
24 December 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

AI Eye Charts: measuring the visual acuity of Neural Networks with test images / Porsia, Antonio; Ruospo, Annachiara;
Sanchez, Ernesto. - ELETTRONICO. - (In corso di stampa). (Intervento presentato al convegno IEEE 2nd International
conference on Design, Test & Technology of Integrated Systems tenutosi a Aix-en-Provence (FR) nel 14-16 October
2024).

Original

AI Eye Charts: measuring the visual acuity of Neural Networks with test images

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:

Terms of use:

Publisher copyright

©9999 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2993100 since: 2024-10-06T16:04:06Z

IEEE

AI Eye Charts: measuring the visual acuity of
Neural Networks with test images

Antonio Porsia
Politecnico di Torino

DAUIN
Turin, Italy

antonio.porsia@polito.it

Annachiara Ruospo
Politecnico di Torino

DAUIN
Turin, Italy

annachiara.ruospo@polito.it

Ernesto Sanchez
Politecnico di Torino

DAUIN
Turin, Italy

ernesto.sanchez@polito.it

Abstract—In the last decade, neural networks (NNs) have
established themselves as the foundation of modern computer vi-
sion, achieving remarkable performances in a consistent number
of tasks, including safety-critical applications such as autonomous
driving and healthcare devices. As a consequence, existing de-
vices, such as Graphics Processing Units (GPUs), have evolved
and new, specialized AI hardware has been designed to better
support the ever-growing demand for computational resources.
Since the adoption of NNs in safety-critical tasks requires to
ensure that hardware faults are not negatively affecting the
application’s performance, the use of self-test routines to continu-
ously verify the device’s functionality during operation is crucial.
However, conventional self-testing methods such as Built-in Self
Test (BIST) and Software Test Libraries (STLs) are not ideal
candidates for this task, since they require to completely halt
the application’s operation at test time. For this reason, various
methods have been proposed that employ the NN itself to test
the hardware it is running on by launching the inference of one
or more test images. The aim of this paper is to examine the
current state-of-the-art regarding test images, as well as draw a
comparison of the methods that have been proposed to choose
and/or generate test images.

I. INTRODUCTION

The ever-growing use of Neural Networks (NNs) in computer
vision tasks, such as image classification, semantic segmentation
and object detection, has raised questions over their reliability
when used in safety-critical applications, such as autonomous
driving and healthcare devices. Requirements for functional safety
force manufacturers and users to implement safety mechanisms
that are able to continuously assess and ensure the correct func-
tioning of the application during its in-field use. Conventional
hardware self-test mechanisms such as Built-In Self-Test (BIST)
and Software Test Libraries (STLs) may be used to ensure the
application’s correctness at use time.

However, the hardware overhead of BIST and the requirement
to halt the application’s operation at test time of both BIST and
STL methods may hinder the performance of NNs [1]. For this
reason, the academic community has strived to look for alternative
strategies that are able to achieve a good compromise between
testing capabilities and performance.

In particular, using a set of input images as a test vector seems
to be a promising technique to assess the correct functionality of a
neural network, since neural network inference is a fast process

This publication is part of the project PNRR-NGEU which has received
funding from the MUR – DM 118/2023.

and does not require halting the network’s operation. The first
occurrence of test images in the literature seems to be in [2],
where the authors develop a set of images to assess the correct
functionality of a Deep Neural Network (DNN)-based autonomous
driving system. However, this work focuses on behavioral testing,
i.e., it does not aim to detect erroneous behavior due to hardware,
but due to the network itself. Nonetheless, it served as a starting
point to extend the concept of test images to hardware testing.

The first work explicitly targeting hardware faults occurring
in an accelerator used for the execution of a Neural Network is
[3]. The authors generate adversarial examples with the explicit
aim of detecting hardware faults occurring in a Resistive RAM
(ReRAM)-based hardware accelerator for the execution of a neural
network. Since then, a plethora of different methods of generating
test image sets has appeared in the literature.

This work aims to offer a comprehensive description of the state
of the art regarding test images, as well as draw a comparison of
the available methods from various viewing angles.

The paper is organized as follows: section II provides a de-
scription and classification of the various test image construction
methods and section III draws conclusions.

II. TEST IMAGE TAXONOMY

The test images found in the literature can be classified accord-
ing to several criteria:

• Test image construction method – test images can be devel-
oped through various techniques:

– Selection – already existing images are selected accord-
ing to a certain metric

– Generation – new images are specifically constructed to
have desirable qualities

– Mutation – existing images are selected and then altered
to enhance them with desirable qualities. It can be
viewed as a mix of selection and generation

• Testing methodology – test images can be developed to
either perform:

– Behavioral testing – Test images developed for behav-
ioral testing target the NN itself, rather than the hard-
ware it is running on: network parameters, inputs and
activations become potential fault sites

– Functional testing – Test images developed for func-
tional testing use the NN as a means of delivering
functional test patterns to the targeted device, using the

TABLE I: Test image construction methods

Reference Method Testing methodology Specificity Observation point Target architecture Approach
[4] Selective Behavioral/Functional Neuromorphic devices Prediction SNN Black-box
[5] Selective Behavioral Hardware-agnostic Prediction SNN Black-box
[6] Selective Behavioral/Functional Memristive devices Prediction Model-agnostic White-box
[7] Selective Behavioral Hardware-agnostic Prediction Model-agnostic Black-box
[8] Generative Functional GPU multipliers First CONV layer CNN White-box

output/confidence scores
[9] Generative Behavioral/Functional Memristive devices Confidence scores CNN Black-box

[10] Generative Behavioral/Functional Systolic arrays Prediction CNN Black-box
[11] Generative Behavioral Hardware-agnostic Prediction CNN Black-box
[12] Generative Behavioral Hardware-agnostic Confidence scores CNN Black-box
[3] Mutation-based Behavioral/Functional Memristive devices Prediction/Confidence scores Model-agnostic Black-box

[13] Mutation-based Behavioral/Functional Memristive devices Prediction CNN White-box
[14] Selective/Generative Behavioral Hardware-agnostic Prediction CNN White-box
[15] Selective/Generative Behavioral/Functional Memristive devices Prediction/Confidence scores CNN Black-box

network as a proxy to assess the correct functionality of
the underlying hardware

• Hardware specificity – Test images can target a specific
device or be hardware agnostic. Note that only test images
for behavioral/functional testing may be hardware agnostic,
since structural testing is by definition hardware-specific

• Observation point – Faults are detected by comparing re-
sults produced during the inference of the test images against
the expected ones. These results may be collected at various
points during the inference: they can be intermediate results
such as the output feature map of a specific layer, confidence
scores or prediction labels

• Target network architecture – Test images usually target a
specific neural network architecture, with the obvious candi-
dates being the most popular architectures used in computer
vision tasks, such as Convolutional Neural Networks (CNNs)
and Spiking Neural Networks (SNNs)

• Black-box or white-box approach – Test image construc-
tion methods may require knowledge of the internal structure
of the model or not

Table I summarizes these characteristics for all the research
works reported in this section.

A. Selective methods

1) El-Sayed et al.: El-Sayed et al. [4] proposed a method
to select test images for both behavioral and structural testing of
neuromorphic circuits running Spiking Neural Networks. Samples
ti from the training and test sets are ranked according to a quality
metric qi that measures the fault detection capability of an image
and is defined as

qi =
1

n
(1)
i − n

(2)
i

where n
(1)
i and n

(2)
i are the spike counts of the output neurons

associated to the top-1 and top-2 classes, respectively. It follows
that samples that are difficult for the SNN to classify, i.e., whose
top-1 and top-2 spike counts are very close, are ranked higher. The
underlying hypothesis is that samples that are difficult to classify
are more sensible to hardware faults and have a higher proba-
bility of being misclassified in presence of a fault. The authors
performed behavioral testing on N-MNIST and IBM DVS gesture

SNNs using SNN-specific fault models, such as dead/saturated
neurons andtiming variations for neurons, and a hardware-aware
fault model for synapses that consists in quantizing the real-valued
weight, performing a bit-flip and dequantizing the altered weight
to a real number. Structural testing has been performed on a cus-
tom neuromorphic circuit that implements a SNN for poker card
symbol classification. The SNN parameters, represented on 8-bit
integers, are stored in on-die memories. The fault model consists in
single bit-flips for all parameters and all bit positions and multiple
bit-flips with different Bit Error Rate probabilities. This method
is shown to detect 100% of critical faults, i.e., faults that alter the
network’s response above a certain margin of tolerance, with a test
set of around 30 images.

2) Hsieh et al.: : Hsieh et al. [5] proposed a method to perform
hardware-agnostic behavioral testing of SNNs that consists in:

1) Measuring the distribution of the F1 score of a fault-free
SNN model by performing Monte Carlo simulations

2) Measuring the F1 score of a faulty SNN model and checking
if it is within an acceptable margin from the fault-free
average F1

The authors used behavioral-level fault models for SNNs, tar-
geting neurons and synapses. One noteworthy characteristic of
this method is that it uses the entire dataset as a test vector.
The obtained experimental results show that the F1 score signifi-
cantly degrades in presence of specific types of connectivity faults,
namely Wrong Connection Faults, where spikes are sent to the
wrong neurons, and Disconnected Faults, where spikes cannot be
sent to a neuron. The failure rate obtained by fault simulation for
these two fault models is 89.84% and 90.25%, respectively, while
other fault models (spike, weight and delay faults) have a failure
rate of 10% or less.

3) Ahmed and Tahoori: Ahmed and Tahoori [6] proposed
a method to test DNNs implemented on memristive devices by
selecting appropriate images from the training set. At each training
step, the difference ∆L of the loss function before and after the
parameter update is computed for each training sample, then it
is accumulated and stored on a per-sample basis. After training,
samples are ranked according to the accumulated loss variation
and the ones with the highest ∆L are added to the test image
set. The underlying hypothesis is that parameters that require
more parameter tuning during training will be more sensistive to
parameter perturbations.

The proposed test flow consists in launching the inference of
samples in the test set and checking if the variation in accu-
racy ∆Ainfer with respect to the fault-free NN is over a certain
threshold. The authors report that this method is effective when
the threshold is relatively high, e.g. ∆Ainfer > 2%, while lower
thresholds require a different method. The latter consists in storing
the average loss Lτ of the test image set and comparing it to the
average loss at test time LP . For what concerns the faults model,
the authors model conductance variations affecting memristors as
additive and multiplicative Gaussian noise applied to the weights,
while stuck-at-0/1, stuck-open/short, read/write disturbances and
slow-write faults are modeled as a random percentage of weight
bits set to either 0 or 1.

The authors report their method reaches 100% fault coverage
on three different NN models: a Multi-Layer Perceptron (MLP)
trained on the Fashion-MNIST dataset, a ResNet-18 CNN trained
on CIFAR-10 both with and without data augmentation and a
ResNet-110 trained on CIFAR-100. 100% conductance variation
coverage is reached with a minimum number of 16 test images,
while 100% coverage of permanent faults is reached with a mini-
mum of 64 test images.

4) Meng et al.: Meng et al. [7] proposed a method to select
test images from the test set according to their sensitivity, defined
as:

(Sf)I =
Ndev

Nmaps

where Nmaps is the number of fault maps randomly generated
with different fault models and fault rates and Ndev is the number
of times that the prediction for image I changes with respect to
the fault-free one. A General Score is then defined to measure the
sensitivity of an image I to various fault types. If there are K fault
types, the General Score is defined as:

GSi =
K∑

f=1

(Sf)I − σI

where σI is the standard deviation of the sensitivity of image I
to the various fault types. Images are then ranked by their General
Score and the ones with the highest score are selected.

The authors experimentally validated their method by applying
it to the Cifar-Net and VGG-16 CNNs trained on the CIFAR-10
dataset and quantized to 8/16-bit integers. The authors employed
random bit-flips to model transient faults in the network weights
and fault injection attacks and added Gaussian noise to the weights
to model imprecise programming and value drifting in novel de-
vices like Resistive RAMs. Five to twenty test images are selected
from the test set and then fed to a faulty network with a fault rate
ranging from 0.01% to 1%. The configuration with 20 test images
is shown to achieve an extremely low false negative rate even with
a 0.01% fault rate.

B. Generative methods
1) Ruospo et al.: Ruospo et al. [8] proposed a method to

perform on-line self-test of functional units in a GPU running a
CNN by using test images. Their method consists in generating
test patterns for GPU multipliers by using the weights of the first
convolutional layer of the CNN as constraints: the ATPG process

produces an input value corresponding to the input-weight pair,
then the input part is split from the weight and placed in a test
image by exploiting knowledge of the dataflow algorithm, i.e.,
the way in which the convolution workload is distributed among
the GPU cores. This set of test images is defined Image Test
Library (ITL). When the ITL is passed to the CNN, the multipliers
receive as inputs the correct input-weight pairs corresponding to
test patterns. The output feature map of the first convolutional layer
is then compared against the correct one.

Experimental results of gate-level fault simulations show that
a 6-image ITL built for ResNet-20 and a 8-image ITL built for
DenseNet-121, both trained on the CIFAR-10 dataset, are able
to reach 94.74% and 95.46% coverage of stuck-at faults on the
multipliers of a GPU, with a self-test time of under a millisecond
in both cases.

Recent work [16] reported promising results about ITLs being
able to propagate faults up to the output confidence scores. The
propagation analysis is performed by performing a gate-level
fault simulation for each convolutional layer of the CNN. The
multiplications performed during the convolution are subjected to
a fault injection to gather faulty outputs, which are then used to
reconstruct the faulty output feature map of the layer. The process
is then repeated until the last convolutional layer.

2) Ahmed and Tahoori: Another work by Ahmed and Tahoori
[9] proposes a method to test a Deep Neural Network running
on a memristive device with a single image by observing the
Kullback-Leibler (KL) divergence between the distribution of the
confidence scores of the fault-free and faulty model. The test
image is constructed by applying gradient descent to an input
image with the learning objective of having the output distribution
of the image match a standard Gaussian distribution with zero
mean and unit standard deviation.

The authors model conductive variations in memristive tech-
nologies as additive and multiplicative Gaussian noise, while
random bit-flips with varying fault rates are used to model stuck-
at faults, retention faults, read/write disturbances and slow-write
faults. The authors validated their method on 6 CNN models
used for image classification trained on the ImageNet dataset
and 2 CNN models used for semantic segmentation, trained one
the Brain MRI and COCO datasets. For each model, a Monte
Carlo simulation consisting of 1,000 different device instances
has been performed to evaluate the fault coverage reached by
this method. The fault coverage is defined by the authors as the
ratio between the number of simulation runs in which the KL
divergence exceeded a certain threshold t and the total number
of runs. Results show that this one-shot testing method rarely goes
below 99% fault coverage, for various noise scales, fault rates and
thresholds.

3) Chaudhuri et al.: Chaudhuri et al. [10] use Bayesian
optimization to generate test images targeting a systolic array-
based accelerator. More specifically, the Bayesian optimization
engine samples an image from the input image space and tries
to maximize the cross-entropy loss between the output of the
fault-free accelerator and the output of the faulty accelerator. To
avoid generating a separate input image for each fault in the fault
list, the average of the losses produced by faulty instances of
the accelerator, each presenting a separate fault, is used as the
objective function. After k optimization steps, where k is a user-

defined parameter, the current image is saved and detected faults
are dropped from the fault list. The procedure then restarts to
generate a test image for the remaining faults.

To validate their method, the authors inject stuck-at faults in
partial-sum and multiplier-output buses of 10 random-chosen PEs
of the systolic array. Test images generated with this method
for a LeNet-5 CNN trained on the MNIST dataset reach a 90%
coverage of faults in sign and exponent bits of 32-bit floating-point
values with 10-11 test images, 87% coverage of faults in sign and
exponent bits of 16-bit floating-point values with 7-9 test images
and 30% coverage of faults in mantissa bits of 32-bit floating-point
values.

4) Kundu and Basu: Kundu and Basu [11] proposed using a
conditional Generative Adversarial Network (cGAN) to generate
test images for a target DNN. To evaluate their method, the authors
inject permanent bit-flips in the Most Significant Bit of randomly
selected 8-bit integer weights of a LeNet-5 CNN trained on the
MNIST dataset. A fault is considered detected if the input image
is misclassified with respect to the fault-free model. Results show
that 30 cGAN-generated test images cover 40% of faults with a
fault rate of 0.025% and reach 100% coverage with a 0.4 % fault
rate.

5) Turco et al.: Turco et al. [12] proposed a method that
leverages an evolutionary algorithm to generate an Image Test
Library to detect permanent, hard-to-detect faults and observe
their effects on the network’s output. The fitness function of the
evolutionary algorithm is defined as the ratio between the number
of faults whose effect propagates to the network’s output and the
total number of injected faults.

To experimentally validate their method, the authors inject bit-
flips in the sign and mantissa bits of 32-bit floating-point weights
of three different CNNs trained on CIFAR-10: ResNet-18, ResNet-
34 and DenseNet-161. Sign and mantissa bits were explicitly
singled out due to faults occurring in those positions rarely af-
fecting the network’s output. Two experiments were carried out,
one targeting the whole output vector of the network (Logit) and
one targeting only the maximum value of the output (Max-Logit),
i.e., the one corresponding to the prediction. Results show that
evolutionary-based 50-image ITLs are able to detect over 75% of
injected faults.

C. Mutation-based methods

1) Li et al.: Li et al. [3] proposed to use adversarial exam-
ples to test ReRAM-based accelerators running a neural network.
They hypothesize that since adversarial examples are generated
according to the loss gradient (when using the Fast Gradient Sign
Method), they are particularly sensible to weight variations.

The authors targeted both permanent faults, such as stuck-at-
0/1, and soft faults affecting ReRAM-based devices. To experi-
mentally validate their method, the authors employed three dif-
ferent NNs, namely a 3-layer MLP trained on the MNIST dataset
and two CNNs, LeNet-5 trained on MNIST and ConvNet-quick
trained on CIFAR-10. Then they constructed 100 faulty models
for each architecture by randomly injecting faults, with fault rates
of 0.05% (MLP and LeNet-5) and 0.02% (ConvNet) for permanent
faults and 1% (MLP and LeNet-5) and 0.04% (ConvNet) for soft
faults. The authors used SDC-1 and SDC-3% as detection metrics

and evaluated the method performance by defining a Detection
Accuracy metric, defined as:

DA =
N. of detected faulty models

N. of faulty models

Using SDC-3% as a detection metric, the proposed method
achieves a 99% detection accuracy on the MLP and ConvNet and
100% on LeNet-5.

2) Chen et al.: Chen et al. [13] developed a set of test images
by introducing a backdoor into a DNN. Their approach consists in
watermarking images from the validation set and fine-tuning the
network on the watermarked dataset, introducing a backdoor into
the DNN that acts as a ”checksum” function. The authors managed
to make the watermarked images extremely sensitive to weight
deviations by purposely overfitting the model when training on
watermarked images.

This method explicitly targets ReRAM-based accelerators,
modeling faults as random bit-flips that occur with a certain
probability. The authors use a custom metric for evaluation called
Accuracy Deviation (AD), defined as:

AD =
Fault-free accuracy − Deviation-affected accuracy

Fault-free accuracy

Experimental validation has been performed targeting the
AlexNet and VGG-16 CNNs trained on the CIFAR-10 dataset
and pruned to remove 90% of parameters without accuracy loss.
The entire validation set (10,000 images) is then watermarked and
used to fine-tune the model to insert the backdoor. The authors
report that their method achieves a mean AD of 0.72 (AlexNet)
and 0.89 (VGG-16) for stuck-at-0/1 faults and 0.78 (AlexNet) and
0.89 (VGG-16) for stuck-open/short faults, with fault rates varying
from 0.1% to 2%.

D. Mixed methods
1) Luo et al.: Luo et al. [14] proposed a behavioral testing

method for Deep Neural Networks (DNNs) that consists in se-
lecting images from the training set that are able to activate as
much model parameters as possible. A test image is said to activate
a parameter when perturbations of the parameter are propagated
to the output during the inference of said image. The authors
determine whether a parameter is activated by a test image by
observing if the gradient of the DNN with respect to the parameter
is non-zero. The validation coverage of a test image x is defined
as:

VC(x) =
#{θ | ∇θF (x) ̸= 0}

#(θ)

where F (·) is the function that describes the DNN and θ is
a DNN parameter. The test image set is constructed by selecting
images in an iterative manner, where at each step the image with
the highest validation coverage is added to the set, until the set
reaches a certain size.

To increase the overall validation coverage, the authors propose
to generate synthetic samples using the gradient descent method
that are able to activate the remaining parameters. The original
model is stripped of the parameters already activated by test
images extracted from the training set, and a batch of k synthetic

samples, where k is the number of output neurons, is updated using
gradient descent until the remaining parameters are activated.

The performance of the proposed scheme is validated on two
custom CNNs trained respectively on the MNIST and CIFAR-10
datasets. Test image sets constructed with the above method reach
a detection rate of 96.1% and 95.2% when random gaussian noise
is added to the model parameters.

2) Liu et al.: Liu et al. [15] proposed a method to test
ReRAM (Resistive RAM)-based DNN accelerators by selecting
from the training dataset images that are as equidistant as possible
from all decision boundaries, i.e., images whose confidence scores
produced by the DNN are very close to each other. Since it is
difficult to find images whose confidence scores are perfectly
equal, the authors propose to generate k other images, where k is
the number of output classes, to use in conjunction with the dataset
ones. The generated images are optimized by minimizing a cross-
entropy loss function with two targets:

1) Generating an image that makes the fault-free network out-
put an almost equal probability for all classes

2) Generating an image that makes a faulty network output an
extremely high probability for a certain class

The relative importance of the two terms in the loss function is
controlled by a parameter 0 < α < 1.

The authors evaluated their method by modeling the impact of
weight drifting faults and random soft errors on two CNNs: LeNet-
5 trained on the MNIST dataset and ConvNet-7 trained on CIFAR-
10. The authors selected 50 images from the dataset using the first
method and generated 10 other images using the second method,
for a total test image set size of 60 images. Metrics used in the
evaluation are:

1) SDC-1/5 – difference between top-1/5 classes between the
fault-free and faulty models

2) SDC-T5%/T10% – difference in percentage between top
ranked confidence scores produced by the fault-free and
faulty models

3) SDC-A3%/A5% – difference between the average of confi-
dence scores produced on the generated images by the fault-
free and faulty models

The authors report that their method reaches a detection rate
higher than 94% across all metrics, except for SDC-1.

III. CONCLUSIONS

The increasing use of Artificial Neural Networks in safety-
critical computer vision tasks mandates for in-field testing meth-
ods that are less invasive and disruptive as possible.

This paper tried to provide a comprehensive description of the
state-of-the-art regarding test images for neural network testing.
As it has been shown, the available literature provides several
alternatives that cover a variety of specific needs that may arise in
real-world applications, suggesting that test images are becoming
a viable alternative to classical hardware self-test routines.

REFERENCES

[1] A. Ruospo, D. Piumatti, A. Floridia, and E. Sanchez, “A suitability
analysis of software based testing strategies for the on-line testing of
artificial neural networks applications in embedded devices,” in 2021
IEEE 27th International Symposium on On-Line Testing and Robust
System Design (IOLTS), 2021, pp. 1–6.

[2] Y. Tian, K. Pei, S. Jana, and B. Ray, “DeepTest: automated testing
of deep-neural-network-driven autonomous cars,” in Proceedings of the
40th International Conference on Software Engineering, ser. ICSE ’18.
New York, NY, USA: Association for Computing Machinery, May 2018,
pp. 303–314.

[3] W. Li, Y. Wang, H. Li, and X. Li, “RRAMedy: Protecting ReRAM-
Based Neural Network from Permanent and Soft Faults During Its
Lifetime,” in 2019 IEEE 37th International Conference on Computer
Design (ICCD), Nov. 2019, pp. 91–99, iSSN: 2576-6996.

[4] S. A. El-Sayed, T. Spyrou, L. A. Camuñas-Mesa, and H.-G. Stratigopou-
los, “Compact Functional Testing for Neuromorphic Computing Cir-
cuits,” IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, vol. 42, no. 7, pp. 2391–2403, Jul. 2023, conference
Name: IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems.

[5] Y.-Z. Hsieh, H.-Y. Tseng, I.-W. Chiu, and J. C. M. Li, “Fault Modeling
and Testing of Spiking Neural Network Chips,” in 2021 IEEE Interna-
tional Test Conference in Asia (ITC-Asia), Aug. 2021, pp. 1–6, iSSN:
2768-069X.

[6] S. T. Ahmed and M. B. Tahoori, “Compact Functional Test Generation
for Memristive Deep Learning Implementations using Approximate
Gradient Ranking,” in 2022 IEEE International Test Conference (ITC),
Sep. 2022, pp. 239–248, iSSN: 2378-2250.

[7] F. Meng, F. S. Hosseini, and C. Yang, “A Self-Test Framework for De-
tecting Fault-induced Accuracy Drop in Neural Network Accelerators,”
in Proceedings of the 26th Asia and South Pacific Design Automation
Conference, ser. ASPDAC ’21. New York, NY, USA: Association for
Computing Machinery, Jan. 2021, pp. 722–727.

[8] A. Ruospo, G. Gavarini, A. Porsia, M. S. Reorda, E. Sanchez, R. Mar-
iani, J. Aribido, and J. Athavale, “Image Test Libraries for the on-line
self-test of functional units in GPUs running CNNs,” in 2023 IEEE
European Test Symposium (ETS), May 2023, pp. 1–6, iSSN: 1558-1780.

[9] S. T. Ahmed and M. B. Tahoori, “One-Shot Online Testing of Deep
Neural Networks Based On Distribution Shift Detection,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
pp. 1–1, 2024, conference Name: IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems.

[10] A. Chaudhuri, C.-Y. Chen, J. Talukdar, and K. Chakrabarty, “Functional
Test Generation for AI Accelerators using Bayesian Optimization,” in
2023 IEEE 41st VLSI Test Symposium (VTS), Apr. 2023, pp. 1–6, iSSN:
2375-1053.

[11] S. Kundu and K. Basu, “Detecting Functional Safety Violations in
Online AI Accelerators,” in 2022 IEEE 28th International Symposium
on On-Line Testing and Robust System Design (IOLTS), Sep. 2022, pp.
1–4, iSSN: 1942-9401.

[12] V. Turco, A. Ruospo, G. Gavarini, E. Sanchez, and M. S. Reorda,
“Uncovering hidden vulnerabilities in cnns through evolutionary-based
image test libraries,” in 2023 IEEE International Symposium on Defect
and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), 2023,
pp. 1–6.

[13] C.-Y. Chen and K. Chakrabarty, “On-line Functional Testing of
Memristor-mapped Deep Neural Networks using Backdoored Check-
sums,” in 2021 IEEE International Test Conference (ITC), Oct. 2021,
pp. 83–92, iSSN: 2378-2250.

[14] B. Luo, Y. Li, L. Wei, and Q. Xu, “On Functional Test Generation
for Deep Neural Network IPs,” in 2019 Design, Automation & Test in
Europe Conference & Exhibition (DATE), Mar. 2019, pp. 1010–1015,
iSSN: 1558-1101.

[15] Q. Liu, T. Liu, Z. Liu, W. Wen, and C. Yang, “Monitoring the Health of
Emerging Neural Network Accelerators with Cost-effective Concurrent
Test,” in 2020 57th ACM/IEEE Design Automation Conference (DAC),
Jul. 2020, pp. 1–6, iSSN: 0738-100X.

[16] A. Bosio, M. Gomes, F. Pavanello, A. Porsia, A. Ruospo, E. Sanchez,
and E. I. Vatajelu, “Resiliency approaches in convolutional, photonic,
and spiking neural networks,” in 2024 IEEE 25th Latin American Test
Symposium (LATS), 2024, pp. 1–10.

