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Abstract: Providing students with an adequate acoustic environment is crucial for ensuring speech
intelligibility in primary school classrooms. Two main approaches to control acoustics in educational
facilities consist of reducing background noise and late reverberation. Prediction models for speech
intelligibility have been developed and implemented to evaluate the effects of these approaches.
In this study, two versions of the Binaural Speech Intelligibility Model (BSIM) were used to pre-
dict speech intelligibility in realistic spatial configurations of speakers and listeners, considering
binaural aspects. Both versions shared the same binaural processing and speech intelligibility back-
end processes but differed in the pre-processing of the speech signal. An Italian primary school
classroom was characterized in terms of acoustics before (reverberation, T20 = 1.6 ± 0.1 s) and after
(T20 = 0.6 ± 0.1 s) an acoustical treatment to compare BSIM predictions to well-established room
acoustic measures. With shorter reverberation time, speech clarity and definition improved, as well
as speech recognition thresholds (SRTs) (by up to ~6 dB), particularly when the noise source was
close to the receiver and an energetic masker was present. Conversely, longer reverberation times
resulted (i) in poorer SRTs (by ~11 dB on average) and (ii) in an almost non-existent spatial release
from masking at an angle (SRM).

Keywords: speech intelligibility; binaural listening; classroom acoustics; reverberation time; noise

1. Introduction

Children’s learning abilities are influenced by the acoustic quality of the environments
where they spend most of the time during their everyday life. This is particularly true
at the first stages of education [1–7], when children need classrooms with good speech
intelligibility for tuning out competing sounds and tuning into speech. Previous studies
evidenced that speech intelligibility, which is defined as the percentage of correctly heard
speech items with respect to the overall [8], is reduced through the presence of competitive
effects of reverberation and background noise [2,9]; the higher the reverberation and noise,
the lower the speech intelligibility. These factors not only impair speech intelligibility
but also have a detrimental effect on academic performance [10–12]. Additionally, good
classroom acoustics increase the degree of satisfaction of the acoustical quality [13], lowers
the perception of noise disturbance and improves the perception of well-being at school [14].
In order to guarantee good classroom acoustics, thresholds of acoustical parameters have
been investigated [15] and new benchmark values have been included in the most recent
standards on classroom acoustics at national and international levels [16–20]. However,
they essentially refer to a monaural listening perspective and, thus, cannot predict potential
advantages produced via binaural listening processes.

Besides ambient noise and reverberation, speech intelligibility depends on the spatial
configuration of the acoustic sources, i.e., the mutual position between speech-source,
noise-source and listener, and it can benefit from binaural listening thanks to spatial
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hearing. In fact, the cocktail party effect [21] describes how listeners can focus on a
specific speech signal even in challenging sound environments, such as classrooms in
which speech intelligibility is corrupted by reverberation and ambient noise, thanks to the
spatial separation of the target and the masker. The ability to use the difference in spatial
position between a target and a masker to discriminate the target is referred to as spatial
release from masking (SRM) [22]. SRM has been attributed to both binaural processing and
head-shadow effect [21–25], and can result in an improvement of up to 12 dB in speech
recognition threshold (SRT), i.e., the signal-to-noise ratio (SNR) required to achieve a 50%
correct recognition score. In practice, SRM is calculated as the difference between an SRT
measured under co-located target and noise source positions and an SRT measured under
spatially separated target and noise positions. Indeed, several studies already proved that
such improvement can occur when a noise source is spatially separated at an angle with
respect to a listener’s ears and with respect to the target source, too [22,26,27]. However,
the benefits from binaural cues that are gained under advantageous spatial configurations
were proved to be reduced in reverberant conditions [28,29]. With respect to the variation
of speech intelligibility due to target-to-receiver distance, worsening of SRTs at increasing
distances was found for different acoustic conditions [30]; however, questions are still
open. Puglisi et al. [30] performed investigations in primary school classrooms with
a reverberation time at mid-frequency of 0.4 s and 3.0 s, where the acoustic field was
approximated as semi-reverberant. They expected worsening SRTs as a decrease in level by
3 dB per double distance (dB/dd), but instead, they obtained this decrease to be ~2 dB/dd.
This outcome was obtained regardless of the acoustic condition and noise type (i.e., either
informational with semantic content, or energetic, which is speech-shaped in its frequency
distribution but does not have semantic content). This result was also corroborated in
Astolfi et al. [31], where the decrease per double distance of the speech level in classrooms
characterized by different acoustic conditions was found to be ~−2 dB/dd.

To date, the majority of research has investigated how noise and reverberation in-
fluence speech intelligibility and spatial release from masking in controlled laboratory
settings [32–35]. However, only a limited number of investigations have examined these fac-
tors in real environments, e.g., where noise and reverberation are ecologically valid [30,36].
Binaural speech intelligibility has been also investigated through prediction
models [26,29,37–41]. Many of the binaural speech intelligibility models showed high
correlations between predicted and measured SRT for different spatial configurations of
noise and speech sources in anechoic and reverberant rooms and resulted in a relatively
small mean absolute prediction error of 3 dB, considering normal hearing subjects [29]. In
this study, the binaural speech intelligibility model (BSIM) [29] was used. Since the BSIM
cannot satisfactorily predict the decrease in speech intelligibility with increasing distance re-
sulting from the detrimental effect of late reflections on the speech signal, Rennies et al. [28]
introduced and evaluated three extensions which considered this aspect. Here, the ap-
proach employed involved dividing the speech signal into a beneficial component and a
detrimental one, where the detrimental part of the speech signal was added to the noise.
In this way, the detrimental part of the speech signal effectively decreased the SNR at the
input of the BSIM.

A model capable of evaluating the variation of intelligibility in real acoustic condi-
tions can bring great advances to the design of classroom acoustics. As an example, it
allows to assess the benefit of acoustical treatment and to organize the classroom to suit
specific priorities. Different configurations combining absorptive and diffusive surfaces
could be examined, quickly and effectively orienting the achievement of optimal acoustics
through using an efficient design in terms of correct location, quantity, and geometry of
acoustic surfaces.

Within this study, the BSIM is evaluated as an objective measure of speech intelligibility
in classrooms and as an objective indicator of the effectiveness of acoustical treatment in
terms of binaural speech intelligibility. Two primary school classrooms, identical in size
but significantly different in terms of acoustics, were selected. On the one hand, one
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classroom was subjected to acoustical treatment and considered as an example of a learning
environment with good acoustics because of short reverberation time and high speech
clarity. On the other hand, the second classroom was not acoustically treated and was
characterized by poor acoustics. To evaluate speech intelligibility, binaural room impulse
responses (BRIRs) were measured at various distances from a target source that was
fixed at a typical teacher’s position. Additionally, a source that produces masking noise
was positioned both in spatially co-located and in spatially separated positions from the
listener’s ears. Using this experimental setup that incorporates spatial considerations, the
objective was to determine to what extent the location of the masking noise, in terms of
both distance and angle, impacts the receiver’s speech intelligibility. The speech and noise
anechoic stimuli were convolved with the BRIRs, and the resulting output was fed into the
BSIM [28,29] to estimate speech intelligibility in terms of SRTs. Based on the predicted SRTs,
speech intelligibility and SRM were compared between the two classrooms. Additionally,
reverberation time (T20), early decay time (EDT), speech clarity (C50), and speech definition
(D50) were derived from the measured monaural room impulse responses, and then were
put in relation to the predicted SRTs.

2. Materials and Methods
2.1. Classrooms

Two classrooms in the same school building were subject to measurement campaigns
to assess their acoustics from both monoaural and binaural perspectives. Although the
architectural characteristics, including geometry and finishes, are the same for both class-
rooms, their acoustical properties differ because one of them had undergone an acoustical
treatment. For the sake of clarity, due to the similarity of the two classrooms, they will
be treated as a single one. In each of them, the ante operam (AO) and post operam (PO)
conditions were considered when measurements and predictions were performed before
and after the acoustical treatment, respectively. The classrooms have a rectangular shape,
with a plan of 6.7 m × 8.4 m, and an overall volume of 258 m3. The classrooms have three
windows that face a courtyard, which is adjacent to a road with moderate traffic. The floor
is primarily covered with Venetian tiles, while the walls and ceiling are plastered in the case
of the AO condition. During the measurement sessions, the classrooms were furnished with
desks and chairs, bookshelves along the lateral walls, and blackboards. In the PO classroom,
glass-fiber absorbent panels (absorption coefficient averaged at 0.5–1 kHz, α0.5–1kHz = 1)
were added to the left longitudinal (9.7 m2) and rear (16.2 m2) walls, and a glass-fiber
countertop (α0.5–1kHz = 0.95) was installed on the ceiling (56.3 m2). Measurements were
performed outside of school hours, and to simulate the presence of 23 children seated at
their desks, 100% polyester fiber panels (0.6 m × 0.6 m × 0.05 m each) were employed.
This method to simulate occupancy in the rooms was adopted from past studies [4,42].
In particular, the absorptive panels made of polyester fiber were dimensioned in order
to replicate the equivalent absorption area of seated children, that is, of about 0.35 m2 at
1 kHz.

2.2. Acoustic Measurements
2.2.1. Monoaural Measurements

The purpose of the monoaural measurements was to characterize the room’s acoustics
in accordance with EN ISO 3382-2:2008 [43]. Measurements were performed using a
calibrated sound level meter (NTi XL2 Audio, Schaan, Liechtenstein) and a directional
source (NTi TalkBox Audio, Schaan, Liechtenstein). Four receiver positions along the central
axis were recorded, which were located at 1 m, 2.2 m, 3.6 m, and 6.2 m from the directional
source, always at a height of 1.2 m from the floor. The directional source remained in the
same position, placed on the classroom’s central axis, 1 m from the frontal wall and 1.5 m
from the floor. The sound level meter recorded the exponential sine sweep signals emitted
by the TalkBox, from which room impulse responses were then deconvolved.
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The Italian UNI 11532-2:2020 standard [20] was considered as the most recent refer-
ence for reverberation time and speech clarity to assess the suitability of the acoustical
treatment to the aim of making the classrooms compliant with the requirements for learning
environments. This standard is voluntary for private constructions, but mandatory in the
public sphere. Regarding the reverberation time parameter, it allows for evaluations in
different frequency bands, while in the case of speech clarity it allows for averaging them
and, thus, characterizing the room with one value. The latter should make comparisons
across the rooms/cases easier. So, to the aim of the present study, reverberation time and
speech clarity values are both reported only as overall values in order to provide readers
(either academics, researchers, or professionals) with synthetic values that can be easily
compared with those from other studies or cases. In particular, reverberation time (T20,
s) was considered as optimal for the involved classroom if it was approximately 0.5 s [20],
early decay time (EDT, s) was optimal if comprehended in the range of 0.3 s to 0.7 s [44],
and speech clarity (C50, dB) and speech definition (D50, dB) were optimal if greater than
2 dB [20] and in a range of 0.86 to 1.0 [45], respectively. As far as frequency averaging
is concerned, T20 was averaged between 125 Hz and 4 kHz, C50 was averaged between
500 Hz and 2 kHz, while EDT and D50 were averaged between 500 Hz and 1 kHz.

2.2.2. Binaural Measurements

The objective characterization of classrooms for the identification of challenging lis-
tening scenarios was carried out through performing binaural measurements in both AO
and PO conditions. The target source, the noise source, and the receiver were positioned as
shown in Figure 1. In particular:

• The target source (T) consisted of a NTi Audio TalkBox, which exhibits the speech
directivity pattern of a human voice. The T source was placed 1 m from the rear wall
on the central axis of the classroom, at a height of 1.5 m from the floor.

• The masking source (M) consisted of a Larson Davis omnidirectional (dodecahedral)
sound source. It was set at 1.5 m height at several positions that varied in azimuth
with respect to the receiver’s ears. In particular, M was placed in co-located positions
(i.e., at 0◦ and 180◦) and in a separated position (i.e., at 120◦), and then, where possible
due to spatial availability, at increasing distances (i.e., at 1 m, 1.5 m and 2.5 m).

• The receiver (R) consisted of a Brüel & Kjær (B&K) Head and Torso Simulator (HaTS),
which allowed for the recording of binaural room impulse responses (BRIRs). The
HaTS was placed in the classroom in order to guarantee that its ears were at 1.5 m
from the floor. Furthermore, it was then placed at increasing distances from the T
source, i.e., at 1.5 m, 4.0 m, and 6.5 m, referred in the following as T1.5, T4.0, and
T6.5, respectively.

T, M, and R were positioned in the classroom according to the most complex configu-
rations already explored in the available literature with regard to the effect of acoustics and
spatial distribution of sources on SRT and SRM.

In Figure 1, the left-hand configuration shows the close target-to-receiver distance
(T1.5), which corresponds to the first row of students’ desks and, thus, to the most ad-
vantaged condition under evaluation. Here, M is placed separated and co-located with
respect to R, i.e., at 120◦ and 180◦ of the azimuth, respectively, and at increasing distances.
This allows for the comparison with the outcomes of Westermann and Buchholz [36], who
studied the effect of noise distance on an axis (from 1 m to 10 m). As far as the influence
of spatial configurations and acoustics on SRM are concerned, it is expected that SRM
values will reduce in AO and, therefore, under longer reverberation time and at increasing
distances between M and R.

The central scheme shown in Figure 1 corresponds to the central row of desks with a
target-to-receiver distance of 4 m (T4.0) and is assumed to be the most disadvantageous
listening condition. Again, M is placed at increasing distances and at co-located and sepa-
rated azimuths. In such a spatial configuration, it is possible to assess speech intelligibility
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variations while also evaluating the effect of the M source when in front or behind R ears,
since changes may introduce significant differences due to the spectral cues [22].
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Figure 1. Schemes of the spatial configurations. Squares represent the target source (T), triangles
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is 5 m away from the receiver and with an angle of 180◦.

Last, the left-hand configuration in Figure 1 shows the very far target–receiver con-
dition (T6.5). This distance between T and R approximately corresponds to the last row
of student desks and it is assumed that, although the distance itself is the largest, speech
intelligibility can be improved compared to T4.0 due to the reflections of the rear wall. In
line with the conditions previously described, M is placed at increasing distances and at
different azimuths. Particularly in this case, the co-located M condition corresponds to a
situation where the source is placed in between T and R, i.e., at 0◦.

2.3. Binaural Speech Intelligibility Model (BSIM)
2.3.1. Model Description

The BSIM [29] was used to predict SRTs for different combinations of noise source
and receiver positions in both the untreated and acoustically treated room (AO and PO,
respectively).

The BSIM requires separate clean speech and noise signals for the left and right ear,
which were generated through convolving them with the corresponding BRIRs. A station-
ary, speech-shaped noise of the Italian matrix sentence test [46] was used. In the model,
the signals are divided into separate frequency bands using a gammatone filterbank [47]
ranging from 146 Hz to 8300 Hz in 30 ERB spaced frequency bands simulating the frequency
selectivity of the human auditory system. After that, the equalization-cancellation (EC) [48]
mechanism is used as a model of human binaural processing. In the EC mechanism, the
interaural differences in level and time, namely the ILD and ITD, are equalized in each
frequency band independently. In the cancellation step, the equalized left ear channels
are subtracted from the equalized right ear channels. The equalization of ITDs and ILDs
is optimized such that the SNR is maximized after applying the cancellation step. The
accuracy of the equalization is limited by internal noise, which mimics the limited abilities
of the human auditory system in binaural cues processing in the time (delay error) and
level (gain error) domains. The gain error controls the overall balance between time- and
level-dependent terms. The delay error has an influence on binaural processing at high
frequencies and simulates the decreasing phase coherence of the auditory nerve towards
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high frequencies. The variances of the binaural processing errors in the model were adapted
from vom Hövel [38], who derived them from simulations of pure tone binaural masking
level differences. If the target and noise signals differ in their ITDs and ILDs, which is the
case if they are spatially separated, the EC mechanism can substantially improve the SNR,
especially at low frequencies. In the next step, the EC-maximized SNRs are compared to
the monaural SNRs of the left and the right ear in each frequency band and the best SNR
of all three alternatives is chosen. In the last step, the speech intelligibility index (SII) [18]
performs a weighting of the band-specific SNRs to mirror human speech perception, which
are then integrated over frequency and transformed to an index value between 0 and 1.
The resulting SII values can then be mapped to SRTs.

2.3.2. Model Calibration

In order to map the SII values to an SRT, a reference condition needs to be defined to
calibrate the BSIM. This procedure requires an empirical SRT, which is usually measured
in anechoic conditions with co-located target and masker sources placed in front of the
listener at the same distance. Here, a different approach was used, because the acoustical
sources for speech (TalkBox) and noise (dodecahedron) were not the same and no SRTs
obtained with human listeners were available. Instead, the BSIM was calibrated to the PO
condition, where speech arrives from the target source position and the noise is located 1 m
behind the listener (M3). This situation is most similar to the anechoic situation typically
used for calibration since the binaural effects are almost negligible and the target is not
influenced by reverberation due to a very short target–receiver distance. The calibration
obtained in this situation was kept constant for all measurement conditions.

The reference SII, corresponding to the SRT for 50% speech recognition, was set to 0.22,
which corresponds to empirical SRT50 in anechoic and co-located speech/noise conditions
for the Oldenburg sentences test in noise [29,49,50]. It is important to note that the relative
differences across conditions which are of main interest here are not affected by choosing
the reference SII.

2.3.3. Comparison between the BSIM Models of Beutelmann et al. (2010) [29] and
Rennies et al. (2011) [28]

The main difference between the model versions described in Beutelmann et al. [29]
and Rennies et al. [28] is the pre-processing of the target speech. In [29], the target speech
is convolved with the corresponding BRIR in order to produce the binaural input to the
model. This model is well-suited for speech intelligibility simulations as long as the
influence of room acoustics on noise dominates the results. However, the model is not
able to simulate the detrimental effect of late reflection on the speech signal itself. This
limitation is overcome in the approach of Rennies et al. [28], in which the target BRIR is
first divided into an early part (≤100 ms), and a late part (>100 ms). Then, the speech signal
is convolved with both parts of the BRIR, where the speech convolved with the early part
is considered the target signal, and the speech convolved with the late part is added to the
noise. In this way, the amount of late reverberation present in the speech signal is treated
as detrimental and affects the SNR at the input, where more energy in the late part leads to
more energy in the noise signal. Effectively, it decreases the SNR and, through that, leads to
a higher predicted SRT. In spatially separated conditions, the effect is even more complex,
since in addition to the changes in the SNR, the late reflections affect also the correlation of
the noise signals presented to both ears. This can lead to less effective EC processing and,
thus, to increased SRT and/or reduced SRM.

3. Results and Discussion
3.1. Classroom Acoustics Results

Table 1 displays the acoustic parameter values measured for both the conditions before
and after the acoustical treatment, i.e., AO and PO, respectively. In the PO condition, all the
investigated parameters conform to the standards. Reverberation time (T200.125–4kHz) falls
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within the range of values recommended as the optimum for teaching and communication
rooms by UNI 11532-2:2020 [20]. Early decay time (EDT0.5–1kHz) also is in the optimal range
as suggested by Bradley [44]. Clarity value (C500.5–2kHz) satisfies the criteria specified in the
UNI 11532-2:2020 [20] standard for classrooms that have a volume of less than 250 m3, and
definition value is in the optimal range suggested by Marshall [45]. The acoustical treatment
resulted in an improvement in all parameter values, with a decrease in reverberation time
and an increase in speech clarity and definition. In contrast, the measured data in the AO
condition failed to meet any of the standards mentioned above.

Table 1. The acoustical parameters measured in AO and PO conditions are summarized using
descriptive statistics. Standard deviations are presented in parentheses, and values that meet the
standards are emphasized in bold.

Condition AO PO Optimum Value or
Range Reference

T200.125–4kHz [s] 1.6 (0.1) 0.6 (0.1) ~0.5 UNI 11532-2:2020 [20]
EDT0.5–1kHz [s] 1.4 (0.1) 0.3 (0.1) 0.3 ÷ 0.7 s Bradley, 2011 [44]

C500.5–2kHz [dB] −0.1 (2.1) 11.4 (3.7) ≥2.0 UNI 11532-2:2020 [20]
D500.5–1kHz [%] 44 (12.8) 90 (5.0) ≥86 ÷ 100 Marshall, 1994 [45]

Critical radius (rc) [m] 0.7 1.2 n.a. Houtgast et al., 1980 [51]
0.3
√

V/T [m] 3.8 6.2 n.a.

Table 1 presents additional information on the acoustics of the two classrooms, in-
cluding the critical radius (rc) and the corresponding five-time distance. The critical radius
of each room was determined using the formula rc =

√
(0.0032 V/T), where V represents

the room volume and T represents the reverberation time. This value signifies the sound-
source distance at which the intensity of both the direct and reverberant fields are equal.
Houtgast et al. [51] proposed that when the distance from the source exceeds five times the
critical radius, which can be calculated as 0.3

√
(V/T), speech intelligibility is influenced

solely by the reverberant field.
The distance between the target and receiver as well as the noise and receiver in both

classrooms exceed the critical radius. In the AO condition, the critical radius is exceeded
five times for two receiver positions and for two noise-to-receiver distances. This highlights
that the reverberant field in the AO condition is predominant.

3.2. Speech Intelligibility Results
3.2.1. Effect of Classroom Acoustics

From Figure 2, it can be observed that intelligibility benefits from the acoustical
treatment in all the considered target–masker configurations, distinguishing between the
BSIM versions, i.e., Beutelmann et al. [29] and Rennies et al. [28]. Speech intelligibility
improved in PO in all scenarios, as evidenced by predicted SRT improvements (∆SRT,
which is calculated as the arithmetic differences between SRT values in the AO and PO
conditions). The error bars in Figure 2 are adopted from the literature [43] and correspond
to the just-noticeable level differences (JND) measured with normal-hearing listeners. They
serve as an orientation for interpretation of the simulated SRTs, i.e., changes or differences
in SRT smaller than JND can be treated as not significant; on the contrary, it can be assumed
that SRT changes larger than JND are perceptually relevant. BSIM simulations show that
the SRT’s improvement after acoustical treatment ranges from 6.4 dB SNR (in T4.0M1, 180◦

condition) to 17.3 dB SNR (in T6.5M1, 120◦ condition). Particularly, the BSIM predictions,
with their intrinsic variability (i.e., related to the JND applicable to the SRT quantity), allow
for understanding whether a specific listening scenario is more or less challenging, as
smaller or relevant changes in SRT values are detected with the simulations themselves.
For all target-to-receiver distances, the spatially separated noise position yields larger
benefits, ranging from 9 to 17 dB SNR improvement. As per [28], there is a more significant
enhancement in SRT when the masker is positioned closer to the receiver. Here, at 1 m
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distance, the improvement is 15.2 dB SNR, while at 2.5 m, it is 12.3 dB SNR. SRT benefits
are also observed when the noise source is co-located at 0◦ and 180◦ with respect to the
receiver. In these cases, there is no influence of the distance of the masker, meaning that the
advantage in SRT remains constant regardless of an increase in masker distance.
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Figure 2. The differences in speech reception thresholds (∆SRT) between the AO and PO conditions
are examined based on the target-to-receiver positions (T1.5, T4.0, T6.5) and the masker-to-receiver
distance (N1, N2.5, N5) and angle (0◦, 120◦, 180◦). The differences are shown for both versions of
BSIM of Beutelmann et al. [29] and of Rennies et al. [28]. The error bars correspond to just-noticeable
difference for sound intensity, adopted from the literature [43].

Comparing the results of SRTs from [28,29], some discrepancies emerge. While the
∆SRT obtained for the left-hand configuration in Figure 1 with the receiver positions at
1.5 m away from the target source are almost equivalent, i.e., they are within the JND that
corresponds to 1 dB for sound intensity [28], the values for the central and right-hand
configurations in Figure 1, i.e., when the receiver is at 4.0 m and 6.5 m away from the target,
respectively, differ. In particular, in [28], the mean benefit obtained after the acoustical
intervention is around 2 dB SNR lower for the central configuration and around 3 dB
higher for the right-hand scheme. These differences originate from the predictions that
the two models provide for the AO condition, since almost-equal values are given for the
PO. In the AO condition, SRTs are predicted to be worse (i.e., higher) in [28], especially for
the right-hand configuration, where the target-to-receiver distance is the largest, so that a
larger benefit is obtained after the acoustical intervention. This is due to more energy in the
late part (>100 ms) of the BRIR of the target speech signal in the right-hand configuration.
This effect can be captured using the model of Rennies et al. [28], which predicts higher
(worse) SRTs in this condition than the model described in Beutelmann et al. [29]. Focusing
again on the AO condition, but considering the central scheme, SRTs provided by [28]
are better (i.e., lower) compared to those in [29]. This can be explained by the fact that
a model, which can account for the degrading influence of reverberation on the speech
signal with increasing distance, is more likely to predict the benefit that listeners in the
central positions of the classroom can have due to the support of the early reflections to the
speech signal. Moreover, the BRIR of the target is slightly different for the left and right
ear due to the physical and acoustic properties of the classroom. The model provided by
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Rennies et al. [28] can more effectively use this difference since the target does not contain
the late reflections that lead to the decorrelation of the signals across the ears and through
that affect the effectiveness of binaural processing.

Overall, the results of this study support the findings of previous research [28–30],
where it was observed that SRTs increased (got worse) with the reverberation. Considerable
speech intelligibility improvements were also noted when the reverberation time was
short for the monaural acoustic measures, as shown in Table 1. The results of this study
demonstrated higher D50 values in all frequency bands in the PO condition (125 Hz:
0.58, 250 Hz: 0.80, 500 Hz: 0.87, 1000 Hz: 95, 2000 Hz: 95, 4000 Hz: 96, 8000 Hz: 97)
compared to the AO condition (125 Hz: 0.33, 250 Hz: 0.44, 500 Hz: 0.44, 1000 Hz: 44,
2000 Hz: 59, 4000 Hz: 67, 8000 Hz: 87). These findings suggest that the D50 values
are better indicators of intelligibility in the PO conditions, in agreement with [26,29].
Last, considering the SRT results per se, they corroborate the findings from other studies.
Westermann and Buchholz [36] proved that the mutual positioning of target and noise
source have a significant role in the listening experience when it happens in complex
acoustic environments. Particularly, this might bring a large variability across subjects:
although this aspect cannot be directly compared to the findings of this study as they relate
to model predictions, such an outcome underlines the competitive effect that reverberation
and noise bring to the estimation of speech intelligibility under real listening conditions.

3.2.2. Spatial Release from Masking at an Angle

Figure 3 indicates a higher benefit of SRM at an angle in the PO than in the AO
condition, with a range of the benefit from 2.3 to 8.3 dB SNR, with the greatest benefit in
T1.5M1,180◦–120◦ , versus a range between −0.4 and 2.2 dB SNR, respectively. In both PO and
AO conditions, moving the masker from 180◦ to 120◦ provides greater benefits compared
to moving it from 0◦ to 120◦.

The findings imply that the presence of reverberation significantly diminishes the
efficacy of binaural cues, which aid in enhancing speech intelligibility in spatially sepa-
rated conditions. Reverberation causes the signals at the left and right ear to decorrelate,
preventing the human binaural system from exploiting binaural cues. As a result, the SRTs
in co-located and spatially separated settings are comparable, resulting in either no or
significantly reduced SRM. When examining only the setups where the masker is situated
1 m away from the receiver, the SRM measures 6 dB in the PO condition, while in the
AO condition, it is notably lower, ranging from 0.4–0.7 dB. This reflects the importance
of reverberation for the auditory perception of sound localization in three-dimensional
space and quantifies the potential benefits of acoustical intervention in terms of SRM. These
findings have significant implications for the acoustical design and treatment of classrooms,
highlighting the crucial role of the binaural aspects in source segregation, enabling the
focus on the speech target while simultaneously suppressing interfering sources. However,
achieving this is only possible in classrooms with good acoustics. This study is limited to
the comparison of acoustically untreated and treated classrooms. Future investigations
could extend these findings and consider evaluation of the model for different designs of
acoustical treatment including different positioning of acoustic surfaces and their acous-
tic properties. Model simulations should be validated by empirical speech intelligibility
measurements to confirm the model outcomes.

As far as the comparison between the results of SRMs from [28,29] is concerned, no
difference emerges except for the condition T1.5M2.5,180◦–120◦ in PO that presents higher
(better) values in the case of [28]. One possible explanation for this, which is a phenomenon
that still needs to be explored further, might be related to the effect of IR separation. Even
though the sound present in the late reflections is theoretically negligible, some energy
might be left in the IRs, thus affecting the final SNRs.
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Figure 3. Spatial release from masking (SRM) of close target and masker (T1.5M1,180◦–120◦ ), close
target and far masker (T1.5M2.5, 180◦–120◦ ), far target and close masker (T4.0M1, 180◦–120◦ ; T4.0M1, 0◦–120◦ ),
far target and far masker (T4.0M2.5, 180◦–120◦ ; T4.0M2.5, 0◦–120◦ ), and very far target and close masker
(T6.5M1, 0◦–120◦ ). Filled black symbols indicate the AO condition while the unfilled ones are for the
PO condition for both BSIM versions (of Beutelmann et al. [29] and of Rennies et al. [28], indicated
with circles and squares, respectively). Error bars indicate the just-noticeable difference for sound
intensity, adopted from the literature [43].

Lastly, when comparing the SRM predicted in this study to the results of previous re-
search, which were conducted under anechoic conditions using a speech source positioned
in front of the listener and a noise source at varying azimuths [22], several insights can be
drawn. As expected, SRMs in complex acoustic scenarios are lower (worse) than those in
anechoic environments. At a 120◦ noise azimuth, it is possible to achieve up to a 13 dB SRT
improvement in an environment with no reverberation [22], while this value is reduced to
6 dB in rooms with acoustics such as the one of the PO condition and almost non-existent in
rooms with high reverberation such as in the AO condition. This finding is consistent with
the results of other studies that have investigated SRM in the presence of reverberation. For
instance, in study [26], which considered an office and a cafeteria, and in study [29], which
investigated a classroom, a listening room, and a church, it was found that the SRM at 120◦

was within the range of 2–8 dB. This suggests that the SRM is considerably lower (worse)
in reverberant conditions compared to an anechoic condition. Such an outcome is also
consistent with the results of Kidd et al. [52] and of a recent paper by Justine Hui et al. [53].
Particularly, in [52], under energetic masking noise, the maximum SRM that was found
consisted of up to 8 dB and 2 dB under less and more reverberant conditions, respectively.
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4. Conclusions

The objective of this study was to examine how normal-hearing individuals process
sound inputs from both ears through predicting their ability to comprehend speech in
classroom settings with and without acoustical treatment, in the presence of an energetic
masking noise. Particularly, speech intelligibility was assessed via the application of a
prediction model without involving real listeners. The findings indicated the following:

• Predictions were also in line with D50 values verified in each frequency band.
• The predicted SRTs were lower (indicating better intelligibility) in the classroom that

had undergone acoustical treatment, as expected.
• When the noise source was spatially separated from the listener’s head, SRTs were

lower (indicating better intelligibility) than when the noise source was spatially co-
located. Particularly, considering a noise source position close to the receiver, SRM
was found to be up to 8 dB SNR, 6.0 dB SNR, and 4.5 dB SNR for close, far, and very
far target-to-receiver distances, respectively.

• SRM improved significantly because reduced reverberation has a direct impact on the lis-
tener’s ability to utilize interaural differences between the desired and interfering signals.

• An extended version of the binaural speech intelligibility model (BSIM) which con-
siders the detrimental effect of late reflections on target signal is beneficial for speech
intelligibility predictions with a large distance between the source and the target.

Limitations exist in the present study, which should be considered as open questions
to be included in future research. The main ones consist of the facts that (i) deeper insights
that consider empirical data in the study of complex acoustic scenarios are needed so
that the variance across listeners and environmental conditions can be properly evaluated
from a robust statistical point of view; (ii) with respect to the above-mentioned limitation,
empirical data would also allow for the validation of speech intelligibility thresholds
including different listener groups (e.g., adult, child, normal-hearing, hearing-impaired);
(iii) BSIM predictions might be used as preliminary tests to establish the most competitive
listening scenarios to be tested so that the empirical tests can be kept effective and accurate;
(iv) more listening scenarios in terms of reverberation, room dimension, and use should be
considered, and further cognitive tasks should be accounted in an overall evaluation so
that speech intelligibility predictions can be compared to listening comfort and cognitive
performances, too.

In conclusion, ensuring optimal acoustic conditions in classrooms is essential for
achieving good speech intelligibility, and the use of accurate prediction tools such as
the BSIM can already contribute towards this objective at a design stage. Considering
varying classroom typologies at national and international levels, this approach can also
be employed for retrofitting existing classrooms through adding sound-absorbing and
scattering materials to the walls and ceiling.
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