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An optimal multiplier theorem
for Grushin operators in the plane, I

Gian Maria Dall’Ara and Alessio Martini

Abstract. Let L D �@2x � V.x/@
2
y be the Grushin operator on R2 with coefficient

V WR ! Œ0;1/. Under the sole assumptions that V.�x/ ' V.x/ ' xV 0.x/ and
x2jV 00.x/j . V.x/, we prove a spectral multiplier theorem of Mihlin–Hörmander
type for L, whose smoothness requirement is optimal and independent of V . The
assumption on the second derivative V 00 can actually be weakened to a Hölder-
type condition on V 0. The proof hinges on the spectral analysis of one-dimensional
Schrödinger operators, including universal estimates of eigenvalue gaps and matrix
coefficients of the potential.

1. Introduction

1.1. Statement of the results

Let X be a measure space and let L be a nonnegative self-adjoint operator on L2.X/.
By the spectral theorem, L admits a spectral resolution E, and a functional calculus
for L can be defined via spectral integration. In particular, for all bounded Borel func-
tions mW Œ0;1/! C, the operator

m.L/ D
Z
Œ0;1/

m.�/ dE.�/

is bounded on L2.X/. Determining nontrivial sufficient conditions for the boundedness
of operators of the form m.L/ on other function spaces, such as Lp.X/ for p ¤ 2, in
terms of properties of the “spectral multiplier” m, is in general a much more complicated
problem.

In the case where L D �� is the Laplacian on Rn, the classical Mihlin–Hörmander
multiplier theorem [31, 49] implies that m.L/ is of weak type .1; 1/ and bounded on Lp

for all p 2 .1;1/ whenever m is continuous on .0;1/ and satisfies a local scale-invariant
Sobolev condition of the form

(1.1) sup
t�0

km.t �/ �kLqs <1
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for q D 2 and some s > n=2; here Lqs .R/ denotes the Lq Sobolev space of (fractional)
order s, and � 2 C1c ..0;1// is any nontrivial cutoff. It is well known that the smoothness
requirement s > n=2 in this result is optimal, in the sense that n=2 cannot be replaced by
any smaller number.

Results analogous to the Mihlin–Hörmander theorem have been obtained for more
general “Laplace-like” operators in a variety of settings. For example, if L is the Laplace–
Beltrami operator on a compact Riemannian manifold (or, more generally, an elliptic
pseudodifferential operator on a compact manifold), then the analogue of the aforemen-
tioned Mihlin–Hörmander result was proved by Seeger and Sogge [59], with a smoothness
condition of the form (1.1) with q D 2 and s > n=2, where n is the dimension of the mani-
fold. The proof of Seeger and Sogge is fundamentally based on a Fourier integral operator
representation for the half-wave propagator associated to L, already exploited in [32], and
appears to break down when the ellipticity assumption on L is weakened.

A more general and robust – but not as sharp – result of Mihlin–Hörmander type,
essentially due to Hebisch [29] (see also [2, 10, 46] for some predecessors in particular
cases, and [12, 41, 64] for alternative approaches and variations), applies to arbitrary non-
negative self-adjoint operators L on L2.X/, whereX is a doubling metric measure space.
Under the assumption that L satisfies Gaussian-type heat kernel bounds, the result yields
weak type .1; 1/ and Lp boundedness for p 2 .1;1/ of m.L/ whenever m satisfies a
smoothness condition of the form (1.1) with q D1 and s > Q=2, whereQ is the “homo-
geneous dimension” of the doubling space X . When applying this result to the Laplace
operator on Rn or the Laplace–Beltrami operator on a compact Riemannian n-manifold,
one can take Q D n, thus recovering the aforementioned optimal results in those cases
up to the type of Sobolev norm used (the results with q D 2 are sharper than those with
qD1). At the same time, the approach based on heat kernel bounds yields a wider applic-
ability of the result, including cases where the operator L fails to be elliptic. In several of
these cases, however, the smoothness requirement s > Q=2 turns out not to be optimal.

Let us consider, for example, degenerate elliptic operators on Rn1x �Rn2y of the form

(1.2) L D ��x � V.x/�y ;

where the coefficient V WRn1 ! Œ0;1/ is measurable and bounded above and below by
multiples of the function

(1.3) x 7!

´
jxjd if jxj � 1,
jxjD if jxj � 1,

for some d; D > 0. In the case where V is a polynomial, these operators are among
those studied in [28], whence the name “Grushin operators” commonly used to refer to
operators of the form (1.2); sometimes the name “Baouendi–Grushin operators” is also
used, due to the previous work [3] on degenerate elliptic operators. In [56], Robinson
and Sikora develop a detailed analysis of degenerate elliptic operators of Grushin type,
yielding among other things that Hebisch’s multiplier theorem applies to operators of the
form (1.2), with homogeneous dimensionQ D n1 C .1Cmax¹D;dº=2/n2. No claim on
the optimality of the condition s > Q=2 is made there, and indeed improvements turn out
to be possible in some cases.
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In the case where V.x/ D jxj2, in [42, 45] it is proved that the smoothness condi-
tion can be pushed down to s > .n1 C n2/=2 and expressed in terms of an L2 Sobolev
norm. The same smoothness condition turns out to be enough also in the case where
V.x/ D

Pn1
jD1 jxj j and n1 � n2=2, see [9]. The threshold .n1 C n2/=2, that is, half the

topological dimension of the underlying manifold, corresponds to the sharp threshold in
the classical Mihlin–Hörmander theorem for the Euclidean Laplacian on Rn1Cn2 , and
therefore cannot be beaten in the case of Grushin operators, since they are locally elliptic
where x ¤ 0, see [36, 50]. In view of these examples, it is natural to ask whether the
optimal smoothness requirement coincides with the Euclidean condition s > .n1 C n2/=2
for any Grushin operator (1.2), and in particular whether the optimal threshold is inde-
pendent of the “degrees” d and D of the coefficient V .

A partial positive answer in the case d D D > 1 is presented in [14]. Under some
structural and smoothness assumptions on V (namely, V.x/ D

Pn1
jD1 Vj .jxj j/, where

each Vj W .0;1/! .0;1/ is comparable to the power law t 7! tD up to the third deriv-
ative), a theorem of Mihlin–Hörmander type is proved with L2 smoothness condition
s > max¹n1 C n2; .1CD=2/n2º=2. In addition to not requiring any analyticity or homo-
geneity of the coefficient V , this result yields the optimal degree-independent condition
s > .n1 C n2/=2 whenever n2 � 2n1=D; in particular, however large the degree D is,
we can reach the Euclidean “half the topological dimension” threshold, provided n2 is
sufficiently small compared to n1.

The constraint n2 � 2n1=D from the previous discussion is somewhat unsatisfactory:
for example, it excludes the lowest dimensional case n1 D n2 D 1 as soon as D > 2.
Indeed, strikingly enough, even in the apparently simplest case of a homogeneous Grushin
operator on R2,

(1.4) L D �@2x � jxj
D @2y ;

the aforementioned results yield the Euclidean condition s > 2=2 only when 1 � D � 2
(specifically, the case D D 1 is in [9], the case D D 2 is in [42, 45], while [14] cov-
ers the range 1 < D � 2). When D > 2, the result from [14] gives the L2 condition
s > .1CD=2/=2, whose threshold becomes arbitrarily large as D grows; if 0 < D < 1,
instead, among the existing results, only the general theorem from [56] with L1 condi-
tion s > Q=2 D .2CD=2/=2 appears to be applicable. In light of this, the analysis of
two-dimensional cases appears to be a natural choice as a testing ground for the question
whether the Euclidean condition is always the optimal smoothness requirement.

In this paper we focus on two-dimensional Grushin operators of the form

(1.5) L D �@2x � V.x/@
2
y ;

where V WR! Œ0;1/ is assumed to be continuous, not identically zero, C 1 off the origin,
and satisfying, for some � 2 .0; 1/, the estimates

(1.6a) V.�x/ ' V.x/ ' xV 0.x/;

(1.6b) jV 0.xeh/ � V 0.x/j . jV 0.x/j jhj�

for all x 2 R n ¹0º and h 2 Œ�1; 1�. Here A . B means that there exists a constant C > 0

such that A � CB , and A ' B is the conjunction of A . B and B . A; we also write
A .s B or A 's B to indicate that the implicit constants may depend on a parameter s.
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The assumption (1.6b) is a scale-invariant Hölder-type condition on V 0, which is satis-
fied, for example, whenever V is twice differentiable on R n ¹0º and satisfies the estimate
jxV 00.x/j . jV 0.x/j. Clearly, the assumptions (1.6) include the operators (1.4) among
others. Under these sole assumptions, we confirm that the Euclidean condition s > 2=2 is
indeed the optimal smoothness requirement, at least when expressed in terms of an L1

Sobolev norm.

Theorem 1.1. Let L be the Grushin operator on R2 defined by (1.5), where the coeffi-
cient V satisfies the estimates (1.6). Let s > 2=2.

(i) For all mWR! C such that supp m � Œ�1; 1�,

sup
t>0

km.tL/kL1!L1 .s kmkL1s :

(ii) Let � 2 C1c ..0;1// be nonzero. For all mWR! C and p 2 .1;1/,

km.L/kL1!L1;1 .s sup
t>0

km.t �/�kL1s ; km.L/kLp!Lp .s;p sup
t>0

km.t �/�kL1s :

It is worth pointing out that the assumptions (1.6) are substantially less restrictive than
the corresponding ones in [14]. Among other things, the choices

V.x/ D jxjd C jxjD for any D;d > 0;

V .x/ D 1=.jxj�d C jxj�D/ for any D;d > 0;

V .x/ D jxjD log.2C jxj/ for any D > 0;

are allowed here, thus showing that we do not require V to be comparable to a power
law with a specific degree. The last example goes even beyond the class of coefficients
considered in [56], since it is not comparable to a function of the form (1.3).

Plenty of other examples can be constructed, by observing that the assumptions (1.6)
admit a particularly simple rephrasing in terms of the functions �˙.t/ D log V.˙et /.
Namely, with (1.6a) we are requiring that the �˙WR! R are continuously differentiable
and

� 0˙ ' 1; j�C � ��j . 1;
while the condition (1.6b) requires in addition that the � 0

˙
are � -Hölder continuous:

j� 0˙.t C h/ � �
0
˙.t/j . jhj

� :

In the case V is homogeneous, the functions � 0
˙

are constant and equal to the homogeneity
degree; so in a sense we could think of the assumptions (1.6) as allowing for potentials V
with non-constant, Hölder-continuous degree.

We remark that the smoothness condition in Theorem 1.1 is expressed in terms of
an L1 Sobolev norm, in contrast to the L2 Sobolev condition used in [9, 14, 42, 45]. In
addition, the latter results also apply to higher-dimensional cases. As a matter of fact, the
methods presented here can be adapted to treat some higher-dimensional cases as well,
and even to prove the sharper result with an L2 Sobolev condition. However, the proof of
Theorem 1.1 turns out to be relatively complicated as it is, and we believe that it may be
of interest to present it in the simplest and cleanest form, instead of obfuscating the core
ideas with additional technicalities. A separate work [15], building on the present one, is
devoted to the L2 Sobolev norm improvement of Theorem 1.1.
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In any case, the fact that here we can obtain a smoothness condition that is independent
of the coefficient V (and matches the Euclidean one, corresponding to V � 1) is already
a substantial improvement over the results in [14, 56], where the smoothness threshold
(for fixed dimension) grows with the degree of V . This is true even if we restrict our
attention toL2 Sobolev conditions: indeed, by Sobolev’s embedding, Theorem 1.1 implies
a corresponding result with L2 condition s > 3=2, which is anyway a huge improvement
over the L2 condition s > .1CD=2/=2 from [14] as soon as D is large. Moreover, in its
form with an L1 condition, our result implies an essentially sharp bound on the growth
of the norms of the imaginary powers of L:

1C j˛j . kLi˛
kL1!L1;1 ." .1C j˛j/1C"

for all ˛ 2 R and " > 0; the upper bound is a direct consequence of Theorem 1.1, while
the lower bound follows via transplantation from the corresponding one for the Laplacian
on R2 (see, e.g., [61]).

In the case where V is a homogeneous polynomial, Grushin operators of the form (1.2)
can be lifted to homogeneous left-invariant sub-Laplacians on stratified nilpotent Lie
groups [20, 22, 57, 58], and a number of their properties can be recovered by the ana-
lysis of these group-invariant sub-Laplacians. As a matter of fact, the discovery that the
topological dimension and not the homogeneous dimension may determine the optimal
Mihlin–Hörmander smoothness condition for non-elliptic operators was first made by
Hebisch and by Müller and Stein in the case of sub-Laplacians on the Heisenberg groups
[30, 52]. Since then, the problem of determining the optimal smoothness condition for
sub-Laplacians on stratified groups and more general sub-Riemannian manifolds has been
extensively investigated (see, e.g., [43, 44] and references therein), but remains widely
open. The results in the present paper contribute to this research programme, by con-
firming among other things that the Euclidean threshold can be reached in the case of
the simplest “sum-of-square operators” �@2x � .x

k@y/
2 on R2, irrespective of the degree

k 2N. This is especially striking given that the corresponding result for the lifted operator
on a stratified group (specifically, a filiform group of step k C 1) is only known for k � 1,
and gives hope of shedding some light on the problem for higher-step stratified groups
and sub-Laplacians.

1.2. Proof strategy

By relatively standard arguments, the proof of Theorem 1.1 reduces to that of the L1-esti-
mate

sup
r>0

km.r2L/kL1!L1 .s kmkL1s

for all s > 2=2 and all continuous functions mWR! C supported in Œ1=4; 1�. In the case
s >Q=2, this estimate follows from the general heat kernel argument of [29,64], as a con-
sequence via the Cauchy–Schwarz inequality of a weighted L2 estimate for the integral
kernel of m.r2L/:

sup
r>0

ess sup
z02R2

Vol.z0; r/
Z

R2

jKm.r2L/.z; z
0/j2 .1C dist.z; z0/=r/2˛ dz .˛;ˇ kmk2L1

ˇ
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for all ˇ > ˛ � 0, where dist is the control distance on R2 associated with L, and Vol.z; r/
is the Lebesgue measure of the dist-ball of centre z and radius r . To improve on this,
here we look for some extra gain, by means of weighted L2 estimates involving different
weights and Sobolev norms.

As in other works on the subject, our analysis is based on the fact that, via a partial
Fourier transform in the y-variable, the Grushin operator (1.5) corresponds to a one-
parameter family of one-dimensional Schrödinger operators

H Œ�V � D �@2x C �V .x/;

where the parameter � ranges in .0;1/. In particular, if En.�V / and  n.� I �V / denote
the eigenvalues and eigenfunctions of H Œ�V �, then we can write the integral kernel of the
operator m.L/ as

(1.7) Km.L/.z; z
0/ D

1

2�

Z
R

X
n

m.En.�2V // n.xI �2V / n.x0I �2V / ei�.y�y
0/ d�;

where z D .x; y/ and z0 D .x0; y0/ range in R2. In order to obtain the aforementioned
extra gain, the strategy in [9,14,45] is to look for weighted L2 estimates where the weight
is essentially a power of V.x/ and therefore depends on the variable x only; while this
strategy leads to sharp results in some cases, it does not seem effective to treat cases
where V.x/ is not comparable to a power of jxj or when the degree is large.

To overcome this, here we use a different strategy, already exploited in [42] in the case
V.x/ D x2, and look for estimates with weights involving powers of y � y0. From the
formula (1.7), one immediately sees that multiplication by y � y0 corresponds to differ-
entiation in the dual Fourier variable �. As a consequence, not only do we need estimates
for eigenvalues En.�V / and eigenfunctions  n.� I �V / which are suitably uniform in the
parameter � (this was one of the challenges tackled in [14]), but we also require analogous
estimates for the � -derivatives of these objects. Because of the focus on � -derivatives, this
strategy may be compared to that in [34], where the case V.x/D x2 is considered, and the
operator-valued Fourier multiplier theorem from [68] is exploited to reduce the problem
for L to corresponding ones for the H Œ�V �; however, the strategy of [34] does not appear
to be efficient enough to obtain the optimal condition s > 2=2 even in the particular case
considered there.

It is worth pointing out that, in the cases considered in [9,34,42,45], the coefficient V
is homogeneous, so the operators H Œ�V � for different values of � are intertwined one
another by suitable scalings; in these cases, uniformity in � is automatically satisfied,
and the analysis reduces to that of a single Schrödinger operator H ŒV �. Moreover, in
the special case of the quadratic potential V.x/ D x2, the eigenfunctions  n.� I �V / are
suitably scaled Hermite functions, and known identities for Hermite functions allow one
to write

� @� n.xI �V / D an nC2.xI �V /C bn n.xI �V /C cn n�2.xI �V /

for certain explicit � -independent coefficients an bn and cn; this identity plays a funda-
mental role in the analysis of [42]. For arbitrary functions V satisfying (1.6), we have
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instead an infinite expansion

� @� n.xI �V / D
X
m

Anm.�V / m.xI �V /;

where the coefficients Anm.�V / are not explicitly known, and need to be estimated in the
three parameters � , n and m. An important reduction is provided by the formula

(1.8) Anm.�V / D
Pnm.�V /

En.�V / �Em.�V /

for n¤m, where the Pnm.�V / are the matrix coefficients of the operator of multiplication
by the potential �V .x/ of the Schrödinger operator H Œ�V �:

�V .x/ n.xI �V / D
X
m

Pnm.�V / m.xI �V /:

These matrix coefficients are also related to the � -derivatives of the eigenvalues:

(1.9) � @�En.�V / D Pnn.�V /:

Thanks to the formulas (1.8) and (1.9), the study of � -derivatives is effectively reduced to
the study of quantities that, while depending on � , refer to a specific operator H Œ�V �

and do not explicitly involve � -differentiation. In view of this, estimates for the mat-
rix coefficients Pnm.�V / of the potential, as well as estimates for the eigenvalue gaps
En.�V / �Em.�V /, become crucial for our analysis.

A substantial part of this paper is therefore devoted to the proof of suitable bounds
for eigenvalues, eigenfunctions, eigenvalue gaps and matrix coefficients of the potential
for one-dimensional Schrödinger operators H ŒV � whose potential V satisfies the assump-
tions (1.6). Since the rescaled potentials �V satisfy the same assumptions as V (with the
same implicit constants) for any � 2 .0;1/, the desired uniformity in � will be an imme-
diate consequence of the “universality” of the estimates that we obtain here (that is, the
fact that they only depend on the implicit constants in (1.6)). Some of these estimates are
already available in the literature, at least in particular cases, but not always do the exist-
ing references provide information about their uniformity, which is crucial here. For other
estimates, including those of eigenvalue gaps and matrix coefficients of the potential, we
could not find existing references directly addressing them.

For this reason, here we present an essentially self-contained derivation of the uni-
versal bounds for one-dimensional Schrödinger operators H ŒV � that we require, which
may be of independent interest, also due to the generality of our assumptions (1.6) on the
potential. It is worth pointing out that many of the bounds are actually obtained under
weaker assumptions, and most of them do not require the Hölder assumption (1.6b) on the
first derivative; the Hölder assumption is effectively only used to prove the off-diagonal
decay estimate

jPnm.V /j .
En.V /

1C jn �mj1C"

for some " > 0, in the range where n and m are comparable. Without the Hölder assump-
tion on V 0, we can obtain the above matrix bound with " D 0, but the lack of summability
of that bound appears to prevent us from using it in our proof of the multiplier theorem.



G. M. Dall’Ara and A. Martini 904

1.3. Structure of the paper

In Section 2 we show, in the generality of doubling metric spaces and operators satisfy-
ing heat kernel bounds, how the multiplier theorem of [29] can be sharpened under the
assumption of a suitable L1 estimate.

In Section 3, Grushin operators on R2 are introduced and some of their fundamental
properties described, including precise estimates for the associated control distance. In
Section 4 it is shown how, in case of Grushin operators, the L1 estimate required for the
sharpened multiplier theorem of Section 2 follows from suitable “weighted Plancherel
estimates”, which then become the target of our approach.

Sections 5, 6, 7 and 8 are devoted to the analysis of one-dimensional Schrödinger oper-
ators. Due to our “approximate parity” assumption V.�x/ ' V.x/, a number of results
are based on the analysis of second-order differential equations on a half-line, developed
in Sections 5 and 6. Spectral results for operators on the real line, including estimates for
eigenvalues and their gaps, are discussed in Section 7, while the bounds on the matrix
coefficients of the potential are discussed in Section 8.

Finally, in Section 9, the crucial “weighted Plancherel estimates” are proved, yield-
ing the “extra gain” that allows us to obtain the required L1 estimate and our optimal
multiplier theorem.

Most of the sections start with a summary including the statements of the main results,
while the details of the proofs are discussed in the later parts of the sections. This structure
should allow the reader to skip many technical details on a first reading and quickly access
the proof in Section 9.

1.4. Notation

We denote by 1A the characteristic function of the set A. We set RC D .0;1/ and RC0 D
Œ0;1/. With N we denote the set of natural numbers (including zero), while NCDN n ¹0º
is the set of the positive integers. For an invertible function V , we write V to denote its
compositional inverse. For a measurable subset A � R, we denote by jAj its Lebesgue
measure. We write KT to denote the integral kernel of the operator T .

2. A sharpened multiplier theorem

We state here a general multiplier theorem in the context of metric measure spaces and
nonnegative self-adjoint operators on L2, showing how the general result of [29] can be
sharpened under the assumption of a suitable L1 estimate.

Theorem 2.1. Let .X; dist; �/ be a metric measure space and let L be a nonnegative
self-adjoint operator on L2.X/. Let k 2 .0;1/, q 2 Œ2;1�, and & � 1=q. Assume that
the following conditions hold.

(a) The doubling condition: for all r > 0 and z 2 X ,

�.B.z; 2r// . �.B.z; r//:
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(b) Heat kernel bounds: for all N > 0, r > 0 and z; z0 2 X ,

jK
e�r

kL.z; z
0/j .N �.B.z0; r//�1.1C dist.z; z0/=r/�N :

(c) L1 estimate: for all s > & and all continuous mWR! C with supp m � Œ1=4; 1�,

sup
t>0

km.tL/k1!1 .s kmkLqs :

Then the following estimates hold.

(i) For all s > & , all continuous mWR! C such that supp m � Œ�1; 1� and all p 2
Œ1;1�,

sup
t>0

km.tL/kLp!Lp .p;s kmkLqs :

(ii) Let � 2 C1c .R
C/ be nonzero. For all s > & , all mWR! C continuous on .0;1/,

and all p 2 .1;1/,

km.L/kL1!L1;1 . sup
t�0

km.t �/�kLqs ; km.L/kLp!Lp .p sup
t�0

km.t �/�kLqs :

Remark 2.2. Under the assumptions (a) and (b), the remaining assumption (c) is auto-
matically satisfied for q D 1 and & D Q=2, where Q is the homogeneous dimension of
the doubling space X , that is,

(2.1) �.B.z; �r// . �Q�.B.z; r//

for all z 2 X , � � 1 and r > 0 (see (2.3) below). This leads to the general multiplier
theorem with L1 condition s > Q=2. The point of the above statement is that, if we can
prove the L1 estimate (c) for some smaller values of & and/or q, then this improvement
automatically transfers to the multiplier theorem.

Remark 2.3. If � 2 C1c .R
C/ is nonzero, then

sup
t�0

km.t �/�kLqs '� jm.0/j C sup
t>0

km.t �/�kLqs :

Including t D 0 in the suprema in part (ii) above is relevant in the case where 0 is an
eigenvalue of L, which is possible under the general assumptions of Theorem 2.1 (think,
e.g., of the case of the Laplace–Beltrami operator on a compact Riemannian manifold).
On the other hand, when 0 is not an eigenvalue of L (which is always the case when
�.X/D1; see, e.g., Theorem 6.1(v) in [41]), then m.L/D zm.L/, where zmDm � 1.0;1/;
in that case, applying part (ii) to zm in place of m shows that the estimates of part (ii) also
hold with the suprema restricted to t > 0. This explains why, in Theorem 1.1 above, we
only take suprema over t > 0.

The strategy used here should be compared to that in, e.g., [12, 64], where the role
of assumption (c) is played by suitable L2 estimates (“Plancherel-type estimates”); the
approach in those works, however, does not appear to yield optimal results for the entire
class of Grushin operators considered here. In addition, those works require Gaussian-type
heat kernel bounds for L (that is, superexponential spatial decay for the heat kernel) or
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finite propagation speed for the associated wave equation (which implies Gaussian-type
bounds, [60]), while assumption (b) only requires polynomial decay (of arbitrary order),
as in [29].

The above result will not be surprising to experts, and the proof is a combination of a
number of techniques available in the literature. For the reader’s convenience, we include
a brief sketch of the proof here.

Proof of Theorem 2.1. Since .X;dist;�/ is doubling by assumption (a), it has a homogen-
eous dimensionQ satisfying (2.1). Thanks to the heat kernel bound in assumption (b), we
can apply Theorem 6.1(ii) in [41] to the operator L and deduce that

(2.2) sup
r>0

ess sup
z02X

Z
X

jKm.rkL/.z; z
0/j .1C dist.z; z0/=r/˛ dz .˛;ˇ kmkL1

ˇ

for all continuous mWR! C supported in Œ�1; 1� and all ˛ � 0 and ˇ > ˛ CQ=2. By
Sobolev’s embedding, this implies that

(2.3) sup
r>0

ess sup
z02X

Z
X

jKm.rkL/.z; z
0/j .1C dist.z; z0/=r/˛ dz .˛;ˇ kmkLq

ˇ

for all continuous mWR! C supported in Œ�1; 1� and all ˛ � 0 and ˇ > ˛CQ=2C 1=q.
On the other hand, the assumption (c) can be rewritten as

sup
r>0

ess sup
z02X

Z
X

jKm.rkL/.z; z
0/j dz .s kmkLqs

for all s > & and all continuous mWR! C supported in Œ1=4; 1�. Interpolation of the last
two estimates (cf. the proof of Lemma 1.2 in [46]) gives

(2.4) sup
r>0

ess sup
z02X

Z
X

jKm.rkL/.z; z
0/j .1C dist.z; z0/=r/˛ dz .˛;ˇ kmkLq

ˇ
:

for all continuous mWR! C supported in Œ1=4; 1� and all ˛ � 0 and ˇ > ˛ C & .
To prove part (i), by duality and interpolation it is enough to discuss the case p D 1.

However, this estimate readily reduces to the case ˛ D 0 of the estimates (2.2) and (2.4)
via a dyadic decomposition (cf. equations (7.10)–(7.12) in [8]).

As for part (ii), again by duality and interpolation we only need to prove the weak
type .1; 1/ bound. For this, we can employ the boundedness result for singular integral
operators in Theorem 1 of [18]. Indeed, thanks to the assumption (b), we can use the
heat propagator e�t

kL as the “approximate identity” At in Theorem 1 of [18]. Moreover,
from (2.4) we obtain that for all s > & there exists " > 0 such that

ess sup
z02X

Z
XnB.z0;t/

jKm.L/.1�At /.z; z
0/j dz .s

min¹1; .Rt/kº
.1CRt/"

km.Rk �/kLqs

for all R; t > 0 and all continuous mWR! C supported in ŒRk=4;Rk �. Now, for an arbit-
rary mWR!C continuous on .0;1/, a dyadic decomposition (cf. equations (4.18)–(4.19)
in [64]) finally yields the required off-diagonal bound for Km.L/, see equation (7) in [18].



An optimal multiplier theorem for Grushin operators in the plane, I 907

3. Grushin operators and their geometry

3.1. Summary of the results

Let V WR! RC0 be continuous and not identically zero. Let L be the Grushin operator
on R2 associated to V , that is, the unbounded second-order differential operator defined
on the domain C1c .R

2/ by

(3.1) L D �@2x � V.x/@
2
y :

Of course, LWC1c .R
2/! L2.R2/.

Proposition 3.1 (Essential self-adjointness). The Grushin operator L just defined is es-
sentially self-adjoint on L2.R2/.

In light of the above result, L has a unique self-adjoint extension, which we will still
denote by L.

As L is a nonnegative second-order differential operator on R2, its symbol, thought
of as a quadratic form on the cotangent space, defines a degenerate Riemannian cometric
on R2, which in turn induces a distance function dist on R2 (see Section 3.3 below for
details), also known as the control distance for L.

An important property relating the operator L and the control distance dist is the finite
propagation speed for solutions of the wave equation associated to L.

Proposition 3.2 (Finite propagation speed). For all t 2 R and f 2 L2.R2/,

supp cos.t
p

L/f � ¹z 2 R2 W dist.z; suppf / � jt jº:

For the next results, we assume that V WR! RC0 is continuous, not identically zero,
and satisfies the estimates

(3.2) V.�x/ ' V.x/ � V.�x/ . �DV.x/

for someD > 0 and all x 2R and �� 1. We point out that these assumptions are satisfied,
in particular, whenever V isC 1 off the origin and satisfies the estimates (1.6a), as shown in
Proposition 6.5 below; however, for the results in the present section, no differentiability
of V is required.

Under the assumption (3.2), we can give a precise estimate of the distance dist associ-
ated to L. To this purpose, we introduce the auxiliary function U WRC0 ! RC0 , defined by

(3.3) U.t/ D j¹x 2 R W jxjV.x/1=2 � tºj:

We point out that the implicit constants in the estimates below may depend on D and the
implicit constants in (3.2).

Proposition 3.3 (Distance and volume estimates). Assume that V satisfies (3.2) for some
D > 0. Then

(3.4) dist.z; z0/ ' jx � x0j Cmin
°

jy � y0j

max¹V.x/; V .x0/º1=2
; U.jy � y0j/

±
for all z D .x; y/ and z0 D .x0; y0/ in R2, where U is as in (3.3).
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In particular, the volume Vol.z; r/ of the ball centred at z D .x; y/ 2 R2 and radius r � 0
satisfies

(3.5) Vol.z; r/ ' r2 max¹V.r/; V .x/º1=2:

Consequently,

(3.6) Vol.z; �r/ . �Q Vol.z; r/

for all r � 0, z 2 R2 and � � 1, where

(3.7) Q WD 2CD=2:

The estimate (3.6) tells us in particular that R2 with the control distance dist and the
Lebesgue measure is a doubling metric measure space of homogeneous dimension Q
given by (3.7) (see Remark 2.2).

Define the family of weights $r WR2 �R2 ! RC0 by

(3.8) $r .z; z
0/ D

jy � y0j

r max¹V.r/; V .x0/º1=2

for all r > 0 and z D .x; y/; z0 D .x0; y0/ 2 R2. Effectively, these are just the weight
jy � y0j, suitably scaled in accordance with the volume growth of balls described in Pro-
position 3.3.

A crucial property of these weights is the following integrability property, relating
them to the distance dist. Again, the implicit constants in the estimates below may depend
on D and the implicit constants in (3.2).

Proposition 3.4 (Weight estimates). Under the same assumptions as in Proposition 3.3,
the weights $r satisfy the estimate

(3.9)
Z

R2

.1C dist.z; z0/=r/�˛ .1C$r .z; z
0//�ˇ dz .˛;ˇ Vol.z0; r/

for all z0 2 R2 and r > 0, whenever ˇ 2 Œ0; 1/ and ˛ > 1C .1CD=2/.1 � ˇ/.

We note that, as ˇ grows from 0 to 1, the condition on ˛ in the previous lemma goes
from ˛ > Q to ˛ > 1, and correspondingly the lower bound to ˛ C ˇ decreases from Q

to 2. This indicates how the introduction of the weights $r is instrumental in pushing
down the smoothness condition in the multiplier theorem from half the homogeneous
dimension to half the topological dimension.

Remark 3.5. All the above results are already known under different assumptions on V .
For example, when V is smooth, the finite propagation speed property is contained in
the results of [48], and also of [13]. Moreover both Propositions 3.2 and 3.3 are proved
in [56] in the case V is comparable to a function of the form (1.3). Finally, Proposition 3.4
is proved in [42] in the case V.x/ D x2.

The rest of the section is devoted to the proofs of the above results.



An optimal multiplier theorem for Grushin operators in the plane, I 909

3.2. Essential self-adjointness

Here we prove Proposition 3.1, that is, the essential self-adjointness of LWC1c .R
2/!

L2.R2/. The proof presented here works more generally for any nonnegative, locally
square-integrable potential V on R.

By a well-known criterion, see the corollary to Theorem VIII.3 in [54], it is enough
to check that L� � � is injective when � 2 C n R. Here L� denotes the Hilbert space
adjoint. In other words, we have to show that a function f 2 L2.R2/ such thatZ

R2

f .x; y/ .�@2x � V.x/@
2
y � �/ '.x; y/ dxdy D 0; 8' 2 C

1
c .R

2/;

must necessarily vanish. The choice '.x; y/ D u.x/v.y/ for u; v 2 C1c .R/ gives

0 D

Z
R2

f .x; y/ .�@2x � V.x/@
2
y � �/ '.x; y/ dxdy

D

Z
R

� Z
R

zf .x; �/ .H Œ�2V � � �/u.x/ dx
�bv.�/ d�;

where H Œ�2V � WD �@2x C �
2V.x/ is the Schrödinger operator with potential �2V on R,

while Ov denotes the Fourier transform of v (with a suitable normalisation), and zf is the
partial Fourier transform of f in the variable y. Hence, for all u 2 C1c .R/, the locally
integrable function

� 7!

Z
R

zf .x; �/ .H Œ�2V � � �/u.x/ dx

vanishes as a temperate distribution, and consequently it vanishes almost everywhere,
that is, Z

R

zf .x; �/ .H Œ�2V � � �/u.x/ dx D 0 8u 2 C1c .R/; for a.e. � 2 R:

Since the Schrödinger operator H Œ�2V � is essentially self-adjoint on L2.R/ for every
� 2 R (see Theorem X.28 in [55]), zf .�; �/ must vanish as an element of L2.R/ for almost
every �. This immediately implies that f D 0 almost everywhere.

3.3. The control distance

Let V WR!RC0 be continuous and not identically zero. The Grushin operator L associated
to V defined in (3.1) is a second-order differential operator on R2, whose symbol is a
nonnegative quadratic form on the cotangent space of R2. This quadratic form can be
thought of as a degenerate Riemannian cometric on R2:

j.�; �/j�.x;y/ D
p
j�j2 C V.x/ j�j2

for .�; �/ 2 R2 Š T �
.x;y/

R2. Polarisation gives the degenerate Riemannian metric

jvj.x;y/ D sup¹!.v/ W ! 2 R2; j!j�.x;y/ � 1º
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for all v 2 R2 Š T.x;y/R
2. This in turn induces a distance dist on R2, by setting

dist.z; z0/ D inf¹r > 0 W 9 2 AC.Œ0; r�IR2/; j 0j � 1 a.e.; .0/ D z; .r/ D z0º

for all z; z0 2 R2. Here AC.Œ0; r�I R2/ is the set of all absolutely continuous curves
 W Œ0; r�! R2; those curves that satisfy j 0j � 1 a.e. are called subunit curves.

For more details on this construction, we refer the reader to Section 4 of [13], where
a more general theory is developed for continuous cometrics on manifolds. In particular,
we recall that the topology induced by dist is as least as fine as the Euclidean topology,
and that a curve  W Œ0; T �! R2 is subunit if and only if it is 1-Lipschitz with respect to
dist, see Proposition 4.6 in [13].

We remark that, since V is not identically zero, any pair of points z; z0 2 R2 can be
joined by a subunit curve (made of suitable line segments parallel to the coordinate axes),
so dist.z; z0/ is finite. Moreover, if  W Œ0; r�! R2 is subunit, then

(3.10) .Œ0; r�/ � RV ..t/; r/ for all t 2 Œ0; r�;

where

(3.11) RV .z; r/ WD Œx � r; x C r� �
h
y � r max

Œx�r;xCr�
V 1=2; y C r max

Œx�r;xCr�
V 1=2

i
for all z D .x; y/ 2 R2; this is easily seen by observing that, if j.v1; v2/j.x;y/ � 1, then
jv1j � 1 and jv2j � V.x/1=2, and by applying these estimates to the components of the
velocity  0 of a subunit curve  . From this remark and the local boundedness of V , one
easily deduces that dist-bounded sets in R2 are also Euclidean-bounded, and also that dist
is a complete metric on R2, see Proposition 4.16 in [13].

We now state an equivalent characterisation of the distance dist. In the statement,
W 1;1.R2IR/ denotes the space of bounded real-valued Lipschitz functions on R2.

Proposition 3.6. For all z; z0 2 R2,

dist.z; z0/

D sup¹ .z/ �  .z0/ W  2 W 1;1.R2IR/; .@x /
2
C V.x/.@y /

2
� 1 a.e.º:(3.12)

Similar equivalent characterisations of control distances associated to second-order
differential operators can be found in many places in the literature (see, e.g., [13, 25, 33]),
though often with additional smoothness assumptions on the coefficients, and with differ-
ent choices of the space of “test functions”  . For this reason, we give a proof tailored to
our case.

Proof. Let dist�.z; z0/ denote the right-hand side of (3.12). We would like to show that
dist� D dist.

If  D .1; 2/ 2 AC.Œ0; r�IR2/ is a subunit curve joining z to z0, then

j .z/ �  .z0/j D j ..r// �  ..0//j �

Z r

0

j. ı /0.t/j dt

D

Z r

0

j@x ..t//
0
1.t/C @y ..t//

0
2.t/j dt � r
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whenever  2 C 1.R2IR/ satisfies .@x /2 C V.x/.@y /2 � 1. Thanks to the approxim-
ation result of Corollary 3.5 in [13], the same inequality extends to all  2 W 1;1

loc .R2IR/
satisfying .@x /2 C V.x/.@y /2 � 1. Hence dist�.z; z0/ � dist.z; z0/ for all z; z0 2 R2.

It remains to discuss the opposite inequality. Let us first show that, if 2W 1;1
loc .R2IR/

is 1-Lipschitz with respect to dist, then .@x /2 C V.x/.@y /2 � 1 almost everywhere.
Note that  is locally Lipschitz, so by the Rademacher theorem it is almost everywhere
differentiable. Let z 2 R2 be such that  is differentiable at z; to conclude, it will be
enough to show that j˛@x .z/C ˇV.x/1=2@y .z/j � 1 for all unit vectors .˛; ˇ/ 2 R2.
Let Z D ˛@x C ˇV.x/

1=2@y ; this is a vector field on R2 with continuous coefficients,
hence by Peano’s theorem there exist ı > 0 and an integral curve  W .�ı; ı/! R2 of Z
(of class C 1) such that .0/ D z. Since  is differentiable at z, by the chain rule,

Z .z/ D
d

dt

ˇ̌̌
tD0
 ..t// D lim

t!0

 ..t// �  ..0//

t
�

Since  is 1-Lipschitz with respect to dist and  is subunit, the quotient in the right-hand
side is bounded in absolute value by one, hence we conclude that jZ .z/j � 1 as desired.

We now consider, for " 2 .0; 1�, distances dist" associated with the cometrics

j.�; �/j
�;"
.x;y/
D

p
j�j2 C ."C V.x// j�j2:

It is easily checked that the induced Riemannian distances dist" on R2 are locally bi-
Lipschitz-equivalent with the Euclidean distance. Moreover, clearly

dist"0 � dist" � dist whenever 0 < " � "0 � 1:

Furthermore, by using the argument of the proof of Proposition 5.9 in [13] (see also the
proof of Proposition 1.3 in [33]), one can show that

dist.z; z0/ D sup
"2.0;1�

dist".z; z0/:

The idea is that quasi-minimising subunit curves for dist" joining two fixed points z; z0 2
R2 stay in a fixed compact set (one can take R1CV .z; 2dist.z; z0//, as defined in (3.11));
so, by the Ascoli–Arzelà theorem, one can form a convergent sequence of such curves,
including dist"-subunit curves for arbitrary small " > 0, and the limit curve is easily proved
to be subunit for dist.

Now, for fixed z0 2R2, the function dist".�; z0/ is inW 1;1
loc .R2/ and is 1-Lipschitz with

respect to dist. Consequently, for given z; z0 2 R2, the function  .w/ D .dist".z; z0/ �
dist".w; z0//C is in W 1;1.R2/ and is 1-Lipschitz with respect to dist, and therefore
.@x /

2 C V.x/.@y /
2 � 1; from the definition of dist� we then obtain

dist�.z; z0/ �  .z0/ �  .z/ D dist".z; z0/;

and by taking the supremum in " we finally obtain the inequality dist� � dist.

3.4. Finite propagation speed

Thanks to the characterisation of the control distance dist in Proposition 3.6, we can now
apply the results of Section 4 in [56] to obtain that the Grushin operator L satisfies the
finite propagation speed property for the associated wave equation, thus proving Proposi-
tion 3.2.
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Indeed, the bilinear form

(3.13) E.f; g/ D hf;Lgi D

Z
R2

.@xf /.@xg/C V.x/.@yf /.@yg/ dxdy;

initially defined on C1c .R
2/, is a strong local, regular Markovian symmetric form on

L2.R2/ (see Example 1.2.1 on page 6 of [24]), which is easily seen to be closable (see
Exercise 1.1.2 on page 4 of [24]), hence its closure (which we still denote by E) is a
strong local, regular Dirichlet form (Theorems 3.1.1 and 3.1.2 and Exercise 3.1.1 on
pages 109–111 of [24]). In view of the correspondence between closed symmetric forms
and nonnegative definite self-adjoint operators (Theorem 1.3.1 and Corollary 1.3.1 on
pages 20–21 of [24]) and the essential self-adjointness of L (Proposition 3.1), we con-
clude that the Dirichlet form E is the form associated with the self-adjoint operator L, so
the domain of E is the domain of

p
L and the first identity in (3.13) holds for all f in the

domain of E and g in the domain of L.
Thanks to the just-discussed closability of E , its closure coincides with its relaxa-

tion E0 (as defined in Section 4 of [56]), hence Proposition 4.1 in [56] gives the Davies–
Gaffney estimates for the heat semigroup associated with L:

jhf; e�tLgij � e�dist.A;B/2=.4t/
kf k2 kgk2

for all t > 0, open setsA;B �R2, and f;g 2L2.R2/ such that suppf �A and suppg�B .
In turn, the Davies–Gaffney estimates are equivalent to the desired finite propagation
speed property [11, 60].

3.5. The auxiliary function U

We record here some useful estimates involving the auxiliary function U defined in (3.3).
The implicit constants in the estimates below may depend on the constants in (3.2).

Lemma 3.7. Assume that V satisfies (3.2) for some D > 0. Then the function U defined
in (3.3) is continuous, increasing and invertible. Moreover, for all t; r 2 Œ0;1/ and � � 1,

(3.14) U.t/ V .U.t//1=2 ' t; U.rV .r/1=2/ ' r

and

(3.15) �U.t/ � U.�t/ & �1=.1CD=2/ U.t/:

Furthermore, for all t � 0,

(3.16) U.t/ ' inf
s>0

max
°
s;

t

V .s/1=2

±
:

Proof. Define W˙WRC0 ! RC0 by

W˙.x/ D xV.˙x/
1=2:

Then, by (3.2), the functions W˙ are not identically zero and satisfy

W˙.x/ � �W�.x/;(3.17)

�W˙.x/ � W˙.�x/ � ��
1CD=2W˙.x/;(3.18)
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for all x 2 RC0 and � � 1, where � � 1 depends on the implicit constants in (3.2). In
particular, the W˙WRC0 ! RC0 are strictly increasing and invertible, and their inverses
W 
˙
WRC0 ! RC0 are continuous. Moreover,

U.t/ D j¹WC � tºj C j¹W� � tºj D W
 
C .t/CW

 
� .t/;

which proves that U is continuous, increasing and invertible too.
Now, for all t � 0 and � � 1, if x D W 

˙
.t/, then

(3.19) W ˙ .�t/ D W
 
˙ .�W˙.x// � W

 
˙ .W˙.�x// D �x D �W

 
˙ .t/;

where we used the first inequality in (3.18) and the fact that W 
˙

is increasing. Similarly

�1=.1CD=2/W ˙ .t/ D W
 
˙ .W˙.�

1=.1CD=2/x//(3.20)
� W ˙ .� �W˙.x// � �W

 
˙ .�t/;

where we used the second inequality in (3.18) and (3.19). Together, (3.19) and (3.20) give

(3.21) ��1�1=.1CD=2/W ˙ .t/ � W
 
˙ .�t/ � �W

 
˙ .t/:

By summing the estimates in (3.21), we obtain (3.15).
Moreover, by (3.17) and (3.19),

W ˙ .t/ D j¹W˙ � tºj � j¹W� � �tºj D W
 
� .�t/ � �W

 
� .t/;

which implies that

(3.22) W ˙ .t/ � U.t/ � .1C �/W
 
˙ .t/:

Consequently, for all t; r � 0, by (3.18) and (3.22),

U.t/V .U.t//1=2 D WC.U.t// ' WC.W
 
C .t// D t

and
U.rV.r/1=2/ D U.WC.r// ' W

 
C .WC.r// D r;

which proves (3.14).
It remains to prove (3.16). Clearly, (3.16) holds if t D 0, so we may assume t > 0. From

our assumptions (3.2) on V , we know that V is continuous and increasing on RC0 , and
moreover V > 0 on RC. Thus the function f WRC! R defined by f .s/D s � t=V .s/1=2

is continuous and strictly increasing, and moreover lims!0C f .s/ � �t=V .1/
1=2 < 0,

while lims!C1 f .s/ D C1. Hence there exists a single s0 2 RC such that f .s0/ D 0,
that is, s0V.s0/1=2 D t , and therefore, by (3.14),

U.t/ D U.s0V.s0/
1=2/ ' s0 D inf

s>0
max

°
s;

t

V .s/1=2

±
;

as required.

3.6. Distance and volume estimates

Here we prove Proposition 3.3, under the assumption that V satisfies (3.2) for someD>0.
We start by proving the distance estimate

(3.23) dist.z; z0/ ' jx � x0j Cmin
°

jy � y0j

max¹V.x/; V .x0/º1=2
; U.jy � y0j/

±
:
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Let us first prove the inequality .. In view of (3.14), we are reduced to proving that

dist.z; z0/ . jx � x0j C
jy � y0j

max¹V.x/; V .x0/; V .U.jy � y0j//º1=2
�

If the maximum in the denominator is V.x/, then the upper bound to dist.z; z0/ is
given by the length of the concatenation of the line segments through the points

.x; y/ .x; y0/ .x0; y0/;

that is, jy � y0j=V.x/1=2 C jx � x0j.
Similarly, if the maximum in the denominator is V.x0/, then we consider the concat-

enation of the line segments through the points

.x; y/ .x0; y/ .x0; y0/;

whose length is jx � x0j C jy � y0j=V.x0/1=2.
Finally, if the maximum in the denominator is V.U.jy � y0j//, then U.jy � y0j/ &

jxj C jx0j � jx � x0j by (3.2). Hence, if we set x� D U.jy � y0j/, then the concatenation
of the line segments through the points

.x; y/ .x�; y/ .x�; y
0/ .x0; y0/

has length

jx � x�j C jy � y
0
j=V.x�/

1=2
C jx� � x

0
j ' U.jy � y0j/ ' jy � y0j=V.U.jy � y0j//1=2

by (3.14).
We now prove the inequality & in (3.23). Let us consider an arbitrary subunit curve

 D .1; 2/ 2 AC.Œ0; r�IR2/ joining z to z0. Since  is subunit, we deduce that

j 01.t/j � 1 and j 02.t/j � V.1.t//
1=2:

Let t� 2 Œ0; r� be such that j1.t�/j D maxŒ0;r� j1j, and set x� D 1.t�/. Then

(3.24) jx � x0j � jx � x�j C jx� � x
0
j �

Z r

0

j 01.t/j dt � r

and

(3.25) jy � y0j �

Z r

0

j 02.t/j dt � r max
t2Œ0;r�

V.1.t//
1=2
' rV .x�/

1=2:

If jx�j � 2max¹jxj; jx0jº, then V.x�/ . max¹V.x/; V .x0/º and the previous inequal-
ities (3.24) and (3.25) imply that

r & jx � x0j C
jy � y0j

max¹V.x/; V .x0/º1=2
�
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If instead jx�j > 2max¹jxj; jx0jº, then jx � x�j C jx� � x0j � jx�j, whence, by (3.24)
and (3.25),

r & jx � x0j C jx�j C
jy � y0j

V.x�/1=2
& jx � x0j C inf

s>0

�
sC
jy � y0j

V.s/1=2

�
' jx � x0jCU.jy � y0j/;

where (3.16) was used in the last step.
So in any case

r & jx � x0j Cmin
°

jy � y0j

max¹V.x/; V .x0/º1=2
; U.jy � y0j/

±
:

Since dist.z; z0/ is the infimum of such r , this proves the inequality & in (3.23).
To conclude the proof of Proposition 3.3, we must prove the volume estimates

Vol.z; r/ ' r2 max¹V.r/; V .x/º1=2;(3.26)

Vol.z; �r/ . �QVol.z; r/;(3.27)

where z D .x; y/ 2 R2 and Q is as in (3.7).
In order to prove (3.26) from (3.23), it is enough to show that the ball of centre z D

.x; y/ and radius r � 0 is comparable to the rectangle

.x; y/C Œ�r; r� � Œ�r max¹V.x/; V .r/º1=2; r max¹V.x/; V .r/º1=2�;

in the sense that the ball is contained and contains suitably scaled versions of the above
rectangle (with respect to the centre). Indeed, from (3.23) we obtain that

(3.28) dist.z; z0/ . r

if and only if both

(3.29) jx � x0j . r

and

(3.30) jy � y0j . r max¹V.x/; V .x0/º1=2 or U.jy � y0j/ . r:

In view of (3.14) and (3.15), the condition (3.30) is equivalent to

(3.31) jy � y0j . r max¹V.x/; V .x0/; V .r/º1=2:

However, in view of (3.2), under the condition (3.29) we also have

max¹V.x/; V .x0/; V .r/º ' max¹V.x/; V .r/º

and therefore, under (3.29), the condition (3.31) is equivalent to

(3.32) jy � y0j . r max¹V.x/; V .r/º1=2:

In conclusion, (3.28) is equivalent to the conjunction of (3.29) and (3.32), which proves
the statement about comparability of balls and rectangles, and therefore (3.26).

Finally, from (3.26) and (3.2) we deduce that, for all � � 1,

Vol.z; �r/ ' .�r/2 max¹V.�r/; V .x/º1=2

. �2CD=2 r2 max¹V.r/; V .x/º1=2 ' �QVol.z; r/;

which proves (3.27).
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3.7. Weight estimates

Here we assume again that V satisfies (3.2), and prove Proposition 3.4 about the family of
weights $r WR2 �R2 ! Œ0;1/ defined in (3.8).

According to Proposition 3.3,

dist.z; z0/ ' min¹dist1.z; z0/; dist2.z; z0/º;

where

dist1.z; z0/ WD jx � x0j C
jy � y0j

V.x; x0/1=2
; dist2.z; z0/ WD jx � x0j C U.jy � y0j/;

and
V.x; x0/ WD max¹V.x/; V .x0/º:

Hence it is enough to prove the desired estimate (3.9) with dist replaced by disti , i D 1; 2.
In the case i D 1, we note that, under the assumptions ˇ 2 Œ0;1/ and ˛ > 1C.1CD=2/

.1� ˇ/, we can decompose ˛ D ˛0C ˛00 so that ˛00 > 1� ˇ and ˛0 > 1C ˛00D=2. There-
fore,Z

R2

.1C dist1.z; z0/=r/�˛.1C$r .z; z
0//�ˇ dz

�

Z
R2

�
1C
jx � x0j

r

��˛0�
1C

jy � y0j

rV .x; x0/1=2

��˛00�
1C

jy � y0j

rV .r; x0/1=2

��ˇ
dz

D rV .r; x0/1=2
Z

R2

�
1C
jx � x0j

r

��˛0�
1C jyj

V.r; x0/1=2

V.x; x0/1=2

��˛00
.1C jyj/�ˇ dz

.˛;ˇ rV .r; x0/1=2
Z

R

�
1C
jx � x0j

r

��˛0�
1C

V.x; x0/1=2

V.r; x0/1=2

�˛00
dx;

since ˛00 C ˇ > 1.
We now observe that, by (3.2), V.x; x0/ ' V.x0/C V.jx � x0j/ and

1C
V.x; x0/

V .r; x0/
. 1C

V.jx � x0j/

V .r/
.
�
1C
jx � x0j

r

�D
:

Hence we can continue the previous series of inequalities and obtain thatZ
R2

.1C dist1.z; z0/=r/�˛.1C$r .z; z
0//�ˇ dz

. rV .r; x0/1=2
Z

R

�
1C
jx � x0j

r

��˛0C˛00D=2
dx .˛ r2V.r; x0/1=2;

as desired; in the last inequality we used that ˛0 � ˛00D=2 > 1.
In the case i D 2, instead, we observe that, under the assumptions ˇ 2 Œ0; 1/ and

˛ > 1 C .1 CD=2/.1 � ˇ/, we can decompose ˛ D ˛0 C ˛00 so that ˛0 > 1 and ˛00 >
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.1CD=2/.1 � ˇ/. HenceZ
R2

.1C dist2.z; z0/=r/�˛.1C$r .z; z
0//�ˇ dz

�

Z
R2

�
1C
jx � x0j

r

��˛0�
1C

U.jy � y0j/

r

��˛00�
1C

jy � y0j

rV .r; x0/1=2

��ˇ
dz

D

Z
R2

�
1C
jxj

r

��˛0�
1C

U.jyj/

r

��˛00�
1C

jyj

rV .r; x0/1=2

��ˇ
dz

.
�V.r; x0/
V .r/

�ˇ=2 Z
R2

�
1C
jxj

r

��˛0�
1C

U.jyj/

r

��˛00�
1C

jyj

rV .r/1=2

��ˇ
dz

by translation-invariance. Now, by (3.14) and (3.15),

1C
U.jyj/

r
' 1C

U.jyj/

U.rV .r/1=2/
&
�
1C

jyj

rV .r/1=2

�1=.1CD=2/
:

Since ˇ < 1, from the previous inequalities we deduce thatZ
R2

.1C dist2.z; z0/=r/�˛.1C$r .z; z
0//�ˇ dz

.˛
�V.r; x0/
V .r/

�1=2 Z
R2

�
1C
jxj

r

��˛0�
1C

jyj

rV .r/1=2

��ˇ�˛00=.1CD=2/
dz

'˛;ˇ r
2V.r; x0/1=2;

as ˛0; ˇ C ˛00=.1CD=2/ > 1, and we are done.

4. Reduction to weighted Plancherel estimates

In this section we show that the proof of our optimal multiplier theorem (Theorem 1.1) for
Grushin operators L on R2 reduces to that of a “weighted Plancherel estimate” involving
the weights $r from Section 3.

Theorem 4.1. Let V WR! RC0 be continuous and satisfy the assumption (3.2). Let L be
the Grushin operator on R2 associated to V , as in (3.1). Let the weights $r on R2 be
defined as in (3.8). Let q 2 Œ2;1�. Assume that:
(A) For all  2 Œ0; 1=2/, the estimate

(4.1) sup
r>0

ess sup
z02R2

Vol.z0; r/
Z

R2

ˇ̌
.1C$r .z; z

0//Km.r2L/.z; z
0/
ˇ̌2
dz . kmk2Lq ;

holds for all continuous mWR! C with supp m � Œ1=4; 1�.
(B) The estimate analogous to (4.1) with  D 0 and qD1 also holds for all continuous

mWR! C with supp m � Œ�1; 1�.
Then the two estimates (i) and (ii) of Theorem 2.1 hold for L with & D 2=2.
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Remark 4.2. In view of Proposition 3.3, the estimate (4.1) is equivalent to

(4.2) sup
r>0

ess sup
z02R2

r2�2 max¹V.r/; V .x0/º1=2�
Z

R2

jy � y0j2
ˇ̌
Km.r2L/.z; z

0/
ˇ̌2
dz

. kmk2Lq :

More precisely, the left-hand side of (4.1) is comparable to the sum of the left-hand side
of (4.2) and the corresponding one for  D 0.

Proof of Theorem 4.1. From the estimate in assumption (B), together with a dyadic de-
composition, one easily obtains (cf., e.g., the proof of Corollary 4.5 in [7]) that

sup
r>0

ess sup
z02R2

Vol.z0; r/
Z

R2

ˇ̌
K
e�r

2L.z; z
0/
ˇ̌2
dz . 1:

This information, combined with the fact that dist is doubling (Proposition 3.3) and L has
the finite propagation speed property (Proposition 3.2), implies Gaussian-type heat kernel
bounds for L [11, 60]: there exists b > 0 such that

(4.3) jK
e�r

2L.z; z
0/j . Vol.z0; r/�1 exp.�b dist.z; z0/2=r2/

for all r > 0 and z; z0 2 R2. As a consequence, assumptions (a) and (b) of Theorem 2.1
are satisfied with k D 2; to conclude, we only need to check assumption (c) with & D 2=2.

As in the proof of Theorem 2.1, the doubling condition and the heat kernel bounds
allow us to apply Theorem 6.1(ii) in [41] to the operator L and deduce that

(4.4) sup
r>0

ess sup
z02R2

Z
R2

jKm.r2L/.z; z
0/j .1C dist.z; z0/=r/˛ dz .˛;ˇ kmkLq

ˇ

for all continuous mWR! C supported in Œ1=4; 1� and all .˛; ˇ/ such that

(4.5) ˛ � 0 and ˇ > ˛ CQ=2C 1=q:

On the other hand, from assumption (A), Proposition 3.4 and the Cauchy–Schwarz
inequality, we easily deduce that (4.4) also holds for all .˛; ˇ/ such that

(4.6) ˛ < �1=2 and ˇ D 1=2:

Indeed, if ˛ < �1=2, then �2˛ > 1. So, if we choose  2 Œ0; 1=2/ sufficiently large that
�2˛ > 1C .1CD=2/.1 � 2/, thenZ

R2

j; jKm.r2L/.z; z
0/j .1C dist.z; z0/=r/˛

�

� Z
R2

.1C dist.z; z0/=r/2˛.1C$r .z; z
0//�2 dz

�1=2
�

� Z
R2

ˇ̌
.1C$r .z; z

0//Km.r2L/.z; z
0/
ˇ̌2
dz
�1=2

.˛ kmkLq .˛ kmkLq1=2 :
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Interpolation between the two ranges (4.5) and (4.6) finally yields that (4.4) also holds for

˛ D 0 and ˇ > 1;

thus satisfying assumption (c) of Theorem 2.1 with & D 2=2.

The rest of the paper is aimed at proving that, under the assumptions (1.6) on V , the
weighted Plancherel estimate (4.1) indeed holds in the case qD1; in light of Theorem 4.1
and Remark 2.3, this will prove Theorem 1.1. As we shall see, the unweighted estimate
( D 0) of assumption (B) holds in greater generality, and the full strength of (1.6) will
only be needed for the weighted estimate ( > 0) in assumption (A).

As mentioned in the introduction, the proof of the weighted Plancherel estimate will be
given in Section 9. Instrumental in the proof is the theory of one-dimensional Schrödinger
operators developed in Sections 5 to 8.

5. Schrödinger equations on a half-line: generalities

This section is devoted to establishing some general properties of real-valued solutions of
a second-order ODE of the form

�u00 C V u D w

on a half-line, where the real-valued potential V is assumed to be continuous. In particu-
lar, in Section 5.1 we discuss the existence of recessive solutions for appropriate choices
of the inhomogeneous term w. In Section 5.2, the exponential decay at infinity of such
solutions is established. Finally, in Section 5.3 some results on the smooth dependence on
parameters are obtained.

While most proofs are relatively straightforward adaptations of standard techniques,
the generality and uniformity of the obtained results will be crucial in the subsequent
developments.

5.1. Existence of solutions vanishing at infinity

The proof of the following result is an adaptation of arguments in Section 2.3 of [4], where
the case of the homogeneous ODE (w D 0) is considered.

Theorem 5.1. Let I � R be an interval with sup I DC1, and let V W I ! R be continu-
ous and such that

(5.1) lim inf
x!C1

V.x/ > 0:

Let wW I ! R be continuous and such that

(5.2) lim
x!C1

w.x/

V .x/
D 0:

Then, for all solutions u on I of

(5.3) �u00 C V u D w;
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the limit limx!1 u.x/ exists and is one of C1, �1 or 0. Solutions with each of these
limits exist, and those with limit zero form a one-dimensional affine subspace of C 2.I IR/.

Proof. Note first that, by the classical theory of linear ODE, solutions on I of the equa-
tion (5.3) exist and form a two-dimensional affine subspace of C 2.I IR/.

Step 0. Let u be a solution of (5.3) on I . If there exists x� 2 I such that V > 0 on
Œx�;C1/, u0.x�/ > 0, and u.x�/ � supŒx�;C1/ jw=V j, then limx!C1 u.x/ D C1.

Proof. We claim that u.x/ � u.x�/ for all x � x�. Indeed, if this is not the case and
x2 D inf¹x > x� W u.x/ < u.x�/º, then x2 > x� (because u0.x�/ > 0/, and moreover
u.x/ � u.x�/ � supŒx�;C1/ jw=V j for all x 2 .x�; x2/, whence u00.x/ D V.x/.u.x/ �
w.x/=V.x// � 0 and u0.x/ � u0.x�/ > 0 for all x 2 .x�; x2/, so u.x2/ > u.x�/, which
contradicts (by continuity of u) the definition of x2.

Now, since u � u.x�/ � supŒx�;C1/ jw=V j on Œx�;C1/, from (5.3) we deduce again
that u00 � 0 on Œx�;C1/, whence u0 � u0.x�/ > 0 on Œx�;C1/, which clearly implies
that limx!C1 u.x/ D C1.

Let U be the set of all solutions uW I ! R of (5.3) which do not tend to ˙1 as
x !C1 (note that we do not assume a priori that limx!C1 u.x/ exists for u 2 U; we
only ask that, if the limit exists, then it is neitherC1 nor �1).

Step 1. If u 2 U, then lim supx!C1 u.x/ � 0 and lim infx!C1 u.x/ � 0.

Proof. Assume for a contradiction that lim infx!C1 u.x/ > 0. Then, by (5.3) and (5.2),
lim infx!C1u00.x/=V .x/ > 0, whence, by (5.1), lim infx!C1u00.x/ > 0 too. This clearly
implies that limx!C1 u.x/ D C1, thus contradicting that u 2 U. In a similar way, one
rules out that lim supx!C1 u.x/ < 0.

Step 2. If u 2 U, then limx!C1 u.x/ D 0.

Proof. Assume for a contradiction that u does not vanish atC1. From Step 1 we deduce
that lim supx!C1 u.x/ and lim infx!C1 u.x/ must be different, so one of them must be
nonzero. Without loss of generality, we may assume that ı WD lim supx!C1 u.x/ > 0 and
lim infx!C1 u.x/ � 0. By (5.1) and (5.2) we can findM 2 I such that jw=V j � ı=3 and
V > 0 on ŒM;C1/. In addition, we may find x1 > x0 > M such that u.x0/ � 2ı=3 and
u.x1/ > 2ı=3. If NxD sup¹x 2 Œx0;x1/ W u.x/� 2ı=3º, then, by the continuity of u, u. Nx/D
2ı=3 < u.x1/; consequently, by Lagrange’s mean value theorem there exists x� 2 . Nx; x1/
such that u0.x�/ > 0 and u.x�/ > 2ı=3. By Step 0, this implies that limx!C1 u.x/ D

C1, thus contradicting that u 2 U.

Note that Step 2 shows that all solutions u of (5.3) on I have limit at C1 and the
limit must be one of C1;�1; 0. We now show that solutions with each of these limits
exist.

Take x0 2 I such that infŒx0;C1/ V > 0, and for all � 2R let u� be the solution of (5.3)
on I such that u.x0/ D 0 and u0.x0/ D �.

Step 3. If � > �0, then u�.x/ > u�0.x/ for all x > x0.
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Proof. The function v D u� � u�0 is a solution of the homogeneous ODE �v00 C V v D 0
with v.x0/D 0 and v0.x0/D �� �0 > 0, hence v cannot vanish on .x0;C1/ (corollary of
Theorem 3.2 in Section 2.3 of [4]), and consequently it must be strictly positive there.

From Step 2 we can deduce that R D ƒ�1 [ ƒ0 [ ƒC1, where ƒ� D ¹� 2 R W
limx!1 u�.x/ D �º; moreover, by Step 3, the ƒ� are intervals and ƒ� < ƒ�0 (in the
sense that the inequality holds for any respective elements) whenever � < �0.

Step 4. ƒ�1 and ƒC1 are open and nonempty.

Proof. We only consider ƒC1, the argument for ƒ�1 being analogous.
Let M D supŒx0;x0C1� ju

00
0.x/j. Then, by Step 3, for all � > 0,

u00� D V u� � w � V u0 � w D u
00
0 � �M

on Œx0; x0 C 1�. Consequently, by Taylor’s theorem,

u0�.x0 C 1/ � � �M and u�.x0 C 1/ � � �M=2:

This shows that, if we take � sufficiently large, then we may ensure that u0
�
.x0 C 1/ > 0

and u�.x0 C 1/ > supŒx0C1;C1/ jw=V j, and Step 0 yields that limx!C1 u�.x/ D C1

in this case. This shows that ƒC1 is nonempty.
Let now �0 2 ƒC1, that is limx!C1 u�0.x/ D C1. Then from (5.3) and (5.2) we

deduce that limx!C1 u
00
�0
.x/ D C1, whence also limx!C1 u

0
�0
.x/ D C1. In partic-

ular, we can find x� > x0 such that u0
�0
.x�/ > 0 and u�0.x�/ > supŒx0;C1/ jw=V j. By

classical ODE theory, u�.x�/ and u0
�
.x�/ depend continuously on �, hence the inequalit-

ies u0
�
.x�/ > 0 and u�.x�/ > supŒx0;C1/ jw=V j also hold for all � sufficiently close to �0,

and, for these values of �, Step 0 yields that limx!C1 u�.x/ D C1, that is, � 2 ƒC1.
This shows that ƒC1 is open.

In conclusion, since R is the disjoint union ofƒ�1,ƒ0 andƒC1, and moreoverƒ�1
and ƒC1 are open and nonempty by Step 4, from the fact that R is connected we deduce
that ƒ0 ¤ ;.

This shows in particular that U is nonempty. We also note that, for all u1; u2 2 U,
the difference v D u1 � u2 is a solution of the homogeneous ODE �v00 C V v D 0 such
that limx!C1 v.x/ D 0. Since the space of these solutions is one-dimensional (see The-
orem 3.3 in Section 2.3 of [4]), we deduce that U is a one-dimensional affine subspace
of C 2.I IR/.

For future convenience, we record here a well-known property of recessive solutions
of the homogeneous ODE in the case where the potential V is strictly positive, which can
be derived from the arguments used in the proof of Theorem 5.1.

Proposition 5.2. Let I � R be an interval with sup I D C1. Assume that V W I ! R is
continuous and V > 0 on I . Let uW I ! R be a nontrivial solution of

�u00 C V u D 0

and assume that lim infx!C1 ju.x/j <1. Then, for all x 2 I ,

(5.4) u.x/ u0.x/ < 0:
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In other words, neither u nor u0 vanishes anywhere on I , and they have constant and
opposite signs. Moreover,

(5.5) lim
x!C1

u.x/ D lim
x!C1

u0.x/ D 0:

Proof. We first prove (5.4). Arguing by contradiction, suppose instead that there is x� 2 I
such that u.x�/ u0.x�/ � 0. Up to replacing u with �u if needed, we may assume that
both u.x�/ � 0 and u0.x�/ � 0.

We now claim that, up to replacing x� with a slightly larger value, we may also assume
that u0.x�/ > 0. Indeed, if u0.x�/ D 0, then we must have u.x�/ > 0, as u and u0 can-
not vanish simultaneously (otherwise u would vanish identically by the uniqueness of
solutions for the Cauchy problem for linear second-order ODEs); thus u00 D V u > 0 in a
neighbourhood of x� by continuity, and therefore u0.x� C ı/D

R ı
0
u00.x� C s/ ds > 0 for

any sufficiently small ı > 0.
In conclusion, we can find a point x� 2 I such that u0.x�/ > 0 and u.x�/ � 0.

So we can apply Step 0 from the proof of Theorem 5.1 (with w D 0) and deduce that
limx!C1 u.x/ D C1, which contradicts our hypothesis on u. This completes the proof
of (5.4).

It remains to prove (5.5). The fact that limx!C1 u.x/ D 0 follows from Theorem 5.1
(applied with w D 0) and our assumption that lim infx!C1 ju.x/j <1. Additionally, we
know that u00 D V u has constant sign on I , thus u0 is monotonic and therefore the limit
limx!C1 u

0.x/ exists. On the other hand, if the latter limit were nonzero, then we would
deduce that limx!C1 u.x/ D ˙1, which again would contradict our assumption. So it
must be limx!C1 u

0.x/ D 0.

5.2. Agmon estimates

In this section we exploit a classical technique due to Agmon [1] to obtain information
about the decay of recessive solutions.

Theorem 5.3. Let I � R be an open interval with sup I D C1. Let V W I ! R be con-
tinuous. Let �W I ! R be Lipschitz and such that

(5.6) .�0/2 � VC;

where VC.x/ WDmax¹V.x/; 0º. Assume thatwWI!R is continuous and u is a solution of

(5.7) �u00.x/C V.x/ u.x/ D w.x/ .x 2 I /;

such that lim supx!C1 ju.x/j<C1. For every  2 Œ0; 1/ and a;b 2 I , if b 2 .a;C1/�
¹V > 0º, then

(5.8)
Z C1
b

e2�V u2 .
Z C1
a

e2�
w2

V
C

1

.b � a/2

Z b

a

e2�u2:

Proof. Let E.u1; u2/ WD
R
I
u01u

0
2 C

R
I
V u1u2 and E.u/ WD E.u; u/. One first observes

that, by the Leibniz rule, the localisation identity

E.�v/ D E.�2v; v/C

Z
I

.�0/2v2
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holds for any v Lipschitz and � Lipschitz and compactly supported. Additionally, by (5.7)
and integration by parts,

E.�; u/ D

Z
I

�w

for any � Lipschitz and compactly supported. We apply the above identities to v D u,
� D �2u, � D �ce�, with  and � as in the statement, and

�c.x/ WD

8̂̂̂<̂
ˆ̂:
0 if x � a;
.x � a/=.b � a/ if a � x � b;
.c � x/=.c � b/ if b � x � c;
0 if x � c

for c > b > a. The result is:Z
I

�2c e
2�V u2 � E.�u/ D

Z
I

�2c e
2�uw C

Z
I

.�0c C �
0�c/

2 e2�u2

� "

Z
I

�2c e
2�V u2 C

1

4"

Z
I

�2c e
2� w

2

V

C .1C "�1/

Z
I

.�0c/
2 e2�u2 C .1C "/2

Z
I

.�0/2�2c e
2�u2

� ."C .1C "/2/

Z
I

�2c e
2�V u2 C

1

4"

Z
I

�2c e
2� w

2

V

C
.1C "�1/

.b � a/2

Z b

a

e2�u2 C
.1C "�1/

.c � b/2

Z c

b

e2�u2;

where " > 0 is arbitrary, and we have used that .a;C1/ � ¹V > 0º and (5.6). Since
 < 1, we can choose " so small that ."C .1C "/2/ < 1. This allows one to absorb the
first term of our estimate into the left-hand side. Moreover, if � is bounded above, then
we can let c tend toC1 and use the assumption lim supx!C1 ju.x/j <C1 to conclude
that (5.8) holds. To remove the additional boundedness assumptions, one may just apply
the estimate to min¹�; T º in place of �, where T 2 R, and let T tend toC1. We omit the
easy details.

A particularly important instance of the previous estimate is given in the following
statement.

Theorem 5.4. Let I �R be an open interval with supI DC1. Let V WI !R be continu-
ous and strictly increasing. Assume that wW I ! R is continuous and that u is a solution
of (5.7) such that lim supx!C1 ju.x/j < C1. Further assume there are given two non-
negative values A < B of V , and set

�.x/ D

Z x

V .B/

p
V

for all x 2 ¹V > 0º. If  2 Œ0; 1/, thenZ
V>B

e2�V u2 .
Z
V>B

e2�
w2

V
C

Z
A<V<B

w2

V
C

1

j¹A < V < Bºj2

Z
A<V<B

u2:
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Proof. Apply Theorem 5.3 with a D V .A/ and b D V .B/.

The L2 estimates of the previous theorem imply corresponding pointwise bounds,
contained in the following corollary.

Corollary 5.5. Let I � R be an open interval with sup I D C1. Let V W I ! R be
continuous and strictly increasing. Assume that wW I ! R is continuous and that u is
a solution of (5.7) such that limx!C1 u.x/ D 0. Further assume there are given three
nonnegative values A < B < C of V , and set

�.x/ D

Z x

V .B/

p
V ;

for all x 2 ¹V > 0º. Let ";  2 .0; 1/, define

Cj WD

Z
V>C

e�2"�V j .j D 0; 1/;(5.9)

D WD

Z
V>B

e2�
w2

V
C

Z
A<V<B

w2

V
C

1

j¹A < V < Bºj2

Z
A<V<B

u2;(5.10)

and assume that C1;D <1. If x 2 ¹V > C º and ˇ � 0 are such that ˇ C " �  , then

(5.11) ju0.x/j .
p

C1D e�ˇ�.x/ I

if moreover ˇ C 3" �  , then

(5.12) ju.x/j . C0
p

C1D e�ˇ�.x/:

Proof. Let us first prove the estimate (5.11) for u0.
Let x 2 ¹V > C º. For every x� > x, by the fundamental theorem of calculus and the

Cauchy–Schwarz inequality,

ju0.x�/ � u
0.x/j2 �

� Z C1
x

ju00j
�2

�

Z C1
x

e�2� V �

Z C1
x

e2�
.u00/2

V
DW J1.x/ � J2.x/:(5.13)

Now, trivially, if " �  , then, by (5.9),

(5.14) J1.x/ � C1 e
�2.�"/�.x/

for all x 2 ¹V > C º, as � is an increasing function. Moreover, as u is a solution of (5.7),
we deduce that

.u00/2

V
� 2V u2 C 2

w2

V
;

and therefore

(5.15) J2.x/ �

Z
V>B

e2�
.u00/2

V
.
Z
V>B

e2�V u2 C

Z
V>B

e2�
w2

V
. D;
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where (5.10) and Theorem 5.4 were used in the last step. As " �  , the estimates (5.14)
and (5.15) imply in particular that the integrals J1.x/ and J2.x/ are finite and tend to zero
as x ! C1. From (5.13) we then deduce that limy!1 u0.y/ exists and is finite. On the
other hand, limy!C1 u.y/D 0, so u0 must vanish atC1. Taking the limit as x�!C1
in (5.13) and bounding the right-hand side by (5.14) and (5.15) finally gives

(5.16) ju0.x/j2 � C1D e�2.�"/�.x/ � C1D e�2ˇ�.x/

whenever ˇ �  � ". This proves (5.11).
Analogously, we can prove the estimate (5.12) for u. Since limy!C1 u.y/ D 0, from

the fundamental theorem of calculus and (5.16) we deduce that

ju.x/j �

Z C1
x

ju0j .
p

C1D

Z C1
x

e�.�"/�

� C0
p

C1D e�.�3"/�.x/ � C0
p

C1D e�ˇ�.x/

whenever 3" �  and ˇ �  � 3", and (5.12) is proved.

We now apply the above estimates to solutions of

(5.17) �u00.x/C V.x/ u.x/ D Eu.x/ .x 2 RC/;

where the potential V belongs to the following class.

Definition 5.6. Let HP be the class of the functions V WRC!RC which are continuous,
strictly increasing, and such that limx!0C V.x/ D 0 and limx!C1 V.x/ D C1.

In other words, a V 2HP is “half of a potential” in the class P introduced in Section 7
below.

Corollary 5.7. Let V 2 HP and E > 0, and set ı D E j¹E < V < 2Eºj2. Let u be a
solution of (5.17) such that lim supx!C1 ju.x/j <1. ThenZ

V�2E

V u2 . ı�1E
Z
E<V<2E

u2;(5.18) Z
V�2E

u2 . ı�1
Z
E<V<2E

u2:(5.19)

Proof. By applying Theorem 5.4 to the potential V � E with w D 0,  D 0, A D 0, and
B D E, we immediately obtain that

(5.20)
Z
E<V<2E

u2 & j¹E < V < 2Eºj2
Z
V�2E

V u2:

Dividing both sides of (5.20) by j¹E < V < 2Eºj2 gives (5.18), and (5.19) follows imme-
diately from (5.18) and the trivial bound

R
V�2E

V u2 � 2E
R
V�2E

u2.

Finally, we record here an elementary proposition for solutions u of (5.17), which will
be used in Section 7.7.
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Proposition 5.8. Let V WRC! R be continuous and E 2 R. Let u be a solution of (5.17)
that is recessive atC1 (that is, limx!C1 u.x/ D limx!C1 u

0.x/ D 0/.

(i) For every a > 0,

(5.21)
Z C1
a

.u0/2 C

Z C1
a

V u2 D E

Z C1
a

u2 � u.a/ u0.a/:

(ii) If moreover V 2 C 1.RC/ and limx!C1 V.x/u.x/
2 D 0, then, for every a > 0,

(5.22) .E � V.a// u.a/2 C u0.a/2 D

Z C1
a

V 0 u2:

Proof. The equation (5.17) and an integration by parts yieldsZ b

a

.u0/2 C

Z b

a

V u2 D E

Z b

a

u2 C u.b/u0.b/ � u.a/u0.a/:

Letting b tend toC1 gives part (i).
As for part (ii), by integrating the identity

(5.23)
�
.E � V /u2 C .u0/2

�0
D �V 0u2;

we get, for all a < b,

.E � V /u2 C .u0/2
ˇ̌b
a
D �

Z b

a

V 0u2:

Finally, letting b tend toC1 and using that limx!C1.u.x/
2Cu0.x/2CV.x/u.x/2/D 0

gives (5.22).

5.3. Smooth dependence on parameters

Let I � R be a closed upper half-line, let V W I ! R be continuous, and let ˛ � 0. Define
the spaces of real-valued functions

PV D
°
W 2 C 0.I IR/ W sup

I

jW j

1C jV j
<1

±
;

RV;˛ D
°
w 2 C 0.I IR/ W lim

x!1

w.x/

1C jV.x/j
D 0;

Z
I

e2˛x
w.x/2

1C jV.x/j
dx <1

±
;

DV;˛ D ¹u 2 C
2.I IR/ W .1C jV j/u 2 RV;˛; u

00
2 RV;˛º:

Clearly, PV , RV;˛ and DV;˛ are Banach spaces with the norms

kW kPV D kW=.1C jV j/k1;

kwkRV;˛ D kw=.1C jV j/k1 C ke
˛�w=

p
1C jV jk2;

kukDV;˛
D kuk1 C ku

00=.1C jV j/k1 C ke
˛�u
p
1C jV jk2 C ke

˛�u00=
p
1C jV jk2:

Note that V 2 PV .
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Proposition 5.9. Let I be a closed upper half-line, let V W I ! R be continuous, and
let ˛ � 0. Assume that

KV;˛ WD
� Z

I

.1C jV.x/j/ e�2˛x dx
�1=2

<1:

Then, for all u 2 DV;˛ , limx!1 u
0.x/ D 0. Moreover, for all ˇ 2 .0; ˛/, if KV;˛�ˇ <1,

then, for all x 2 I ,

ju.x/j � ˇ�1KV;˛�ˇkukDV;˛
e�ˇx and ju0.x/j � KV;˛�ˇkukDV;˛

e�ˇx

Proof. Note first that lim infx!1 ju0.x/j D 0 (otherwise limx!1 u.x/ D ˙1, which is
not the case, since u 2 DV;˛). Now, for all x1; x2 2 I with x1 � x2, by the Cauchy–
Schwarz inequality,

ju0.x2/ � u
0.x1/j �

Z x2

x1

ju00j � kukDV;˛

� Z 1
x1

.1C jV.t/j/ e�2˛t dt
�1=2

;

and the last integral tends to zero as x1 !1 under our assumptions, consequently the
limit limx!1 u

0.x/ exists in R, and therefore it must be zero.
Assume now that KV;˛�ˇ < 1 for some ˇ 2 .0; ˛/; then we obtain, by taking the

limit as x2 !1 in the previous inequality, that

ju0.x1/j � kukDV;˛

� Z 1
x1

.1C jV.t/j/ e�2˛t dt
�1=2
� kukDV;˛

KV;˛�ˇ e
�ˇx1 ;

and consequently,

ju.x1/j �

Z 1
x1

ju0j � kukDV;˛
KV;˛�ˇ

Z 1
x1

e�ˇt dt D ˇ�1kukDV;˛
KV;˛�ˇ e

�ˇx1

for all x1 2 I .

In order to present the results below about smooth dependence on parameters, it is
convenient to make use of real analyticity of maps between Banach spaces; for basic
definitions and results about real-analytic maps in the context of Banach spaces, we refer
to [6], Chapter 4.

Lemma 5.10. Let I � R be a closed upper half-line, let V W I ! R be continuous, and
let ˛ � 0.

(i) For all W 2 PV , the Schrödinger operator H ŒW � D �@2x CW maps DV;˛ into
RV;˛ boundedly.

(ii) The map ‚ WPV �DV;˛ 3 .W; u/ 7! H ŒW �u 2 RV;˛ is real-analytic and

d‚.W;u/.H; f / D H ŒW �f CHu

for all .W; u/; .H; f / 2 PV �DV;˛ .

(iii) The map R �R 3 .t; E/ 7! tV �E 2 PV is linear and bounded.

Assume now that lim infx!C1 V.x/ > ˛2.
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(iv) The operator H ŒV �WDV;˛ ! RV;˛ is surjective.

(v) The kernel of H ŒV � in DV;˛ is one-dimensional, and coincides with the set of the
u 2 C 2.I IR/ such that �u00 C V u D 0 and limx!1 u.x/ D 0.

Proof. Parts (i) to (iii) are easily checked; we only remark that the map ‚ can be written
as the sum of .W; u/ 7! �u00 and .W; u/ 7! Wu, which are a bounded linear map and a
bounded bilinear map, respectively.

Assume now that lim infx!C1V.x/ > ˛2. Letw 2RV;˛ . Then, by Theorem 5.1, there
exists u 2 C 2.I IR/ such that H ŒV �uD �u00 C V uD w and limx!1 u.x/D 0. We now
show that every such u is in DV;˛ .

Sincew 2RV;˛ , we know that limx!C1w.x/=V.x/D 0, so from the ODE we deduce
that limx!C1 u

00.x/=V .x/ D 0 too. Moreover, as lim infx!C1 V.x/ > ˛2, there exists
 2 .0; 1/ and an open upper half-line J � I such that V � .˛=/2 on J . Theorem 5.3,
applied with �.x/ D ˛x, then implies that

(5.24)
Z C1
b

e2˛x V.x/u.x/2dx.
Z C1
a

e2˛x
w.x/2

V.x/
dxC

1

.b � a/2

Z b

a

e2˛x u.x/2dx

whenever b > a 2 J . As w 2 RV;˛ , we know that
R
I
e2˛xw.x/2=.1C jV.x/j/ dx <C1,

so from (5.24) and the local boundedness of uwe deduce that
R
I
e2˛x.1CjV.x/j/u.x/2dx

< C1, and the ODE implies that
R
I
e2˛xu00.x/2=.1 C jV.x/j/ dx < C1 too. Hence

u 2 DV;˛ .
The above argument shows that H ŒV � WDV;˛!RV;˛ is surjective, and that, moreover,

the kernel of H ŒV � in DV;˛ coincides with the set of the u 2 C 2.I IR/ such that �u00 C
V u D 0 and limx!1 u.x/ D 0, which we know to be a one-dimensional subspace of
C 2.I IR/. This proves parts (iv) and (v).

Theorem 5.11. Let I � R be a closed upper half-line. Let V W I ! R be continuous, let
˛ � 0, and set �V;˛ D ¹.t; E/ 2 RC �R W lim infx!1 tV .x/ > E C ˛2º. Then, for all
.t; E/ 2 �V;˛ , there exists a unique ut;E 2 C 2.I IR/ such that

�u00t;E C tV ut;E D Eut;E

on I ,
R
I
u2t;E D 1, and ut;E .x/ > 0 for all sufficiently large x. Moreover, ut;E 2 DV;˛

and the map �V;˛ 3 .t; E/ 7! ut;E 2 DV;˛ is real-analytic.

Proof. Note first that, if .t; E/ 2 � WD �V;˛ , then a solution u 2 C 2.I IR/ of �u00 C
tV u D Eu tends to 0 or˙1 atC1 (see Theorem 5.1), so if u 2 L2.I / then necessarily
limx!C1 u.x/ D 0.

Note also that, for all .t;E/ 2 RC �R, DtV�E;˛ DDV;˛ and RtV�E;˛ D RV;˛ , with
equivalent norms. In particular, from Lemma 5.10, if .t; E/ 2 �, then the set

KtV�E D

°
u 2 C 2.I IR/ W �u00 C tV u D Eu; lim

x!C1
u.x/ D 0

±
is the kernel of H ŒtV �E� in DV;˛ and is a one-dimensional subspace thereof; moreover,
by Proposition 5.2, every nonzero u 2 KtV�E is strictly positive or strictly negative in a
neighbourhood ofC1. Since DV;˛ �L

2.I /, there exist exactly two elements u 2KtV�E

with
R
I
u2 D 1, and ut;E is uniquely determined by additionally requiring that ut;E > 0

in a neighbourhood ofC1.
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Define now the map ˆWR2 �DV;˛ ! R � RV;˛ by

ˆ.t; EIu/ D
� Z

I

u2;H ŒtV �E�u
�
:

By Lemma 5.10, the map ˆ is real-analytic and

dˆ.t;E Iu/.s; F I v/ D
�
2

Z
I

uv;H ŒtV �E�v C .sV � F /u
�

for all .t; E/; .s; F / 2 R2 and u; v 2 DV;˛ .
Let now .t; E/ 2 � and set u D ut;E . We claim that the map

DV;˛ 3 v 7! dˆ.t;E Iu/.0; 0I v/ 2 R � RV;˛

is an isomorphism of Banach spaces, i.e., it is injective and surjective. Indeed, for all
v 2 DV;˛ , if dˆ.t;E Iu/.0; 0I v/ D 0, then

R
I
uv D 0 and H ŒtV � E�v D 0; the second

condition tells us that v 2KtV�E D Ru, and together with the first condition this implies
that v D 0. This shows that ˆ is injective. As for surjectivity, if w 2 RV;˛ and h 2 R,
then by Lemma 5.10 there exists v0 2 DV;˛ such that H ŒtV � E�v0 D w; in particular,
for all � 2 R, we also have H ŒtV � E�.v0 C �u/ D w, and moreover

R
I
u.v0 C �u/ D

�C
R
I
uv0, hence we can choose � 2 R so that v D v0 C �u satisfies 2

R
I
uv D h.

By the implicit function theorem (see, e.g., Theorem 4.5.4 in [6]), there exist open
neighbourhoodsA of .t;E/ in� andB of ut;E in DV;˛ , and a real-analytic map‰WA!B

such that ‰.t; E/ D ut;E and, for all .s; F I v/ 2 A � B ,

ˆ.s; F I v/ D .1; 0/ if and only if v D ‰.s; F /:

In particular, for all .s; F / 2 A, H ŒsV � F �‰.s; F / D 0 and
R
I
‰.s; F /2 D 1, which

implies that ‰.s; F / D ˙us;F . Up to shrinking A, we may assume that A � Œt1; t2� �
ŒEı; E�� � �; in particular .t1; E�/; .t2; E�/ 2 �, thus we can find x� 2 I such that

Œx�;C1/ � ¹x 2 I W t1V.x/ �E� > 0º \ ¹x 2 I W t2V.x/ �E� > 0º;

and consequently,
Œx�;C1/ � ¹x 2 I W sV .x/ � F > 0º

for all .s; F / 2 A. Hence, by Proposition 5.2 (applied with sV � F in place of V ), we
deduce that us;F > 0 on Œx�;C1/; since ‰.s; F /.x�/ is a continuous function of .s; F /,
we conclude that ‰.s; F / D us;F , that is, .s; F / 7! us;F is real-analytic in a neighbour-
hood of .t; E/.

6. Schrödinger equations on a half-line: regular potentials

6.1. Summary of the results

The general results of Section 5 are applied here to obtain pointwise and integral bounds
for real-valued L2 solutions of

(6.1) �u00.x/C V.x/ u.x/ D E u.x/ .x 2 RC/

under a quantitative C 1 assumption on the potential.
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Definition 6.1. Let � > 0. We denote by HP 1.�/ the class of positive functions V 2
C 1.RC/ such that

��1V.x/ � xV 0.x/ � �V.x/ 8x 2 RC:

Our estimates will have the desired uniformity as long as the natural “adimensional”
quantity

p
E j¹V � Eºj

is bounded away from zero. This condition will be automatically satisfied in later applic-
ations to eigenfunctions of Schrödinger operator on R, thanks to the eigenvalue estimates
of Theorem 7.6 below. We point out, however, that the following bounds apply to arbit-
rary recessive solutions of (6.1) on RC, which need not correspond to eigenfunctions of
Schrödinger operators on R; this generality will be crucial in the proof of the eigenvalue
gap estimates in Section 7.7.

Theorem 6.2 (Pointwise bounds). Let V 2 HP 1.�/. If ı > 0 and E > 0 are such that

(6.2)
p
E j¹V � Eºj � ı;

and u 2 L2.RC/ is a real-valued solution of (6.1), then

(6.3) sup
V<E=2

°
u2 C

.u0/2

E

±
.�;ı

1

j¹V < Eºj

Z
E=2<V<2E

u2:

Moreover, there exists c D c.�/ > 0 such that the inequality

(6.4) u.x/2 C
u0.x/2

E
.�;ı

e�cx
p
V.x/

j¹V � Eºj

Z
E<V<2E

u2

holds for every x such that V.x/ � 4E.

Theorem 6.3 (Integral bounds). Let V 2HP 1.�/, ı > 0, E > 0, and u 2 L2.RC/ be as
in Theorem 6.2. Then:

(i) If W WRC ! RC0 , a; b 2 R and C > 0 are such that

(6.5) W.x/C
1

x

Z x

0

W � CxaV.x/b 8x > 0;

then Z
RC
W
�
u2 C

.u0/2

E

�
.a;b;�;ı C j¹V � EºjaEb

Z
RC
u:

(ii) The assumption (6.5) holds true whenever a C min¹b=�; b�º > �1 and W.x/ D
xaV.x/b , with C D C.a; b; �/.

(iii) For all a; b 2 R,Z
RC
xaV.x/b u.x/2 dx &a;b;�;ı j¹V � EºjaEb

Z
RC
u2:

The rest of the section is devoted to the proofs of the above results.
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6.2. An auxiliary class of functions on a half-line

Let d1 � d2 be real numbers. We denote by D.d1; d2/ the collection of positive functions
U 2 C 1.RC/ such that

(6.6) d1U.x/ � xU
0.x/ � d2U.x/ 8x 2 RC:

Notice that HP 1.�/ DD.��1; �/. The next proposition collects a few elementary algeb-
raic properties of the classes D.d1; d2/.

Proposition 6.4. Let d1 � d2 be real numbers. The following hold.

(i) D.d1; d2/ is a convex cone: if U;W 2 D.d1; d2/, then �U C �W 2 D.d1; d2/

for every �;� � 0.

(ii) If U 2 D.d1; d2/ and b � 0, then U b 2 D.bd1; bd2/ and U�b 2 D.bd2; bd1/.

(iii) If U 2 D.d1; d2/ and W 2 D.d 01; d
0
2/, then UW 2 D.d1 C d

0
1; d2 C d

0
2/.

(iv) If U 2 D.d1; d2/ with d1 > 0, then U WRC ! RC is invertible, and the inverse
function U is in D.d�12 ; d�11 /.

Proof. Parts (i) to (iii) follow immediately from the definition and elementary differenti-
ation rules.

Part (iv) is also elementary, once one realizes that U is invertible. To see this, notice
that, if we define �WR! R by �.t/ D logU.et /, then the condition (6.6) can be equival-
ently rewritten as

(6.7) d1 � �
0.t/ � d2 8t 2 R:

In particular, if d1 > 0, then � is strictly increasing and limt!˙1 �.t/ D ˙1, thus
�WR! R is invertible by continuity, and therefore U WRC ! RC is invertible too.

We now discuss a number of “doubling" properties satisfied by functions in the classes
D.d1; d2/.

Proposition 6.5. Let d1 � d2 be real numbers. The following hold.

(i) If U 2 D.d1; d2/, then we have the doubling inequality

(6.8) U.�x/ � �d2U.x/ 8x 2 RC;8� � 1;

and the reverse doubling inequality

(6.9) U.�x/ � �d1U.x/ 8x 2 RC;8� � 1:

(ii) If U 2 D.d1; d2/ with d1 > 0, then

c1=d1 j¹U � Eºj � j¹U � cEºj � c1=d2 j¹U � Eºj 8E > 0;8c 2 .0; 1/;

j¹cE � U � Eºj �
1 � c1=d2

T 1=d1
j¹U � TEºj 8E > 0;8c 2 .0; 1/; 8T � 1:

(iii) If U 2 D.d1; d2/ with d1 > �1, thenZ a

0

U .d1;�
Z a

a=�

U 8a > 0;8� > 1:
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(iv) If U 2 D.d1; d2/ with d1 > 0, and E > 0 is such that
p
E j¹U � Eºj � ı;

then Z
U�E

xaU.x/b e�"x
p
U.x/ dx .d1;d2;ı;a;b;" j¹U � Eºj

aC1Eb

for every a; b 2 R and " > 0.

Proof. Part (i) follows from the observation that, if we define �W R ! R by �.t/ D
logU.et /, then the conditions (6.8) and (6.9) can be equivalently rewritten as

�.t/C d1s � �.t C s/ � �.t/C d2s 8t 2 R;8s � 0;

and in turn these inequalities are elementary consequences of the rephrasing (6.7) of the
condition U 2 D.d1; d2/.

Part (ii) follows from part (i) and Proposition 6.4 (iv) plus the trivial observation that
j¹U � Eºj D U .E/ for all E > 0.

Part (iii) follows from the reverse doubling inequality (6.9):Z a

0

U.x/ dx D

1X
jD0

Z a=�j

a=�jC1
U.x/ dx D

1X
jD0

��j
Z a

a=�

U.x=�j / dx

�

1X
jD0

��j.1Cd1/
Z a

a=�

U.x/ dx:

Let us prove part (iv). Set x0 WD U .E/ D j¹U � Eºj and D WD max¹bd1; bd2º. If
� � 1, then Proposition 6.4(ii) and part (i) give that

.�x0/
aU.�x0/

b exp
�
� "�x0

p
U.�x0/

�
� �aCD xa0 U.x0/

b exp
�
� "�1Cd1=2x0

p
U.x0/

�
D j¹U � EºjaEb �aCD exp

�
� "�1Cd1=2

p
E j¹U � Eºj

�
� j¹U � EºjaEb �aCD exp

�
� ı"�1Cd1=2

�
:

HenceZ
U�E

xaU.x/b exp
�
� "x

p
U.x/

�
dx

D x0

Z C1
1

.�x0/
aU.�x0/

b exp
�
� "�x0

p
U.�x0/

�
d�

� j¹U �EºjaC1Eb
Z C1
1

�aCD exp
�
� ı"�1Cd1=2

�
d� .d1;d2;ı;a;b;" j¹U �Eºj

aC1Eb;

as desired.



An optimal multiplier theorem for Grushin operators in the plane, I 933

6.3. Pointwise bounds in the exponential region

The goal of this section is to prove the exponential decay part of Theorem 6.2. More
precisely, we are given V 2 HP 1.�/, ı > 0, E > 0 such that

p
E j¹V � Eºj � ı, and a

real-valued solution u 2 L2.RC/ of

�u00.x/C V.x/u.x/ D Eu.x/ .x 2 RC/;

and we want to prove that, for every x such that V.x/ � 4E,

u.x/2 C
u0.x/2

E
.�;ı

1

j¹V � Eºj
e�c.�/x

p
V.x/

Z
E<V<2E

u2:

To achieve this, we invoke Agmon’s theory, in the form of Corollary 5.5, applied to the
potential V �E, with w D 0 and with the following choices of parameters:

A D 0; B D E; C D 3E; ˇ D 1=2; " D 1=12;  D 3=4:

So we obtain that, for all x such that V.x/ � 4E,

(6.10) u.x/2 C
u0.x/2

E
.
�
C20 C

1

E

�
C1D exp

�
�

Z x

V .2E/

p
V �E

�
;

where

Cj D

Z
V>4E

exp
�
�
1

6

Z y

V .2E/

p
V �E

�
.V .y/ �E/j dy;

D D
1

j¹E < V < 2Eºj2

Z
E<V<2E

u2:

To bound the above quantities, it is useful to notice that

(6.11)
Z x

V .2E/

p
V �E '� x

p
V.x/ 8xW V.x/ � 4E:

In fact, the upper bound is trivial, and the reverse doubling inequality (6.9) of Proposi-
tion 6.5 applied to V gives (for V.x/ � 4E) thatZ x

V .2E/

p
V �E � 2�1=2

Z x

V .2E/

p
V � 2�1=2

Z x

V .V.x/=2/

p
V

� 2�1
p
V.x/ .x � V .V .x/=2// � 2�1.1 � 2�1=�/ x

p
V.x/:

Now, by (6.11) and Proposition 6.5(iv), we see immediately that

C0 .�;ı j¹V � Eºj and C1 .�;ı j¹V � EºjE

for every x such that V.x/ � 4E. Moreover, part (ii) of Proposition 6.5 yields

D .� j¹V � Eºj�2
Z
E<V<2E

u2:
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Hence, by (6.10), in the range where V.x/ � 4E,

u.x/2 C
u0.x/2

E

.�;ı
�
E j¹V � Eºj C

1

j¹V � Eºj

�
exp

�
�

Z x

V .2E/

p
V �E

� Z
E<V<2E

u2

�
x2V.x/C 1

j¹V � Eºj
e�c.�/x

p
V.x/

Z
E<V<2E

u2

.�
1

j¹V � Eºj
e�

c.�/
2 x
p
V.x/

Z
E<V<2E

u2;

where we used (6.11) and the fact that t2 � 2a�2 eat for every t; a > 0. This completes
the proof of inequality (6.4) of Theorem 6.2.

6.4. Pointwise bounds in the classical region

We now come to the first half of Theorem 6.2. Under the usual assumptions that V 2
HP 1.�/, ı > 0, E > 0,

p
E j¹V � Eºj � ı, this time we want to prove that every real-

valued solution u 2 L2.RC/ of

(6.12) �u00.x/C V.x/ u.x/ D E u.x/ .x 2 RC/

satisfies the bound

sup
V<E=2

°
u2 C

.u0/2

E

±
.�;ı

1

j¹V < Eºj

Z
E=2<V<2E

u2:

Before giving the details of its proof, let us remark that the key ingredient is the positivity
of a certain derivative (see (6.13) below), already exploited in Theorem 8.3 of [65] (see
also Theorem 7.3.1 of [63]) to deduce bounds for eigenfunctions of Schrödinger operat-
ors in the classical region. Since here we do not assume any boundary condition on the
solutions of (6.12), we cannot directly invoke the theory in [65].

We need the following energy estimate.

Lemma 6.6. Let V 2HP 1.�/, ı > 0, and E > 0 be such that
p
E j¹V � Eºj � ı holds,

and let u 2 L2.RC/ be a real-valued solution of (6.12). ThenZ
V�E=2

.u0/2 .�;ı E
Z
E=2�V�2E

u2:

Proof. By inequality (2.6) in [53] and (6.12),Z
V�E=2

.u0/2 .

sZ
V�E=2

u2
Z
V�E=2

.u00/2

.

sZ
V�E=2

u2
Z
V�E=2

V 2u2 CE

Z
V�E=2

u2:
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By the already established exponential decay (6.4),Z
V�E=2

V 2u2 � 16E2
Z
E=2�V�4E

u2 C

Z
V�4E

V 2u2

.�;ı E2
Z
E=2�V�4E

u2 C
1

j¹V � Eºj

Z
V�4E

V.x/2 e�cx
p
V.x/ dx �

Z
E�V�2E

u2

.�;ı E2
Z
V�E=2

u2;

where Proposition 6.5(iv) was used in the last inequality. Thus,Z
V�E=2

.u0/2 .�;ı E
Z
V�E=2

u2 .�;ı E
Z
E=2�V�2E

u2;

where we used once more Agmon’s theory, in the form of Corollary 5.7.

Thanks to the energy estimate of Lemma 6.6, we can run the positivity argument
alluded to above. Consider the function

g WD u2 C
.u0/2

E � V

and notice thatZ
E=2<V<3E=4

g �

Z
E=2<V<3E=4

u2 C
4

E

Z
E=2<V<3E=4

.u0/2 .�;ı
Z
E=2<V<2E

u2;

where the last bound follows from Lemma 6.6. A simple computation using the equa-
tion (6.12) yields

(6.13) g0.x/ D
V 0.x/ u0.x/2

.E � V.x//2
> 0 8x W V.x/ ¤ E:

It follows that the maximum of g on the interval ¹V < E=2º is attained at the right end-
point, and it must be less than or equal to

1

j¹E=2 < V < 3E=4ºj

Z
E=2<V<3E=4

g .�;ı
1

j¹V < Eºj

Z
E=2<V<2E

u2

(here Proposition 6.5(ii) was also used). This is exactly the content of inequality (6.3) of
Theorem 6.2, whose proof is now complete.

6.5. Integral bounds

Here we prove Theorem 6.3.
Let W WRC ! RC0 , a; b 2 R and C > 0 be such that

(6.14) W.x/ � C xaV.x/b and
Z x

0

W � C xaC1V.x/b 8x > 0:
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Theorem 6.3(i), namely the integral inequalityZ
RC
W
�
u2 C

.u0/2

E

�
.a;b;ı;� C j¹V � EºjaEb

Z
RC
u2;

follows from the pointwise bounds of Theorem 6.2. Let us see the details.
Clearly, we may assume C D 1. Define

v WD u2 C
.u0/2

E
�

We decompose our integral as follows:Z
RC
Wv D

Z
V<E=2

C

Z
E=2<V<4E

C

Z
V>4E

DW IC IIC III:

For the first term, the classical-region bound (6.3) of Theorem 6.2 gives that

I .�;ı
1

j¹V < Eºj

Z
RC
u2 �

Z
V<E=2

W:

Now, by (6.14) and Proposition 6.5,Z
V<E=2

W � j¹V < E=2ºjaC1 .E=2/b '�;a;b j¹V � Eºj
aC1Eb :

Hence
I .�;ı;a;b ¹V � EºjaEb

Z
RC
u2:

Next, since W.x/ � xaV.x/b ,

II .b Eb max¹j¹V �E=2ºja; j¹V �4Eºjaº
Z
E=2<V<4E

v .�;a;b j¹V �EºjaEb
Z

RC
u2:

In the last step we used the energy estimate of Lemma 6.6 and the usual doubling prop-
erty of Proposition 6.5. Finally, the exponential decay part of Theorem 6.2 and Proposi-
tion 6.5(iv) take care of the tail of the integral:

III .�;ı;a;b
1

j¹V � Eºj

Z
V�4E

xaV.x/b e�cx
p
V.x/ dx �

Z
RC
u2

.�;ı;a;b j¹V � EºjaEb
Z

RC
u2;

and this completes the proof of part (i) of Theorem 6.3.
We now verify part (ii), that is, the assertion that the assumption (6.14) holds whenever

W.x/ D xaV.x/b and a C min¹b=�; b�º > �1, with C D C.a; b; �/. Indeed, note that
such W lies in D.a C min¹b=�; b�º; a C max¹b=�; b�º/ by parts (ii) and (iii) of Pro-
position 6.4. Hence, if a C min¹b=�; b�º > �1, then the desired assertion follows from
parts (i) and (iii) of Proposition 6.5.
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We are left with the proof of part (iii) of Theorem 6.3. For all a; b 2 R,Z
RC
xaV.x/b u.x/2 dx �

Z
E=2�V�2E

xaV.x/b u.x/2 dx

&b Eb min¹j¹V � E=2ºja; j¹V � 2Eºjaº
Z
E=2�V�2E

u2

&�;a;b Eb j¹V � Eºja
Z
E=2�V�2E

u2:

The desired estimate follows by Corollary 5.7 and the pointwise bounds in the classical
region, which imply that Z

E=2�V�2E

u2 &�;ı
Z

RC
u2:

7. One-dimensional Schrödinger operators

7.1. Summary of the results

We now switch to the study of Schrödinger equations on the real line R. We begin by
introducing three useful classes of “single-well" potentials on R.

Definition 7.1. Let P be the class of continuous nonnegative potentials V WR!RC0 such
that:

(1) V.0/ D 0,
(2) V is strictly increasing for x � 0 and strictly decreasing for x � 0,
(3) limx!˙1 V.x/ D C1.

Let P t � P be the subclass of potentials satisfying the additional temperate growth
condition

(4) V.x/ � CeM jxj for some C;M > 0 and all x 2 R.
Finally, let P t

1 be the class of potentials V 2 P t which are continuously differentiable
on R n ¹0º and such that

(5) xV 0.x/ � CeM jxj for some C;M > 0 and all x 2 R n ¹0º.

Fix a potential V 2 P . As is well known (see Remark 7.2 below), the Schrödinger
operator

(7.1) H ŒV � WD �@2x C V.x/;

initially defined on C1c .R/, is essentially self-adjoint and its unique self-adjoint extension
has pure point spectrum consisting of a divergent, strictly increasing sequence of simple
positive eigenvalues ¹En.V / W n � 1º. We denote by  n.xIV / the eigenfunction of H ŒV �

corresponding to the eigenvalue En.V /, i.e.,

� 00n .xIV /C V.x/ n.xIV / D En.V / n.xIV / .x 2 R/;
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normalised by the two conditions

(7.2)
Z

R
 n.xIV /

2 dx D 1 and  n.xIV / > 0 for all x > 0 large enough

(see Section 7.2 for details). Whenever the potential V is clear from the context, the lighter
notation En and  n.x/ will be used.

Remark 7.2. The essential self-adjointness of H ŒV � holds more generally for locally
square-integrable nonnegative potentials (see Theorem X.28 in [55]), and the spectrum
of H ŒV � consists entirely of a divergent sequence of simple eigenvalues if and only if

lim
x!1

Z xCr

x�r

V.y/ dy D C1

for every r > 0 ([51], cited in the introduction of [47]). Finally, the positivity of the eigen-
values follows from the fact that V is nonnegative, thus

En.V / D hH ŒV � n.� IV /;  n.� IV /i D k 
0
n.� IV /k

2
2 C kV

1=2 n.� IV /k
2
2 > 0:

Under the aforementioned temperate growth conditions on the potential V , we shall
derive the following important relations.

Theorem 7.3 (Virial theorem). Let V 2 P t and n 2 NC. Then En.tV / is real-analytic as
a function of t > 0 and

(7.3) Fn.V / WD @t jtD1En.tV / D

Z
R
V.x/ n.xIV /

2 dx:

If moreover V 2 P t
1, then

(7.4)
Z

R
xV 0.x/ n.xIV /

2 dx D 2

Z
R
 0n.xIV /

2 dx:

Remark 7.4. Under the additional assumption xV 0.x/ ' V.x/, the identity (7.4) tells
us that potential and kinetic energy associated to eigenfunctions are comparable. This
justifies the terminology “virial theorem”, cf. [21, 26, 67].

We now introduce a more stringent growth condition on potentials V , which corres-
ponds to the assumption (1.6a) discussed in the introduction. In what follows, for any
f WR! C, we denote by f˚; f	 WRC0 ! C the functions defined by

(7.5) f˚.x/ D f .x/ and f	.x/ D f .�x/

for all x 2 RC0 .

Definition 7.5. Let � � 1. We denote by P1.�/ the class of potentials V WR! RC0 such
that:

(1) V.0/ D 0;
(2) V.�x/ � �V.x/ for every x 2 R;
(3) both V˚ and V	 lie in HP 1.�/.
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Notice that condition (2) amounts to comparability of V˚ and V	, while condition (3)
amounts to comparability of xV 0.x/ and V.x/ (see the definition of HP 1.�/ at the
beginning of Section 6). From the doubling properties discussed in Proposition 6.5, one
immediately deduces that P1.�/ � P t

1.
Under the assumption V 2P1.�/, we shall prove the following fundamental estimates

for eigenvalues and eigenfunctions of H ŒV �.

Theorem 7.6 (Eigenvalue and eigenvalue gaps estimates). Let V 2P1.�/. Then, for every
n � 1,

(7.6) En.V /
1=2
j¹V � En.V /ºj '� n

and, if 1 � m � n, then

En.V / �Em.V / '�
En.V /

n
.n �m/:

Theorem 7.7 (Eigenfunction estimates). Let V 2 P1.�/.

(i) For every n 2 NC and x 2 R such that V.x/ � 4En.V /,

 n.xIV /
2
C
 0n.xIV /

2

En.V /
.�

1

j¹V � En.V /ºj
e�c.�/jxj

p
V.x/:

(ii) If W WR! RC0 , a; b 2 R and C > 0 are such that

(7.7) W.x/ � C jxjaV.x/b and
Z jxj
�jxj

W.t/ dt � C jxjaC1V.x/b 8x 2 R;

thenZ
R
W.x/

�
 n.xIV /

2
C
 0n.xIV /

2

En.V /

�
dx .a;b;� C j¹V � En.V /ºjaEn.V /b :

(iii) The assumption (7.7) holds true whenever a C min¹b=�; b�º > �1 and W.x/ D
jxjaV.x/b , with C D C.a; b; �/.

The rest of this section is devoted to the proofs of the above results.

7.2. Auxiliary solutions of one-dimensional Schrödinger equations

Let V 2P . Then, for anyE > 0, by Theorem 5.1 and Proposition 5.2 (applied with V �E
in place of V ), there exists a unique global solution v.x/ D v.xIE/ of the stationary
Schrödinger equation

(7.8) �v00.x/C V.x/ v.x/ D E v.x/ .x 2 R/

satisfying the following properties:
(a) v is recessive atC1, that is,

lim
x!C1

v.xIE/ D lim
x!C1

@xv.xIE/ D 0:



G. M. Dall’Ara and A. Martini 940

(b) v.xIE/ > 0 and @xv.xIE/ < 0 for x large enough.
(c)

R1
0
v.xIE/2 dx D 1.

The spectrum of the self-adjoint operator H ŒV � WD �@2x C V.x/ coincides with the
set of the E > 0 with the property that v.� IE/ 2 L2.R/. The eigenfunction  n.xI V /,
normalized as in (7.2), is the unique positive multiple of v.xIEn/ whose L2 norm on the
whole real line is 1.

7.3. The virial theorem

Here we prove Theorem 7.3. Let us introduce the Banach spaces

Ekˇ D
°
u 2 C k.RIR/ W sup

x2R
eˇ jxj

kX
jD0

ju.j /.x/j <1
±
;

where k 2 N and ˇ � 0.

Proposition 7.8. Let V 2 P .

(i) For all n 2 NC, the function t 7! En.tV / is real-analytic from RC to RC.

(ii) If V 2P t, then, for all ˇ � 0 and n2NC, the map t 7! n.� I tV / is a real-analytic
map from RC to the Banach space E1

ˇ
.

Proof. According to Example 4.24 in Chapter VII, Section 4.8, p. 409 of [35], the operat-
ors H ŒtV � constitute a “selfadjoint holomorphic family of type (B)”, hence the eigenval-
ues En.tV / are analytic functions of t for all n 2 NC (see Theorem 1.8 in Chapter VII,
Section 1.3, p. 370 of [35]). This proves part (i).

Moreover, combining this with Theorem 5.11 easily gives that, for all n2N and ˛� 0,
the map t 7!  n.� I tV / is real-analytic from RC to the Banach space

DV;˛ WD ¹u 2 C
2.RIR/ W u˚ 2 DV˚;˛; u	 2 DV	;˛º:

If V 2 P t, then by Proposition 5.9 the space DV;˛ is continuously embedded in E1
ˇ

for all
ˇ 2 Œ0; ˛/, and part (ii) is proved.

Corollary 7.9. Let V 2 P .

(i) For all n 2 NC, the function t 7! En.V .t �// is real-analytic from RC to RC.

(ii) If V 2 P t, then, for all ˇ � 0 and n 2 NC, the map t 7!  n.� IV.t �// is a C 1 map
from RC to the Banach space E0

ˇ
.

Proof. Both assertions follow from Proposition 7.8 and the relations

En.V .t �// D t
2En.t

�2V /;(7.9)

 n.xIV.t �// D t
1=2 n.txI t

�2V /;(7.10)

which are obtained rescaling the variable in the equation (7.8) with E D En.V .t �// and
v.x/ D  n.xIV.t �//.
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By the previous results, if Vt is either of the families of potentials tV or V.t �/, then
the corresponding eigenvalues En.Vt / are analytic functions of t for any n 2 NC. In the
next proposition, we obtain a formula for the derivative of the eigenvalues @t .En.Vt //
involving @tVt .

Proposition 7.10. Let V 2 P t. Then the identity

@t .En.Vt // D h.@tVt / n.� IVt /;  n.� IVt /i:

holds with Vt D tV . The same identity holds for Vt D V.t �/ provided V 2 P t
1.

Proof. From Proposition 7.8, Corollary 7.9, and the relations

(7.11) @t .tV .x// D V.x/; @t .V .tx// D xV
0.tx/;

it is not difficult to deduce that, under our assumptions on the potential V , any of the
functions  n.xIVt /, Vt .x/ n.xIVt /, and  00n .xIVt /D .Vt .x/�En.Vt // n.x; t/, as well
as their first-order t -derivatives, decay exponentially as jxj ! 1 with locally uniform
bounds in t . This justifies differentiations under the integral sign and integrations by parts
in the following argument.

First, from the L2-normalization of eigenfunctions we deduce that

h@t n.� IVt /;  n.�IVt /i D 0:

Now,

@t .En.Vt // D @t hH ŒVt � n.� IVt /;  n.� IVt /i

D h.@tVt / n.� IVt /;  n.� IVt /i C hH ŒVt �@t n.� IVt /;  n.� IVt /i

C hH ŒVt � n.� IVt /; @t n.� IVt /i:

On the other hand, the last two summands vanish since

hH ŒVt �@t n.� IVt /;  n.� IVt /i D h@t n.� IVt /;H ŒVt � n.� IVt /i

D En.Vt /h@t n.� IVt /;  n.� IVt /i D 0;

and we are done.

We now have all the ingredients to prove Theorem 7.3. Formula (7.3) is an immediate
consequence of Proposition 7.10 applied to Vt D tV . To prove formula (7.4), we apply
Proposition 7.10 to Vt D V.t �/, combined with the identity

@t jtD1En.V .t �// D 2En.V / � 2Fn.V /;

which is an elementary consequence of (7.9).

7.4. Elementary doubling properties of regular potentials

We record here a couple of useful elementary properties of potentials in the class P1.�/.
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Proposition 7.11. Let V 2 P1.�/. Then, for all a 2 RC,

(7.12) j¹V˚ � aºj '� j¹V	 � aºj '� j¹V � aºj;

and

(7.13) j¹V � Eºj '�;c j¹V � cEºj 8E > 0; c 2 .0; 1/:

Proof. By the definition of P1.�/ and part (ii) of Proposition 6.5,

j¹V˚ � aºj � j¹V	 � �aºj .� j¹V	 � aºj:

The reverse approximate inequality is proved analogously. Since

(7.14) j¹V � aºj D j¹V˚ � aºj C j¹V	 � aºj;

the approximate identities (7.12) follow, while (7.13) is a consequence of (7.12) and
part (ii) of Proposition 6.5.

7.5. Eigenvalue estimates

In this section we prove the first half of Theorem 7.6, namely the approximate iden-
tity (7.6), under the assumption V 2 P1.�/. This will follow from the inequalities of
Bohr–Sommerfeld type contained in the theorem below, which are valid more generally
for potentials in the class P .

Theorem 7.12 (Bohr–Sommerfeld inequalities). Let V 2 P . Thenp
E1.V / j¹V < "�2E1.V /ºj �

4

27
.1 � "/3� 8" 2 .0; 1/;(7.15) p

En.V / j¹V < En.V /ºj � � .n � 1/ 8n � 1;(7.16)

and

(7.17)

s
En.V /

1C t

ˇ̌̌°
V <

En.V /

1C t

±ˇ̌̌
�
�n
p
t
8n � 1;8t > 0:

It is clear that the desired approximate identity (7.6) can be obtained by combining the
three inequalities above and Proposition 7.11.

Proof. Inequality (7.15) can be proved by using a formulation of the uncertainty prin-
ciple due to Donoho and Stark [17] (see also Section 8 in [23]). To state it, we need
some terminology:  2 L2.R/ is said to be "-concentrated on a measurable set A � R
if
R

RnA j j
2 � "2

R
R j j

2. Then, the Donoho–Stark inequality says that if  2 L2.R/ is

"-concentrated on A and y is ı-concentrated on B , where ı; " > 0 and ı C " < 1, then

(7.18) jAj jBj � 2� .1 � " � ı/2I
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here y .�/ D .2�/�1=2
R

R .x/ e
�i��x dx. Let V 2 P and take  D  1, the ground-state

eigenfunction of H ŒV �. Then, for any fixed " 2 .0; 1/,

E1

Z
R
 2 D

Z
R
. 0/2 C

Z
R
V  2 � "�2E1

Z
V�"�2E1

 2;

that is, the ground-state eigenfunction is "-concentrated on the sublevel set A D ¹V <

"�2E1º. Similarly, for any ı 2 .0; 1/, by the Plancherel theorem,

E1

Z
R
j y j2 D

Z
R
. 0/2 C

Z
R
V 2 �

Z
R
j�j2j y .�/j2 d� � ı�2E1

Z
j�j2�ı�2E1

j y .�/j2 d�;

that is, y is ı-concentrated on the interval B D .�ı�1
p
E1; ı

�1
p
E1/. By (7.18), we

conclude that, for all ı 2 .0; 1 � "/,p
E1 j¹V < "�2E1ºj � � ı.1 � " � ı/

2

and optimizing in ı gives (7.15).
For the remaining bounds, we make use of the classical inequality

(7.19)
Z 1

0

.f 0/2 � �2
Z 1

0

f 2;

valid for all f 2 W 1;2.Œ0; 1�IR/ which are either vanishing at the endpoints (see, e.g.,
p. 47 of [19]) or with zero mean (see, e.g., Section 1.1 in [38]).

Given n � 1 and E > 0, we decompose ¹V < Eº into n subintervals of equal length
I1; : : : ; In. We denote by M.n; E/ the linear subspace of L2.RIR/ defined by the n
conditions

R
Ij
 D 0 (j D 1; : : : ; n). Then, by (7.19),Z

R
. 0/2 C

Z
R
V  2 �

nX
jD1

Z
Ij

. 0/2 CE

Z
V�E

 2

�

nX
jD1

�2

jIj j2

Z
Ij

 2 CE

Z
V�E

 2 �
�2n2

j¹V < Eºj2

Z
V<E

 2 CE

Z
V�E

 2:

for every  2 M.n; E/. Now, for every n, there is a unique E D zEn > 0 such that
�2n2=j¹V < Eºj2 D E. So, by the max-min theorem (see [39], Chapter XII),

EnC1 D sup
M�L2.RIR/
codimMDn

inf
 2MR
 2D1

Z
R
. 0/2 C

Z
R
V  2 � zEn;

where the latter inequality follows by taking M DM.n; zEn/. This implies that

EnC1 j¹V < EnC1ºj
2
� zEn j¹V < zEnºj

2
D �2n2 8n � 1;

and (7.16) is proved.
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Next, let us prove (7.17). Let �.x/ WD
p
2 sin.�x/1Œ0;1�.x/ and notice that

R
�2 D 1

and
R
.�0/2 D �2 (that is, � extremises (7.19)). Given any finite interval I D Œs; t �, we let

�I .x/ WD
1p
t�s

�
�
x�s
t�s

�
. Of course,

R
�2I D 1 and

R
.�0I /

2 D �2=jI j2.

Given n � 1 and E > 0, we decompose ¹V < Eº D
Sn
jD1 Ij as before, and denote

by L.n;E/ the R-linear span of ¹�Ij W j D 1; : : : ; nº. Then, it is easily checked thatZ
R
. 0/2 C

Z
R
V  2 �

� �2n2

j¹V < Eºj2
CE

� Z
R
 2

for every 2L.E;n/. Now, let t > 0. Then, for every n� 1, there is a uniqueE D zEn > 0
such that �2n2=j¹V < Eºj2 D tE. So, by the min-max theorem,

En D inf
L�L2.RIR/

dimLDn

sup
 2LR
 2D1

Z
R
. 0/2 C

Z
R
V  2 � .1C t / zEn;

where the inequality follows by taking L D L.E; n/. This readily implies that

En

1C t

ˇ̌̌°
V <

En

1C t

±ˇ̌̌2
� zEn j¹V < zEnºj

2
D
�2n2

t
;

and we are done.

We record here a consequence of Theorem 7.12 for doubling potentials, which will be
used later.

Proposition 7.13. Let V 2 P1.�/.

(i) For all n;m 2 NC with m � n,�m
n

�2�=.2C�/
.�

Em.V /

En.V /
.�

�m
n

�2=.2�C1/
:

(ii) For all E 2 RC, if E � E1.V /, then

V.E�1=2/ .� E:

Proof. We first prove part (i). Consider the function

W.x/ WD
p
xV ˚ .x/C

p
xV 	 .x/ .x > 0/:

By Proposition 6.4, W 2 D.1=2C 1=�; 1=2C �/ and therefore the doubling and reverse
doubling inequalities of Proposition 6.5 imply that�En

Em

�1=2C1=�
W.Em/ � W.En/ �

�En
Em

�1=2C�
W.Em/

for all m; n 2 NC with m � n. On the other hand, by the approximate Bohr–Sommerfeld
identity (7.6),

(7.20) W.En/ D
p
En j¹V � Enºj '� n

for all n 2 NC, and the desired estimates follow.
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We now prove that, for all n 2 NC,

(7.21) V.nE�1=2n / '� En:

Indeed, the estimate (7.20) and Proposition 7.11 also give that

V ˚ .En/ D j¹V˚ � Enºj '� nE
�1=2
n :

As V˚ satisfies the doubling and reverse doubling inequalities (see Proposition 6.5(i)),
applying V˚ to both sides of the previous approximate identity yields (7.21).

Finally, the case n D 1 of (7.21) gives part (ii) when E D E1, and the general case
follows from the monotonicity of V .

7.6. Eigenfunction estimates

In this section we prove Theorem 7.7. Let us begin with the pointwise bounds of part (i).
Let V 2P1.�/ and n2N. By the already established Bohr–Sommerfeld type approximate
identity (7.6) of Theorem 7.6, we know in particular thatp

En j¹V � Enºj &� 1:

Hence, by Proposition 7.11, we deduce that

(7.22)
p
En j¹V˚ � Enºj;

p
En j¹V	 � Enºj &� 1:

Thus, by applying the exponential decay inequality (6.4) of Theorem 6.2 to  n.x/ and
 n.�x/ (where x > 0), we obtain the estimates

 n.x/
2
C
 0n.x/

2

En
.�

1

j¹V˚ � Enºj
e�c.�/jxj

p
V.x/

8x > 0 W V.x/ � 4En;

 n.x/
2
C
 0n.x/

2

En
.�

1

j¹V	 � Enºj
e�c.�/jxj

p
V.x/

8x < 0 W V.x/ � 4En:

Another application of Proposition 7.11 finally gives the desired pointwise bound

 n.x/
2
C
 0n.x/

2

En
.�

1

j¹V � Enºj
e�c.�/jxj

p
V.x/

for every x in the range V.x/ � 4En.
Parts (ii) and (iii) of Theorem 7.7 follow similarly from parts (i) and (ii) of The-

orem 6.3, by using (7.22) and Proposition 7.11.

7.7. Eigenvalue gap estimates

We now prove the eigenvalue gap estimate of Theorem 7.6, namely the approximate iden-
tity

En �Em '�
En

n
.n �m/; n � m � 1;
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under the assumption V 2 P1.�/. Let us first show that this follows from

(7.23) EnC1 �En '�
En

n
8n � 1:

In fact, by Proposition 7.13, there exists T0 D T0.�/ � 2 so large that n � T0m implies
En � 2Em. Hence

En �Em ' En '
En

n
.n �m/ 8n � T0m:

If instead m � n � T0m, then for m � ` < n we have ` '� n and, by Proposition 7.13,
E` '� En. Thus, by (7.23),

En �Em D

n�1X
`Dm

.E`C1 �E`/ '�

n�1X
`Dm

E`

`
'�

En

n
.n �m/;

as desired.
We are now reduced to proving (7.23). The proof that we present follows the lines of

arguments in [37].
Assume, to begin with, that V 2P t. GivenE >0, let v.xIE/ be the solution defined in

Section 7.2. If � > 0 is a parameter, we introduce the Prüfer variable �.xIE; �/, defined
as “the” argument of the complex number �v.xIE/ C iv0.xIE/. Notice that v.xIE/
and v0.xIE/ cannot vanish simultaneously, so �.xIE; �/ is defined modulo a constant
integer multiple of 2� . We normalise it by requiring that �.xIE;�/ 2 .��=2; 0/ for x in a
neighbourhood ofC1. This is possible, since v0.xIE/ < 0 < v.xIE/ in a neighbourhood
ofC1. The key feature of �.xIE; �/ is that v.xIE/ vanishes if and only if �.xIE; �/ 2
�=2C �Z.

The relevance of the Prüfer variable � D �.xIE;�/ stems from the identities contained
in the following proposition.

Proposition 7.14. Let V 2 P t. Then the following identities hold:

(7.24) @x� D �
.V �E/v2 � .@xv/

2

�2v2 C .@xv/2
and @E� D �

R C1
x

v.yIE/2 dy

�2v2 C .@xv/2
�

Proof. If t 7! z.t/ is a C 1 complex-valued function without zeros, it is easily checked
that arg.z/0.t/ D =.z0.t/=z.t//. We now apply this to z.xIE/ D �v.xIE/C i@xv.xIE/
and use the differential equation (7.8) satisfied by v D v.xIE/ to compute the derivatives
@xz and @Ez. The former identity in (7.24) is now straightforward:

@x� D =
�@xz
z

�
D =

��@xv C i.V �E/v
�v C i@xv

�
D �

.V �E/v2 � .@xv/
2

�2v2 C .@xv/2
;

as desired. As for the latter,

@E� D =
�@Ez
z

�
D =

��@Ev C i@E@xv
�v C i@xv

�
D �

w

�2v2 C .@xv/2
;

where w WD v@E@xv � @xv@Ev. Now, the differential equation (7.8) implies that @xw D
�v2. If we show that limx!C1 w.x/ D 0, then we can conclude that w.x/ D

R C1
x

v2

and derive the desired identity.
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To verify the vanishing of the limit of w, notice that by Theorem 5.11, for all closed
upper half-lines I � R and all ˛ � 0, the map E 7! v.� IE/jI is real-analytic from R to
the Banach space DV jI ;˛ . In particular, if V 2 P t, then, by Proposition 5.9,

(7.25) lim
x!C1

eˇx @kEv.xIE/ D lim
x!C1

eˇx @kE@xv.xIE/ D 0

for all k 2 N and ˇ � 0, and so limx!C1w.x/ D 0.

We can apply exactly the same construction to the reflected potential zV .x/ WD V.�x/.
Let us denote by Qv.xIE/ the solutions of Section 7.2 associated to the reflected potential,
and by Q�.xIE; �/ the corresponding Prüfer variable. The next proposition describes the
relationship between �.xIE; �/ and Q�.xIE; �/, and between v.xIE/ and Qv.xIE/.

Proposition 7.15. Let V 2 P t and n 2 NC. Then, for all x 2 R and � > 0,

(7.26) �.xIEn; �/C Q�.�xIEn; �/ D .n � 1/�;

where En D En.V / D En. zV /. Moreover, there exists E 0n 2 ŒEn; EnC1� such that
(7.27)

�

.EnC1 �En/
p
En
D

R C1
0

v.yIE 0n/
2 dy

Env2.0IE 0n/C @xv.0IE
0
n/
2
C

R C1
0
Qv.yIE 0n/

2 dy

En Qv2.0IE 0n/C @x Qv.0IE
0
n/
2
�

Proof. The first identity of Proposition 7.14 implies in particular that whenever v.xIE/
vanishes, @x�.xIE;�/D��< 0. Recalling our normalization of � , we see that if x0.E/>
x1.E/ > � � � are the zeros of v.�; E/ arranged in decreasing order, then �.xk.E/IE;�/ D
�=2C k� .

By the Sturm–Liouville theory (see, e.g., Theorem 3.5 in Section 2.3 of [4]), any
nonzero eigenfunction of H ŒV � of eigenvalueEnDEn.V / has exactly n� 1 zeros. There-
fore, �.xIEn; �/ D �=2 at the rightmost zero of v.� IEn/, and, at the leftmost zero of
v.� IEn/, �.xIEn; �/ D �=2C .n � 2/� .

Clearly, similar considerations hold for the solutions Qv.xIE/ associated with the re-
flected potential zV . Note now that v solves (7.8) if and only if Qv.x/ WD v.�x/ solves
the reflected equation �u00 C zV u D Eu. Therefore, H ŒV � and H Œ zV � have the same
eigenvalues and reflected eigenfunctions. Hence, when E is an eigenvalue, Qv.xIE/ D
�.E/v.�x;E/ for some �.E/ 2 R n ¹0º. This means that

(7.28) �.xIEn; �/C Q�.�xIEn; �/ 2 �Z 8x 2 R:

By continuity, the multiple of � is independent of x. To compute it, we evaluate the left-
hand side of (7.28) at the rightmost zero of v.� IEn/, so that �x equals to the leftmost zero
of Qv.xIE/. This gives (7.26).

In particular, if we choose � D
p
En, then (7.26) and Lagrange’s mean value theorem

imply that

� D �.0IEnC1;
p
En/C Q�.0IEnC1;

p
En/ � �.0IEn;

p
En/ � Q�.0IEn;

p
En/

D .EnC1 �En/ @E .� C Q�/.0IE
0
n;
p
En/

for some E 0n 2 ŒEn; EnC1�. The formula for @E� in Proposition 7.14 finally yields (7.27).
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Now that all the ingredients are in place, we can prove (7.23), under the assumption
V 2 P1.�/. Let n 2 NC, and let E 0n be as in Proposition 7.15. By Proposition 7.13, we
have E 0n '� En. Thus, the identity of Proposition 5.8(ii), combined with (7.22) and The-
orem 6.3, gives that

Env
2.0IE 0n/C @xv.0IE

0
n/
2
'� E

0
nv

2.0IE 0n/C @xv.0IE
0
n/
2

D

Z C1
0

V 0.y/ v.yIE 0n/
2 dy '�

E 0n
j¹V˚ � E 0nºj

Z C1
0

v.yIE 0n/
2 dy:

Notice that the condition V 2 P1.�/ has been used in the last step. At this point, Proposi-
tion 7.11 and (7.6) yieldR C1

0
v.yIE 0n/

2 dy

Env2.0IE 0n/C @xv.0IE
0
n/
2
'�
j¹V � Enºj

En
'�

n

E
3=2
n

�

Of course, a completely analogous argument gives the same estimate for the term in-
volving Qv, and the desired bound (7.23) follows from (7.27).

The proof of Theorem 7.6 is complete.

8. Matrix and spectral projector bounds

8.1. Summary of the results

Let V be in the class P t (see Definition 7.1). Define the “differentiated eigenfunctions”

�n.xIV / WD @t jtD1 n.xI tV /

for n � 1 (this makes sense by Proposition 7.8). We define the real-valued matrices P.V /
and A.V / associated to the potential V as

Pnm.V / D hV n.� IV /;  m.� IV /i and Anm.V / D h�n.� IV /;  m.� IV /i;

where n; m � 1 and h� ; �i stands for the L2.R/-inner product. These two matrices are
crucially related as follows.

Proposition 8.1. Let V 2 P t. The matrix P.V / is symmetric and the matrix A.V / is
antisymmetric. For all n ¤ m,

(8.1) Pnm.V / D Anm.V / .En.V / �Em.V //:

The relation (8.1) is only meaningful away from the diagonal. As shown in The-
orem 7.3, the on-diagonal terms of P.V / are given by the “differentiated eigenvalues”
Fn.V / D @t jtD1En.tV /.

An important part of this section is devoted to proving estimates for the matrix coef-
ficients of P.V / and A.V / under the assumption V 2 P1.�/. In light of the relation (8.1)
and the gap estimates in Theorem 7.6, off-diagonal estimates for P.V / imply correspond-
ing estimates for A.V / and vice versa, so we only need to state and prove our estimates
for one of the two matrices.
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It is convenient to introduce some notation. For T > 1, let NT be the matrix whose
.n; m/-entry is 1 if m 2 ŒT �1n; T n� and 0 otherwise, and let FT be the matrix whose
.n; m/-entry 0 if m 2 ŒT �1n; T n� and 1 otherwise (here N and F stand for “near” and
“far” from the diagonal). Moreover, let ˇ denote the Schur product between matrices;
namely, if B and B0 are matrices, then Bˇ B0 is given by

(8.2) .Bˇ B0/nm D BnmB0nm:

Note that, for all T > 1, every matrix B decomposes as

B D Bˇ NT C Bˇ FT I

we can think of B ˇ NT and B ˇ FT as the near-diagonal and far-diagonal parts of B,
respectively. We will also write jBj to denote the matrix whose components are the mod-
uli jBnmj of the components of the matrix B.

The following statement includes a useful “a priori” bound for the coefficients of
A.V /, as well as a sharper bound in the far-diagonal region.

Theorem 8.2 (Matrix bounds: A). Let V 2 P1.�/. Then, for every n � 1,

(8.3)
Z

R
�n.xIV /

2 dx D
X
m

Anm.V /2 .� n2:

Moreover, for all T > 1,

(8.4) jAnm.V /j .�;T
1
p
nm

�Em.V /
En.V /

�3=4
; 8n;m W n � Tm;

Consequently,
kjA.V /j ˇ FT k`2!`2 .�;T 1

for all T > 1.

We also obtain bounds in the near-diagonal region, which for convenience will be
stated in terms of the matrix P.V /. In order to prove bounds with the required summab-
ility properties, here we make an additional regularity assumption on the potential V ,
corresponding to the assumption (1.6b) of the introduction.

Definition 8.3. For � 2 .0; 1/ and � � 1, we define P1C� .�/ as the class of the V 2P1.�/

such that

(8.5) jV 0.ehx/ � V 0.x/j � � jV 0.x/j jhj� 8x 2 R n ¹0º;8h 2 Œ�1; 1�:

We can now state the near-diagonal bounds for P.V /.

Theorem 8.4 (Matrix bounds: P). Let V 2 P1.�/. Then, for all T � 1,

(8.6) jPnm.V /j .�;T
En.V /

1C jm � nj
8n;m W T �1n � m � T n:

Assume moreover that V 2P1C� .�/ for some � 2 .0; 1/. Then there exists "D ".�; �/ > 0
such that, for all T � 1,

(8.7) jPnm.V /j .�;�;T
En.V /

1C jm � nj1C"
8n;m W T �1n � m � T n:
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Finally, we state some pointwise bounds for “clusters” of eigenfunctions and differ-
entiated eigenfunctions of bounded energy. We note that the supremum in x 2 R of the
left-hand side of (8.8) below is the squaredL2!L1 norm of the spectral projector of the
Schrödinger operator H ŒV � associated to the interval Œ0; E0�; for this reason, by a slight
abuse of language, we will refer to the estimates below as “spectral projector bounds”.

Theorem 8.5 (Spectral projector bounds). Let V 2P1.�/. Then, for allE0 >0 and x 2R,

(8.8)
X

En.V /2Œ0;E0�

 n.xIV /
2 .�

p
E0
�
1V�4E0.x/C e

�c.�/jxj
p
V.x/ 1V�4E0.x/

�
:

Let T0 > 1, and define, for all n 2 NC and x 2 R, the “modified differentiated eigenfunc-
tions”

�n.xIV / WD �n.xIV / �
X
m

.A.V /ˇ NT0/nm  m.xIV /

D

X
m

.A.V /ˇ FT0/nm  m.xIV /:

(8.9)

Then there exists T1 D T1.�; T0/ such that, for all E0 > 0 and x 2 R,X
En.V /2Œ0;E0�

�n.xIV /
2 .�;T0

p
E0
�
1V�T1E0.x/C e

�c.�/jxj
p
V.x/ 1V�T1E0.x/

�
:

The rest of the section is devoted to the proofs of the above results.

8.2. Elementary properties of the matrices A and P

Here we prove Proposition 8.1. Due to the assumption V 2 P t, all the differentiations
used in the proof are allowed in light of Proposition 7.8.

First, the symmetry of P.V / is obvious, and the antisymmetry of A.V / follows by
differentiating in t D 1 the identity h n.� I tV /;  m.� I tV /i D ınm.

Differentiating in t D 1 the equation H ŒtV � n.xI tV /D En.tV / n.xI tV / gives the
inhomogeneous equation

(8.10) �� 00n .xIV /C V.x/ �n.xIV / D En.V / �n.xIV /C .Fn.V / � V.x//  n.xIV /;

where Fn.V / is the differentiated eigenvalue, as in (7.3). Multiplying both sides of (8.10)
by  m.xIV /, with m ¤ n, and integrating gives

EnA.V /nm � P.V /nm D hH ŒV ��n;  mi D h�n;H ŒV � mi D EmA.V /nm;

and rearranging yields the desired identity (8.1).

8.3. Differentiated eigenfunctions: L2 bound

Here we work under the assumption V 2 P1.�/ and obtain the L2 bound (8.3) for the
differentiated eigenfunctions �n D �n.� IV /, which proves the first part of Theorem 8.2.
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By Proposition 8.1 and Theorem 7.6, for all n � 1,Z
R
�2n D

X
m¤n

Anm.V /2D
X
m¤n

Pnm.V /2

jEm�Enj2
.�

n2

E2n

X
m¤n

Pnm.V /2 �
n2

E2n

Z
R
V 2 2n .� n

2:

In the last step we used Theorem 7.7.

8.4. Differentiated eigenfunctions: exponential decay

Thanks to the aboveL2 bound, we can now apply Agmon’s theory (Corollary 5.5) to show
that the differentiated eigenfunctions �n.� I V / have a similar exponential decay far from
the classical region as the one proved for the eigenfunctions  n.� IV / in Theorem 7.7.

Proposition 8.6. Let V 2P1.�/. Then, for every n 2NC and for x 2R such that V.x/�
4En.V /,

�n.xIV /
2 .�

1

j¹V � En.V /ºj
e�c.�/jxj

p
V.x/:

Proof. We prove the statement for x > 0. The statement for x < 0 is proved identically,
by considering V.�x/ in place of V.x/.

Write En D En.V /, Fn D Fn.V /,  n.x/D  n.xIV / and �n.x/D �n.xIV / for sim-
plicity. We know that �n solves the differential equation (8.10). Recall the definition of V˚
from (7.5). If we apply Corollary 5.5 with potential V˚ �En andw D .Fn � V˚/ n, with
parameters

A D En=2; B D En; C D 3En; ˇ D 1=2; " D 1=12 and  D 3=4;

then we obtain, for all x > 0 such that V.x/ � 4En, that

(8.11) �n.x/
2 . C20 C1D exp

�
�

Z x

.V˚/ .2En/

p
V �En

�
;

where

Cj D

Z
V˚>4En

exp
�
�
1

6

Z y

.V˚/ .2En/

p
V �En

�
.V .y/ �En/

j dy

and

D D

Z
V˚>2En

exp
� 3
2

Z y

.V˚/ .2En/

p
V �En

�
j.Fn � V.y// n.y/j

2

V.y/ �En
dy

C

Z
3En=2<V˚<2En

j.Fn � V.y// n.y/j
2

V.y/ �En
dy

C
1

j¹3En=2 < V˚ < 2Enºj2

Z
3En=2<V˚<2En

�n.y/
2 dy:

Since
p
En j¹V˚ � Enºj &� 1 by (7.22), we obtain as in Section 6.3 that

C0 .� j¹V˚ � Enºj and C1 .� j¹V˚ � EnºjEn:
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Moreover,

(8.12) 0 � Fn � En

by Theorem 7.3, hence

D � 4

Z
V˚>2En

exp
� 3
2

Z y

.V˚/ .2En/

p
V �En

�
.V .y/ �En/ j n.y/j

2 dy

C 3

Z
3En=2<V˚<2En

V.y/ n.y/
2 dy

C
1

j¹3En=2 < V˚ < 2Enºj2

Z
3En=2<V˚<2En

�n.y/
2 dy:

We can bound the first summand by Theorem 5.4 (applied with potential V˚ �En,wD 0,
 D 3=4, A D 0, and B D En) and the last summand by (8.3), thus obtaining

D .�
1

j¹En < V˚ < 2Enºj2
CEn C

n2

j¹3En=2 < V˚ < 2Enºj2
.� EnI

here we used that

j¹En < V˚ < 2Enºj
2
'� j¹3En=2 < V˚ < 2Enºj

2
'� j¹V � Enºj

2
' n2=En

by Propositions 6.5 and 7.11 and Theorem 7.6. Hence (8.11) gives, for all x > 0 such that
V.x/ � 4En, that

j�n.x/j
2 .� j¹V˚ � Enºj3E2n exp

�
�

Z x

.V˚/ .2En/

p
V �En

�
.�

1

j¹V˚ � Enºj
x4V.x/2 e�c.�/x

p
V.x/ .�

1

j¹V � Enºj
e�

c.�/
2 x
p
V.x/;

where the exponential term was estimated using (6.11), while Proposition 7.11 was again
used in the last step.

8.5. Off-diagonal decay: the commutator argument

This and the following two sections are aimed at proving the bounds for the matrix coeffi-
cients of A.V / and P.V / stated in Theorems 8.2 and 8.4. We point out that the bound (8.3)
for A.V / has already been proved in Section 8.3, and that moreover the on-diagonal
bounds (n D m) for P.V / in Theorem 8.4 are trivial. What effectively remains to prove is
the off-diagonal decay that those bounds entail.

Fix V and write  n.x/ D  .xI V /, En D En.V /, and H D H ŒV � for simplicity.
Recall that

(8.13) H n D � 
00
n C V n D En n:

The main heuristics at the basis of this section is contained in the following formal chain
of identities:

hŒH ; V � n;  mi D hHV n;  mi � hVH n;  mi

D hV n;H mi � hVH n;  mi D .Em �En/ hV n;  mi:

(8.14)
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This looks promising, because it allows to convert any (yet to be proved) upper bound on
jhŒH ;V � n; mij into an off-diagonal decay for Pnm.V / (and Anm.V /, in virtue of (8.1)).
Moreover, by iterating the above argument, one could potentially obtain an even faster off-
diagonal decay by considering iterated commutators.

To rigorously justify the above identities (8.14), one would need to ensure that the
eigenfunctions are in the natural domain of the operator ŒH ; V �, namely that V n is in the
domain of H . This would require in particular some control on the second derivative V 00.
Correspondingly, higher-order derivatives of V would need to be controlled in order to
deal with iterated commutators.

Nevertheless, the theory developed below allows us to obtain off-diagonal decay for
an arbitrary potential V in P1.�/ or P1C� .�/, for which bounds on the second and higher-
order derivatives may not be available.

As we shall see, the estimates for P.V / will be derived from estimates for the mat-
rix coefficients hU n;  mi associated to a more general function U WR! C. We begin
by introducing some terminology that will be convenient when justifying integrations by
parts.

Definition 8.7. LetU WR!C. We say thatU has moderate growth if there existM;K >0
such that jU.x/j � eM jxj whenever jxj � K. Moreover, we say that U has fast decay if
for all M > 0 there exists K > 0 such that jU.x/j � e�M jxj whenever jxj � K.

The following statement, applied with U D V , provides a replacement of (8.14) that
does not require V to be twice differentiable.

Lemma 8.8. Assume that V 2 P t. Let U 2 C 0.R/ \ C 1.R n ¹0º/ be such that U 0 is
locally integrable at 0, and moreover U and U 0 have moderate growth. Then

(8.15) .Em �En/ hU n;  mi D

Z
R
U 0. n 

0
m �  

0
n m/;

where the integrals are absolutely convergent.

Proof. Note that  n,  0n and  00n D .V � E/ n are continuous and have fast decay (see
Proposition 7.8). So, by (8.13),

.Em �En/ hU n;  mi D hU n;H mi � hUH n;  mi

D

Z
R
U n.� 

00
m C V m/ �

Z
R
U.� 00n C V n/ m D �

Z
R
U n 

00
m C

Z
R
U 00n m;

where the integrals are absolutely convergent because of the fast decay. Since U 0 2 L1loc,
integration by parts (cf. equation (7.18) in [27] and Proposition 3.6 in [13]) gives thatZ

R
U 00n m D �

Z
R
U 0 0n m �

Z
R
U 0n 

0
m:

Clearly, a similar identity holds with n and m swapped. As a consequence,

�

Z
R
U n 

00
m C

Z
R
U 00n m D

Z
R
U 0 n 

0
m �

Z
R
U 0 0n m:

The proof of (8.15) is complete.
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As we shall see, the off-diagonal decay provided by (8.15) will not be enough for our
purposes. To obtain a faster decay, we can iterate the above argument, under additional
assumptions on V and U .

Lemma 8.9. Assume that V 2P t
1 and that V 0 is locally integrable at 0. Let U 2 C 1.R/\

C 2.R n ¹0º/ be such that U 00 is locally integrable at 0 and U , U 0 and U 00 have moderate
growth. Then

(8.16) .Em �En/
2
hU n;  mi

D

Z
R
.2V 0U 0 C 2V U 00 � .En CEm/U

00 / n m � 2

Z
R
U 00 0n 

0
m;

where the integrals are absolutely convergent.

Proof. Note that, under our assumptions, the functions  n,  0n and  00n D .V �E/ n are
all continuous on R and have fast decay (see Proposition 7.8), while the function  000n D
V 0 n C .V �E/ 

0
n is continuous on R n ¹0º, locally integrable at 0, and has fast decay.

From (8.15) and (8.13) we deduce that

.Em �En/
2
hU n;  mi D .Em �En/

� Z
R
U 0 n 

0
m �

Z
R
U 0 0n m

�
D

Z
R
U 0 n.� 

00
m C V m/

0
�

Z
R
U 0 0n.� 

00
m C V m/

C

Z
R
U 0.� 00n C V n/

0 m �

Z
R
U 0.� 00n C V n/ 

0
m

D 2

Z
R
V 0U 0 n m C

Z
R
U 0. 0n 

00
m C  

00
n 
0
m �  n 

000
m �  

000
n  m/:(8.17)

All the above integrals are absolutely convergent because of the aforementioned continu-
ity, integrability and decay properties of the eigenfunctions and their derivatives, the local
integrability of V 0, the continuity of U 0 and the moderate growth of V 0 and U 0.

As in the proof of Lemma 8.8, since U 00;  000m 2 L
1
loc, integration by parts gives that

(8.18) �

Z
R
U 0 n 

000
m D

Z
R
U 0 0n 

00
m C

Z
R
U 00 n 

00
m;

and similarly,

(8.19)
Z

R
U 0 0n 

00
m D �

Z
R
U 0 00n 

0
m �

Z
R
U 00 0n 

0
m:

Hence, we can continue the computation in (8.17) and derive that

.Em �En /
2
hU n;  mi

D 2

Z
R
V 0U 0 n m C 2

Z
R
U 0. 0n 

00
m C  

00
n 
0
m/C

Z
R
U 00. 00n m C  n 

00
m/

D 2

Z
R
V 0U 0 n m � 2

Z
R
U 00 0n 

0
m C

Z
R
U 00. 00n m C  n 

00
m/

D

Z
R

�
2V 0U 0 C 2V U 00 � .En CEm/U

00
�
 n m � 2

Z
R
U 00 0n 

0
m;
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where we applied (8.18) and its analogue with n andm swapped in the first equality, (8.19)
in the second equality, and the eigenfunction equation (8.13) in the third equality. This
proves (8.16).

We now combine the identity in Lemma 8.8 and the weightedL2 eigenfunction bounds
in Theorem 7.7 to obtain, under the assumption V 2 P1.�/, the following bound for the
matrix elements associated to U .

Proposition 8.10. Let V 2 P1.�/ and U 2 C 0.R/ \ C 1.R n ¹0º/. For all ˛ > 0 and for
all n;m � 1 with n ¤ m,

jhU n;  mij .�;˛
xU 0
V ˛


1

1

jEn �Emj

s
.En CEm/E

1=2C˛
n E

1=2C˛
m

nm
�

Thus, for every T � 1,

jhU n;  mij .�;T;˛ max
`D0;1

 x`U .`/
V ˛


1

E˛n
1C jm � nj

8n;m W T �1n � m � T n:

Proof. We may assume M D kxU 0=V ˛k1 < 1. Since jU 0.x/j � M jxj�1V.x/˛ and
V 2 P1.�/ with ˛ > 0, from Proposition 6.5 we deduce that U 0 is locally integrable at 0.
Hence, by Lemma 8.8, the Cauchy–Schwarz inequality and Theorem 7.7,

j.Em �En/ hU n;  mij
2

.
� Z

R
jU 0 n 

0
mj

�2
C

� Z
R
jU 0 0n mj

�2
�M 2

� Z
R
jxj�1V ˛  2n �

Z
R
jxj�1V ˛ . 0m/

2
C

Z
R
jxj�1V ˛ . 0n/

2
�

Z
R
jxj�1V ˛  2m

�
.�;˛ M 2 E1C˛n E˛m CE

˛
nE

1C˛
m

j¹V � Enºj j¹V � Emºj
�

Since
p
En j¹V � Enºj '� n by Theorem 7.6, we finally deduce that

j.Em �En/ hU n;  mij .�;˛ M

s
.En CEm/E

1=2C˛
n E

1=2C˛
m

nm
�

If T �1n � m � T n, then Theorem 7.6 and Proposition 7.13 yield the estimate

En

n
jm � nj jhU n;  mij .�;T;˛ M

E1C˛n

n
;

which proves the desired near-diagonal bound, at least for n ¤ m. On the other hand, if
n D m, we have simply

jhU n;  nij � kU=V
˛
k1

Z
R
V ˛ 2n .�;˛ kU=V

˛
k1E

˛
n ;

by Theorem 7.7.
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A faster decay for matrix coefficients is provided by the following lemma, which
exploits the identity of Lemma 8.9 and consequently requires additional conditions on U
and ˛.

Proposition 8.11. Let V 2 P1.�/. Let U 2 C 0.R/\ C 2.R n ¹0º/. For all ˛ > �, and all
n;m � 1 with n ¤ m,

jhU n;  mij .�;˛ max
`D1;2

x`U .`/
V ˛


1

1

.Em �En/2
.En CEm/

p
E1C˛n E1C˛m

nm
�

Thus, for every T � 1,

jhU n;  mij .�;T;˛ max
`D0;1;2

 x`U .`/
V ˛


1

E˛n
1C jm � nj2

8n;m W T �1n � m � T n:

Proof. We may assume M D kxU 0=V ˛k1 C kx2U 00=V ˛k1 < 1. Notice that, under
the assumption V 2 P1.�/, V 0 is locally integrable at 0, because jxj�1V is (see Pro-
positions 6.4 and 6.5). Moreover, jU 0.x/j � M jxj�1V.x/˛ , which tends to 0 as x ! 0

because ˛=� > 1, and consequently U 0 extends to a function in C 0.R/. Furthermore
jU 00.x/j � M jxj�2V.x/˛ , which is locally integrable at 0, because ˛=� > 1. Hence, by
Lemma 8.9, the Cauchy–Schwarz inequality and Theorem 7.7,

j.Em �En/
2
hU n;  mij

2

.
� Z

R
.jV 0jjU 0j C V jU 00j/j n mj C .En CEm/

Z
jU 00 n mj C

Z
R
jU 00 0n 

0
mj

�2
.M 2

h Z
R
jxj�2 V ˛C1  2n �

Z
R
jxj�2 V ˛C1  2m

C .En CEm/
2

Z
R
jxj�2 V ˛  2n �

Z
R
jxj�2 V ˛  2m

C

Z
R
jxj�2 V ˛ . 0n/

2
�

Z
R
jxj�2 V ˛ . 0m/

2
i

.�;˛ M 2 E
1C˛
n E1C˛m C .En CEm/

2E˛nE
˛
m

j¹V � Enºj2 j¹V � Emºj2
'� M

2 .En CEm/
2E1C˛n E1C˛m

n2m2
;

since
p
En j¹V � Enºj '� n by Theorem 7.6; the fact that ˛=� > 1 was used in the

application of Theorem 7.7.
If T �1n � m � T n, then, by arguing as in the proof of Proposition 8.10, we get

E2n
n2
jm � nj2 jhU n;  mij .�;˛;T M

E2C˛n

n2
;

and the remaining bound follows for n ¤ m; the on-diagonal bound for n D m is already
proved in Proposition 8.10.

Remark 8.12. The assumption ˛ > � in Proposition 8.11 may be relaxed for particular
potentials V . For example, if V satisfies, for some exponent d > 0, the reverse doubling
condition

(8.20) V.�x/ & �dV.x/ 8x 2 R; 8� � 1;
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then we can run the same proof for any ˛ > 1=d (indeed, under (8.20), the function
W.x/D jxj�2V.x/˛ satisfies the condition (7.7) of Theorem 7.7 whenever ˛ > 1=d ). The
choice d D 1=� in (8.20) is always possible for any V 2 P1.�/ in light of Proposition 6.5,
but a specific V may satisfy (8.20) for some larger exponent d as well (e.g., in the case
V.x/ ' jxjd ). However, the implicit constants in the resulting matrix bounds would then
also depend on d and the implicit constant in (8.20).

8.6. Off-diagonal decay: the interpolation argument

We note that Proposition 8.10 can be applied to U D V ˛ for any ˛ > 0; in particular, when
˛ D 1, we obtain some bounds for the matrix P.V /, which however will not be enough
for our purposes in the near-diagonal region.

Proposition 8.11 in principle would provide better bounds. However it cannot be dir-
ectly applied to U D V ˛ without additional smoothness assumptions on V ; moreover,
one cannot take ˛ D 1 when � is too large, thus preventing in general its direct applic-
ation to the matrix P.V /. Nevertheless, an interpolation argument allows us to weaken
the smoothness requirements and remove the restrictions on ˛, while still yielding an
improved near-diagonal decay compared to the one given by Proposition 8.10.

In order to run the interpolation argument, it is convenient to introduce the follow-
ing quantity, which, roughly speaking, should be thought of as interpolating between
the “weighted Cm norms” max`D0;:::;m kx`U .`/=V ˛k1 of U used in Propositions 8.10
and 8.11 with m D 1 and m D 2, respectively.

Definition 8.13. Let V 2 P1.�/. Let � 2 C1c .R
C/ be any nontrivial cutoff. Define, for

any s > 0 and any continuous U WR! C,

kU kV;s D sup
t¤0

V.t/�1 kU.t �/�kBs1;1 ;

where Bs1;1.R/ denotes the Besov space of Lebesgue indices1;1 and order s.

Remark 8.14. The norm k � kV;s is defined analogously to the local scale-invariant Sobo-
lev norm appearing in the smoothness condition (1.1) of Mihlin–Hörmander type; the
main difference is the presence of the weighting factor V.t/, which, while not constant,
nevertheless satisfies V.t/'� V.t 0/ whenever jt j ' jt 0j. In particular, it is easily seen that
different choices of the cutoff � give rise to equivalent norms k � kV;s , and moreover one
can restrict the supremum to a discrete set of scales, namely

kU kV;s '�;s;� sup
t2D

V.t/�1 kU.t �/�kBs1;1 ;

where D D ¹˙2n W n 2 Zº, provided the set ¹� ¤ 0º where � does not vanish is suf-
ficiently large that

S
n2Z 2

n¹� ¤ 0º D RC (cf., e.g., Proposition 2.4.1 in [40]). As a
consequence, the Banach space determined by the norm k � kV;s is a retract of the sequence
space `1..V .t/�1Bs1;1.R//t2D/ via the maps

U 7! .U.t �/�/t2D; .Ut /t2D 7!
X
t2D

. Q�Ut /.t
�1
�/;
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where �; Q� 2 C1c .R
C/ are chosen so that

P
n2Z �.2

n�/ D 1 on RC, and Q�� D � (see
Section 6.4 in [5] and Section 1.18.1 in [66] for information on retracts and vector-valued
sequence spaces in the context of interpolation theory).

Remark 8.15. If s > 0 is not an integer and m D bsc, then

kU kV;s '�;s max
`D0;:::;m

x`U .`/
V


1
C sup
t¤0; jhj�1

jU .m/.eht / � U .m/.t/j

jhjs�m jt j�mV.t/
�

This is easily proved as a consequence of the characterisation of the Besov spaceBs1;1.R/
in terms of finite differences (see Theorem 6.2.5 in [5]). In particular, from kU kV;s <1
we deduce that U 2 C 0.R/ \ Cm.R n ¹0º/.

We can now state the near-diagonal bound for the matrix associated to U , which inter-
polates between those in Propositions 8.10 and 8.11.

Proposition 8.16. Let V 2P1.�/. Then, for all ˛ > 0 and s > 1, there exists "D ".�;˛; s/
> 0 such that, for all continuous U WR! C with kU kV ˛ ;s <1 and all T � 1,

jhU n;  mij .�;˛;s;T kU kV ˛ ;s
E˛n

1C jm � nj1C"
8n;m W T �1n � m � T n:

Proof. Let ˛ > 0 and s > 1. Choose any ˛0 2 .0; ˛/ and s0 2 .1; s/. Then we can find
� 2 .0; 1/ sufficiently small that, if ˛1 and s1 are defined by the equations

˛ D .1 � �/˛0 C �˛1 and s D .1 � �/s0 C �s1;

then ˛1 > � and s1 > 2.
Let T � 1. Since s0 > 1 and ˛0 > 0, from Proposition 8.10 and Remark 8.15 we

deduce the bound

jhU n;  mij .�;˛0;s0;T kU kV ˛0 ;s0
E
˛0
n

1C jm � nj
8n;m W T �1n � m � T n

for all continuous U WR! C with kU kV ˛0 ;s0 <1. Similarly, since s1 > 2 and ˛1 > �,
from Proposition 8.11 and Remark 8.15 we deduce the bound

jhU n;  mij .�;˛1;s1;T kU kV ˛1 ;s1
E
˛1
n

1C jm � nj2
8n;m W T �1n � m � T n

for all continuous U WR ! C with kU kV ˛1 ;s1 < 1. Interpolation of these two bounds
(using the upper complex method) yields the bound

jhU n;  mij .�;˛;s;T kU kV ˛ ;s
E˛n

1C jm � nj1C�
8n;m W T �1n � m � T n;

as desired.
To justify the previous interpolation, in light of Remark 8.14 above and Theorem 6.4.2

in [5], it is enough to prove that

.`1..V .t/�˛0Bs01;1.R//t2D/; `
1..V .t/�˛1Bs11;1.R//t2D//

Œ��

D `1..V .t/�˛Bs1;1.R//t2D/:
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Here we write .�; �/Œ�� and .�; �/Œ�� for the lower and upper complex interpolation functors.
The previous identity follows by duality (Theorem 4.5.1 in [5]) from the fact that

.`1..V .t/˛0B
�s0
1;1 .R//t2D/; `

1..V .t/˛1B
�s1
1;1 .R//t2D//Œ��

D `1...V .t/˛0B
�s0
1;1 .R/; V .t/

˛1B
�s1
1;1 .R//Œ��/t2D/ D `

1..V .t/˛B�s1;1.R//t2D/;

which in turn is a consequence of §1.18.1 in [66] and Theorem 6.4.5 in [5].

8.7. Off-diagonal decay: bounds for A and P

As a consequence of the theory developed in the previous sections, we can prove the far-
diagonal estimate (8.4) for A.V / stated in Theorem 8.2, and the near-diagonal bound for
P.V / stated in Theorem 8.4.

We first prove that, if V 2 P1.�/, then, for all T > 1,

(8.21) jAnm.V /j .�;T
1
p
nm

�Em
En

�3=4
; 8n;m W n � Tm;

and

(8.22) jPnm.V /j .�;T
En

1C jm � nj
8n;m W T �1n � m � T n:

Indeed, by Proposition 8.10, applied with U D V and ˛ D 1, we directly obtain the bound
(8.22), as well as the bound

(8.23) jPnm.V /j .�
1

jEn �Emj

s
.En CEm/E

3=2
n E

3=2
m

nm

for all m ¤ n. Now, if n � Tm, we have that n �m 'T n (recall that T > 1), and thus
En �Em '�;T En by Theorem 7.6. Hence (8.23) and Proposition 8.1 give (8.21).

We now prove that, under the stronger assumption V 2 P1C� .�/ for some � 2 .0; 1/,
there exists " D ".�; �/ > 0 such that, for all T � 1,

jPnm.V /j .�;�;T
En

1C jm � nj1C"
8n;m W T �1n � m � T n:

For this it is enough to note that, if V 2P1C� .�/, then kV kV;1C�.�;� 1 (see Remark 8.15).
So the desired bound follows from Proposition 8.16 applied with U D V , s D 1C � , and
˛ D 1.

8.8. `2-boundedness of the far-diagonal part of jAj

Here we complete the proof of Theorem 8.2, by showing how the `2-boundedness of
jA.V /j ˇ FT can be deduced from the estimate (8.4) on its matrix components.

To this purpose, it is convenient to introduce the following norms for complex-valued
sequences.
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Definition 8.17. Let V 2 P1.�/ and ˛ 2 R. Define

kEvk.V;˛/ D sup
E>0

E�˛
s X
n WEn.V /2ŒE;2E�

jvnj2

for all Ev D .vn/n�1 2 CNC .

Some useful properties of the above norms are collected below. We point out that, for
the specific purpose of studying `2-boundedness, the case ˛ D 0 of the following lemma
would be enough. However, allowing for more general ˛ 2 R here will prove useful in
Sections 8.9 and 8.10 below.

Lemma 8.18. Let V 2 P1.�/.

(i) If ˛ > 0, then

kEvk.V;˛/ '˛ sup
E>0

E�˛
s X
n WEn.V /2Œ0;E�

jvnj2

for all Ev 2 CNC .

(ii) For all ˛ 2 R,
k.En.V /

˛=
p
n/n2NCk.V;˛/ .�;˛ 1:

(iii) Let ı; C > 0. Let the matrix M satisfy the bounds

jMnmj �
C
p
nm

�min¹En.V /; Em.V /º
max¹En.V /; Em.V /º

�ı
for all n;m 2 NC. Then, for all ˛ 2 .�ı; ı/, the bounds

j.M:Ev/nj .�;ı;˛ CkEvk.V;˛/
En.V /

˛

p
n

;(8.24)

kM:Evk.V;˛/ .�;ı;˛ CkEvk.V;˛/;(8.25)
kM:Evk`2 .�;ı CkEvk`2(8.26)

hold for all Ev 2 CNC and n 2 N.

Proof. Let us first prove part (i). The estimate .˛ is trivial. As for the opposite estimate,
for all E > 0,X

n WEn2Œ0;E�

jvnj
2
D

X
j2N

X
n WEn2Œ2�j�1E;2�jE�

jvnj
2 .˛ E2˛ kEvk2.V;˛/

X
j2N

2�2 j̨ ;

and the desired estimate follows because ˛ > 0.
We now prove part (ii). Clearly, for all E > 0,X

En2ŒE;2E�

E2˛n
n
'˛ E

2˛
X

En2ŒE;2E�

1

n
;
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hence the desired estimate follows once we check that

(8.27) sup
E>0

X
En2ŒE;2E�

1

n
.� 1:

This however is an immediate consequence of the fact that, by Proposition 7.13, ifEn;Em
2 ŒE; 2E� for some E > 0, then n=m '� 1.

Finally, let us prove part (iii). Clearly, we may assume C D 1. For all n 2 NC,

j.M:Ev/nj �
X
m

1
p
mn

�min¹En; Emº
max¹En; Emº

�ı
jvmj

.ı
1
p
n

X
j2Z

2�ıjj j
X

m WEm2Œ2jEn;2jC1En�

jvmj
p
m
:

Hence, by applying the Cauchy–Schwarz inequality to the inner sum and (8.27),

j.M:Ev/nj .�;ı
1
p
n

X
j2Z

2�ıjj j
s X
m WEm2Œ2jEn;2jC1En�

jvmj2

�
E˛n
p
n
kEvk.V;˛/

X
j2Z

2�jj jıCj˛ .ı;˛
E˛n
p
n
kEvk.V;˛/;

which proves (8.24).
The bound (8.25) is an immediate consequence of (8.24) and part (ii).
To prove (8.26), we apply Schur’s test to M with testing sequence vn D 1=

p
n; since

kEvk.V;0/ .� 1 by part (ii), the desired bound follows from (8.24) applied with ˛ D 0.

In light of the far-diagonal decay (8.4) of A.V /, we can apply Lemma 8.18(iii) with
ı D 3=4 and M D jA.V /j ˇ FT , and deduce the bound kjA.V /j ˇ FT k`2!`2 .�;T 1 for
all T > 1 and V 2 P1.�/. This concludes the proof of Theorem 8.2.

8.9. Spectral projector bounds: eigenfunctions

Here we prove the first estimate in Theorem 8.5, namely, the bound (8.8) for the eigen-
functions  n of H ŒV � D �@2x C V .

The integral kernel of the spectral projector 1Œ0;E0�.H ŒV �/ is given by

K.x; y/ D
X

En2Œ0;E0�

 n.x/ n.y/:

Thus the quantity

sup
x2R

Z
R
K.x; y/2 dy D sup

x2R

X
En2Œ0;E0�

 n.x/
2

represents the square of the L2 ! L1 operator norm of 1Œ0;E0�.H ŒV �/.
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Since this operator is self-adjoint, this is the same as its L1 ! L2 operator norm,
which can be estimated as follows:

k1Œ0;E0�.H ŒV �/f kL2.R/ � eke
�H ŒV �=E0f kL2.R/ � eke

@2x=E0 jf jkL2.R/

� e
�8�
E0

��1=4
kf kL1.R/;

where in the second inequality we used the Feynman–Kac formula (see, e.g., Theorem 6.2
in [62]), and in the third inequality, a Euclidean heat kernel bound (see p. 60 in [16]). This
completes the proof of the uniform boundX

En2Œ0;E0�

j n.x/j
2 .

p
E0:

It remains to prove the exponential decay for large jxj.
By Theorem 7.7, if V.x/ � 4E0, thenX

En2Œ0;E0�

j n.x/j
2 .�

� X
En2Œ0;E0�

1

j¹V � Enºj

�
e�c.�/jxj

p
V.x/:

Moreover, j¹V � Enºj
p
En '� n by Theorem 7.6, hence

(8.28)
X

En2Œ0;E0�

1

j¹V � Enºj
'�

X
En2Œ0;E0�

p
En

n
.�

p
E0;

where Lemma 8.18(i)–(ii) was used with ˛ D 1=4, and the desired estimate follows.

8.10. Spectral projector bounds: differentiated eigenfunctions

Here we complete the proof of Theorem 8.5, by proving the bound for the “modified
differentiated eigenfunctions” �n D �n.� IV / defined in (8.9).

We first prove the uniform boundX
En2Œ0;E0�

j�n.x/j
2 .�;T0

p
E0 :

By (8.9) and Lemma 8.18(i), this would follow from the bound

k.FT0 ˇ A.V //: E .x/k.V;1=4/ .�;T0 1;

where E .x/ D . n.x//n�1. In light of Theorem 8.2 and Lemma 8.18(iii), we can apply
the estimate (8.25) with M D FT0 ˇ A.V /, ı D 3=4 and ˛ D 1=4; hence the desired
uniform bound is a consequence of the bound k E .x/k.V;1=4/ .� 1, which is the uniform
bound for the  n proved in Section 8.9.

To prove the exponential decay part of the statement, we now decompose �n as �n C
.�n � �n/, and consider the two summands separately.
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First, the same argument used in Section 8.9 to prove the exponential decay for the n,
using Proposition 8.6 in place of Theorem 7.7, yieldsX

En2Œ0;E0�

j�n.x/j
2 .�

p
E0 e

�c.�/jxj
p
V.x/

for every x such that V.x/ � 4E0. Next, by (8.9),

�n.x/ � �n.x/ D
X
m

.NT0 ˇ A.V //nm  m.x/;

so X
En2Œ0;E0�

j�n.x/ � �n.x/j
2
D

X
En2Œ0;E0�

ˇ̌̌ X
T�10 n�m�T0n

Anm.V / m.x/
ˇ̌̌2

.�
X

En2Œ0;E0�

n2
X

T�10 n�m�T0n

 m.x/
2;

by the Cauchy–Schwarz inequality and Theorem 8.2.
By Proposition 7.13, m 2 ŒT �10 n; T0n� implies Em 2 Œ2�`1En; 2`1En� for some `1 D

`1.�; T0/ 2 N. If V.x/ � 2`1C2E0, then

(8.29) n '�
p
En j¹V � Enºj .� jxj

p
V.x/

whenever En � E0, by Theorem 7.6. Moreover, if En 2 Œ0; E0� and V.x/ � 2`1C2E0,
then X

T�10 n�m�T0n

 m.x/
2
�

X
Em2Œ0;2

`1En�

 m.x/
2 .�;T0

p
En e

�c.�/jxj
p
V.x/

by (8.8). Hence, if V.x/ � 2`1C2E0, thenX
En2Œ0;E0�

n2
X

T�10 n�m�T0n

 m.x/
2 .�;T0 e�c.�/jxj

p
V.x/

X
En2Œ0;E0�

n2
p
En

.� e�c.�/jxj
p
V.x/

�
jxj
p
V.x/

�3 X
En2Œ0;E0�

p
En

n
.�

p
E0 e

�
c.�/
2 jxj

p
V.x/;

where (8.29) and (8.28) were applied in the last two inequalities.
This proves the desired estimate with T1 D 2`1C2.

9. Proof of the weighted Plancherel estimate

The aim of this section is to prove the “weighted Plancherel estimate” of Theorem 4.1
and Remark 4.2 in the case where q D 1 and V satisfies the assumptions (1.6) for some
� 2 .0; 1/, that is, when V belongs to the class P1C� .�/ introduced in Definition 8.3 for
some � � 1. Note that any V 2 P1C� .�/ (more generally, any V 2 P1.�/) satisfies the
assumption (3.2) withD D � (see Proposition 6.5); so Theorem 4.1 applies to such V and,
combined with the result below, proves Theorem 1.1.
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Theorem 9.1. Assume that V 2 P1C� .�/ for some � 2 .0; 1/ and � � 1. Let L be the
Grushin operator on R2 associated to V , as in (3.1). Then, for all  2 Œ0; 1=2/ and r > 0,
the estimate

ess sup
z02R2

r2�2 max¹V.r/;V .x0/º1=2�
Z

R2

jy � y0j2
ˇ̌
Km.r2L/.z; z

0/
ˇ̌2
dz .�;�; kmk2L1 ;

where z D .x; y/ and z0 D .x0; y0/, holds for all continuous mWR! C with supp m �
Œ�1; 1�. The analogous estimate with  D 0 holds more generally for any V 2 P1.�/.

We note that a sharper result, where L1 is replaced by L2 , is proved in [42] in the
case where V.x/ D x2, and a similar sharpening for arbitrary V 2 P1C� .�/ is discussed
in [15].

9.1. Preliminaries

We denote by .�; �/ the `2.NC/-scalar product and by k � k the associated norm. For a
vector Ea D .an/n�1 and a function F of one variable, we write F.Ea/ WD .F.an//n�1. We
also set

(9.1) diag Ea D .ınman/n;m�1 and inc Ea D .an � am/n;m�1

(respectively, the diagonal matrix and the increment matrix associated to Ea). Recall that,
if B and B0 are matrices, Bˇ B0 is their Schur product (8.2), while jBj denotes the com-
ponentwise modulus of B.

Let L be the Grushin operator defined in (3.1), associated to a function V 2 P . The
self-adjoint operator L commutes with the differential operator �@2y on R2, and the two
operators have a joint functional calculus on L2.R2/ in the sense of the spectral theorem,
which can be conveniently analysed by taking the partial Fourier transform in the vari-
able y. Indeed, if we write, for any sufficiently regular function f on R2 and x; � 2 R,

f �.x/ WD

Z
R
f .x; y/ e�i�y dy;

then
.Lf /� D H Œ�2V �f � and .�@2yf /

�
D �2f � ;

where, for all � 2 RC, H Œ�V � is the Schrödinger operator defined in (7.1). Consequently,

(9.2) .G.L;�@2y/f /
�
D G.H Œ�2V �; �2/f �

for all bounded Borel functions GWRC0 �RC0 ! C.
As in Section 7, we consider the eigenvalues En.�V / and eigenfunctions  n.� I �V /

associated to H Œ�V �. Moreover, as in Section 8.10, it is convenient to introduce the infinite
vector

E .xI �V / D . n.xI �V //n�1:

Whenever M.�/ D .Mnm.�//n;m�1 is a � -dependent infinite matrix, we define, at least
formally,

(9.3) kM.x
0; xI �/ D

�
M.�/: E .xI �V /; E .x0I �V /

�
:
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In other words, kM.�; �I �/ is the integral kernel of the operator on L2.R/ whose matrix is
M.�/ with respect to the basis . n.� I �V //n�1.

By using the above matrix notation, we can conveniently express the formula for the
integral kernel of an operator G.L;�@2y/ in the joint functional calculus of L and �@2y ,
which is an elementary consequence of (9.2).

Proposition 9.2. For any bounded and compactly supported Borel function GWRC0 �
RC0 ! C, the integral kernel KG.z0; z/ of G.L;�@2y/ is given by

KG.z
0; z/ D

1

2�

Z
R
kM.x

0; xI �2/ ei�.y
0�y/ d� .z D .x; y/; z0 D .x0; y0//;

where

(9.4) M.�/ WD diagG. EE.�V /; �/:

In light of the above formula, multiplication by .y0�y/ of the integral kernelKG.z0; z/
corresponds to differentiation in � of kM.x

0; xI �2/. Thanks to the matrix notation, the
result of this differentiation can be expressed in a particularly concise form. Recall that
A.�V / is the matrix associated to �V defined in Section 8.

Proposition 9.3. If kM is given by (9.3) for some M DM.�/, then

(9.5) � @� kM.x
0; xI �/ D kDŒM�.x

0; xI �/;

where

(9.6) DŒM� WD � @�MC ŒM;A.�V /�:

Moreover, if M.�/ D diag Ea.�/, then

(9.7) DŒM�.�/ D diag �@� Ea.�/C A.�V /ˇ inc Ea.�/:

Proof. In light of (9.1), formula (9.7) is just a rewriting of (9.6) in the case M is a diagonal
matrix. We are left with the proof of (9.5) for an arbitrary M.

Note that, by the definition of A.�V /,

�@� E .�; �V / D A.�V /: E .�; �V /:

Hence, by (9.3) and the Leibniz rule,

�@� kM.x
0; xI �/ D

�
.�@�M.�//: E .xI �V /; E .x0I �V /

�
C
�
M.�/:A.�V /: E .xI �V //; E .x0I �V /

�
C
�
M.�/: E .xI �V /;A.�V /: E .x0I �V /

�
:

Since A.�V / is skew-adjoint (see Proposition 8.1), the desired formula follows.

By combining the previous formulas, the Plancherel theorem for the Fourier transform
in y, and the orthonormality of the eigenfunctions  n.�; �V /, we immediately obtain the
following “weighted Plancherel identities” for the integral kernelKG of an operator in the
joint functional calculus of L and �@2y , which will be the starting point for our analysis.
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Proposition 9.4. If KG and M are as in Proposition 9.2, thenZ
R2

jKG.z
0; z/j2 dz0 D

1

2�

Z 1
0

kM.�/: E .xI �V /k2 �1=2
d�

�

and Z
R2

.y0 � y/2 jKG.z
0; z/j2 dz0 D

2

�

Z 1
0

kDŒM�.�/: E .xI �V /k2 ��1=2
d�

�
�

9.2. Decompositions

Let V 2P1.�/ and m2C1c .Œ�1;1�/. In order to analyse the operator m.L/ and its integral
kernel, it is convenient to introduce a dyadic decomposition along the spectrum of �@2y .

Namely, let � 2 C1c .Œ1; 4�/ be such that
P
j2Z �.2

j �/ D 1. We set

(9.8) GA.�; �/ WD m.�/ �.A�/;

where A > 0 is a parameter. Here, � is the variable in the spectrum of L, and � D �2 is
the variable in the spectrum of �@2y .

In this case, the matrix given by Proposition 9.2 is

(9.9) M.�/ D diagGA. EE.�V /; �/ D �.A�/ �M1.�/;

where

(9.10) M1.�/ WD diag m. EE.�V //;

and Proposition 9.4 yields

(9.11)
Z

R2

jKGA.z
0; z/j2 dz0 . A�1=2

Z 4A�1

A�1
kM1.�/: E .xI �V /k

2 d�

�
:

We now obtain a similar expression for the analogous integral with weight .y0 � y/2.
By the Leibniz and chain rules,

�@� .GA.En.�V /; �// D z�.A�/ �m.En.�V //C �.A�/ �m0.En.�V // � Fn.�V /;

where z�.x/ D x�0.x/, and Fn.�V / is as in (7.3). Thus, by Proposition 9.3,

DŒM�.�/ D z�.A�/ �M1.�/C �.A�/

4X
kD2

Mk.�/;

where M1.�/ is as in (9.10), while

M2.�/ WD diag m0. EE.�V //ˇ diag EF .�V /;(9.12)

M3.�/ WD Nˇ A.�V /ˇ inc m. EE.�V //;(9.13)

M4.�/ WD Fˇ A.�V /ˇ inc m. EE.�V //:(9.14)
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Here N and F denote the cutoff matrices NT and FT of Section 8, with T D 2. Then
Proposition 9.4 yields

(9.15)
Z

R2

.y0 � y/2 jKGA.z
0; z/j2 dz0 . A1=2

4X
kD1

Z 4A�1

A�1
kMk.�/: E .xI �V /k

2 d�

�
�

In light of (9.11) and (9.15), we are reduced to estimating the quantities

(9.16) sup
�2ŒA�1;4A�1�

kMk.�/: E .xI �V /k
2:

for kD 1;2;3;4. This is discussed in Sections 9.3 to 9.5 below, where the estimates proved
in the previous Sections 7 and 8 will play a fundamental role. In applying those estimates,
it is crucial to remember that, if V 2 P1C� .�/ for some � 2 Œ0; 1/ and � > 1, then the
scaled potentials �V belong to the same class P1C� .�/ for all � > 0. A useful tool in the
upcoming discussion is an elementary strengthening of Theorem 8.5, which we state here
for convenience.

Lemma 9.5. Let V 2 P1.�/. Then, for all A;E > 0 and x 2 R,

sup
��A�1

X
En.�V /2Œ0;E�

 n.xI �V /
2 .�

p
E
�
1V�4AE .x/C e�c.�/A

�1=2jxj
p
V.x/ 1V�4AE .x/

�
:

Moreover, if �n is defined as in Theorem 8.5 with T0D 2, then, for allA;E > 0 and x 2R,

sup
��A�1

X
En.�V /2Œ0;E�

�n.xI�V /
2.�
p
E
�
1V�T1AE .x/C e

�c.�/A�1=2jxj
p
V.x/ 1V�T1AE .x/

�
;

where T1 D T1.�/.

9.3. The diagonal bounds

Here we continue to assume V 2 P1.�/, and consider the terms (9.16) with k D 1; 2. First
of all, since supp m � Œ�1; 1�,

sup
�2ŒA�1;4A�1�

kM1.�/: E .xI �V /k
2
D sup
�2ŒA�1;4A�1�

X
n�1

jm.En.�V //j2  n.xI �V /2

� kmk21 sup
�2ŒA�1;4A�1�

X
En.�V /2Œ0;1�

 n.xI �V /
2

.� kmk21
�
1V�4A.x/C e�c.�/A

�1=2jxj
p
V.x/ 1V�4A.x/

�
;

(9.17)

by Lemma 9.5.
We can treat similarly the term involving M2. In fact, by Theorem 7.3, 0 � Fn.�V / �

En.�V / and thus, if we define zm by

zm.�/ WD �m0.�/;
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then

sup
�2ŒA�1;4A�1�

kM2.�/: E .xI �V /k
2

.� kemk21 �1V�4A.x/C e�c.�/A
�1=2jxj

p
V.x/ 1V�4A.x/

�
.� km0k21

�
1V�4A.x/C e�c.�/A

�1=2jxj
p
V.x/ 1V�4A.x/

�
;

(9.18)

where we used again that supp m � Œ�1; 1�.

9.4. Terms far from the diagonal

Here we consider the term (9.16) with k D 4, still under the assumption V 2 P1.�/. In
view of (9.14), the modulus of the nth entry of M4.�/: E .xI �V / isˇ̌̌ X

m2Œ1;n=2/[.2n;1/

Anm.�V / .m.En.�V // �m.Em.�V ///  m.xI �V /
ˇ̌̌

� kmk1
�

1En.�V /2Œ0;1� j�n.xI �V /j

C

X
m2Œ1;n=2/[.2n;1/

jAnm.�V / 1Em.�V /2Œ0;1�  m.xI �V /j
�
;

where we used the definition (8.9) of �n. Thus, from the (uniform in � ) `2-boundedness
of jA.�V /j ˇ F proved in Theorem 8.2, we deduce that

kM4.�/: E .xI �V /k
2 .� kmk21

� X
En.�V /2Œ0;1�

j�n.xI �V /j
2
C

X
En.�V /2Œ0;1�

j n.xI �V /j
2
�
:

Hence, by Lemma 9.5,

(9.19) sup
�2ŒA�1;4A�1�

kM4.�/: E .xI �V /k
2

.� kmk21
�
1V�T2A.x/C e

�c.�/A�1=2jxj
p
V.x/ 1V�T2A.x/

�
;

where T2 D max¹4; T1º depends only on �.

9.5. The near-diagonal bound

Finally, we consider the term (9.16) with k D 3. For this bound we use the stronger
assumption V 2 P1C� .�/ for some � 2 .0; 1/.

In view of (9.13), the modulus of the .n;m/-entry of M3.�/ is

1n=2�m�2n jAnm.�V /j jm.En.�V // �m.Em.�V //j:

Notice that m.En.�V // � m.Em.�V // vanishes unless Em.�V / 2 Œ0; 1� or En.�V / 2
Œ0; 1�. In the latter case Proposition 7.13 implies Em.�V / 2 Œ0; S�, where S D S.�/ � 1.
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Hence, by Proposition 8.1 and Theorem 8.4,

j.M3/nm.�/j � km0k1 1n=2�m�2n jAnm.�V /j jEn.�V / �Em.�V /j 1Em.�V /2Œ0;S�
D km0k1 1n=2�m�2n jPnm.�V /j 1Em.�V /2Œ0;S�

.�;� km0k1
1

1C jm � nj1C"
1Em.�V /2Œ0;S�;

where " D ".�; �/ > 0. Applying Schur’s test yields

kM3.�/: E .xI �V /k
2 .�;�;T km0k21

X
Em.�V /2Œ0;S�

j m.xI �V /j
2:

Notice that in applying Theorem 8.4 we used the fact that the potentials �V belong to the
same class P1C� .�/ for all � > 0. Another application of Lemma 9.5 yields

(9.20) sup
�2ŒA�1;4A�1�

kM3.�/: E .xI �V /k
2

.�;� km0k21
�
1V�4AS .x/C e�c.�/A

�1=2jxj
p
V.x/ 1V�4AS .x/

�
;

where, as noted above, S D S.�/.

9.6. Conclusion

Assume that V 2P1C� .�/ for some � 2 .0; 1/. By combining (9.11) and (9.17), we obtain
thatZ

R2

jKGA.z
0; z/j2 dz0 .� A�1=2 kmk21

�
1V�T3A.x/C e

�c.�/A�1=2jxj
p
V.x/ 1V�T3A.x/

�
:

Similarly, from (9.15), (9.17), (9.18), (9.20), and (9.19) we deduce thatZ
R2

.y0 � y/2jKGA.z
0; z/j2 dz0

.�;� A1=2
�
kmk21 C km

0
k
2
1

��
1V�T3A.x/C e

�c.�/A�1=2jxj
p
V.x/ 1V�T3A.x/

�
:

Here T3 WD max¹4S; T2º depends only on �. Interpolation of the above two estimates
yields

(9.21)
Z

R2

jy0 � yj2 jKGA.z
0; z/j2 dz0

.�;�; kmk2L1 A
�1=2

�
1V�T3A.x/C e

�c.�/A�1=2jxj
p
V.x/ 1V�T3A.x/

�
for every  2 Œ0; 1�. We note that, as discussed in Section 9.3, the estimate at the endpoint
 D 0 is valid more generally for V 2 P1.�/.

When  < 1=2, we can sum the interpolated estimates (9.21) corresponding to differ-
ent scales A to obtain an estimate for Km.L/. Indeed, by (9.8),

(9.22) Km.L/ D
X
j2Z

KG
2j
:
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Moreover, in light of Proposition 9.2, formula (9.9) and the support conditions supp m �
Œ�1; 1� and supp � � Œ1; 4�, the kernel KGA vanishes identically unless there is a � 2
ŒA�1; 4A�1� such that E1.�V / � 1; by Proposition 7.13(ii) (applied to the potentials �V
with E D 1), this in turn implies that KGA D 0 unless A � aV.1/, where a D a.�/ > 0,
and the sum in (9.22) can be restricted accordingly.

Hence, if  < 1=2, by (9.21) and the triangle inequality,� Z
R2

jy0 � yj2 jKm.L/.z
0; z/j2 dz0

�1=2
�

X
j W2j�aV.1/

� Z
R2

jy0 � yj2 jKG
2j
.z0; z/j2 dz0

�1=2
.�;�; kmkL1

X
j W2j�aV.1/

2
j
2 .�1=2/

�
1V�T32j .x/C e

�c.�/2�j=2jxj
p
V.x/ 1V�T32j .x/

�
. kmkL1

� X
j W2j�max¹T�13 V.x/;aV.1/º

2
j
2 .�1=2/ C e�c.�/T

1=2
3 jxj

X
j W2j�aV.1/

2
j
2 .�1=2/

�
.;� kmkL1

�
max¹V.1/; V .x/º=2�1=4 C V.1/=2�1=4 e�c.�/T

1=2
3 jxj

�
.;� kmkL1 max¹V.1/; V .x/º=2�1=4;

where the last estimate follows from the fact that

V.x/ '� V.jxj/ .� V.1/ .1C jxj/� .�;ˇ V.1/ eˇ jxj

for all ˇ > 0, by Proposition 6.5.
This proves the weighted Plancherel estimate of Theorem 9.1 in the case r D 1. In the

general case, define

Vr .x/ D r
2V.rx/ and Lr D �@

2
x � Vr .x/@

2
y ;

and observe that Vr 2 P1C� .�/ for any r > 0. Moreover, if Tr is the isometry of L2.R2/
defined by

Trf .x; y/ D r
�1=2f .x=r; y/;

then it is immediately checked that .r2L/Tr D TrLr , whence

Km.r2L/..x
0; y0/; .x; y// D r�1Km.Lr /..x

0=r; y0/; .x=r; y//

and the desired estimate for L and arbitrary r > 0 easily follows by applying the previous
estimate to Lr .
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