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Including thermal network operation in the optimization of a Multi 
Energy System 
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Energy Department of Politecnico di Torino, Turin, Italy   
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A B S T R A C T   

The combined production of different energy vectors with Multi Energy Systems is a very attractive opportunity 
to increase the generation efficiency, compensate the oscillations of renewable sources, and improve the flexi-
bility in power generation. Optimizing their operation is a complex task, since the problem can easily reach high 
dimensions, representing a challenge for commercial solvers. The inclusion in the optimization of a thermal 
network whose simulation is based on temperatures and flowrates allows to significantly improve the applica-
bility of the obtained results. In addition, the effect of the operating temperatures on the performances of thermal 
components should be included as well. With these purposes, the present study proposes a strategy for the 
operation optimization of a MES and its internal thermal network. The model relies on a decomposition 
approach, where the original problem is divided in two subproblems. In the first one, the MES operating costs are 
minimized without considering the effects of the thermal network, while in the second one, the thermal network 
operation is optimized in order to find the operating conditions that are more favourable to the ones found for 
the MES. These subproblems are iteratively solved until the process converges to a stable solution. Some efforts 
are taken to keep the mathematical formulation as simple as possible (the MES is a Mixed Integer Linear Pro-
gramming, while the heating network is a Quadratically Constrained Programming). The developed model al-
lows to find near-optimal solutions which satisfy the numerous physical and technical constraints addressed. The 
results provide an optimized schedule for the thermal storage in terms of mass flowrates and temperature. One of 
the strengths of the model is the relatively low computational time required to reach the convergence and, 
despite not being the global optimum, the high quality of the solution obtained.   

1. Introduction 

The research in the energy field has been remarkably boosted during 
the last decades by the goal of reducing the climate changes by keeping 
the increase of the global average temperature below 1.5 ◦C ([1]). The 
production and consumption of energy has been put in discussion, 
looking in a different perspective the topics of energy efficiency ([2]), 
ambient pollution, availability of energy sources ([3]), and global 
warming. Developing new technologies, improving the conversion 
processes, operating with multiple energy vectors, exploiting energy 
storages, and increasing the production from renewable sources are 
some of the main actions recognised to tackle the agreements signed by 
the international community ([4]). However, executing at the same time 
these measures to build the next generation of the power production 
system is still a very complex task, both in theory and in practice ([5]). 

In this framework, the Multi Energy Systems (MES) constitute a 

complete synthesis of these purposes, allowing to perform a combined 
production of multiple energy vectors using a great variety of sources 
and technologies ([6]). To set the operation of an energy system it is 
therefore necessary to establish which technologies will be employed for 
the combined generation of the energy vectors and the variation of their 
partial loads during the time interval considered. In the present work, 
this task will be referred as the “operation optimization of the MES”. 
Among the most important issues that the MES have to face during its 
operation, there are: i) handling the fluctuations in the power produc-
tion from renewable sources ([7]); ii) managing the energy storages 
([8]); iii) dealing with the mutual dependence and influence on the 
operation of different components. Considering these requirements, it 
appears as unavoidable that in order to solve the operation problem, an 
optimization process must be addressed. Deterministic solvers are the 
most employed alternative since this kind of problems can easily reach 
very high dimensions ([9]). In order to represent the MES as accurately 
as possible, many different real phenomena must be included in the 

* Corresponding author. 
E-mail addresses: umberto.tesio@polito.it (U. Tesio), elisa.guelpa@polito.it (E. Guelpa), vittorio.verda@polito.it (V. Verda).  

Contents lists available at ScienceDirect 

Energy Conversion and Management 

journal homepage: www.elsevier.com/locate/enconman 

https://doi.org/10.1016/j.enconman.2023.116682 
Received 8 November 2022; Received in revised form 9 January 2023; Accepted 10 January 2023   

mailto:umberto.tesio@polito.it
mailto:elisa.guelpa@polito.it
mailto:vittorio.verda@polito.it
www.sciencedirect.com/science/journal/01968904
https://www.elsevier.com/locate/enconman
https://doi.org/10.1016/j.enconman.2023.116682
https://doi.org/10.1016/j.enconman.2023.116682
https://doi.org/10.1016/j.enconman.2023.116682
http://crossmark.crossref.org/dialog/?doi=10.1016/j.enconman.2023.116682&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Energy Conversion and Management 277 (2023) 116682

2

model. As a consequence, many nonlinear and nonconvex terms are 
likely to appear in the model. In this way, the complexity of the problem 
increases significantly and the capability of finding the global optimum 
as outcome of the optimization is compromised. For these reasons, it is 
preferred to develop a model with a linear formulation, such that Mixed 
Integer Linear Programming (MILP) solvers with an advanced stage of 
development can be exploited ([10]). Noticeable efforts are therefore 
made in converting Mixed Integer Nonlinear Programming (MINLP) 
models into MILPs (or at least into convex MINLPs). The most employed 
strategies for this task are ([11]): i) linearization of nonlinearities ([12]); 
convexification of nonconvex terms ([13]); problem decomposition. 
Nonlinearities are treated according to their nature; the addition of 
auxiliary variables is always needed, which can be both continuous and 
binary ([14]). Convexification strategies are employed to reduce the 
complexity of the optimization problem and obtain global optimums 
instead of local optimums. Since they usually rely on relaxation tech-
niques, iterative processes are often needed to tighten the approxima-
tion and increase the feasibility of the solution ([15]). Finally, the 

problem decomposition aims at separating the complete problem into 
smaller (and simpler) ones, which can be solved quickly. The separation 
can be either conceptual, when the subproblems represent portions of 
the system ([16]), or mathematical, when the subproblems are divided 
according to their mathematical formulation ([17]). The benefits 
brought by these approaches increase while increasing the complexity of 
the problem under consideration. 

Any kind of technology for the energy production can be included in 
a MES, and the most considered ones are: combined heat and power, 
heat only boilers, electric heat pumps, fuel cells, photovoltaic panels, 
and wind turbines. Other peculiar elements are energy storages and the 
connections with the external grids. In addition, the exchange of both 
electrical and thermal powers is performed by means of energy networks 
([18]), which are very important infrastructures and whose operation 
must be carefully assessed ([19]). However, including their simulation 
in the MES operation optimization results to be very challenging, 
because of the very high number of additional variables that should be 
introduced and the mathematical form of the constraints that must be 

Nomenclature 

a Coefficient in performance curve 
b Coefficient in performance curve 
c Coefficient in performance curve 
c Specific cost 
C Set of components 
cp Specific heat 
d Coefficient in performance curve 
e Coefficient in performance curve 
E Energy 
h Binary variable for piecewise linearization 
k Start-up/shut-down state of components 
l Storage loss coefficient 
ṁ Mass flowrate 
M Mass 
M Big-M 
P Power 
s Operating state of components 
t Time 
T Temperature 
T Set of timesteps 
V Set of energy vectors 
w Weight parameter 
x Constant value for piecewise linearization 
y Constant value for piecewise linearization 
z Constant value for piecewise linearization 

Abbreviations 
CFVT Constant flow and variable temperature 
CHP Combined heat and power system 
DHN District heating network 
EHP Electric heat pump 
FC Fuel cell 
GHP Gas heat pump 
HOB Heat only boiler 
LP Linear Programming 
LPG Liquefied petroleum gas 
MES Multi energy system 
MILP Mixed integer linear programming 
MINLP Mixed integer nonlinear programming 
NG Natural gas 
NLP Nonlinear programming 
OF Objective function 

PV Photovoltaic 
QCP Quadratically constrained programming 
SoC State of charge 
TN Thermal network 
VFCT Variable flow and constant temperature 
VFVT Variable flow and variable temperature 

Greek letters 
α Continuous variable for piecewise linearization 
β Binary variable for storage 
Δ Difference 
∊ Absolute error 
Ψ Convergence parameter 
Φ Heat flux 

Superscripts 
ch Charging 
dis Discharging 
k Index for iterations 
l Lower 
max Maximum 
min Minimum 
t Index for timesteps 
th Thermal 
u Upper 

Subscripts 
amb Ambient 
ave Average 
buy Energy bought 
C Cold 
cmp Component 
f Index for fuels 
H Hot 
i Generic index 
in Inlet 
j Generic index 
off Off 
on On 
out Outlet 
sell Energy sold 
stor Storage 
t Index for timesteps 
w Water  
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addressed to simulate the physical behaviour of the networks. In 
particular, including the Thermal Network (TN) in the optimization 
would guarantee the feasibility of the solution in the real application. 
Another advantage brought by this combined optimization is repre-
sented by the possibility to increase the flexibility of the system, 
allowing to obtain higher-quality solutions. However, because of the 
challenges already mentioned, most of the studies that in the scientific 
literature do not implement the simulation of the thermal network in the 
model created for the MES operation optimization. For example, 
detailed and reliable optimizations are developed for MESs subserved to 
a hospital ([20]), a tile factory ([21]), and generic loads ([22]), but in 
none of them is simulated the thermal network. On a physical 
perspective it represents an acceptable simplification since the consis-
tency of the problem is granted by simply addressing the energy balance 
between the thermal powers consumed and generated, despite the ac-
curacy of the simulation will be unavoidably reduced. 

Some available works include the thermal network in the optimiza-
tion in very different ways. In few cases it is implemented by computing 
the heat powers transferred between the nodes ([23,24]). This basic 
approach is mostly adopted when the design of the TN is one of the 
aspects that must be optimized. In fact, knowing the amount of heat 
exchanged between two nodes, it is possible to estimate the size and cost 
of the pipe that must be installed. However, this strategy does not allow 
to address the problem of the TN operation. When a higher degree of 
precision is required for the operation of the thermal network, it be-
comes necessary to consider the operating mass flowrates and temper-
atures, beside addressing some initial hypothesis. In addition, different 
control strategies can be chosen. The Constant Flow and Variable 
Temperature (CFVT or quality regulation) is a common choice in the 
research since it is the most employed strategy in the real world. This 
control strategy is adopted in [25] and [26], where the building inertia is 
included to increase the flexibility of the system. The main transport 
networks are implemented in [27], where CFVT is used for the DH 
management and the optimization results are compared with traditional 
control strategies, showing advantages both in economic and environ-
mental terms. The opposite alternative is the Variable Flow and Constant 
Temperature (VFCT or quantity regulation) strategy, which is less 
investigated. This option is chosen in [28] to optimize the design and 
operation of a system in the perspective of distributed energy resources. 
These two strategies allows to keep a linear formulation of the TN, since 
only one between the mass flowrates and temperatures must be 
considered as independent variable. This linearity is lost with the Var-
iable Flow and Variable Temperature (VFVT) strategy, characterized by 
a higher degree of freedom that can be achieved in the regulation. This 
strategy allows to reach a higher number of operating conditions, which 
can result to be more advantageous for the thermal production with 
respect to the ones reached with the CFVT or VFCT. However, for this 
same reason, the VFVT is also the most complex to implement in the 
optimization, due to its nonconvex mathematical formulation. In 
particular, because of the product between mass flowrates and tem-
peratures (bilinear terms), the energy balances at the nodes of the 
network are nonlinear and nonconvex equations. Taking into account 
the quantity and the nature of these bilinear terms, using a piecewise 
linearization technique on the energy balances results to be unfeasible. 
In fact, the problem sizes would increase dramatically, and the collateral 
high number of binary variables would compromise the problem 
convergence in an acceptable computational time. On the other hand, 
keeping the nonconvex Mixed Integer Quadratically Constrained pro-
gram (MIQCP) formulation make necessary to execute the optimization 
with a suitable solver (i.e. Gurobi [29] or Ipopt [30]). Relaxation tech-
niques (e.g. Mc Cormick relaxation) are used by the solvers, with the 
help of complex iterative strategies (spatial branches, cutting planes, 
etc.) implemented to improve the relaxation and guarantee the feasi-
bility of the solution. However, the MIQCP sizes that can be handled by 
commercial solvers are still too small compared to the typical ones of a 
MES problem. The last option for handling these constraints can rely on 

a decomposition approach. The concept behind this strategy relies on 
the idea that a series of small problems can be solved faster than a single 
problem with dimensions equal to the sum of the smaller ones. Incre-
mental piecewise linearization and relaxation of bilinear terms are used 
in [31], where the convergence to a feasible solution is managed with a 
parallel Benders decomposition combined with the sequential bound- 
tightening. Finally, the simulation of a MES including electrical and 
thermal networks is performed in [32] with two strategies: a sequential 
approach, where the electrical, hydraulic and thermal problems are 
solved in series; and an integrated approach, where the problems are 
managed in parallel. 

The aim of the present study is to investigate the inclusion of the 
thermal network simulation (with the VFVT strategy) in the operation 
optimization of a MES. A relatively basic case study is chosen, charac-
terized by a thermal network of small dimensions. The performances of 
the technologies are addressed such that the dependence on both the 
partial load and the operating temperatures are considered, which is one 
of the novelties of the present work. Taking advantage of this charac-
teristic, an original strategy for solving efficiently the combined opera-
tion of the energy system and the thermal network has been developed. 
Another important novelty of the present study is represented by the 
implementation of a thermal storage in the thermal network, whose 
simulation takes into account the temperature of the water stored. The 
model relies on linearization and decomposition techniques, and, in 
authors’ knowledge, its main structure has never been investigated 
before. The iterative process developed to solve the decomposed prob-
lem does not ensure the achievement of the global optimum and must be 
therefore considered as a near-optimum solution. However, the quality 
of the optimization outcome is demonstrated to be adequate, especially 
considering the non-demanding computational times requested by the 
process to solve the operation problem. 

2. Case study 

The MES considered in the present work has a relatively simple 
structure, which is shown in Fig. 1. All the energy vectors and tech-
nologies involved in the MES operation are reported in this image. The 
energy system has the task of satisfying the demand of two energy 
vectors: electricity (in light blue) and heating (in red). Concerning the 
fuels, methane (in yellow), hydrogen (in blue) and LPG (in purple) are 
considered in the present work. The production process of the hydrogen 
is not included in the analysis, therefore it is assumed as a fuel imported 
from the outside of the system. It is worth to mention that connections 
represented for the exchange of the thermal powers must be considered 

Fig. 1. Simplified schematic of the MES analysed.  

U. Tesio et al.                                                                                                                                                                                                                                    



Energy Conversion and Management 277 (2023) 116682

4

only as conceptual and not as topological (i.e. the real layout of the 
networks is different from the one represented in the figure). 

The technologies involved in the electricity/heating generation are: 
Combined Heat and Power (CHP), Heat only Boiler (HOB), Electric Heat 
Pump (EHP), Gas Heat Pump (GHP), Fuel Cell (FC), Photovoltaic panels 
(PV), wind turbine (Wind), electric storage, thermal storage and the 
connection with the electric grid. Any other technology can be included, 
since, as exposed in the next section, the mathematical formulation used 
to model the components does not change with their typology. 

As time period, a single day (24 h) discretized with a timestep of 15 
min is considered for the present study. 

Being out of the extents of this analysis, the electric grid is not 
simulated and only its connection with the MES is considered. 

In order to model the heat transportation, it is necessary to point out 
the important distinction between thermal networks inside the MESs 
and external District Heating Networks (DHNs). The latter ones are 
usually characterized by medium/large size, which can be between a 
small city up to an entire town. The DHNs topology can be either ring- 
shaped or tree-shaped, and it is constituted by two pipes (for the sup-
ply and the return of the hot water). In addition, the noticeable spatial 
extension of DHNs determines non-negligible heat dispersions (due to 
convection heat losses) and time delays in the propagation of hot water 
across the pipes. 

On the other side, thermal networks operating inside MESs are 
required to connect the technologies producing or consuming heat. In 
this kind of systems, these components are located relatively close. As a 
result, the effects determined by the thermal inertia of the network and 
the heat losses can be neglected, introducing a reasonable simplifying 
hypothesis, adopted in this analysis. In addition, the layout of MESs 
networks can present many differences compared to DHNs. For example, 
the distinction between supply and return pipes may not be straight-
forward as in the case of DH, since more complex connections could link 
the technologies. Each thermal generator is equipped with a water pump 
and the mass flows circulating in the network can be adjusted more 
precisely with respect to DHNs, where, in case of meshes, it is not always 
possible to impose all the flowrates. In light of that, the present study is 
conducted assuming that all the directions of the mass flowrates are 
known, and any amount of flowrate can be set in each branch. In 
addition, from now on, the thermal infrastructure for the exchange of 
heating powers considered in this case study will be synthetically 
referred as TN, remembering that it is only a thermal network inside the 
MES and not an external DHN. Beside the internal TN of the MES, no 
other DHNs are considered and simulated in the present analysis. 

The layout of the thermal network taken as case study in the present 
work is shown in Fig. 2. This setting is selected since it provides a high 
degree of freedom for the operation of the network itself. The thermal 
generators are coupled such that the EHP and the GHP are connected in 
parallel, and the same is done for the boiler and the CHP. Each of the two 

couples has a bypass branch that allows to skip the components when-
ever they are not operating, or it is needed to meet technical constraints 
on temperatures/flowrates across the network. Each component can 
operate independently from the other it is coupled to, and either the 
separate or simultaneous operation of the two couples is possible. In this 
last case, the two couples can be connected both in parallel and in series. 
In case of series connection, the couple composed by the two heat pumps 
is placed for first because the outlet temperatures attained by these 
technologies are typically lower than the ones reached by HoBs and 
CHPs. 

Finally, it is worth to mention that, despite the case study analysed in 
the present work has been freely developed by authors and it is not 
referred to any specific sector, the real applications for these kind of 
energy systems are particularly wide. Centralized power production, 
heavy industries, energy communities, distributed generation, near zero 
energy buildings and some tertiary industries (e.g. hospitals) are the 
main examples of real contexts in which energy systems can operate. 

3. Methodology 

The aim of this work is to develop a model for optimizing the 
operation of a Multi Energy System, including the operation of the 
thermal network. As thermal network is intended the system that allows 
the heat transportation among the thermal generators and the thermal 
load. The VFVT regulation of the network makes possible to achieve the 
highest degree of freedom in the operation and it is reasonable to expect 
that the energy system will take advantage from that (in fact, this is the 
regulation adopted for the thermal network). 

This section is devoted to the explanation of the model developed in 
the present work. The approaches adopted to represent the operation of 
the generators and the physical behaviour of the thermal network are 
discussed in two separate paragraphs. 

3.1. Modelling of components 

In this paragraph the formulations exploited in the model in order to 
represent the operation of the elements constituting the MES in a 
mathematical form are described. For first, the approach to model the 
technology performance is discussed. Then, the constraints representing 
the technical boundaries for their operation are addressed. 

3.1.1. Performances of components 
The performances of the technologies constituting the MESs are 

widely recognised by the scientific literature to be nonlinear ([10]). The 
most common formulation to represent the operation of the components 
is a third-degree polynomial with a single variable. Typically, the in-
dependent variable is the input power (the power of the fuel/vector 
consumed), while the dependent variable is the output power (the 
power of the energy vector produced). In addition, a more detailed 
description can be achieved by using a polynomial with two indepen-
dent variables, which may be preferred in case of components with a 
relatively complex operation, such as the CHP ([22]). 

One of the aims of the present study is to include the effects of the 
operating temperature of the thermal generators on their performance. 
With this purpose, a parameter that will be called “characteristic tem-
perature” is defined for each heat generator. The characteristic tem-
perature can be defined as the temperature that is able to represent the 
dependence of the efficiency on the operating temperatures; this can be, 
depending on the technology, the temperature at the inlet, at the outlet, 
the average between these two, or any other form. As a consequence, 
two independent variables are addressed to describe the performance of 
the technologies adopted: the inlet power (Pin), and the characteristic 
temperature (Tcmp). This can be seen in the general formulation of the 
performance of the components, reported in Equation (1), where Pout is 
the outlet power, while a, b, c, d, and e are fixed numerical coefficients. 
As arbitrary choice, the Tcmp appears only at first-degree in the 

Fig. 2. Layout of the heating network of the MES.  
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polynomial; however, because to the approach adopted to implement 
the optimization, any other degree can be chosen in the equation. 

Pout = a⋅P3
in + b⋅P2

in + c⋅Pin + d⋅Tcmp + e (1) 

Concerning the optimization process, developing a model with a 
linear formulation would guarantee the achievement of the global op-
timum and would allow to use commercial solvers with an advanced 
stage of development. This advantage is the reason because a noticeable 
number of papers exist in the scientific literature in which a LP or MILP 
formulation is chosen. For this reason, Equation (1) is linearized with the 
piecewise approach. A description of the linearization strategy is re-
ported in the following subparagraphs, while the detailed explanation of 
the method adopted is presented in [33].  

• 1D linearization 

The performance curve is discretized into different segments by 
fixing some values of the independent variable (xi) inside of its range of 
variation, and the corresponding values of the dependent variable (yi), 
where the subscript i goes from 1 to the number of linearization nodes N 
(this set is named I ). Then, a continuous variable (αi, bounded between 
0 and 1) is associated to each node, while a binary variable (hi) is 
assigned to each segment of linearization. After having added some 
constraints on these linearization variables (details in [33]), it is possible 
to reformulate the original variables as shown in Equations (2) and (3): 

Pin =
∑

i∈I

[xi⋅αi] (2)  

Pout =
∑

i∈I

[yi⋅αi] (3) 

This kind of linearization is visually represented in Fig. 3, where a 
nonlinear performance curve is linearized in 3 intervals (4 linearization 
nodes).  

• 2D linearization 

The 2D linearization is more complex with respect to the 1D line-
arization. Because of its higher accuracy, the technique adopted in this 
study relies on the triangle method. The performance surface is dis-
cretized with a mesh, fixing some values of the independent variables (xi,

yj) inside of their domain, and the corresponding values of the depen-
dent variable (zij). Then, a continuous variable (αij, bounded between 
0 and 1) is associated to each mesh node, while two binary variables (hl

ij 

and hu
ij) are assigned to each sector of the mesh. Other constraints on 

these linearization variables are added (details in [33]), then, it is 
possible to reformulate the original variables as shown in Equations 4–6: 

Pin =
∑

i∈I

[

xi

∑

j∈J

[
αij
]
]

(4)  

Tcmp =
∑

j∈J

[

yj

∑

i∈I

[
αij
]
]

(5)  

Pout =
∑

i∈I ,j∈J

[zij⋅αij] (6) 

This kind of linearization is visually represented in Fig. 4, where a 
nonlinear performance surface is linearized in 18 intervals (4x4 linear-
ization nodes). 

Finally, the dependencies of the operation of the components and the 
discretization of their performances are reported in Table 1. 

Energy storages require a different modelling with respect to the 
other technologies. The simplest approach consists in addressing a single 
continuous variable and the capacity constraints, which are sufficient to 
simulate the storage operation. However, if more complex constraints 
are addressed (e.g. layout connections among technologies), a more 
detailed description is required. For this reason, the energy storage is 
simulated with two continuous variables (Pch

stor for the charging phase 
and Pdis

stor for the discharging phase) and one binary variable (β), which 
avoids a simultaneous charge and discharge of the storage. 

3.1.2. Components constraints 
The constraints addressed to bound the operation of the components 

to their technical limitations are reported below.  

• Energy vectors balances 

This constraint imposes that, for each timestep and for each energy 
vector, the sum of the powers produced by the generators is equal to the 
sum of those absorbed by the consumers. Its mathematical formulation 
is reported in Equation (7), where C , V and T are respectively the sets 
of the components c , energy vectors v and timesteps t. 

Fig. 3. Conceptual representation of a 1-D piecewise linearization.  

Fig. 4. Conceptual representation of a 2-D piecewise linearization.  

Table 1 
Parameters taken as characteristic temperatures and linearization intervals.    

CHP Boiler GHP EHP FC 

Independent variables Pin * * * * * 
Tcmp *(Tin) *(Tin) *(Tout) *(Tout) ×

Linearization nodes 4x4 4x4 4x4 4x4 4  

U. Tesio et al.                                                                                                                                                                                                                                    
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∑

c∈C

[
Pv,t

c

]
= 0∀v ∈ V ;∀t ∈ T (7)    

• Minimum on/off times 

An important characteristic of the technologies involved in the MESs 
is that their operation in time cannot be excessively discontinuous. A 
high number of start-ups and shutdowns in a short amount of time can 
have deleterious effects on their lifecycle, and it may be infeasible in 
practical terms. For these reasons, the constraints imposing the mini-
mum time interval in which a component cannot change its operating 
state (after a start-up or a shutdown) are implemented. For first, the 
operation state (s, 1/0 for on/off) of each component is obtained with 
Equation (8); then, an auxiliary dependent variable (k) is computed with 
Equation (9). Finally, the constraint on the minimum operating time 
after a start-up is imposed by Equations (10) and (11), while the mini-
mum operating time after a shutdown is imposed by Equation (12) and 
(13). Here, Nt,on/off is the number of timesteps in which the component 
cannot change its operating state after a start-up or a shutdown, while M 

is the so called Big-M, a constant number that is fixed to an arbitrary 
high value. 

st =
∑

i∈I

[
ht

i

]
or
∑

i∈I ,j∈J

[hl,t
ij + hu,t

ij ] (8)  

kt = st − st− 1 (9)  

∑t*+Nt,on − 1

t=t*
[st] − Nt,on ≤ (1 − kt* )⋅M (10)  

(kt* − 1)⋅M ≤
∑t*+Nt,on − 1

t=t*
[st] − Nt,on (11)  

∑t*+Nt,off − 1

t=t*
[st] ≤ (1+ kt* )⋅M (12)  

− (kt* + 1)⋅M ≤
∑t*+Nt,off − 1

t=t*
[st] (13)    

• Ramping constraints 

Similarly to the constraints on the minimum on/off time, the 
ramping constraints are addressed to represent the dynamics of the 
components. In particular, their implementation avoid that their oper-
ation undergoes too extended changes in short amounts of time. The 
ramp-up and ramp-down constraints are typically referred to the oper-
ating power. However, in order to represent the inertia of the compo-
nents in changing their operating temperatures, the ramping constraints 
are implemented for the Tcmp (Equation (14)). Here, C

th is the set of 
components whose performance depend on Tcmp, while ΔTmax/min

cmp is the 
maximum/minimum difference of characteristic temperature that must 
be respected.    

• Energy storage 

As already discussed, each energy storage is modelled with two 
continuous variables, one binary variable and some devoted constraints. 
The State of Charge (SoC) is computed with Equation (15), where the 
energy losses (lstor) are included and modelled as a fraction of the SoC 
itself. The maximum and minimum storage capacity achievable during 
the operation are imposed with Equation (16), while Equations (17) and 
(18) are addressed in order to avoid the simultaneous charging and 
discharging of the component. Notice that when an energy storage is 
simulated only with the charging/discharging power and its state of 
charge, the mathematical formulation does not change if either an 
electrical or thermal storage is considered. 

SoCt
c=
(
1− lstor

c

)
⋅SoCt− 1

c +
(

Pv,t
ch,c − Pv,t

dis,c

)
⋅Δt ∀c ∈C

stor
; ∀v∈V

stor
; ∀t∈T

(15)  

SoCmin
c ≤ SoCt

c ≤ SoCmax
c ∀c ∈C

stor
; ∀t∈T (16)  

0≤Pv,t
ch,c≤Pv,max

ch,c ⋅
(
1− βt

c

)
∀c∈C

stor
; ∀v∈V

stor
; ∀t∈T (17)  

0≤Pv,t
dis,c≤βt

c⋅P
v,max
dis,c ∀c ∈C

stor
; ∀v∈V

stor; ∀t∈T (18)  

3.2. Modelling of thermal network 

In order to include the thermal network in the MES operation opti-
mization, it is necessary to build a model that simulates the network 
operation according to the input data and assumptions adopted for the 
present analysis. Since the VFVT is the control strategy adopted to 
manage the network operation, the thermal power transferred are not 
sufficient to model the grid. Both the mass flowrates (ṁ) and the tem-
peratures (T) must be assumed as parameters describing the network. 
With this purpose, the TN layout is designed with the graph approach, as 
shown in Fig. 5. The branches representing the thermal generators/ 
consumers are labelled with their corresponding name/acronym, while 
the others are simple pipes connecting the nodes. 

On a theoretical level, with the graph approach, each component 

involved in the thermal generation/consumption could be modelled 
with a single branch and the corresponding heating flux provided/ 
absorbed. However, according to the TN layout, with this approach it 

Fig. 5. Graph representation of the thermal network.  

ΔTmin
cmp,c − M ⋅

(
2− st

c − st− 1
c

)
≤Tt

cmp,c − Tt− 1
cmp,c≤ΔTmax

cmp,c+M ⋅
(
2− st

c − st− 1
c

)
∀c∈C

th (14)   
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may happen that the water temperature at the outlet of a component and 
the temperature of the exit node of the branch are not the same. In 
particular, this would happen when then the outlet flow of a thermal 
unit is mixed with another flowrate. For this reason, the thermal units 
are modelled with two branches in series, such that the identification of 
the outlet temperature of the components is immediate. 

A different approach is developed to simulate the thermal storage, 
which is modelled with four branches: two for the discharging phases 
and other two for the charging phases. The reason for this choice relies 
in the fact that the directions of the flowrates circulating in the network 
must be fixed a priori. This cannot be done without addressing the 
simulation of the charging and discharging processes in different 
branches, since the direction of their water flows is opposite. 

The resulting graph of the thermal network is relatively small, since 
it is composed by 11 nodes and 17 branches. For this reason, it is 
considered a good starting point for the execution of the innovative 
method developed in this study. The model of the thermal network is 
synthesized according to the simplifying assumptions adopted. In fact, 
since thermal losses and inertia are neglected, each timestep can be 
assumed to operate in steady-state conditions. For the purpose of the 
optimization, once that the independent variables are defined, the TN is 
modelled by addressing the constraints. 

3.2.1. Thermal network constraints 
This paragraph is devoted to the presentation and discussion of the 

constraints addressed in order to model the thermal network.  

• Mass flowrate balance 

The mass conservation is imposed implementing one balance equa-
tion at each node. Since the network does not present external in-
jections/extractions of water, the sum of the flowrates circulating in the 
inlet branches must be equal to the sum of the flowrates circulating in 
the outlet branches. This concept is written in mathematical form in 
Equation (19), where N is the set of all the nodes of the network, while 
INk and OUTk are the sets composed by the upstream and downstream 
branches of node k, respectively. 
∑

i∈INk

[
ṁt

i

]
=
∑

j∈OUTk

[
ṁt

j

]
∀k∈N ; ∀t∈T (19)    

• Energy balance 

Energy balances are the constraints ensuring the satisfaction of the 
first thermodynamic principle. The variables involved are: i) the mass 
flowrates and the temperatures of the upstream flows mixing in a node; 
ii) the mass flowrates and the temperatures of the downstream flows of 
the same node; and iii) the heat fluxes exchanged by the upstream 
branches, representing a heat production/consumption. This constraint 
is addressed with Equation (20), where cp,w is the specific heat capacity 
of water and Φi is the thermal flux exchanged by the inlet branch i. 
∑

i∈INk

[
cp,w⋅ṁt

i⋅Tt
i +Φt

i

]
=
∑

j∈OUTk

[
cp,w⋅ṁt

j⋅Tt
j

]
∀k∈N ; ∀t∈T (20)    

• Temperature boundaries of components 

The different technologies involved in the operation of the thermal 
network are expected to have a range of temperatures at both their inlet 

and outlet. Since these constraints are needed to be respected only when 
the component is operating, the big-M technique is again exploited to 
address them. Their mathematical formulation is reported in Equations 
(21) and (22). 

Tin
c,min − M ⋅

(
1− st

c

)
≤Tin,t

c ≤Tin
c,max+M ⋅

(
1− st

c

)
∀c ∈C

th
; ∀t∈T (21)  

Tout
c,min − M ⋅

(
1− st

c

)
≤Tout,t

c ≤Tout
c,max+M ⋅

(
1− st

c

)
∀c∈C

th
; ∀t∈T (22)    

• Temperature differences of components 

Beside the boundaries on the inlet/outlet temperature of the com-
ponents, the operation of the technologies can be limited by constraints 
on the minimum or maximum temperature difference that the water can 
undergo by passing through the component itself. These constraints can 
be easily implemented with the same strategy presented before, as 
shown by Equation (23). 

ΔTc,min − M ⋅
(
1− st

c

)
≤ΔTt

c≤ΔTc,max+M ⋅
(
1− st

c

)
∀c∈C

th
; ∀t∈T (23)    

• Ramping constraints on Tcmp 

In order to be consistent with the MES model, the same ramping 
constraints on the characteristic temperatures of the components are 
implemented in the model of the thermal network. Their mathematical 
formulation is the same reported in Equation (14). However, there is an 
important difference that is worth to be noticed: the Tcmp is not a 
dependent variable computed with Equation (5), but it is independent, 
belonging to the set of T defined for the nodes of the thermal network.  

• Ramping constraints on flowrates 

Another kind of ramping constraint should be addressed for the ramp 
up/down of the mass flowrates crossing the heat generators/consumers. 
In fact, steep variations of the water flows could be impossible to be 
executed and, in general terms, it should be preferable to keep relatively 
continuous operating conditions. 

With this purpose, Equation (24) is implemented in the model.   

Fig. 6. Schematic of the thermal storage according to the model adopted in 
the analysis. 

Δṁc,min − M ⋅
(
2− st

c − st− 1
c

)
≤ṁt

c − ṁt− 1
c ≤Δṁc,max+M ⋅

(
2− st

c − st− 1
c

)
∀c ∈C

th
; ∀t∈T (24)   
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• Thermal storage 

The operation of the thermal storage is simulated according to three 
simplifying assumptions: i) the storage is divided into two water masses, 
one is hot and the other one is cold; ii) each of these two masses is 
perfectly mixed (i.e. the temperature is uniform); iii) the two water 
masses can exchange thermal powers with the external environment, 
but not between them. Both the hot and cold water masses have an inlet 
and an outlet stream, as can be seen in the simple schematic reported in 
Fig. 6. The highlighted parameters are: mass of the cold/hot water 
(MC/H); temperature of the cold/hot water (TC/H); inlet/outlet flowrates 

of cold/hot water (ṁin/out
C/H ); temperature of inlet/outlet flowrates of cold/ 

hot water (Tin/out
C/H ). 

The operation of the thermal storage is established with the MES 
optimization, but only in terms of heating powers. A more detailed 
simulation of the storage operation is obtained addressing Equations 
25–31, where the temperatures and mass flowrates of the are taken into 
account. In particular, Equation (25) is defined for the mass conserva-
tion of the hot/cold water; Equation (26) imposes that the hot/cold 
water mass is between zero and the total mass of the storage (Mstor); 
Equation (27) is implemented for the energy conservation of the hot/ 
cold water; thermal losses are defined in Equation (28); and finally, the 
temperature of the streams extracted from the storage is defined in 
Equation (29); and finally, Equation (32) imposes that the energy con-
tained in the storage (Estor,t , computed with Equation (34)) is equal to the 
one found with the MES optimization (Estor,t

MES ). 

Mt+1
H/C=Mt

H/C+

(

ṁin,t
H/C − ṁout,t

H/C

)

⋅Δt ∀t∈T (25)  

0≤Mt
H/C≤Mstor ∀t∈T (26)  

Mt+1
H/C⋅Tt+1

H/C=Mt
H/C⋅Tt

H/C+

(

ṁin,t
H/C⋅Tin,t

H/C − ṁout,t
H/C⋅Tout,t

H/C+
Φloss,t

H/C

cp,w

)

⋅Δt ∀t∈T

(27)  

⃒
⃒
⃒Φloss,t

H/C

⃒
⃒
⃒=

lstor⋅Mt
H/C⋅cp⋅

(
Tt

H/C − Tamb

)

Δt
∀t∈T (28)  

Tout,t
H/C =Tt

H/C+
Δt⋅Φloss,t

H/C

cp⋅Mt
H/C

=Tt
H/C −

(
Tt

H/C − Tamb

)
⋅lstor ∀t∈T (29)  

Estor,t=Estor,t
MES ∀t∈T (30)  

Estor,t = cp,w⋅
(
Mt

H ⋅Tt
H + Mt

C⋅Tt
C

)
∀t ∈ T (31) 

As can be observed in Equation (25), the mass of the hot/cold water 
can be computed with a linear equation from the corresponding flow-
rates in the thermal network. However, this does not happen for their 
temperature, and indeed, the only way to compute them consists in 
solving a nonlinear equation with independent variables at the de-
nominator of a fraction. This kind of nonlinearity is relatively complex 
to be managed and most of the commercial solvers does not support its 
implementation. For this reason, the TH/C are introduced as independent 
variables to be optimized, such that the mathematical formulation of the 
energy balances for the thermal storage is quadratic. 

3.3. Objective function 

According to the criterion that is intended to pursuit (minimization 
of primary energy consumption, economic costs, CO2 emissions), 
different objective functions can be chosen. For the present study, the 
economic objective function is selected. As a consequence, minimizing 
the expenditures to sustain during the system operation is the scope of 

the optimization. This function (Equation (32)) is defined as the sum-
mation of the operating costs determined by the purchase of fuels, the 
maintenance costs (which are collateral to the components operation), 
and the costs/earnings due to the purchase/sell of electricity from/to the 
grid. Regarding the mathematical notation, the subscript f is the index 
for the fuels belonging to the set F ; c is the specific cost of fuels/energy 
vectors; cm is the specific maintenance cost; and Pbuy/sell is the power 
bought/sold to the external grid. 

OF =
∑

t∈T

[
∑

f∈F

[
cf ⋅Pt

f

]
+
∑

c∈C

[
cm

c ⋅st
c⋅Δt

]
+ cel

buy⋅P
el,t
buy − cel

sell⋅P
el,t
sell

]

(32)  

3.4. Decomposition approach for near-optimal solution 

The complete model of the system considered as case study is 
composed by the union of the two sub-models described in the previous 
paragraphs: the MES model and the model of the thermal network. The 
size of the problem is determined by the number of components, the 
level of detail chosen for the piecewise linearization, and the number of 
timesteps considered. The layout of the components does not have an 
impact on the number of variables but can increase the number of 
constraints, making the problem more difficult to be solved. The com-
plete problem for the operation optimization of the system is therefore 
composed by 17,378 variables (9986 continuous and 7392 binaries) and 
19,800 constraints (18456 linear and 1344 quadratic). The distribution 
of the variables and constraint is provided in Table 2. The resulting size 
of the problem is relatively high, especially considering the presence of a 
non-negligible number of binary variables and the quadratic constraints. 
The model has therefore a MIQCP formulation, which has a nonlinear 
and nonconvex nature. The stage of development of commercial solvers 
of MIQCPs does not allow to solve this problem in a reasonable 
computational time and with an adequate accuracy. As a result, it is 
necessary to develop a strategy that allows to deal with the issues 
characterizing the problem, in order to find an alternative approach to 
perform the operation optimization. 

It is worth to notice that the two main sources of complexity, (i.e the 
binary variables and the quadratic constraints) belong each one to only 
one of the two sub-models. In fact, the binary variables are addressed to 
simulate the MES, while the quadratic constraints are defined in the 
energy balances of the thermal network. If considered separately, the 
MES problem has a MILP formulation, while the model for the thermal 
network has a Quadratically Constrained Programming (QCP) 
formulation. 

There are three main strategies that can be exploited to improve the 
execution of optimization problems: i) linearization techniques; ii) 
constraints relaxation; iii) decomposition techniques. Among these, 
decomposing the optimization can be a very interesting option, since 
allows to solve iteratively smaller versions of the original problem, 
which are simpler and faster to be managed. 

In a conceptual perspective, the simulation of the thermal network is 
nested inside of the MES simulation. Decomposing the optimization 
defining the MES problem as the master problem and the thermal 
network problem as the slave problem could seem a natural choice. 
However, the presence of nonconvex constraints makes much more 
difficult to exploit the decomposition strategy. For this reason, the 
decomposition developed in the present study is based on a 

Table 2 
Variables and constraints of the complete problem.   

MES TN Total 

Binary variables 7392 0 7392 
Continuous variables 7104 2882 9986 
Linear equalities 770 1248 18,456 
Linear inequalities 10,936 5502 
Quadratic equalities 0 1344 1344  
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nonconventional approach. The structure of the entire optimization 
process is synthesized in the flowchart shown in Fig. 7. 

The first step of the process consists in optimizing the MES operation 
without considering any variable or constraint related to the thermal 
network. Since the heating power produced/consumed by the thermal 
generators/consumers are balanced by the constraints addressed for the 
energy conservation, the solution obtained from this particular version 
of the MES optimization keeps a physical meaning. The removal of the 
thermal network is done with a precise purpose: obtaining a simpler 
problem (with a MILP formulation) that can be considered as a relaxed 
version of the original one. As a consequence, the independent variables 
addressed in this first optimization are: α, h, hl and hu for the lineariza-
tion of the performances of the generators; Pgrid for the powers 
exchanged with the external grid; Pstor and β for the operation of the 
energy storage. Any other dependent variable, such as the powers of the 
fuels/energy vectors, the characteristic temperatures of the thermal 
generators and the operating status of the components, can be computed 
from these independent variables. Solving this problem allows to find, 
among the results, the values of the Tcmp that minimize the operating 
costs in the ideally favourable case where the thermal network does not 
impose any kind of constraints to the MES operation. 

The following step is represented by the optimization of the thermal 
network operation. Mass flowrates and temperatures are the parameters 
taken as independent variables. The thermal powers provided/ 
consumed by the generators/users are imposed equal to the values ob-
tained from the MES optimization. The resulting mathematical formu-
lation is a nonconvex QCP. Despite the nonconvexity could be seen as a 
serious issue, the absence of integer variables and the relatively small 
dimensions of the problem are two crucial advantages. The aim of this 
step is to find the operating conditions of the network that allow to 
approach as much as possible the characteristic temperatures of the 
components found with the MES optimization. In other words, the 
objective is to find the mass flowrates and temperatures that allow to 
minimize the difference between the Tcmp obtained from the previous 
MES optimization and the Tcmp found optimizing the thermal network. 
The objective function that can be addressed is not unique since there 
are different ways to evaluate the error between two series of parame-
ters. The option chosen in this study is the absolute value, as reported in 
Equation (33) (where k and k − 1 are the indexes of the iteration in which 
the Tcmp is computed). It is important to notice that the errors between 
the Tcmp computed by the MILP and by the QCP will have different im-
pacts on the operation cost, according to the importance of the 
component. For this reason, the absolute values are multiplied by a 

weight (wc) defined for each thermal generator, obtained with a sensi-
tivity analysis. The problem becomes therefore a minimization of max-
imums. Auxiliary variables (ε) and the corresponding constraints 
(Equation (34)) are introduced in order to rewrite the absolute values in 
linear form (Equation (35) and (36)). 

OF =
∑

c∈C th

[

wc⋅
∑

t∈T

[⃒
⃒
⃒Tt,k

cmp,c − Tt,k− 1
cmp,c|

]
]

(33)  

OF =
∑

c∈C th

[

wc⋅
∑

t∈T

[
εt

c

]
]

(34)  

εt
c ≥ Tt,k

cmp,c − Tt,k− 1
cmp,c (35)  

εt
c ≥ Tt,k− 1

cmp,c − Tt,k
cmp,c (36) 

The successive step of the optimization process is similar to the first 
one. The MES operation is again optimized without taking into account 
the thermal network. The only difference is that all the characteristic 
temperatures influencing the performance of some thermal components 
are fixed. Their value is set equal to the respective values obtained from 
the previous step of the process (i.e. the optimization of the thermal 
network. The task required to the MES optimization is therefore reduced 
to find only the operating powers of the technologies, whose perfor-
mances are mathematically defined by curves and not anymore by sur-
faces (fixing the Tcmp reduces the performances dependencies from two 
to one). 

At this point, the convergence of the characteristic temperatures is 
evaluated. With this purpose, two parameters are defined: the maximum 
error among all the Tcmp (Equation (37)) and the maximum error among 
the average of the Tcmp for each component involved (Equation (38)). If 
at least one of the two errors do not satisfy the tolerance imposed, the 
process is repeated from the second step of the entire procedure (the 
optimization of the thermal network operation) until the convergence is 
reached. 

Ψmax = max
c∈C th ;t∈T

(
εt

c

)
(37)  

Ψmax
ave = max

c∈C th

(

avg
t∈T

(
εt

c

)
)

(38) 

The entire model is written in the Julia language, the MILP problem 
is executed by Gurobi, while Ipopt is used to perform for the QCP 
optimization. 

Fig. 7. Flow chart of the optimization process.  
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Once that the complete structure of the model developed has been 
discussed, it is important to make a fundamental observation. The 
optimization approach presented, which is relatively similar to a fixed- 
point method, does not guarantee that the solution obtained at the end 
of the process is the global optimum. This is due to two main reasons: i) 
the MES and the thermal network are optimized in series and are not 
nested between them; ii) the result could change according to the 
objective function selected for the optimization of the thermal network. 
However, it must be reminded that the global optimum cannot be 
demonstrated to be reached for nonconvex problems. Making efforts in 
convexifying the problem could seem a good strategy for ensuring the 
global optimality, but the solution obtained in this case would be 
referred to an approximated version of the original problem, and 
therefore it would not delete all the issues. On the other hand, the simple 
structure of the process, the absence of complex mathematical tools (e.g. 
relaxation strategies, reformulations, etc.) adopted to execute the opti-
mization and the computational times required (as will be demon-
strated) are important and promising aspects characterizing this model. 
For these reasons, in authors’ opinion, near-optimal solutions found 
with the model developed in this study can be a very useful result to 
attain. To further enforce the reliability of the results obtained, the 
outcomes will be demonstrated to be high quality solutions, “satisfyingly 
close” to the global optimality. 

4. Results 

In this section the results obtained executing the optimization pro-
cedure are presented and discussed. The values of some meaningful 
parameters reached during the convergence of the iterative process are 
reported in Table 3. 

The first iteration is actually the result of the first step of the process, 
the MES operation optimization without the thermal network, which is 
executed before the iterative cycle, and the following optimization of the 
thermal network. The two parameters defined to evaluate the conver-
gence state of the procedure (Ψmax and Ψmax

ave ) undergo a fast decay. In 
fact, the entire process took three iterations, with a computational time 
of 8 min on a laptop with an Intel i7-1065G7 CPU and 16 GB of RAM. 

As previously mentioned, this first optimization of the MES operation 
represents a relaxed version of the complete problem. The thermal 

components are free to set their operation (i.e. powers and characteristic 
temperatures) without taking into account the limitations imposed by 
the presence of the thermal network. It is not guaranteed that this 
relaxed global optimum can constitute a feasible operating schedule for 
the real case study, however, its outcome (102.89 €/day) can be taken as 
a useful theoretical reference. In fact, it represents an upper boundary 
for any feasible solution of the optimization problem. This allows to 
make an interesting observation regarding the quality of the near- 
optimal solution obtained at the end of the process. The operation 
costs at the final iteration are equal to 103.74 €/day, only the 0.8% 
higher with respect to the relaxed global optimum. This means that, 
since the real global optimum must be between the relaxed global op-
timum and the (local) optimum obtained, the solution found with this 
model can have, in the worst case, operation costs the 0.8% higher with 
respect to the global solution. The optimization process developed, 
despite unable to guarantee the global optimality, demonstrates to 
achieve high quality results (or near-optimal solutions) of a complex 
problem in a reasonable amount of time. 

In 2 out of 3 iterations, solving the MILP problem results to be more 
complex with respect to the QCP problem. However, the computational 
times requested by the two problems are comparable between them. The 
MES optimization has a linear formulation, but its higher size and the 
presence of binary variables make it more difficult to be solved. From 
the second iteration, the result of the MILP from the previous iteration is 
provided as initial guess to the solver; in addition, once that the char-
acteristic temperatures are fixed, the size of the MILP is reduced and the 
performances previously addressed with surfaces are reduced to curves. 
However, looking at the results of the iterative process, it is not possible 
to state that the solver is always able to take advantage of them. On the 
other hand, despite its smaller dimensions, the sources of nonconvexity 
and the non-trivial management of the thermal storage represent the 
main complexities affecting the QCP and contribute to determine its 
non-negligible computational time. 

Regarding the other optimization outcomes, the electric and thermal 
powers related to all the technologies involved in the system operation 
are reported in Fig. 8. The diagrams are stacked area graphs, where the 
powers produced by the generators are reported on the positive sector of 
the vertical axis (intended as entering, so positive energy fluxes) and 
vice versa for the ones absorbed by the consumers on the negative y-axis 
(intended as exiting, so negative energy fluxes). Electricity generation is 
mainly assigned to CHP and FC, with a small (and non-adjustable) 
contribution from photovoltaic and wind powers. This electricity is 
employed to cover the load demand and supply the EHP; a remarkable 
excess is produced to be sold to the grid, especially when the selling 
price is higher. Buying the electricity from outside is an option that 
never takes place, while the electric storage operation is mostly devoted 
to the closure of the balance. 

The heating demand is satisfied with only the CHP and the EHP, since 
the boiler and the GHP are not the most efficient and cheap alternatives. 

Table 3 
Benchmarks for the convergence of the iterative process.  

Iteration O.F. MILP 
[€/day] 

O.F. QCP 
[◦C] 

Ψmax[◦C] Ψmax
ave [◦C] Computational 

times [s] 

MILP QCP 

1  102.89  255.5 16  3.7 96 59 
2  103.69  9.5 2.8  0.73 128 50 
3  103.74  0.02 0.03  0.002 33 70  

Fig. 8. Electric power (left) and heating power (right) of generators and consumers.  
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The charging and discharging phases of the thermal storage are rela-
tively frequent. Whenever possible, the CHP is used at its nominal load, 
which allows to reach the highest efficiency. The EHP and the thermal 
storage are used when the CHP cannot cover the thermal load on its own. 

The time profile of the characteristic temperatures of the two thermal 
generators employed for the heating production (the CHP and the EHP) 
reached in the three iterations of process are reported in the two graphs 
of Fig. 9. Notice that when a component is not operating, the charac-
teristic temperature is null, otherwise it assumes its real value. In both 
cases, the values found in the first iteration tend to be flatter, showing 
smaller variations during the time period analysed. This result is 
reasonable and can be explained considering that the MILP executed in 
the first iteration is the only one that does not undergo any influence 
from the operation of the thermal network. Consequently, the Tcmp 
reached in this step are the ones more favourable for the objective 
function, without taking into account the constraints that must be 
respected to allow the exchange of the thermal powers across the 
network. On the overall, the difference between the characteristic 
temperatures found by the MILP and the ones obtained with the QCP is 
minimized up to zero whenever as possible, which is favoured by the 
flexibility of connections in the layout of the thermal network. In 
addition, it can be observed that, beside the input power, the model uses 
the Tcmp as an additional parameter to regulate the operation of the 
component, according to the performance surface that describes its 
operation. However, it must be recognised that this behaviour of the 
characteristic temperatures is strictly related to the performance curves 
of the components provided as input data and cannot be taken as a 
universal feature. 

Other interesting considerations can be made looking at the variation 
of the fluxes of the two main energy vectors for the most important 
components, reported in Fig. 10. The curves represent the difference of 

the electrical (on the left) or thermal (on the right) powers between the 
values reached in the first and last iteration of the optimization process. 
In most of the timesteps the difference is small or null; however, in some 
cases the variations reach the order of magnitude of few tens of kW, 
which is not negligible. These adjustments are due to the variations of 
the characteristic temperatures, imposed in order to avoid the violations 
of the constraints of the thermal network. Imposing a different value of 
the characteristic temperature changes the performance of the compo-
nent, whose operation can be modified if it results to be no more optimal 
in economic terms. As can be observed, in most of the cases these var-
iations compensate each other. In fact, since the requirement of the loads 
is constants input parameter, the reduction in the power production of a 

Fig. 9. Characteristic temperatures of CHP and EHP during the iterative process.  

Fig. 10. Difference between first and last iteration of electrical (left) and thermal (right) fluxes.  

Fig. 11. Operating temperatures (up) and water masses (down) of the ther-
mal storage. 
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component is balanced with the increase of the generation of another 
technology. The cases in which these variations are not compensated are 
due to the fact that are modified peculiar elements of the MES, such as 
the connection with the external power grid for selling/buying 
electricity. 

Finally, the temperatures and masses of the hot and cold water in the 
thermal storage are reported in Fig. 11. The model manages to integrate 
the storage operation (in terms of flowrates and temperatures) in the 
thermal network. At the first timestep, the storage is assumed to be 
empty (i.e. full of cold water). Then, it is charged up to its maximum for 
two times and at the end of the period it returns empty (as imposed by 
input data). The mass of hot water keeps a temperature in a range be-
tween 75 ◦C and 85 ◦C, while the cold water remains between 55 ◦C and 
65 ◦C. On the overall, the storage increase the flexibility of the system 
and allows to achieve lower operation costs, but, at the same time, in-
creases the dependency among the timesteps and, as a consequence, the 
complexity of the management of the thermal network. 

5. Conclusions 

In the present study, the simulation of a thermal network is included 
into the operation optimization of a MES in order to perform a more 
complete and reliable analysis. A medium-sized energy system 
composed by very different technologies (CHP, HoB, GHP, EHP, FC, 
renewable sources, electric and thermal storage, and grid connections) is 
taken as case study. Partial loads of components, mass flowrates and 
temperatures of the network are the independent variables to optimize 
with the purpose of minimizing the operating costs. The problem is 
solved iteratively with a decomposition approach and the piecewise 
linearization technique. 

The outcome of the model is promising both for the computational 
time required and the numerical result. For the case study under 
consideration, the convergence was reached after three iterations. The 
production and consumption of the two main energy vectors (electricity 
and heating) is shown and discussed. Regarding the electricity produc-
tion, the CHP and the FC are the preferred choice to cover the load and to 
obtain an income by selling the electricity to the external grid. Con-
cerning the heating, the GHP and the Boiler are never switched on since 
the combined use of the CHP and the EHP is more efficient. The char-
acteristic temperatures result to be an alternative to the partial loads for 
the regulation of the components, which have a direct and noticeable 
impact on the operating conditions of the thermal network. The man-
agement of the thermal storage results to be encouraging, since the 

model succeed in finding a suitable operation for this component, 
considering the most important physical phenomena characterizing the 
technology. On the overall, the model proved to be able to find a near- 
optimal solution of the problem without requiring the use of complex 
mathematical formulations. 

Finally, as an idea for future model developments, it would be 
interesting to evaluate the feasibility of a study in which the simplifying 
hypotheses adopted for the thermal network simulation are removed. In 
fact, including the heat losses and the effects of thermal inertia in the 
model would improve the quality of the simulation of the network, 
increasing the applicability of the result in a real context. 
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Appendix A 

Performance curves 

The coefficients for the performance curve (Equation (1)) of the 
different technologies involved in the MES operation are arbitrary taken 
and reported in Table 4. In addition, the corresponding boundaries for 
the input powers are presented. 

Concerning the two technologies exploiting renewable powers (PV 
and wind turbine), their power production is considered as an input data 
since it cannot be regulated. A peak of 43.6 kW with the generation 
profile of a typical winter day is assumed for the PV, while a constant 
production of 25 kW is considered for the wind turbine. 

Energy prices 

The prices of the fuels and energy vectors considered in the analysis 
are synthetically presented in Table 5. Only the electricity price is 
considered as variable during the period analysed and the extreme 
values are reported. 
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