POLITECNICO DI TORINO
Repository ISTITUZIONALE

Work-in-Progress: DORY:: Lightweight Memory Hierarchy Management for Deep NN Inference on loT
Endnodes

Original

Work-in-Progress: DORY:: Lightweight Memory Hierarchy Management for Deep NN Inference on IoT Endnodes /
Burrello, A; Conti, F; Garofalo, A; Rossi, D; Benini, L. - (2019), pp. 1-2. (Intervento presentato al convegno ESWEEK)
[10.1145/3349567.3351726].

Availability:
This version is available at: 11583/2978562 since: 2023-05-16T15:59:40Z

Publisher:
ASSOC COMPUTING MACHINERY

Published
DOI:10.1145/3349567.3351726

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright

(Article begins on next page)

31 December 2024

Work-in-Progress: DORY: Lightweight Memory Hierarchy
Management for Deep NN Inference on loT Endnodes

Alessio Burrello
alessio.burrello@unibo.it
DEI, University of Bologna
Bologna, Italy

Davide Rossi
davide.rossi@unibo.it
DEL University of Bologna
Bologna, Italy

ABSTRACT

IoT endnodes often couple a small and fast L1 scratchpad memory
with higher-capacity but lower bandwidth and speed L2 background
memory. The absence of a coherent hardware cache hierarchy saves
energy but comes at the cost of labor-intensive explicit memory
management, complicating the deployment of algorithms with large
data memory footprint, such as Deep Neural Network (DNN) infer-
ence. In this work, we present DORY, a lightweight software-cache
dedicated to DNN Deployment Oriented to memoRY. DORY lever-
ages static data tiling and DMA-based double buffering to hide the
complexity of manual L1-L2 memory traffic management. DORY
enables storage of activations and weights in L2 with less than 4%
performance overhead with respect to direct execution in L1. We
show that a 142 kB DNN achieving 79.9% on CIFAR-10 runs 3.2X
faster compared to its execution directly from L2 memory while
consuming 1.9 less energy.

1 INTRODUCTION

! In the IoT scenario, Deep Learning (DL) algorithms are consid-
ered attractive for edge processing, thanks to their capability to
filter/compress raw data into a much more semantically dense and
rich format. However, i) the small on-board memory, ii) the limited
computational capabilities, and iii) the battery constraints typical
of MCU-class devices deployed as end-nodes demand aggressive
software and algorithmic optimization.

To achieve high performance and energy efficiency and tackle
the challenges above, recently proposed IoT end node architec-
tures leverage parallel computing by multiple cores on a small,
ultra-fast L1 scratchpad memory — while most data resides on a
larger, slower L2. However, this solution significantly complicates
programming as these architectures give up energy-expensive co-
herent data caches. To solve this problem, SW-Caches have been
proposed on top of these architectures [6, 7]. Specifically, to ease
the deployment of high memory footprint DL based algorithms,
ad-hoc memory management flows have been developed to mini-
mize inference time [2, 4], by exploiting their regularity through
the data reuse and an optimal CNN scheduling [5].

1 This work was partially supported by the EU H2020-ECSEL project AI4DI (g.a. 826060)
and by the Open transPREcision COMPuting (OPRECOMP) Project funded by the
European Union’s Horizon 2020 Research and Innovation Program (g.a. 732631).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CODES/ISSS ’19, October 13-18, 2019, New York, NY, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6923-7/19/10...$15.00
https://doi.org/10.1145/3349567.3351726

Francesco Conti
fconti@iis.ee.ethz.ch
DEI, University of Bologna
Bologna, Italy

Angelo Garofalo
angelo.garofalo@unibo.it
DEI, University of Bologna
Bologna, Italy

Luca Benini
Ibenini@iis.ee.ethz.ch

DEI, University of Bologna
Bologna, Italy
1IS, ETH Zurich
Zurich, Switzerland
L2 memory

/ Input feature map I \

L1 memory

L1 buffer |
Input buffer

29°=+{ Output buffer

Cluster

<fw]e
gle|glele

slsls

8[8|8

»| Weights buffer

Core 3
Core 7

L1 buffer It

c‘
s®

Input buffer

Output buffer \

CONVOLUTIONAL PIPELINE

Weights buffer

Convol.
kernel

1
Convol.
kernel

o 2
in out. [.
copy| [copy _|copy

in | comol [out n

—> Ode0 [omachoz [) oMach2 |opy | Semel leom | " leo
\ o) — cyle1 [comal], . . Jow
_____ > ez () ctuster computation opy | kernel copy

Figure 1: DORY flow. Left: the DMA manages L2-L1 commu-
nication using double-buffering. Right: the cores compute a
kernel on the current tile stored in one of the L1 buffers.

In this work, we present work-in-progress results on a novel
lightweight SW-cache for scratchpad memory management dedi-
cated explicitly to DNN Deployment Oriented to memoRY. DORY,
leveraging static data tiling and DMA-based prefetching and double
buffering techniques, completely hides the data memory transfer
overhead from L2 to L1 memory and vice-versa. Moreover, DORY
exploits a constraint optimizer to vertically integrate memory limi-
tations with DNN kernels requirements by finding an optimal tiling
strategy to achieve the highest performance in MAC/cycle. Relying
on high-performance software backend for parallel execution of
DNN kernels, DORY enables the inference of DNNs that cannot
fit within the L1 memory, outperforming the execution from L2

memory by 3.2X in terms of inference latency while saving 1.9%
energy.

2 MEMORY MANAGEMENT FRAMEWORK
In the following, we provide an overview of the two main blocks
of DORY.

a) DORY Optimizer. It takes as input the maximum dimension
of the L1 buffer and the layer constraints from the NN topology (a
PyTorch layer), such as the number of channels, padding, and spatial
dimensions. Moreover, we include in the optimizer the requirements
of the software back-end kernel, by inserting different optimization
criteria to maximize the back-end performance/energy-efficiency.
We abstracted this problem as an integer constraint problem; in
the optimizer, we use the open-source OR-tools from Google AI [1]
to solve it, matching constraints (i.e. maximum tile dimensions)
and objectives (i.e. performance). We took advantage of this fact to
tailor the optimizer to generate tiles that are better suited for the
computation strategy (output-stationary with HWC layout) used

CODES/ISSS 19, October 13-18, 2019, New York, NY, USA

LTO: for (0=0; 0<Oy; O++)
LTH: for (h=0; h<hy; h++)
LTW: for (w=0; w<wy; W++)
LTI: for (i=0; i<iy; i++)
dma_wait (XLliload); swap (XLliloadJ XLliexe:)
dma_async (X. 10aa < Xi2[1,w,h])
dma_wait (XLl_load); swap (le_lnadJ le_exec)
dma_async (W,[i,0] « Wi1 10ad)
if (o+h+w+ 1> 0)
DNN_kernel (Xii execs Wii_execs Yi1exec)

if (o+ h+w+ i>1)
dma_wait (Yi3 105¢)5 dma_async(Yi eaq > Yi2[0,W,h])
SWap (Yi1 1oad s> Vit exec)

Figure 2: DORY loop nest implementing the double buffer-
ing scheme.
Table 1: Energy and inference time for a 142 kB CNN.

inf. time energy MAC/cycle/core

227ms 097 mJ 0.42 MAC
71ms 0.51mJ 1.37 MAC

L2 fetching
DORY

in the computational kernels, maximizing their performance and
not only fitting the L1.

b) DORY SW-Cache. To minimize inference overhead when em-
bedding a DNN layer that doesn’t fit the dimension of the L1 mem-
ory, DORY automatically generates code tailored to execute with
minimal overhead the target layer, automatically instantiating asyn-
chronous DMA transfers and double buffering as well as the calls
to the underlying layer kernels, without any additional effort of the
programmer. Fig. 2 provides DORY’s scheduling scheme through
LTO, LTW, LTH, and LTI loops on output channels, height, width,
input channels tiles respectively. Loop iteration limits are automat-
ically computed (as a consequence of the tile dimensions) by the
DORY optimizer to minimize the overhead by taking into account
both the features of the DNN layer (padding, stride, . . .) and the per-
formance of the back-end kernel. Moreover, DORY autonomously
controls the complete execution of the layer, by managing padding,
stride, and overlap for each single tile (e.g. padding > 0 for border
tiles whereas padding = 0 for internal ones, when the input padding
parameter is > 0) and by managing double buffering in the the
computation to completely hide the L2-L1 memory transfers.

Notice that the addition of the pipelined double-buffered mem-
ory transfers (Fig. 1) causes only minimal imbalance, as all DMA
transfers are asynchronous and non-blocking. Fig. 1 also describes
the memory transfers and the computation made in the first three
cycles of the flow. Considering a full operatively pipeline, i.e. from
the third cycle, we have three different parallel steps: (1) a new
computation starts and fill the output buffer that was not used in
the previous cycle; (2) the results of the last cycle are stored in L2
via DMA; (3) a new set of inputs is loaded in L1 via one other DMA
channel. At each cycle, we swap the load and the execution buffer
(swap operation of Fig. 2) to enable double buffering. The process
continues until the LTO loop ends, i.e., when all the outputs reside
in L2 memory.

3 RESULTS & CONCLUSIONS
We evaluate the performance of DORY on GreenWaves Technolo-
gies GAP-8 [3] processor, which is based on the eight-cores PULP
architecture and features 64 kB of L1 (single-cycle latency) and
512 kB of L2 memory (fifteen-cycle latency), using highly opti-
mized software back-end for DNN kernels. All the kernels are quan-
tized to 8-bit, in both activations and weights, and reach up to 1.8
MAC/cycle/core (the baseline performance is 1 MAC/cycle/core: 2
load, 1 SIMD-MAC and 1 store to compute four 1-byte MACs).
Fig. 3 depicts the performance of DNN layers when different re-
sources are exploited: L1 fetching (assuming that all data resides in
L1 memory and there are not load-use stalls), L2 fetching (assuming

Alessio Burrello, Francesco Conti, Angelo Garofalo, Davide Rossi, and Luca Benini

size: 112, ch: 4

Conv: 7x7,64, /2
size: 56, ch: 64 §

Conv: 3x3,64
size: 56, ch: 64

Conv: 3x3,128, /2
size: 28, ch: 128

141

]

=
o

i

Fx--%-5¢-4
Fx- % -xx- ¢
|-%0¢ %= - - -4}

@ Optimal tiling
X sub-Opt. tiling in: 2048 3

1 . FC: 200
— L2 fetching
T L1 fetching

w

kS
o
)
3
2
w
X
&
i
)
®

st 4#=o22]

Performance [MACS/cycle]

in: 1024

|

[

100
Arithmetic intensity [MACS/byte]

Figure 3: Performance evaluation of quantized 8-bits convo-
lutional/linear layers.

all data resides in L2), and DORY data flow with or without DORY
optimizer. For CONV layers, less than 4% performance degradation
has been observed due to our added SW-cache. Most performance
losses with respect to the roof of ~14 MACs/cycle are due to one of
several effects. First, when the number of channels is very low, the
CONV kernels cannot exploit parallelism, and efficiency partially
drops (e.g. the first layer in Fig. 3). Second, border tiles result in
very small input sets, therefore lowering the operational intensity
and reducing performance (e.g. the third layer in Fig. 3). On the
other hand, the memory-hungry linear layers demonstrate a higher
overhead (40%-60%). This effect is due to the low operational in-
tensity characterizing FC kernels (1 MAC/byte vs. 300 MAC/byte
for convolutions), which does not allow to entirely hide the L2-L1
memory transfers and to the overhead of the DORY scheduling; in
terms of absolute number of cycles, DORY requires less than 1.5K
cycles for each loop over a tile, which is, however, not negligible
for FC layers.

Fig. 3 also shows that the DORY optimizer finds the optimal
solution (#) in terms of MAC/cycle performance for different layers,
which is not always trivial. Conversely, crosses (X) highlights that
the effect of a sub-optimal tiling can be very detrimental, losing up
to 3.5xX MAC/cycle compared to the optimal solution.

Table 1 depicts the performance of DORY when running a full
142 kB DNN not fitting L1 memory on the GAP-8 IoT processor at
170 MHz and 1 Volt. Thanks to DORY, the inference of an image
takes as little as 7.1 ms and consumes 0.51 mJ, outperforming the
corresponding L2 fetching, by running 3.2x faster, while saving
1.9% energy. Moreover, DORY automatically generates the code, by
reducing the burden of the programmer to write the kernel and the
memory management single operations: from a PyTorch layer and
the L1 memory dimension, DORY provides the function interface
to be included in the code to run the layer.

These initial results showcase how the DORY double-buffering
based SW-Cache can effectively hide the L2-L1 communication,
achieving lower than 4% overhead in terms of time compared to
the “ideal” pure L1 execution. Our current work focus in particular
on extending automatic SW-based DNN caching on networks that
do not fit even in L2 by enabling non-blocking two-level buffered
data fetching from an external L3 DRAM.

REFERENCES

[1] Google AL 2015. OR tools. (2015). https://developers.google.com/optimization/

[2] Leonardo Cecconi et al., 2017. Optimal tiling strategy for memory bandwidth
reduction for cnns. In International Conference on ACIVS. Springer, 89-100.

[3] E.Flamand et al., 2018. GAP-8: A RISC-V SoC for Al at the Edge of the IoT. In
2018 IEEE 29th ASAP International Conference. 1-4.

[4] Daniele Palossi et al., 2019. A 64mW DNN-based Visual Navigation Engine for
Autonomous Nano-Drones. IEEE Internet of Things Journal (2019).

[5] Maurice Peemen et al., 2013. Memory-centric accelerator design for convolutional

neural networks. In 2013 IEEE 31st ICCD.
[6] Christian Pinto et al., 2013. A highly efficient, thread-safe software cache imple-

mentation for tightly-coupled multicore clusters. In IEEE 24th ASAP Conference
Selma Saidi et al., 2013. Optimizing two-dimensional DMA transfers for scratch-
pad Based MPSoCs platforms. Microprocessors and Microsystems.

[7

