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Abstract. Machine learning techniques have been revealed to be useful in damage 

identification applications, exploiting, for example, algorithms able to detect 

anomalies in the monitored data. However, these datasets are not always enough to 

train a damage classifier reliably. This happens because the lack, or the low number 

of labelled data, produces outcomes prone to overfitting and bias (due to the low 

attainable statistical significance of the dataset). To avoid this problem, Transfer 

Learning technique can be exploited to make up for the lack of data available on a 

structure (target) using data recorded on another structural system (source), more or 

less similar, which is rich in data referring to the same structural behavior to be 

classified (e.g., damage detection in columns due to crack propagation). 

In this work, a specific sub-application of Transfer Learning, named Transfer 

Component Analysis technique, is exploited on a benchmark system (numerically or 

experimentally) represented by a three-story aluminum scaled structure, subjected to 

increasing damage and mass variation over the three different floors. Special emphasis 

will be given to how accuracy is affected by data distribution, and in more detail, the 

authors will show how the increase in accuracy is related to the type of damage to be 

classified. 

Keywords: Damage identification; Machine Learning; Domain adaptation; Transfer 

Learning; Multi-class damage detection. 

M
or

e 
in

fo
 a

bo
ut

 th
is

 a
rti

cl
e:

ht
tp

s:
//w

w
w

.n
dt

.n
et

/?
id

=2
97

91
e-Journal of Nondestructive Testing - ISSN 1435-4934 - www.ndt.net

https://doi.org/10.58286/29791

https://creativecommons.org/licenses/by/4.0/


2 

Introduction  

Detecting structural damage is a crucial aspect of Structural Health Monitoring (SHM) across 

civil, mechanical, and aerospace engineering. Modal parameters such as natural frequencies 

provide vital insights into structural characteristics like stiffness and mass. Continuous 

monitoring of these parameters aims to detect deviations indicating structural anomalies. The 

increasingly manageable availability of monitoring data is leading to a notable need to rely 

on efficient computationally algorithms that are able to process data and provide a result that 

is easily interpretable by SHM technicians. To address this, Machine Learning (ML) 

techniques are utilized to analyze the data without requiring a numerical model of the 

structure. In this regard, structural monitoring can be classified into two broad approaches: 

model-based and data-driven. 

Model-based SHM relies on the use of mathematical models, capable to simulate the 

physical behavior in presence of specific issues (e.g., structural, thermal, etc.). To this aim, 

often Finite Element (FE) models [1], that discretize the continuum and interpolate the results 

with specific polynomial functions, are employed. The advantage of this approach lies in the 

variety of correlated data, providing a causal relationship between the quantity of input and 

output. However, these models are often difficult to computationally manage and calibrate 

with respect to experimental observations [2], [3]. 

On the other hand, data-driven SHM employes regression and classification models 

(such as statistical and probabilistic ML models) between input and output data to recognize 

a pattern (Pattern Recognition – PR, [4]). They allow generalization, but the causal 

relationship between input and output is not guaranteed. Moreover, the interpretation of the 

results is often limited to specific observed problems (i.e., limited context of engineering 

interest). They have the great advantage of being extremely light from a computational point 

of view, and completely scalable to any type of problem. Structural health assessment is 

usually based on symptoms. 

One significant challenge in data-driven approaches is the lack of data representing 

damaged states, which hampers pattern recognition processes. Transfer Learning (TL) 

addresses this issue by leveraging data from a more accessible system (source) to initialize 

algorithms for systems with limited data (target) but similar properties [5], [6]. 

Research significance 

Most of the time, when performing SHM tasks on real structures, the lack of labelled data on 

the presence of damage and damage typology brings to a high uncertainty in providing 

instructions for maintenance and early intervention on the structure. On real structures is 

quite expensive (and often impossible) gather data on the damaged condition because it 

would mean breaking down the structure on field. This is even more true if the information 

is necessary for different types of damage, as the enforcement of one type of damage would 

influence the next. The present work prompts to solve this experimental issue by exploiting 

numerical models within a TL approach. In more detail, numerical and experimental datasets 

of an aluminum three-story frame are considered to perform a multi-class damage detection 

problem. Here, Transfer Component Analysis (TCA) [7], belonging to the domain adaptation 

methods, is used to exploit numerical source data with the aim of improving damage 

detection and classification on the experimental target data. In doing this, the authors propose 

the use of both natural frequencies and mode shapes information, the latter helping in 

providing spatial information on damage. 

Section 1 deals with the methods, in particular referring to the TCA algorithm. 

Section 2 describes the application of the methods on a three-story aluminum structure: here 

the different damaged conditions together with the undamaged one are described. On Section 
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3 the TCA improvement on the accuracy of the multi-class damage detection problem for the 

target system are clearly depicted. Finally, general conclusions are reported on Section 4. 

1. Methods  

1.1 Transfer Component Analysis  

Domain Adaptation is a sub-sector of TL methods that aims to transfer knowledge between 

two related systems by leveraging associated data domains [7], [8]. The term domain can be 

explained through two different components: the feature space of input 𝒳 and the Marginal 

distribution 𝑃(𝑋) of a set of inputs 𝑋 =  {𝒙1, … , 𝒙𝑛}𝑇 ∈ 𝒳, with 𝑋 ∈ ℝ𝑛×𝑑, where 𝑛 is the 

observation space and 𝑑  the dimension of features. Within the framework of TL, two distinct 

domains are defined: a source domain 𝒟S and a target domain 𝒟T. Each domain is associated 

with a task 𝒯 = {𝒴; 𝑓(⋅)}, where 𝒴 represents the label space and 𝑓(⋅) denotes the objective 

predictive function used for predicting the corresponding label. A common way to define this 

function is 𝑃(𝒚|𝑋), with 𝒚 ∈ 𝒴. In the domain adaption methods, the feature and label spaces 

are considered to be identical for both source and target domains, i.e., having 𝒳S = 𝒳T and 

𝒴S = 𝒴T. In the SHM field it means that both systems share the same diagnostic properties 

and the same structural conditions. However, in reality, the marginal distribution differs 

between the two domains, and not always in the conditional distribution. These differences 

imply that the diagnostic features are distributed differently (𝑃(𝑋𝑆) ≠ 𝑃(𝑋𝑇)), where 𝑋𝑆 ∈
ℝ 𝑛𝑆×𝑑 , 𝑋𝑇 ∈ ℝ 𝑛𝑇×𝑑 with 𝑛𝑆 and 𝑛𝑇 being the source and target observations. Moreover, it 

also expresses the differences in the probabilities related to the occurrence of structural 

conditions (labels), 𝑃(𝑌𝑆|𝑋𝑆) ≠ 𝑃(𝑌𝑇|𝑋𝑇), meaning dissimilarities in features happening 

between the two domains. Training a classifier on the source domain and directly testing it 

on the target domain may induce in error the algorithm. To address this challenge, several 

methods have been proposed to reduce the distribution gap between source and target 

domains. These techniques typically involve the use of a nonlinear mapping function 𝜙(⋅) to 

align the distribution, resulting in 𝑃(𝜙(𝑋𝑆)) ≈ 𝑃(𝜙(𝑋𝑇)) and 𝑃(𝑌𝑆|𝜙(𝑋𝑆)) ≈

𝑃(𝑌𝑇|𝜙(𝑋𝑇)). In this paper, Transfer Component Analysis (TCA) algorithm is employed to 

minimize the distance between data distributions. 

TCA [7] operates under the assumption that 𝑃(𝑋𝑆) ≠ 𝑃(𝑋𝑇), but 𝑃(𝑌𝑆|𝑋𝑆) =
𝑃(𝑌𝑇|𝑋𝑇), seeking to find a mapping function 𝜙(⋅) from the source space to a Reproducing 

Kernel Hilbert Space (RKHS) using Maximum Mean Discrepancy (MMD) as embedded 

criterion. This aims to minimize the distance between the marginal probabilities 𝑃(𝜙(𝑋𝑆)) 

and 𝑃(𝜙(𝑋𝑇)), while ensuring 𝑃(𝑌𝑆|𝜙(𝑋𝑆)) ≈ 𝑃(𝑌𝑇|𝜙(𝑋𝑇)). The function 𝜙 can be 

determined as a feature map defined by a universal kernel. The MMD distance between the 

two data distributions is measured through the distance between the empirical means of the 

source and target domains: 
𝐷𝑖𝑠𝑡(𝑋𝑆

′ , 𝑋𝑇
′ ) = 𝑡𝑟(𝐾𝐿) 1 

where 𝑋′ represent the transformed inputs, 𝐾 = 𝑘(𝑋, 𝑋′) ∈ ℝ(𝑛𝑆+𝑛𝑇)×(𝑛𝑆+𝑛𝑇) is associated 

with the Kernel matrix, 𝑋 = {𝑋𝑆, 𝑋𝑇}𝑇, and 𝐿 is the MMD matrix, defined as 𝐿(𝑖, 𝑗) = 1 𝑛𝑆
2⁄  

if 𝒙𝑖, 𝒙𝑗 ∈ 𝑋𝑆, else 𝐿(𝑖, 𝑗) = 1 𝑛𝑇
2⁄  if 𝒙𝑖, 𝒙𝑗 ∈ 𝑋𝑇, otherwise 𝐿(𝑖, 𝑗) = −(1 𝑛𝑆𝑛𝑇⁄ ) [9]. By 

exploiting a weight matrix 𝑊 ∈ ℝ(𝑛𝑆+𝑛𝑇)×𝑚, with 𝑚 the reduced dimensional space of the 

feature vector, through a kernel matrix decomposition the empirical kernel map becomes 

�̃� = 𝐾𝑊𝑊𝑇𝐾 [10]. Substituting �̃�, the distance can be defined as: 
𝐷𝑖𝑠𝑡(𝑋𝑆

′ , 𝑋𝑇
′ ) = 𝑡𝑟(𝑊𝑇𝐾𝐿𝐾𝑊) 2 
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A regularization term is introduced in the distance minimization with the aim of 

control 𝑊, reformulating the kernel problem avoiding the trivial solution 𝑊 = 0 introducing 

the constraints: 
𝑚𝑖𝑛

𝑠.𝑡.𝑊𝑇𝐻𝐾𝑊=𝐼
𝑡𝑟(𝑊𝑇𝐾𝐿𝐾𝑊) + 𝜇 𝑡𝑟(𝑊𝑇𝑊) 3 

where 𝜇 is a regularization/trade off parameter, 𝐼 is the identity matrix, 𝐻 = 𝐼 −
1/(𝑛𝑆 + 𝑛𝑇)𝟏 is a centering matrix, with 𝟏 representing a matrix of ones, and 𝑊𝑇𝐻𝐾𝑊 

corresponding to the variance of the projected samples preserved in TCA. By writing the 

Lagrangian, the latter equation can be solved by optimizing the equivalent trace problem in 

the following: 
𝑚𝑖𝑛

𝑠.𝑡.𝑊𝑇𝐻𝐾𝑊=𝐼
𝑡𝑟(𝑊𝑇𝐾𝐿𝐾𝑊) + 𝜇 𝑡𝑟(𝑊𝑇𝑊) 4 

𝑊 can be solved by computing the 𝑚 principal eigenvectors of (𝐾𝐿𝐾 + 𝜇𝐼)−1𝐾𝐻𝐾, where 

𝑚 ≤ 𝑛𝑆 + 𝑛𝑇 − 1, describing the space of transformed features by means of 𝑍 = 𝐾𝑊 ∈

ℝ(𝑛𝑆+𝑛𝑇)×𝑚. 

To evaluate the performance of the algorithm in the classification process, an 

accuracy metric is defined based on the number of true positives (TP), false positives (FP), 

true negatives (TN) and false negatives (FN): 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 

5 

In conclusion, a confusion matrix [11] is utilized to depict the comparison between 

the true class (ground truth) representing a particular damaged or undamaged condition and 

the class predicted by the algorithm, evaluating accuracy within each cell. 

2. Application 

2.1 Experimental and numerical three-story aluminum frame  

In this paper, the target system is an aluminum frame built in the Laboratory of Earthquake 

Engineering and Dynamics (EED Laboratory) at Politecnico di Torino. The structure is a 

three-story frame (Fig. 1(a)), which has a square plan of 0.4 m wide with a total height of 0.9 

m. The structure is supported by four columns, fixed at the base end to a steel plate, which 

acts as a foundation plate. The majority of structural components, including columns and 

slabs, are made of aluminum. The slabs consist of square plate elements, each with a 

thickness of 5 mm. The floor decks are considered rigid within their plane and a 

diaphragmatic floor behavior is assumed for the frame. The columns, also including the 

diagonal braces, are constituted by rectangular sections 20x3 mm. Additionally, the braces 

are axial members pinned at the end nodes, which prevent the transfer of bending moments. 

Conversely, other connections, such as those between columns and slabs, can be assumed to 

be rigid. The mechanical characteristics of the aluminum structural elements are defined by 

a Young’s modulus of 69000 MPa, a density of 2700 kg/m3, and a Poisson’s ratio of 0.326. 

A numerical model has been developed in MATLAB (Fig. 1(b)) with the aim of applying 

damages to the structure evaluating its modal behavior in terms of natural frequencies and 

modal shapes. In particular, the model has nine degrees of freedom, of which six in the 

horizontal plane (XY) and three rotations about the vertical axis (Z). The numerical structure 

is assumed to have 144 observations within the same structural condition, which are the 

experimental observations that occur in one day considering a 10-minute duration for each 

of these. A standard deviation of 690 MPa and 135 kg/m3, respectively for Young’s modulus 

and material density, are assumed to generate the noisy data, simulating the randomicity of 

the experimental observations.  
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2.2 Damage on diagonal bracings and mass variation over the three floors. 

Several scenarios to simulate damage were applied both in the experimental and numerical 

frame, including a mass variation on floors (mass addition of 1 kg in the center of the slabs, 

considering it as a point load) and a damage to the braces located at the base. At first, modal 

parameters (natural frequencies and mode shapes) were experimentally derived by 

performing linear structural identification [12], with a total of 5 identifications for each 

damage class in addition to the undamaged one. The modes of vibration were then scaled 

with their respective natural frequency (Table 1). The same procedure was carried out on the 

numerical model which, however, offers the advantage of being able to derive many more 

data for each considered class. In this case, the ratio between the numerical and experimental 

features is 144:5. Here, a Gaussian Mixture (GM) model [13], defined as a multivariate 

(multidimensional), multi-component version of the classical Gaussian distribution, was used 

to compute distributions. Then, the Kullback-Leibler divergence (𝐷𝐾𝐿) (Eq. 6) [14] was 

considered to highlight the distance between the experimental distributions of the scaled 

eigenvectors and the numerical ones, to emphasize the correlation between the source and 

target data for the homogeneous TL application through TCA: 

𝐷𝐾𝐿(𝑝||𝑞) = ∑ 𝑝𝑥  log2

𝑝𝑥

𝑞𝑥
𝑥∈𝑋
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where 𝑝𝑥 and 𝑞𝑥 being two distributions, and 𝐷𝐾𝐿(𝑝||𝑞) representing the amount of 

information lost when 𝑞 is used to describe 𝑝. Fig. 1(b) shows the undamaged (class 4) and 

damaged conditions: class 3 describes a fully-crack damage on both braces, while classes 0-

1-2 also consider an added mass of 1 kg on the first, second and third floor, respectively. In 

Fig. 2(a) the scaled eigenvectors numerical distributions of class 4 and 3 are shown. The axes 

represent the first (x displacement of the first floor), fourth (y displacement of the first floor) 

and third (x displacement of the third floor) degrees of freedom. In Fig. 2(b), the 𝐷𝐾𝐿 of the 

experimental scaled eigenvectors of class 0, compared to the numerical model, is pointed 

out: each step corresponds to an addition of mass on the first floor equal to 0.1 kg on the 

numerical frame representing the structural condition of class 3, and it can be noted that the 

minimum divergence value is reached at step 10, equivalent to a mass addition of 1 kg (class 

0), exactly corresponding to the added experimental mass. This procedure is performed also 

for classes 1-2-3 with the aim of corroborating the numerical model on the experimental 

identifications. 

  
(a)                                                               (b) 

Fig. 1. Three-story aluminum structure present at the Laboratory of Earthquake Engineering and Dynamics at 

Politecnico di Torino (a); Numerical representations of the three-story structure (classes 0-1-2-3-4) (b). 
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Table 1. First three experimental natural frequencies of the different structural conditions. Classes 0-1-2-3 

describe the damage cases (mass variation and/or unbraced frame), while class 4 is the undamaged condition. 

Class 0 1 2 3 4 

fn1 [Hz] 3.10 3.05 2.93 2.81 4.18 
fn2 [Hz] 6.31 6.34 6.33 5.93 6.39 
fn3 [Hz] 8.08 8.09 8.23 8.13 11.87 

  
(a) (b) 

Fig. 2. Numerical scaled eigenvectors distributions of class 4 (blue) and class 3 (red) (a); Kullback-Leibler 

divergence (𝐷𝐾𝐿) of the experimental scaled eigenvectors distribution (class 0) with respect to the 

numerical ones at each mass increment on the first floor (step = 0.1 kg) (b). 

3. Results and discussion 

3.1 Multi-class damage detection on the target structure 

Once the damage classes were identified, it was possible to conduct a classification analysis. 

In this application, a fine k-Nearest Neighbor (k-NN) classifier 5-fold cross validated was 

utilized: this algorithm provides finely detailed distinctions between classes with a number 

of neighbors set to 1. Firstly, a model was trained and validated using the limited data from 

the target system (all classes), represented in this case by the available experimental data, 

consisting of the first 3 eigenvectors scaled with the corresponding natural frequencies. The 

target dataset is thus composed of 15 features having dimension 3 for each class (first 3 

degrees of freedom), amounting to a total of 75 features (5 classes). Overall, the dataset was 

divided into 75% for training and validation, while the remaining 25% was used to test the 

reference model. The results in terms of model accuracy for multi-class damage detection in 

validation and testing are shown in Table 2. Additionally, the confusion matrices regarding 

the validation and testing (Fig. 3) results of the model are presented. 

  
(a) (b) 

Fig. 3. Validation Confusion Matrix (a) and Testing Confusion Matrix (b) for the model without TCA.  

Table 2. Validation and testing accuracy of the model without TCA. 

Model (k-NN) Validation  Testing 

Accuracy [%] 46.4 42.1 
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As we can observe, Fig. 3(a) reports the Validation Confusion Matrix for the model 

without TCA, while Fig. 3(b) shows the Testing Confusion Matrix for the model without 

TCA. In Fig. 3(a) and Fig. 3(b) the values correspond to the percentage rates of the classes 

prediction. On the left, labels describe the corresponding true classes (0-1-2-3-4), while on 

the bottom the predicted classes are shown; In general, the algorithm struggles to effectively 

classify the damage. In particular, the classes related to the addition of mass have a prediction 

accuracy of 25%, while there is an improvement for classes 3 and 4, reaching testing 

accuracies of 60% and 100% respectively (the latter corresponding to the undamaged state). 

This discrepancy can be attributed to the lack of data, which prevents target validation of the 

model, resulting in an accuracy of 46.4%. In the testing phase, this is reflected in the overall 

performance of the model, which achieves an accuracy of only 42.1%. 

3.2 Transfer Component Analysis: multi-class damage detection on the target structure 

Having observed that the classification algorithm does not perform optimally with only a few 

training data provided uniquely from the target system, the TL method was applied through 

TCA to merge the datasets related to the numerical model (source) (Fig. 1(b)) and the 

experimental one (target) (Fig. 1(a)). In general, several parameters need to be set during the 

domain adaptation phase using TCA. In this case, a linear kernel was used first, and a value 

of 0.1 was chosen to indicate the regularization/trade-off parameter 𝜇, together with a transfer 

space dimension of 3. Classification was conducted using the same classifier (fine k-NN), 

but in this case, model validation relied on many more data, as the data transformed into the 

adapted domain, coming from both the source and the target system, were used. In total, a 

dataset of 75 (target) and 2160 (source) features are considered, maintaining an experimental 

to numerical ratio of 5:144. The model was trained and then validated with 75% of the 

available data, and then, to compare the results obtained without TCA, 25% of only target 

data were used to determine the accuracy of the model in testing.  

Table 3 shows the testing accuracies of the target data of the model using TCA, while 

Fig. 4 reports again the Validation Confusion Matrix (Fig. 4(a)) and the Testing Confusion 

Matrix (Fig. 4(b)) for the model with TCA. The values correspond to the percentage rates of 

the class prediction for validation and testing. On the left, labels describing the corresponding 

true classes are shown, while on the bottom the predicted classes are described. 

  
(a) (b) 

Fig. 4 Validation Confusion Matrix (a) and Testing Confusion Matrix (b) for the model with TCA.  

Table 3. Validation and testing accuracy of the model by applying TCA. 

Model (TCA) Validation  Testing 

Accuracy [%] 74.6 52.6 

The validation accuracy of the model has improved from 46.4% to 74.6% by 

integrating numerical data through TCA (Table 3): overall, it is noted that classes 3 and 4 

exhibit the lowest predictive error percentage, while the effects caused by the addition of 
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mass to the different floors (classes 0-1-2) are more challenging for the classification 

algorithm to be detected. Focusing on the testing data, it is possible to see how the accuracy 

has increased by applying TCA, rising from 42.1% to 52.6% (see Table 2 for reference). In 

particular, in Fig. 4, it can be observed that the confusion matrix partly mirrors that of the 

model validation, as the classes related to the further addition of mass return the lowest 

accuracy, while the undamaged state (class 4) is predicted without errors here as well. 

4. Conclusions 

In summary, the aim of this paper is to underline the potentiality of TL techniques in the 

SHM of multi-story buildings. In the work, a three-story aluminum frame has been chosen 

as target system, while its numerical model is considered as source system. The authors 

showed that the lack of experimental data in a multi-class damage detection strategy, causing 

little performance of the classification algorithm, can be solved exploiting numerical source 

datasets through TCA. The conclusions of the paper are reported hereinafter: 

• The undamaged class is well predicted by both the strategies of classification, but the 

accuracy drops when the algorithm needs to predict the different damaged classes. 

• The TCA was able to improve the accuracy of the multi-class damage detection task. 

This represents a valuable support in the SHM framework. 
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