpolation techniques. For brevity, we enumerate the IBS (Table 2a), Cumulative
AUC (Table 2b), and C-Index (Table 2c) values achieved on the METABRIC dataset, which is the
largest dataset among the ones analyzed, for 10, 100, and 1000 anchor points. Detailed numerical
values on the WHAS500, GBSG2, and TCGA-BRCA datasets are reported in Appendix A. On
top of that, the time-dependent metrics for all datasets, namely IBS and Cumulative AUC, are
plotted for 5, 50, and 500 anchor counts in Figure 2a and Figure 2b.

Does interpolation serve as an effective post-processing step when evaluated using the IBS metric?
As illustrated in Table 2a and Figure 2a, implementing any form of interpolation generally
proves beneficial over the Step BWD or Step FWD techniques. Specifically, for a limited number
of anchor points, i.e., 5 and 10, neural models leveraging Linear and PWE interpolations demon-



strate a better IBS compared to their counterparts. Although Spline interpolation surpasses
step-wise methods, it falls behind Linear and PWE. As the number of anchor points increases,
the distinction among interpolation methods diminishes. This is expected, as a larger anchor
count offers a finer discretization grid, enabling the neural network to precisely adjust the
survival function and thereby mitigating the necessity for interpolation. Notably, while minor
differences can still be observed at 50 and 100 anchors, increasing to 500 or 1000 effectively
equalizes the results of all methods. This convergence can be attributed to the anchor count
approaching the dataset size, compelling the model to capture the behavior of individual time
instances.

Does interpolation serve as an effective post-processing step when evaluated using the Cumulative
AUC metric? The Cumulative AUC metric outcomes, reported in Table 2b and Figure 2b, largely
follow the trend of the previous observations. Non-step-based interpolation methods tend
to augment the Cumulative AUC for neural models, especially when the number of anchor
points is low. An outlier to this trend is observed with DeepHit using 10 anchor points on the
METABRIC dataset, where Step FWD emerges as the best technique. However, this remains the
only exception with respect to the general trend. Remarkably, while Step FWD often serves as a
default choice for state-of-the-art survival models, it is consistently outperformed by Step BWD.
Similar to the IBS trend, the performance difference among interpolation techniques diminishes
with an increased anchor count.

How do interpolation techniques affect the C-Index metric? As highlighted in Table 2c, step-based
interpolation methods marginally outperform other techniques regarding the C-Index on the
METABRIC dataset. Hence, for specific applications where concordance is the only metric of
utmost importance, step-based interpolation stands as a reliable choice. On the other hand, for
any other situation, smoother interpolation techniques present better time-dependent metrics
with only a negligible degradation of concordance.

Is there a correlation between the proportional hazard assumption and interpolation’s efficacy? The
proportional hazard assumption significantly impacts the model’s outputs, imposing constant
subject ratios over time. Consequently, the chosen interpolation method should not affect the
C-Index, as confirmed by DeepSurv’s performance in Table 2c. Interestingly, for the other
metrics, IBS and Cumulative AUC, deviations are not noticeable to the fourth decimal place.
Thus, for models based on the proportional hazard assumption, the influence of interpolation
on performance is negligible. Instead, as thoroughly analyzed earlier, the opposite holds for
non-proportional models based on time discretization.

How does censoring impact results? As previously discussed, interpolation techniques generally
enhance survival metrics. This improvement is particularly evident in the METABRIC dataset,
which has the most significant proportion of censored samples among the datasets we examined.
When we compare this to other datasets with fewer censored samples, the positive effect of
interpolation, although still present, is less marked. While it is not definitive that there is a
direct correlation between interpolation and the percentage of censorship, we can affirm that a
high rate of censoring does not hinder the benefits of interpolation techniques.



6. Conclusion

In this study, we investigated the influence of interpolation techniques on the performance
metrics of survival models. Due to their expressive power, these models often achieve a high
degree of generalization. However, their inherent discretization limitations can compromise
their precision. To address this, we focused on the post-processing of survival functions through
interpolation between anchor points, aiming to improve time-dependent metrics such as the IBS
and Cumulative AUC. The empirical analyses conducted across various real-world healthcare
datasets and model configurations underscored a consistent pattern: even simple interpolation
methods, like linear interpolation, offer tangible improvements in these metrics. This trend is
especially noticeable when the number of anchor points is orders of magnitude smaller than
the dataset cardinality, which corresponds to most real-world use cases. In summary, this study
underscores the potential of combining the expressiveness of neural networks with interpolation
techniques to improve the accuracy of survival predictions in clinical contexts.

7. Ethical Discussion

While our study focuses on a specific mathematical question concerning the post-processing of
existing, well-studied survival models, the delicate nature of risk assessment in the healthcare
domain raises discussions on several ethical dimensions. First, at its core, survival analysis
studies the probability outcomes of events over time. In the medical field, the results of SA
models may influence decision-making and treatment priorities. The potential prioritization of
patients based solely on statistical outcomes may lead to short-sighted decisions. Therefore, the
outcomes of survival models should be used as suggestions for domain experts who must take
actions based on several real-world factors that may inevitably not be captured by statistical
models.

Second, the use of patient data must undergo consent and transparency. Especially in the
healthcare domain, where data are sensitive and privacy-protected, it is of utmost importance
to ensure that the rights of individuals and data owners are respected. In this study, we utilized
publicly available survival datasets that are commonly used to benchmark survival techniques.

In conclusion, while our focus specifically addresses a technical aspect of survival models, we
recognize the broader impact of survival analysis. Our hope is that by enhancing the reliability
of these models, we contribute to a more ethical and fair healthcare landscape where statistical
predictions serve as one tool among many, to aid judgments of medical professionals.
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Figure 2: IBS and Cumulative AUC on all datasets for 5, 50, and 500 anchor points. For IBS, the lower
the better; for the Cumulative AUC, the higher the better. Columns correspond to survival models,
while rows correspond to survival datasets. Results are averaged over 30 runs.



Table 2
Results based on IBS (Table 2a), Cumulative AUC (Table 2b), and C-Index (Table 2c) considering the
METABRIC dataset for 10, 100, and 1000 anchor points. Results are averaged over 30 runs and scaled up
by a factor of 100 for better readability.

(a) IBS mean and standard deviation.

Model Anchors Step BWD Step FWD Linear PWE Spline

DeepSurv – 21.0 ± 0.7 21.0 ± 0.7 21.0 ± 0.7 21.0 ± 0.7 21.0 ± 0.7

DeepHit 10 22.1 ± 0.6 22.2 ± 0.4 21.6 ± 0.4 21.6 ± 0.4 21.6 ± 0.4
Logistic Hazard 10 21.7 ± 0.8 21.5 ± 0.7 21.0 ± 0.7 21.0 ± 0.7 21.1 ± 0.7
N-MTLR 10 21.3 ± 1.0 21.1 ± 0.7 20.6 ± 0.9 20.6 ± 0.9 20.7 ± 0.9

DeepHit 100 22.1 ± 0.6 22.0 ± 0.6 22.0 ± 0.6 22.0 ± 0.6 22.0 ± 0.6
Logistic Hazard 100 22.9 ± 1.1 22.8 ± 1.1 22.8 ± 1.1 22.8 ± 1.1 22.8 ± 1.1
N-MTLR 100 21.1 ± 0.9 21.1 ± 0.8 21.1 ± 0.8 21.1 ± 0.8 21.1 ± 0.8

DeepHit 1000 23.1 ± 0.5 23.1 ± 0.5 23.1 ± 0.5 23.1 ± 0.5 23.1 ± 0.5
Logistic Hazard 1000 30.9 ± 1.9 30.9 ± 1.9 30.9 ± 1.9 30.9 ± 1.9 30.9 ± 1.9
N-MTLR 1000 21.3 ± 0.6 21.3 ± 0.6 21.3 ± 0.6 21.3 ± 0.6 21.3 ± 0.6

(b) Cumulative AUC mean and standard deviation.

Model Anchors Step BWD Step FWD Linear PWE Spline

DeepSurv – 68.0 ± 2.7 68.0 ± 2.7 68.0 ± 2.7 68.0 ± 2.7 68.0 ± 2.7

DeepHit 10 67.5 ± 2.0 69.8 ± 1.9 69.2 ± 1.9 69.1 ± 1.9 69.0 ± 1.9
Logistic Hazard 10 68.1 ± 2.1 68.3 ± 2.0 68.4 ± 2.0 68.4 ± 2.0 68.4 ± 2.0
N-MTLR 10 69.7 ± 2.3 69.9 ± 2.2 70.0 ± 2.3 70.0 ± 2.3 70.0 ± 2.2

DeepHit 100 66.1 ± 2.2 66.4 ± 2.2 66.3 ± 2.2 66.3 ± 2.2 66.3 ± 2.2
Logistic Hazard 100 63.2 ± 2.9 63.3 ± 2.9 63.3 ± 2.9 63.3 ± 2.9 63.3 ± 2.9
N-MTLR 100 68.3 ± 2.3 68.3 ± 2.3 68.3 ± 2.3 68.3 ± 2.3 68.3 ± 2.3

DeepHit 1000 63.6 ± 2.8 63.6 ± 2.8 63.6 ± 2.8 63.6 ± 2.8 63.6 ± 2.8
Logistic Hazard 1000 49.0 ± 3.6 49.0 ± 3.6 49.0 ± 3.6 49.0 ± 3.6 49.0 ± 3.6
N-MTLR 1000 67.8 ± 2.2 67.8 ± 2.2 67.8 ± 2.2 67.8 ± 2.2 67.8 ± 2.2

(c) C-Index mean and standard deviation.

Model Anchors Step BWD Step FWD Linear PWE Spline

DeepSurv – 64.5 ± 2.0 64.5 ± 2.0 64.5 ± 2.0 64.5 ± 2.0 64.5 ± 2.0

DeepHit 10 63.4 ± 2.4 64.3 ± 2.5 64.0 ± 2.1 64.0 ± 2.1 64.0 ± 2.2
Logistic Hazard 10 63.8 ± 2.0 63.5 ± 2.0 63.7 ± 2.0 63.7 ± 2.0 63.7 ± 2.0
N-MTLR 10 64.5 ± 1.6 64.1 ± 1.8 64.4 ± 1.6 64.4 ± 1.6 64.3 ± 1.7

DeepHit 100 63.2 ± 2.0 63.2 ± 1.9 63.2 ± 2.0 63.2 ± 2.0 63.2 ± 2.0
Logistic Hazard 100 61.0 ± 2.5 61.0 ± 2.4 61.0 ± 2.5 61.0 ± 2.5 61.0 ± 2.5
N-MTLR 100 63.0 ± 2.3 62.9 ± 2.3 62.9 ± 2.3 62.9 ± 2.3 62.9 ± 2.3

DeepHit 1000 61.7 ± 3.0 61.7 ± 3.0 61.7 ± 3.0 61.7 ± 3.0 61.7 ± 3.0
Logistic Hazard 1000 51.8 ± 2.7 51.8 ± 2.7 51.8 ± 2.7 51.8 ± 2.7 51.8 ± 2.7
N-MTLR 1000 63.4 ± 2.1 63.3 ± 2.1 63.3 ± 2.1 63.3 ± 2.1 63.3 ± 2.1
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A. Detailed Numerical Results

This section presents all the numerical results obtained throughout our experiments. For each
dataset, we list three tables, each corresponding to the IBS, Cumulative AUC, and C-Index
metrics, respectively. In particular, the table-dataset correspondence is as follows:

• WHAS500 dataset: Table 3 (IBS), Table 4 (Cumulative AUC), and Table 5 (C-Index).
• GBSG2 dataset: Table 6 (IBS), Table 7 (Cumulative AUC), and Table 8 (C-Index).
• METABRIC dataset: Table 9 (IBS), Table 10 (Cumulative AUC), and Table 11 (C-Index).
• TCGA-BRCA dataset: Table 12 (IBS), Table 13 (Cumulative AUC), and Table 14 (C-Index).

A.1. WHAS500 dataset

Table 3
IBS results on the WHAS500 dataset. Values are averaged over 30 runs and scaled up by a factor of 100
for better readability.

Model Anchors Step BWD Step FWD Linear PWE Spline

DeepSurv – 15.4 ± 2.0 15.4 ± 2.0 15.4 ± 2.0 15.4 ± 2.0 15.4 ± 2.0

DeepHit 5 17.4 ± 1.5 18.5 ± 0.8 16.8 ± 1.1 16.7 ± 1.1 16.7 ± 1.1
Logistic Hazard 5 15.4 ± 2.7 16.5 ± 1.5 14.5 ± 2.0 14.6 ± 2.1 14.5 ± 2.1
N-MTLR 5 15.2 ± 2.1 16.1 ± 1.6 14.3 ± 1.9 14.4 ± 2.0 14.4 ± 2.0

DeepHit 10 17.3 ± 1.4 17.7 ± 1.3 17.4 ± 1.4 17.4 ± 1.4 17.4 ± 1.4
Logistic Hazard 10 17.0 ± 1.9 16.9 ± 1.7 16.8 ± 1.8 16.8 ± 1.8 16.8 ± 1.8
N-MTLR 10 15.7 ± 2.1 15.5 ± 2.0 15.5 ± 2.1 15.5 ± 2.1 15.5 ± 2.1

DeepHit 50 17.4 ± 1.5 17.5 ± 1.6 17.4 ± 1.5 17.4 ± 1.5 17.4 ± 1.5
Logistic Hazard 50 18.2 ± 1.8 18.2 ± 1.8 18.2 ± 1.8 18.2 ± 1.8 18.2 ± 1.8
N-MTLR 50 15.4 ± 2.4 15.4 ± 2.4 15.4 ± 2.4 15.4 ± 2.4 15.4 ± 2.4

DeepHit 100 17.9 ± 1.3 18.0 ± 1.3 18.0 ± 1.3 18.0 ± 1.3 18.0 ± 1.3
Logistic Hazard 100 19.9 ± 2.9 19.9 ± 2.8 19.9 ± 2.9 19.9 ± 2.9 19.9 ± 2.9
N-MTLR 100 16.3 ± 2.1 16.3 ± 2.1 16.3 ± 2.1 16.3 ± 2.1 16.3 ± 2.1

DeepHit 500 20.4 ± 1.3 20.4 ± 1.3 20.4 ± 1.3 20.4 ± 1.3 20.4 ± 1.3
Logistic Hazard 500 25.0 ± 3.6 24.9 ± 3.6 25.0 ± 3.6 25.0 ± 3.6 25.0 ± 3.6
N-MTLR 500 16.2 ± 2.3 16.2 ± 2.3 16.2 ± 2.3 16.2 ± 2.3 16.2 ± 2.3

DeepHit 1000 21.6 ± 1.4 21.6 ± 1.4 21.6 ± 1.4 21.6 ± 1.4 21.6 ± 1.4
Logistic Hazard 1000 27.4 ± 3.2 27.4 ± 3.2 27.4 ± 3.2 27.4 ± 3.2 27.4 ± 3.2
N-MTLR 1000 16.5 ± 2.4 16.5 ± 2.4 16.5 ± 2.4 16.5 ± 2.4 16.5 ± 2.4



Table 4
Cumulative AUC results on the WHAS500 dataset. Values are averaged over 30 runs and scaled up by a
factor of 100 for better readability.

Model Anchors Step BWD Step FWD Linear PWE Spline

DeepSurv – 83.0 ± 4.7 83.0 ± 4.7 83.0 ± 4.7 83.0 ± 4.7 83.0 ± 4.7

DeepHit 5 83.8 ± 3.6 78.1 ± 3.2 84.0 ± 3.5 84.0 ± 3.5 84.0 ± 3.5
Logistic Hazard 5 84.2 ± 4.2 82.3 ± 4.0 84.4 ± 4.2 84.4 ± 4.2 84.4 ± 4.2
N-MTLR 5 84.4 ± 3.9 82.1 ± 3.5 84.4 ± 3.8 84.4 ± 3.8 84.4 ± 3.8

DeepHit 10 82.5 ± 3.7 82.6 ± 3.7 82.6 ± 3.7 82.6 ± 3.7 82.6 ± 3.7
Logistic Hazard 10 79.1 ± 4.3 79.2 ± 4.3 79.1 ± 4.3 79.1 ± 4.3 79.1 ± 4.3
N-MTLR 10 82.5 ± 4.6 82.4 ± 4.6 82.5 ± 4.6 82.5 ± 4.6 82.5 ± 4.6

DeepHit 50 82.3 ± 4.3 82.4 ± 4.3 82.4 ± 4.3 82.4 ± 4.3 82.4 ± 4.3
Logistic Hazard 50 74.8 ± 5.6 74.8 ± 5.6 74.8 ± 5.6 74.8 ± 5.6 74.8 ± 5.6
N-MTLR 50 82.8 ± 4.8 82.8 ± 4.8 82.8 ± 4.8 82.8 ± 4.8 82.8 ± 4.8

DeepHit 100 80.8 ± 4.1 80.9 ± 4.1 80.8 ± 4.1 80.8 ± 4.1 80.8 ± 4.1
Logistic Hazard 100 70.0 ± 6.9 70.0 ± 6.9 70.0 ± 6.9 70.0 ± 6.9 70.0 ± 6.9
N-MTLR 100 81.1 ± 4.2 81.1 ± 4.2 81.1 ± 4.2 81.1 ± 4.2 81.1 ± 4.2

DeepHit 500 74.1 ± 5.0 74.1 ± 5.0 74.1 ± 5.0 74.1 ± 5.0 74.1 ± 5.0
Logistic Hazard 500 60.3 ± 7.1 60.3 ± 7.1 60.3 ± 7.1 60.3 ± 7.1 60.3 ± 7.1
N-MTLR 500 80.4 ± 5.7 80.4 ± 5.7 80.4 ± 5.7 80.4 ± 5.7 80.4 ± 5.7

DeepHit 1000 69.5 ± 7.7 69.5 ± 7.7 69.5 ± 7.7 69.5 ± 7.7 69.5 ± 7.7
Logistic Hazard 1000 55.3 ± 7.3 55.3 ± 7.3 55.3 ± 7.3 55.3 ± 7.3 55.3 ± 7.3
N-MTLR 1000 80.4 ± 5.6 80.4 ± 5.6 80.4 ± 5.6 80.4 ± 5.6 80.4 ± 5.6

Table 5
C-Index results on the WHAS500 dataset. Values are averaged over 30 runs and scaled up by a factor of
100 for better readability.

Model Anchors Step BWD Step FWD Linear PWE Spline

DeepSurv – 75.1 ± 5.0 75.1 ± 5.0 75.1 ± 5.0 75.1 ± 5.0 75.1 ± 5.0

DeepHit 5 74.8 ± 7.2 75.6 ± 7.2 75.5 ± 7.2 75.5 ± 7.2 75.6 ± 7.2
Logistic Hazard 5 76.0 ± 6.2 76.4 ± 6.0 76.3 ± 6.0 76.3 ± 6.0 76.3 ± 6.1
N-MTLR 5 76.4 ± 6.7 76.5 ± 6.6 76.5 ± 6.6 76.5 ± 6.6 76.5 ± 6.6

DeepHit 10 74.0 ± 5.1 74.3 ± 5.1 74.2 ± 5.1 74.2 ± 5.1 74.2 ± 5.1
Logistic Hazard 10 70.6 ± 13.0 70.7 ± 13.1 70.6 ± 13.1 70.6 ± 13.1 70.6 ± 13.1
N-MTLR 10 74.0 ± 12.7 73.9 ± 12.7 73.9 ± 12.7 73.9 ± 12.7 73.9 ± 12.7

DeepHit 50 73.4 ± 13.1 73.5 ± 13.1 73.5 ± 13.1 73.5 ± 13.1 73.5 ± 13.1
Logistic Hazard 50 67.1 ± 11.6 67.0 ± 11.6 67.0 ± 11.6 67.0 ± 11.6 67.0 ± 11.6
N-MTLR 50 72.0 ± 12.0 72.0 ± 12.1 72.0 ± 12.0 72.0 ± 12.0 72.0 ± 12.0

DeepHit 100 75.0 ± 4.7 75.1 ± 4.7 75.0 ± 4.7 75.0 ± 4.7 75.0 ± 4.7
Logistic Hazard 100 65.1 ± 12.3 65.1 ± 12.3 65.1 ± 12.3 65.1 ± 12.3 65.1 ± 12.3
N-MTLR 100 75.9 ± 6.7 75.8 ± 6.7 75.8 ± 6.7 75.8 ± 6.7 75.8 ± 6.7

DeepHit 500 67.8 ± 13.8 67.9 ± 13.8 67.8 ± 13.8 67.8 ± 13.8 67.8 ± 13.8
Logistic Hazard 500 57.5 ± 5.8 57.5 ± 5.8 57.5 ± 5.8 57.5 ± 5.8 57.5 ± 5.8
N-MTLR 500 75.2 ± 4.2 75.2 ± 4.2 75.2 ± 4.2 75.2 ± 4.2 75.2 ± 4.2

DeepHit 1000 65.9 ± 14.6 66.0 ± 14.6 66.0 ± 14.6 66.0 ± 14.6 66.0 ± 14.6
Logistic Hazard 1000 52.9 ± 5.1 52.9 ± 5.1 52.9 ± 5.1 52.9 ± 5.1 52.9 ± 5.1
N-MTLR 1000 72.9 ± 6.3 72.9 ± 6.3 72.9 ± 6.3 72.9 ± 6.3 72.9 ± 6.3



A.2. GBSG2 dataset

Table 6
IBS results on the GBSG2 dataset. Values are averaged over 30 runs and scaled up by a factor of 100 for
better readability.

Model Anchors Step BWD Step FWD Linear PWE Spline

DeepSurv – 19.4 ± 1.1 19.4 ± 1.1 19.4 ± 1.1 19.4 ± 1.1 19.4 ± 1.1

DeepHit 5 22.9 ± 1.6 22.1 ± 0.8 21.0 ± 0.9 21.0 ± 0.9 21.0 ± 0.9
Logistic Hazard 5 22.0 ± 1.4 21.2 ± 1.2 20.1 ± 1.0 20.1 ± 1.1 20.2 ± 1.1
N-MTLR 5 21.5 ± 1.9 20.5 ± 1.3 19.4 ± 1.3 19.5 ± 1.4 19.5 ± 1.4

DeepHit 10 21.3 ± 1.2 21.2 ± 1.1 21.0 ± 1.1 21.0 ± 1.1 21.0 ± 1.1
Logistic Hazard 10 20.4 ± 1.6 20.2 ± 1.2 20.1 ± 1.4 20.1 ± 1.4 20.1 ± 1.4
N-MTLR 10 19.9 ± 1.5 19.8 ± 1.1 19.6 ± 1.3 19.6 ± 1.3 19.7 ± 1.3

DeepHit 50 21.2 ± 1.0 21.2 ± 0.9 21.2 ± 1.0 21.2 ± 1.0 21.2 ± 1.0
Logistic Hazard 50 20.9 ± 1.8 20.9 ± 1.7 20.9 ± 1.7 20.9 ± 1.7 20.9 ± 1.7
N-MTLR 50 19.9 ± 1.6 19.9 ± 1.6 19.9 ± 1.6 19.9 ± 1.6 19.9 ± 1.6

DeepHit 100 21.6 ± 1.3 21.6 ± 1.3 21.6 ± 1.3 21.6 ± 1.3 21.6 ± 1.3
Logistic Hazard 100 21.6 ± 1.9 21.6 ± 1.9 21.6 ± 1.9 21.6 ± 1.9 21.6 ± 1.9
N-MTLR 100 19.8 ± 1.3 19.8 ± 1.3 19.8 ± 1.3 19.8 ± 1.3 19.8 ± 1.3

DeepHit 500 22.0 ± 1.1 22.0 ± 1.1 22.0 ± 1.1 22.0 ± 1.1 22.0 ± 1.1
Logistic Hazard 500 25.5 ± 2.2 25.4 ± 2.2 25.5 ± 2.2 25.5 ± 2.2 25.5 ± 2.2
N-MTLR 500 20.3 ± 1.6 20.3 ± 1.6 20.3 ± 1.6 20.3 ± 1.6 20.3 ± 1.6

DeepHit 1000 22.2 ± 1.0 22.2 ± 1.0 22.2 ± 1.0 22.2 ± 1.0 22.2 ± 1.0
Logistic Hazard 1000 26.2 ± 2.5 26.2 ± 2.5 26.2 ± 2.5 26.2 ± 2.5 26.2 ± 2.5
N-MTLR 1000 20.3 ± 1.4 20.3 ± 1.4 20.3 ± 1.4 20.3 ± 1.4 20.3 ± 1.4



Table 7
Cumulative AUC results on the GBSG2 dataset. Values are averaged over 30 runs and scaled up by a
factor of 100 for better readability.

Model Anchors Step BWD Step FWD Linear PWE Spline

DeepSurv – 73.2 ± 3.4 73.2 ± 3.4 73.2 ± 3.4 73.2 ± 3.4 73.2 ± 3.4

DeepHit 5 72.1 ± 2.8 69.8 ± 3.5 72.3 ± 2.9 72.3 ± 2.9 72.2 ± 2.9
Logistic Hazard 5 71.0 ± 3.6 70.1 ± 3.8 71.0 ± 3.7 71.0 ± 3.7 70.9 ± 3.7
N-MTLR 5 73.8 ± 3.9 72.7 ± 3.9 73.7 ± 3.9 73.7 ± 3.9 73.7 ± 3.9

DeepHit 10 70.6 ± 4.5 70.7 ± 4.3 70.8 ± 4.4 70.8 ± 4.4 70.7 ± 4.3
Logistic Hazard 10 70.5 ± 4.2 70.6 ± 4.2 70.5 ± 4.2 70.5 ± 4.2 70.5 ± 4.2
N-MTLR 10 72.1 ± 3.9 71.9 ± 3.8 72.0 ± 3.8 72.0 ± 3.8 72.0 ± 3.8

DeepHit 50 71.2 ± 3.7 71.2 ± 3.7 71.2 ± 3.7 71.2 ± 3.7 71.2 ± 3.7
Logistic Hazard 50 67.4 ± 5.3 67.4 ± 5.3 67.4 ± 5.3 67.4 ± 5.3 67.4 ± 5.3
N-MTLR 50 71.3 ± 4.4 71.3 ± 4.4 71.3 ± 4.4 71.3 ± 4.4 71.3 ± 4.4

DeepHit 100 70.0 ± 4.6 70.0 ± 4.6 70.0 ± 4.6 70.0 ± 4.6 70.0 ± 4.6
Logistic Hazard 100 66.2 ± 5.2 66.2 ± 5.2 66.2 ± 5.2 66.2 ± 5.2 66.2 ± 5.2
N-MTLR 100 71.7 ± 4.5 71.7 ± 4.5 71.7 ± 4.5 71.7 ± 4.5 71.7 ± 4.5

DeepHit 500 68.0 ± 4.0 68.0 ± 4.0 68.0 ± 4.0 68.0 ± 4.0 68.0 ± 4.0
Logistic Hazard 500 58.3 ± 4.4 58.3 ± 4.4 58.3 ± 4.4 58.3 ± 4.4 58.3 ± 4.4
N-MTLR 500 70.9 ± 4.0 70.9 ± 4.0 70.9 ± 4.0 70.9 ± 4.0 70.9 ± 4.0

DeepHit 1000 66.0 ± 4.7 66.0 ± 4.7 66.0 ± 4.7 66.0 ± 4.7 66.0 ± 4.7
Logistic Hazard 1000 58.3 ± 5.7 58.3 ± 5.7 58.3 ± 5.7 58.3 ± 5.7 58.3 ± 5.7
N-MTLR 1000 69.7 ± 4.1 69.7 ± 4.1 69.7 ± 4.1 69.7 ± 4.1 69.7 ± 4.1

Table 8
C-Index results on the GBSG2 dataset. Values are averaged over 30 runs and scaled up by a factor of
100 for better readability.

Model Anchors Step BWD Step FWD Linear PWE Spline

DeepSurv – 67.6 ± 5.2 67.6 ± 5.2 67.6 ± 5.2 67.6 ± 5.2 67.6 ± 5.2

DeepHit 5 66.6 ± 4.5 66.6 ± 4.5 66.9 ± 4.5 66.8 ± 4.5 67.0 ± 4.3
Logistic Hazard 5 66.5 ± 3.7 66.4 ± 3.8 66.4 ± 3.7 66.4 ± 3.7 66.4 ± 3.8
N-MTLR 5 67.5 ± 3.6 67.5 ± 3.6 67.6 ± 3.6 67.6 ± 3.6 67.6 ± 3.6

DeepHit 10 66.6 ± 3.8 66.8 ± 3.8 66.7 ± 3.8 66.7 ± 3.8 66.7 ± 3.9
Logistic Hazard 10 68.1 ± 6.2 68.1 ± 6.2 68.1 ± 6.2 68.1 ± 6.2 68.1 ± 6.2
N-MTLR 10 67.8 ± 5.4 67.6 ± 5.3 67.8 ± 5.4 67.8 ± 5.4 67.8 ± 5.4

DeepHit 50 66.7 ± 5.2 66.7 ± 5.0 66.6 ± 5.0 66.6 ± 5.0 66.6 ± 5.0
Logistic Hazard 50 64.3 ± 5.5 64.3 ± 5.5 64.3 ± 5.5 64.3 ± 5.5 64.3 ± 5.5
N-MTLR 50 65.8 ± 4.4 65.8 ± 4.5 65.8 ± 4.4 65.8 ± 4.4 65.8 ± 4.4

DeepHit 100 66.6 ± 5.7 66.6 ± 5.7 66.6 ± 5.7 66.6 ± 5.7 66.6 ± 5.7
Logistic Hazard 100 63.9 ± 5.1 63.9 ± 5.1 63.9 ± 5.1 63.9 ± 5.1 63.9 ± 5.1
N-MTLR 100 66.4 ± 5.2 66.4 ± 5.2 66.4 ± 5.2 66.4 ± 5.2 66.4 ± 5.2

DeepHit 500 63.6 ± 5.5 63.6 ± 5.5 63.6 ± 5.5 63.6 ± 5.5 63.6 ± 5.5
Logistic Hazard 500 58.2 ± 5.2 58.2 ± 5.2 58.2 ± 5.2 58.2 ± 5.2 58.2 ± 5.2
N-MTLR 500 66.0 ± 5.5 66.0 ± 5.5 66.0 ± 5.5 66.0 ± 5.5 66.0 ± 5.5

DeepHit 1000 62.4 ± 4.4 62.4 ± 4.4 62.4 ± 4.4 62.4 ± 4.4 62.4 ± 4.4
Logistic Hazard 1000 59.2 ± 7.7 59.2 ± 7.7 59.2 ± 7.7 59.2 ± 7.7 59.2 ± 7.7
N-MTLR 1000 67.0 ± 5.6 67.0 ± 5.6 67.0 ± 5.6 67.0 ± 5.6 67.0 ± 5.6



A.3. METABRIC dataset

Table 9
IBS results on the METABRIC dataset. Values are averaged over 30 runs and scaled up by a factor of 100
for better readability.

Model Anchors Step BWD Step FWD Linear PWE Spline

DeepSurv – 21.0 ± 0.7 21.0 ± 0.7 21.0 ± 0.7 21.0 ± 0.7 21.0 ± 0.7

DeepHit 5 24.5 ± 1.2 24.8 ± 0.7 21.6 ± 0.5 21.6 ± 0.5 21.6 ± 0.5
Logistic Hazard 5 23.4 ± 1.3 24.0 ± 0.9 20.5 ± 0.8 20.5 ± 0.9 20.6 ± 0.9
N-MTLR 5 23.7 ± 1.1 23.9 ± 0.8 20.6 ± 0.7 20.7 ± 0.7 20.7 ± 0.7

DeepHit 10 22.1 ± 0.6 22.2 ± 0.4 21.6 ± 0.4 21.6 ± 0.4 21.6 ± 0.4
Logistic Hazard 10 21.7 ± 0.8 21.5 ± 0.7 21.0 ± 0.7 21.0 ± 0.7 21.1 ± 0.7
N-MTLR 10 21.3 ± 1.0 21.1 ± 0.7 20.6 ± 0.9 20.6 ± 0.9 20.7 ± 0.9

DeepHit 50 22.0 ± 0.5 22.0 ± 0.5 22.0 ± 0.5 22.0 ± 0.5 22.0 ± 0.5
Logistic Hazard 50 22.0 ± 1.1 21.9 ± 1.0 21.9 ± 1.1 21.9 ± 1.1 21.9 ± 1.1
N-MTLR 50 20.7 ± 0.7 20.7 ± 0.6 20.7 ± 0.7 20.7 ± 0.7 20.7 ± 0.7

DeepHit 100 22.1 ± 0.6 22.0 ± 0.6 22.0 ± 0.6 22.0 ± 0.6 22.0 ± 0.6
Logistic Hazard 100 22.9 ± 1.1 22.8 ± 1.1 22.8 ± 1.1 22.8 ± 1.1 22.8 ± 1.1
N-MTLR 100 21.1 ± 0.9 21.1 ± 0.8 21.1 ± 0.8 21.1 ± 0.8 21.1 ± 0.8

DeepHit 500 22.7 ± 0.4 22.8 ± 0.4 22.7 ± 0.4 22.7 ± 0.4 22.7 ± 0.4
Logistic Hazard 500 27.8 ± 2.8 27.8 ± 2.8 27.8 ± 2.8 27.8 ± 2.8 27.8 ± 2.8
N-MTLR 500 21.0 ± 0.8 21.0 ± 0.8 21.0 ± 0.8 21.0 ± 0.8 21.0 ± 0.8

DeepHit 1000 23.1 ± 0.5 23.1 ± 0.5 23.1 ± 0.5 23.1 ± 0.5 23.1 ± 0.5
Logistic Hazard 1000 30.9 ± 1.9 30.9 ± 1.9 30.9 ± 1.9 30.9 ± 1.9 30.9 ± 1.9
N-MTLR 1000 21.3 ± 0.6 21.3 ± 0.6 21.3 ± 0.6 21.3 ± 0.6 21.3 ± 0.6



Table 10
Cumulative AUC results on the METABRIC dataset. Values are averaged over 30 runs and scaled up by
a factor of 100 for better readability.

Model Anchors Step BWD Step FWD Linear PWE Spline

DeepSurv – 68.0 ± 2.7 68.0 ± 2.7 68.0 ± 2.7 68.0 ± 2.7 68.0 ± 2.7

DeepHit 5 66.9 ± 2.2 63.1 ± 2.0 69.7 ± 2.1 69.5 ± 2.1 69.5 ± 2.0
Logistic Hazard 5 68.7 ± 3.1 64.0 ± 2.6 69.8 ± 3.0 69.8 ± 3.0 69.9 ± 2.8
N-MTLR 5 69.1 ± 2.4 64.6 ± 2.7 70.2 ± 2.4 70.2 ± 2.4 70.3 ± 2.3

DeepHit 10 67.5 ± 2.0 69.8 ± 1.9 69.2 ± 1.9 69.1 ± 1.9 69.0 ± 1.9
Logistic Hazard 10 68.1 ± 2.1 68.3 ± 2.0 68.4 ± 2.0 68.4 ± 2.0 68.4 ± 2.0
N-MTLR 10 69.7 ± 2.3 69.9 ± 2.2 70.0 ± 2.3 70.0 ± 2.3 70.0 ± 2.2

DeepHit 50 67.1 ± 2.4 67.6 ± 2.3 67.4 ± 2.4 67.4 ± 2.4 67.4 ± 2.4
Logistic Hazard 50 65.6 ± 2.5 65.7 ± 2.6 65.7 ± 2.6 65.7 ± 2.6 65.7 ± 2.6
N-MTLR 50 69.7 ± 1.6 69.7 ± 1.5 69.7 ± 1.6 69.7 ± 1.6 69.7 ± 1.6

DeepHit 100 66.1 ± 2.2 66.4 ± 2.2 66.3 ± 2.2 66.3 ± 2.2 66.3 ± 2.2
Logistic Hazard 100 63.2 ± 2.9 63.3 ± 2.9 63.3 ± 2.9 63.3 ± 2.9 63.3 ± 2.9
N-MTLR 100 68.3 ± 2.3 68.3 ± 2.3 68.3 ± 2.3 68.3 ± 2.3 68.3 ± 2.3

DeepHit 500 65.6 ± 2.8 65.6 ± 2.8 65.6 ± 2.8 65.6 ± 2.8 65.6 ± 2.8
Logistic Hazard 500 53.9 ± 4.9 53.9 ± 4.9 53.9 ± 4.9 53.9 ± 4.9 53.9 ± 4.9
N-MTLR 500 68.4 ± 2.2 68.4 ± 2.2 68.4 ± 2.2 68.4 ± 2.2 68.4 ± 2.2

DeepHit 1000 63.6 ± 2.8 63.6 ± 2.8 63.6 ± 2.8 63.6 ± 2.8 63.6 ± 2.8
Logistic Hazard 1000 49.0 ± 3.6 49.0 ± 3.6 49.0 ± 3.6 49.0 ± 3.6 49.0 ± 3.6
N-MTLR 1000 67.8 ± 2.2 67.8 ± 2.2 67.8 ± 2.2 67.8 ± 2.2 67.8 ± 2.2

Table 11
C-Index results on the METABRIC dataset. Values are averaged over 30 runs and scaled up by a factor
of 100 for better readability.

Model Anchors Step BWD Step FWD Linear PWE Spline

DeepSurv – 64.5 ± 2.0 64.5 ± 2.0 64.5 ± 2.0 64.5 ± 2.0 64.5 ± 2.0

DeepHit 5 63.7 ± 3.0 63.3 ± 4.0 64.7 ± 2.6 64.5 ± 2.6 64.6 ± 2.5
Logistic Hazard 5 64.2 ± 2.9 63.0 ± 3.0 64.0 ± 2.9 64.1 ± 2.9 63.9 ± 2.9
N-MTLR 5 63.6 ± 4.0 63.0 ± 4.2 63.7 ± 4.0 63.7 ± 4.0 63.6 ± 4.0

DeepHit 10 63.4 ± 2.4 64.3 ± 2.5 64.0 ± 2.1 64.0 ± 2.1 64.0 ± 2.2
Logistic Hazard 10 63.8 ± 2.0 63.5 ± 2.0 63.7 ± 2.0 63.7 ± 2.0 63.7 ± 2.0
N-MTLR 10 64.5 ± 1.6 64.1 ± 1.8 64.4 ± 1.6 64.4 ± 1.6 64.3 ± 1.7

DeepHit 50 63.5 ± 2.7 63.8 ± 2.7 63.7 ± 2.7 63.6 ± 2.7 63.6 ± 2.7
Logistic Hazard 50 62.8 ± 2.3 62.7 ± 2.4 62.7 ± 2.3 62.7 ± 2.3 62.7 ± 2.3
N-MTLR 50 64.2 ± 3.3 64.1 ± 3.2 64.1 ± 3.2 64.1 ± 3.2 64.1 ± 3.2

DeepHit 100 63.2 ± 2.0 63.2 ± 1.9 63.2 ± 2.0 63.2 ± 2.0 63.2 ± 2.0
Logistic Hazard 100 61.0 ± 2.5 61.0 ± 2.4 61.0 ± 2.5 61.0 ± 2.5 61.0 ± 2.5
N-MTLR 100 63.0 ± 2.3 62.9 ± 2.3 62.9 ± 2.3 62.9 ± 2.3 62.9 ± 2.3

DeepHit 500 61.7 ± 2.9 61.7 ± 2.9 61.7 ± 2.9 61.7 ± 2.9 61.7 ± 2.9
Logistic Hazard 500 55.2 ± 5.6 55.2 ± 5.6 55.2 ± 5.6 55.2 ± 5.6 55.2 ± 5.6
N-MTLR 500 63.1 ± 2.2 63.1 ± 2.2 63.1 ± 2.2 63.1 ± 2.2 63.1 ± 2.2

DeepHit 1000 61.7 ± 3.0 61.7 ± 3.0 61.7 ± 3.0 61.7 ± 3.0 61.7 ± 3.0
Logistic Hazard 1000 51.8 ± 2.7 51.8 ± 2.7 51.8 ± 2.7 51.8 ± 2.7 51.8 ± 2.7
N-MTLR 1000 63.4 ± 2.1 63.3 ± 2.1 63.3 ± 2.1 63.3 ± 2.1 63.3 ± 2.1



A.4. TCGA-BRCA dataset

Table 12
IBS results on the TCGA-BRCA dataset. Values are averaged over 30 runs and scaled up by a factor of
100 for better readability.

Model Anchors Step BWD Step FWD Linear PWE Spline

DeepSurv – 8.4 ± 1.1 8.4 ± 1.1 8.4 ± 1.1 8.4 ± 1.1 8.4 ± 1.1

DeepHit 5 14.1 ± 2.3 9.7 ± 1.6 8.6 ± 1.3 9.0 ± 1.4 8.3 ± 1.3
Logistic Hazard 5 16.3 ± 3.1 9.6 ± 1.6 8.5 ± 0.9 9.8 ± 1.5 8.5 ± 1.0
N-MTLR 5 17.0 ± 2.9 9.4 ± 1.3 8.6 ± 1.1 10.0 ± 1.7 8.4 ± 1.3

DeepHit 10 8.5 ± 0.7 8.6 ± 0.9 8.1 ± 0.7 8.1 ± 0.7 8.1 ± 0.7
Logistic Hazard 10 8.8 ± 1.0 8.0 ± 1.0 7.8 ± 0.9 7.8 ± 0.9 7.8 ± 0.9
N-MTLR 10 9.6 ± 1.1 8.1 ± 1.0 8.2 ± 1.0 8.2 ± 1.0 8.2 ± 1.0

DeepHit 50 7.9 ± 0.9 7.9 ± 1.0 7.9 ± 1.0 7.9 ± 1.0 7.9 ± 1.0
Logistic Hazard 50 8.0 ± 1.0 8.0 ± 1.0 8.0 ± 1.0 8.0 ± 1.0 8.0 ± 1.0
N-MTLR 50 7.6 ± 1.0 7.5 ± 1.0 7.5 ± 1.0 7.5 ± 1.0 7.5 ± 1.0

DeepHit 100 8.7 ± 1.3 8.7 ± 1.3 8.7 ± 1.3 8.7 ± 1.3 8.7 ± 1.3
Logistic Hazard 100 8.5 ± 0.9 8.5 ± 0.9 8.5 ± 0.9 8.5 ± 0.9 8.5 ± 0.9
N-MTLR 100 8.2 ± 1.3 8.2 ± 1.2 8.2 ± 1.2 8.2 ± 1.2 8.2 ± 1.3

DeepHit 500 8.3 ± 1.2 8.2 ± 1.2 8.2 ± 1.2 8.2 ± 1.2 8.2 ± 1.2
Logistic Hazard 500 9.0 ± 1.2 8.9 ± 1.2 8.9 ± 1.2 8.9 ± 1.2 8.9 ± 1.2
N-MTLR 500 8.2 ± 1.0 8.2 ± 1.0 8.2 ± 1.0 8.2 ± 1.0 8.2 ± 1.0

DeepHit 1000 8.6 ± 1.0 8.6 ± 1.0 8.6 ± 1.0 8.6 ± 1.0 8.6 ± 1.0
Logistic Hazard 1000 9.2 ± 1.3 9.2 ± 1.3 9.2 ± 1.3 9.2 ± 1.3 9.2 ± 1.3
N-MTLR 1000 8.1 ± 0.8 8.1 ± 0.8 8.1 ± 0.8 8.1 ± 0.8 8.1 ± 0.8



Table 13
Cumulative AUC results on the TCGA-BRCA dataset. Values are averaged over 30 runs and scaled up
by a factor of 100 for better readability.

Model Anchors Step BWD Step FWD Linear PWE Spline

DeepSurv – 74.7 ± 5.7 74.7 ± 5.7 74.7 ± 5.7 74.7 ± 5.7 74.7 ± 5.7

DeepHit 5 72.9 ± 7.1 43.7 ± 10.7 73.1 ± 6.9 73.0 ± 7.0 73.3 ± 6.8
Logistic Hazard 5 74.7 ± 5.8 60.6 ± 9.8 74.8 ± 5.8 74.8 ± 5.8 74.9 ± 5.8
N-MTLR 5 74.3 ± 4.5 64.5 ± 9.0 74.4 ± 4.5 74.4 ± 4.5 74.5 ± 4.5

DeepHit 10 77.4 ± 4.4 73.3 ± 5.8 77.7 ± 4.6 77.6 ± 4.6 77.6 ± 4.8
Logistic Hazard 10 76.6 ± 6.2 76.5 ± 5.9 76.8 ± 6.1 76.8 ± 6.1 76.8 ± 6.0
N-MTLR 10 75.0 ± 6.3 74.3 ± 6.3 75.1 ± 6.2 75.0 ± 6.2 75.1 ± 6.2

DeepHit 50 74.1 ± 6.5 74.0 ± 6.6 74.1 ± 6.5 74.1 ± 6.5 74.0 ± 6.5
Logistic Hazard 50 74.0 ± 7.0 74.0 ± 7.0 74.0 ± 7.0 74.0 ± 7.0 74.0 ± 7.0
N-MTLR 50 73.4 ± 4.5 73.5 ± 4.5 73.5 ± 4.5 73.5 ± 4.5 73.5 ± 4.5

DeepHit 100 72.0 ± 6.6 72.0 ± 6.6 72.0 ± 6.6 72.0 ± 6.6 72.0 ± 6.6
Logistic Hazard 100 71.6 ± 7.6 71.6 ± 7.6 71.6 ± 7.6 71.6 ± 7.6 71.6 ± 7.6
N-MTLR 100 74.4 ± 5.7 74.4 ± 5.7 74.4 ± 5.7 74.4 ± 5.7 74.4 ± 5.7

DeepHit 500 65.9 ± 10.8 65.9 ± 10.8 65.9 ± 10.8 65.9 ± 10.8 65.9 ± 10.8
Logistic Hazard 500 65.5 ± 8.2 65.5 ± 8.2 65.5 ± 8.2 65.5 ± 8.2 65.5 ± 8.2
N-MTLR 500 73.6 ± 5.0 73.6 ± 5.0 73.6 ± 5.0 73.6 ± 5.0 73.6 ± 5.0

DeepHit 1000 63.7 ± 10.7 63.7 ± 10.8 63.7 ± 10.7 63.7 ± 10.7 63.7 ± 10.7
Logistic Hazard 1000 64.6 ± 9.8 64.6 ± 9.8 64.6 ± 9.8 64.6 ± 9.8 64.6 ± 9.8
N-MTLR 1000 72.2 ± 7.3 72.2 ± 7.3 72.2 ± 7.3 72.2 ± 7.3 72.2 ± 7.3

Table 14
C-Index results on the TCGA-BRCA dataset. Values are averaged over 30 runs and scaled up by a factor
of 100 for better readability.

Model Anchors Step BWD Step FWD Linear PWE Spline

DeepSurv – 68.1 ± 10.1 68.1 ± 10.1 68.1 ± 10.1 68.1 ± 10.1 68.1 ± 10.1

DeepHit 5 69.5 ± 7.5 45.3 ± 12.6 69.7 ± 7.5 69.6 ± 7.6 69.1 ± 8.1
Logistic Hazard 5 65.5 ± 11.4 56.9 ± 14.0 65.5 ± 11.4 65.5 ± 11.3 65.3 ± 11.3
N-MTLR 5 68.9 ± 12.9 64.3 ± 9.8 69.0 ± 12.9 69.0 ± 12.9 69.0 ± 12.8

DeepHit 10 70.1 ± 5.8 69.0 ± 6.7 70.0 ± 6.4 70.0 ± 6.4 69.6 ± 6.8
Logistic Hazard 10 66.5 ± 9.5 66.0 ± 9.6 66.2 ± 9.6 66.3 ± 9.6 66.3 ± 9.5
N-MTLR 10 66.5 ± 9.2 66.2 ± 9.0 66.4 ± 9.2 66.5 ± 9.2 66.4 ± 9.1

DeepHit 50 73.4 ± 10.4 73.4 ± 10.4 73.4 ± 10.4 73.4 ± 10.4 73.4 ± 10.4
Logistic Hazard 50 66.2 ± 8.1 66.2 ± 8.1 66.2 ± 8.1 66.2 ± 8.1 66.2 ± 8.1
N-MTLR 50 67.3 ± 9.6 67.2 ± 9.7 67.2 ± 9.7 67.2 ± 9.7 67.2 ± 9.7

DeepHit 100 65.6 ± 11.1 65.6 ± 11.2 65.6 ± 11.1 65.6 ± 11.1 65.6 ± 11.1
Logistic Hazard 100 62.7 ± 11.9 62.7 ± 11.9 62.7 ± 11.9 62.7 ± 11.9 62.7 ± 11.9
N-MTLR 100 70.0 ± 8.1 70.0 ± 8.1 70.0 ± 8.1 70.0 ± 8.1 70.0 ± 8.1

DeepHit 500 62.9 ± 11.6 63.0 ± 11.7 63.0 ± 11.6 63.0 ± 11.6 63.0 ± 11.6
Logistic Hazard 500 61.8 ± 11.6 61.8 ± 11.6 61.8 ± 11.6 61.8 ± 11.6 61.8 ± 11.6
N-MTLR 500 69.0 ± 12.6 69.0 ± 12.7 69.0 ± 12.6 69.0 ± 12.6 69.0 ± 12.6

DeepHit 1000 63.3 ± 9.4 63.3 ± 9.4 63.3 ± 9.4 63.3 ± 9.4 63.3 ± 9.4
Logistic Hazard 1000 57.9 ± 13.0 57.9 ± 13.0 57.9 ± 13.0 57.9 ± 13.0 57.9 ± 13.0
N-MTLR 1000 67.3 ± 13.6 67.3 ± 13.6 67.3 ± 13.6 67.3 ± 13.6 67.3 ± 13.6
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