A comparison of estimation methods adjusting for selection bias in adaptive enrichment designs with time-to-event endpoints -Supplementary Material

Fulvio Di Stefano^{1,2}, Matthieu Pannaux², Anne Correges², Stephanie Galtier², Veronique Robert², and Gaelle Saint-Hilary^{1,2}

¹Dipartimento di Scienze Matematiche (DISMA) Giuseppe Luigi Lagrange, Politecnico di Torino, Torino, Italy

²Department of Clinical Statistics, Institut de Recherches Internationales Servier, Suresnes, France

1 Additional simulation scenarios

In this supplementary material we present additional simulation scenarios cited in the main article. In Figure 1 we set the threshold to b = 0. In Figure 2 we set \tilde{T}_1 to 3 months after the interim analysis. We also compare 4 sub-populations while keeping the other parameters as in the main setting and in Figure 3 we present the results averaged in all sub-populations, while in Figure 4 we show the performance of the estimators in each sub-population in the case of linear effects on the sub-populations. In Tables 1, 2 and 3 we present also the empirical probabilities of selection for the different sub-populations in the different scenarios.

Log HR	$\boldsymbol{\delta_i}=0$	$\boldsymbol{\delta_i} = -0.1$	$\boldsymbol{\delta_i} = -0.2$	$\boldsymbol{\delta_i} = -0.3$
Probability	50%	70%	84%	93%
of selection				

Table 1: Empirical probability of selection for the different sub-populations in the simulation study when b = 0, according to their log HR.

Log HR	$\boldsymbol{\delta_i}=0$	$\boldsymbol{\delta_i} = -0.1$	$\boldsymbol{\delta_i} = -0.2$	$\boldsymbol{\delta_i} = -0.3$
Probability	30%	50%	69%	83%
of selection				

Table 2: Empirical probability of selection for the different sub-populations in the simulation study when $\tilde{T}_1 = T_1 + 90 \ days$, according to their log HR.

Log HR	$\boldsymbol{\delta_i}=0$	$\boldsymbol{\delta_i} = -0.1$	$\boldsymbol{\delta_i} = -0.2$	$\boldsymbol{\delta_i} = -0.3$
Probability	33%	50%	65%	80%
of selection				

Table 3: Empirical probability of selection for the different sub-populations in the simulation study when 4 sub-populations are included, according to their log HR.

1.1 Threshold equal to b = 0

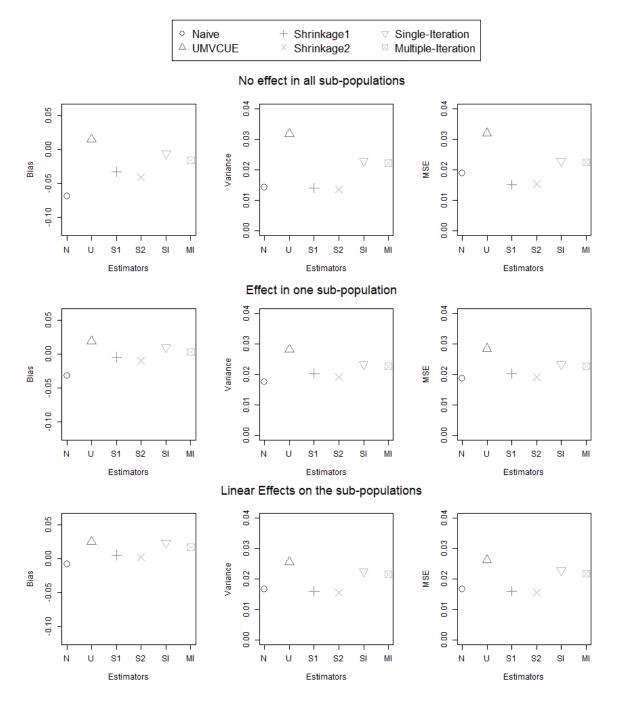
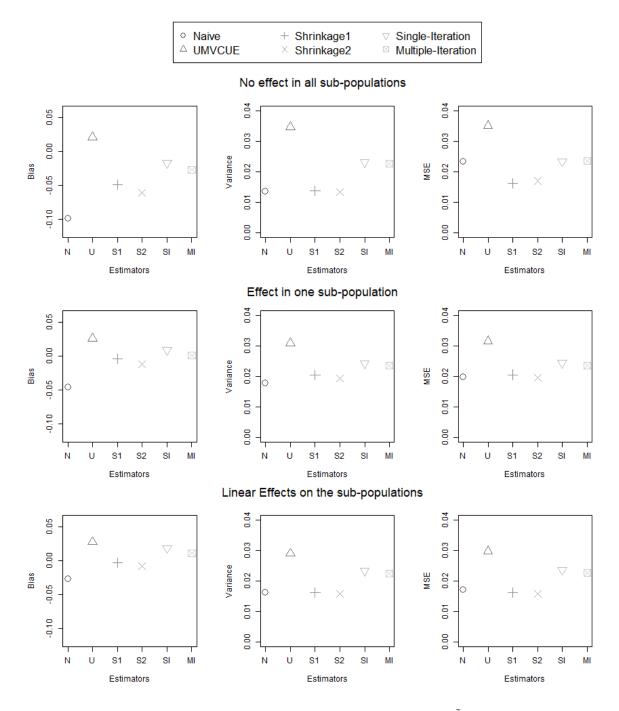


Figure 1: Estimators' performances in case of three sub-populations and b = 0. Top row: treatment ineffective in all sub-populations $\boldsymbol{\delta} = (0, 0, 0)$; Middle row: treatment effective only in one sub-population $\boldsymbol{\delta} = (0, 0, -0.3)$; Bottom row: linear effect on the sub-populations $\boldsymbol{\delta} = (-0.1, -0.2, -0.3)$. Left column: Bias; Centre column: Variance; Right column: Mean Squared Error.



1.2 Stage 1 patients followed for 90 days after interim analysis

Figure 2: Estimators' performances in case of three sub-populations and $T_1 = T_1 + 90 \, days$. Top row: treatment ineffective in all sub-populations $\boldsymbol{\delta} = (0, 0, 0)$; Middle row: treatment effective only in one sub-population $\boldsymbol{\delta} = (0, 0, -0.3)$; Bottom row: linear effect on the sub-populations $\boldsymbol{\delta} = (-0.1, -0.2, -0.3)$. Left column: Bias; Centre column: Variance; Right column: Mean Squared Error.

1.3 4 sub-populations

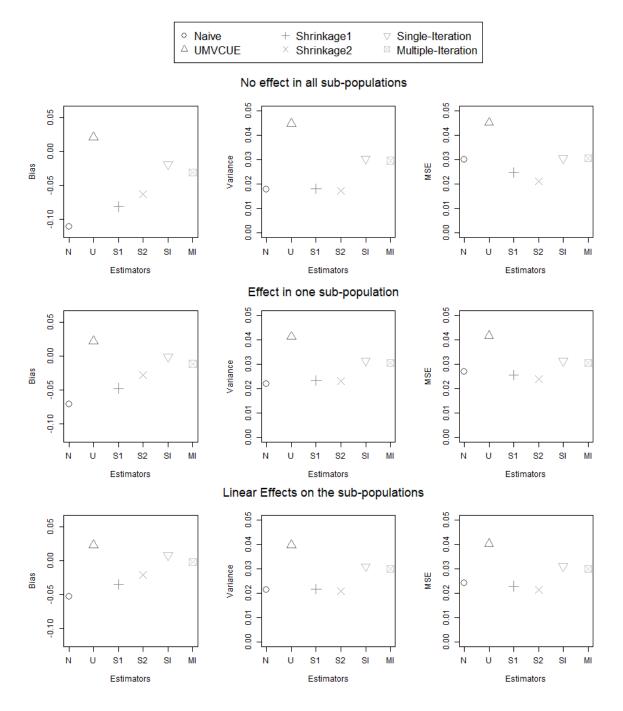
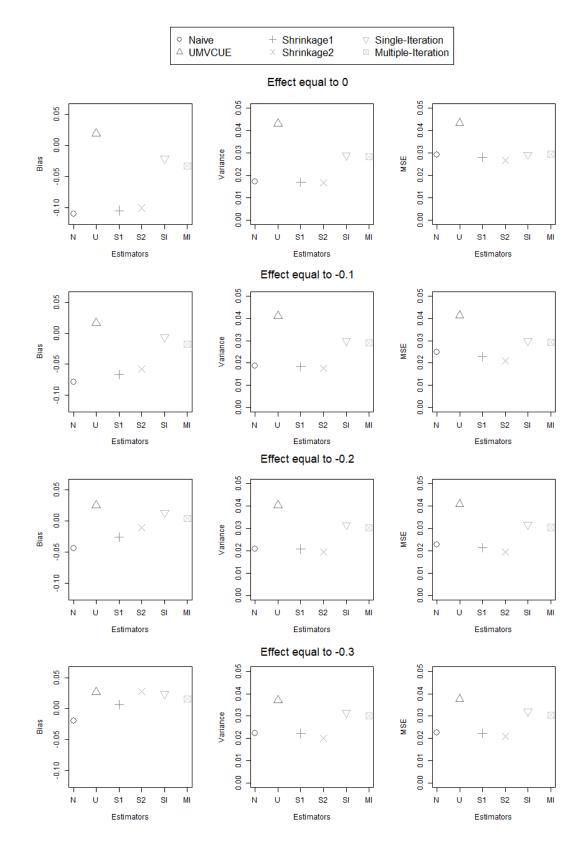


Figure 3: Estimators' performances in case of four sub-populations. Top row: treatment ineffective in all sub-populations $\boldsymbol{\delta} = (0, 0, 0, 0)$; Middle row: treatment effective only in one sub-population $\boldsymbol{\delta} = (0, 0, 0, 0, -0.3)$; Bottom row: linear effect on the sub-populations $\boldsymbol{\delta} = (0, -0.1, -0.2, -0.3)$. Left column: Bias; Centre column: Variance; Right column: Mean Squared Error.



1.4 Sub-population specific bias, variance and MSE with 4 sub-populations

Figure 4: Estimators' performances in each sub-population in case of four sub-populations and linear effects on the sub-populations. From top row to bottom row effect equal to: 0, -0.1, -0.2, -0.3. Left column: Bias; Centre column: Variance; Right column: Mean Squared Error.

2 Boxplots of the estimators

For completeness, we present also boxplots for the estimators.

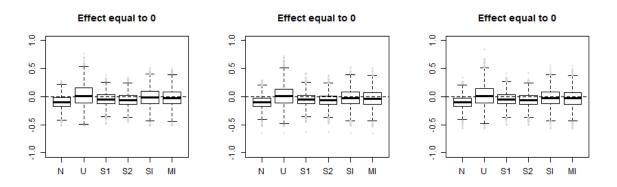


Figure 5: Estimators' boxplots for the different sub-populations in case of three sub-populations and effect equal to: $\boldsymbol{\delta} = (0, 0, 0)$.

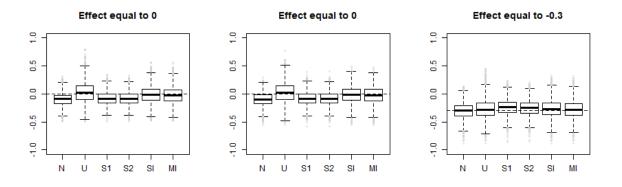


Figure 6: Estimators' boxplots for the different sub-populations in case of three sub-populations and effect equal to: $\boldsymbol{\delta} = (0, 0, -0.3)$.

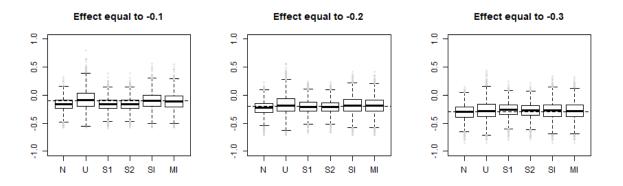


Figure 7: Estimators' boxplots for the different sub-populations in case of three sub-populations and effect equal to: $\delta = (-0.1, -0.2, -0.3)$.

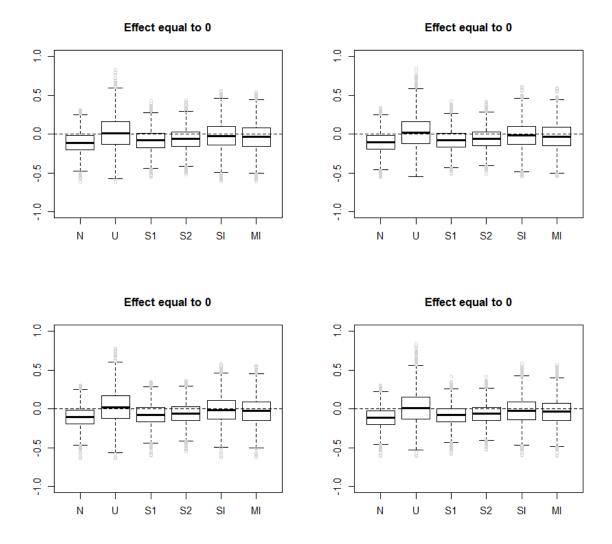


Figure 8: Estimators' boxplots for the different sub-populations in case of four sub-populations and effect equal to: $\boldsymbol{\delta} = (0, 0, 0, 0)$.

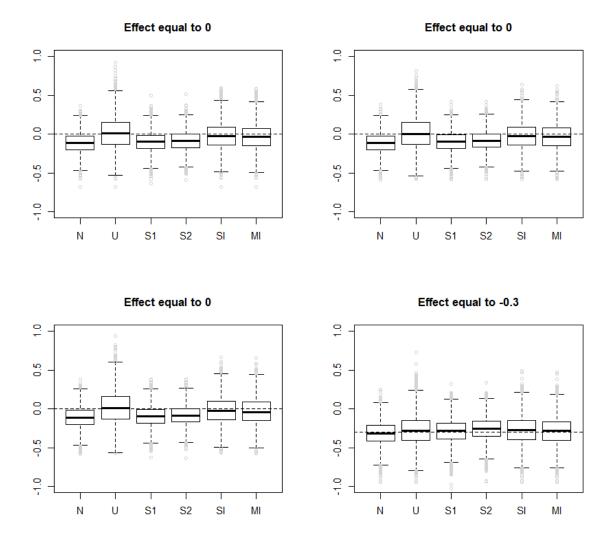


Figure 9: Estimators' boxplots for the different sub-populations in case of four sub-populations and effect equal to: $\boldsymbol{\delta} = (0, 0, 0, -0.3)$.

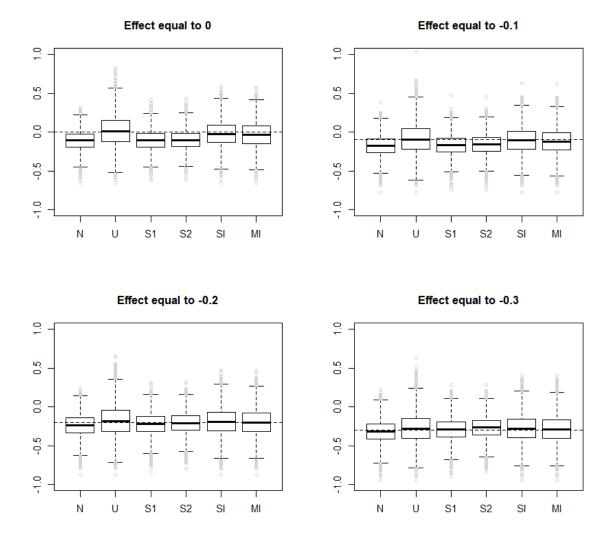


Figure 10: Estimators' boxplots for the different sub-populations in case of four sub-populations and effect equal to: $\delta = (0, -0.1, -0.2, -0.3)$.