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RBF-based tensor decomposition with applications to oenology

Emma Perracchione a

Communicated by S. De Marchi

Abstract

As usually claimed, meshless methods work in any dimension and are easy to implement. However in
practice, to preserve the convergence order when the dimension grows, they need a huge number of
sampling points and both computational costs and memory turn out to be prohibitive. Moreover, when a
large number of points is involved, the usual instability of the Radial Basis Function (RBF) approximants
becomes evident. To partially overcome this drawback, we propose to apply tensor decomposition methods.
This, together with rational RBFs, allows us to obtain efficient interpolation schemes for high dimensions.
The effectiveness of our approach is also verified by an application to oenology.

1 Introduction
The main topic of the proposed study focuses on the approximation of multivariate functions. Such problem naturally entails a
large number of intimately related computational and theoretical issues, such as overcoming the curse of dimensionality, that
need further investigations from the scientific community. Indeed, the multivariate approximation finds many applications; to
mention a few, reconstruction of medical images and approximation of multivariate PDEs [14, 25]. Moreover, it is common to all
numerical approximation schemes, as polynomial expansions, spline interpolation and meshfree or meshless methods. For the
latter, except for particular instances, see e.g. [10, 33], the numerical tests are usually carried out in low dimensions.

When the dimension grows, a possible solution for overcoming the huge computational complexity comes from the use of
local schemes, as the Partition of Unity (PU) method; refer e.g. to [11, 37]. However, this might not be completely satisfying.
Indeed, for constructing the local subdomains, large grids in high dimensions need to be computed, leading again to prohibitive
computational costs.

Here we propose a tool that enables us to effectively interpolate in high dimensions and that comes from the field of Tensor
Decomposition (TD) methods. Indeed, for modeling multivariate phenomena, Reduced Order Methods (ROMs), known as
Karhunen-Loève expansion (KLE) have gained popularity [26]. We focus on the Proper Orthogonal Decomposition (POD) [1, 6],
which also finds many applications in computational fluid dynamics [4, 28, 35]. As the Higher Order SVD (HOSVD) [13], it
provides a multilinear generalization of the best low rank approximation problem for matrices obtained by truncating the SVD. In
fact, the HOSVD enables us to perform a low dimensional approximation of tensors as the SVD allows to approximate bivariate
data. Moreover, the POD takes advantage of defining a clear theoretical framework and it is based on the famed Mercer’s
eigenfunctions, which have also been used to compute stable bases for kernel-based approximants via low rank representations
of the interpolation matrix [18].

To summarize, TD tools allow us to consider univariate RBF interpolation in each direction, producing effective approximations.
As RBF-bases, we also consider the so-called eigen-rational kernels [8] and we study properties of the spectrum of the rational
kernel matrices.

The paper is organized as follows. In Section 2, we present the well-known RBF theory for multivariate interpolation and
we also introduce the rational approximants that can be seen as Hadamard product of standard kernels (see e.g. [34]). Then,
in Section 3, we describe our algorithm, namely in what follows TD-RBF, based on univariate kernel approximation via POD.
Section 4 is devoted to numerical experiments. Applications to wine preferences, a typical example of multivariate modeling, are
presented in Section 5. We conclude with some final remarks concerning possible extensions of the present approach.

2 Rational RBF-based interpolation
In the next subsection we review the main theoretical aspects of kernel-based methods and in doing so we mainly refer to the
books [7, 20, 21, 36]. Then we present the rational bases, first introduced in [24] and then further investigated in [8, 17, 30, 31].

2.1 Remarks on kernel-based interpolation

Given X N = {x i , i = 1, . . . , N} ⊂ Ω a set of distinct data points (or data sites or nodes), arbitrarily distributed on a domain
Ω ⊆ RM , and the associated set FN = { fi = f (x i), i = 1, . . . , N} of data values (or measurements or function values), the scattered
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data interpolation problem consists in finding a function Pf : Ω −→ R such that

Pf (x i) = fi , i = 1, . . . , N .

Here we focus on RBF interpolants Pf : Ω −→ R which assume the form [20]

Pf (x ) =
N
∑

k=1

αkK (x , x k) , x ∈ Ω,

where K is a strictly positive definite kernel. To such kind of kernels, we associate a univariate function φ : [0,∞)→ R (possibly
depending on a shape parameter ε > 0), such that

K(x , y) = φε(||x − y ||2) := φ(r), x , y ∈ Ω.

By imposing the interpolation conditions, the scattered data interpolation problem reduces to solving a linear system of the
form

Kα= f (1)

where
Kik = K (x i , x k) , i, k = 1, . . . , N ,

α= (α1, . . . ,αN )
ᵀ and f = ( f1, . . . , fN )

ᵀ. Under our assumptions, such a system admits a unique solution [20].
Concerning error bounds, we start by associating to K a real pre-Hilbert space HK(Ω) with reproducing kernel K (refer e.g. to

[36])
HK(Ω) = span{K(·, x ), x ∈ Ω},

equipped with the bilinear form (·, ·)HK (Ω). We then define the native space NK(Ω) of K as the completion of HK(Ω) with respect
to the norm || · ||HK (Ω), that is || f ||HK (Ω) = || f ||NK (Ω) for all f ∈ HK(Ω).

We point out that a pointwise error bound for kernel-based interpolants is of the form [21]

| f (x )− Pf (x )| ≤ Chβ || f ||NK (Ω), x ∈ Ω,

for some appropriate exponent β depending on the smoothness of the kernel and h is the so-called fill distance given by:

h= sup
x∈Ω

�

min
x k∈XN

‖x − x k‖2

�

.

The fill distance and hence the error depends on the number of data N . The latter, to overcome the curse of dimensionality, must
grow according to M . To better understand this fact, supposing quasi-uniformly distributed data sites, i.e., h=O(N−1/M ), we
have that

| f (x )− Pf (x )| ≤ CM N−β/M || f ||NK (Ω), x ∈ Ω,

which shows that the rate of convergence deteriorates as M increases and where CM depends on the dimension.
Thus, our main objective is the one of preserving the accuracy also in higher dimensions. To such aim we introduce tensor

decomposition methods. Before doing this, we present a recent tool, namely the eigen-rational interpolant, which offers a different
and possibly more accurate computation of the RBF-based interpolant.

2.2 Eigen-rational interpolants as Hadamard products

Focusing on strictly positive definite kernels K , the eigen-rational interpolant assumes the form

P̂f (x ) =

∑N
i=1 αi K(x , x i)

∑N
k=1 βkK(x , xk)

=
Pg(x )

Ph(x )
, (2)

defined for some function values gi , hi , i = 1, . . . , N [8]. The coefficients β = (β1, . . . ,βN )ᵀ are selected so that β is the eigenvector
associated to the largest eigenvalue of K. As shown in [8], this makes the problem well-defined. Indeed, once we compute the
vector β , we can calculate the function values Ph(x i) = hi , i = 1, . . . , N . Then, we construct the eigen-rational interpolant P̂f by
solving (1), where the vector of function values is replaced by g = f h.

We remark that the eigen-rational interpolant shows similar convergence rates to the ones of the standard interpolant.
However, numerically, we can register a sensible improvement in terms of stability. This results in an effective method for the
approximation problem.

We here investigate a few properties concerning the spectrum of the eigen-rational interpolant compared to the standard
kernel matrix (see [19]). To this aim we report a result by Schur [34] useful for that purposes (refer also to [23, Lemma A.5] and
[22, Lemma 2.1]).

Theorem 2.1. When E and M ∈ RN×N are positive definite matrices, denoting by λmin and λmax the smallest and largest eigenvalue
of a matrix, we have that

λmin(E) min
i=1,...,N

(Mii)≤ λi(E ◦M)≤ λmax(E) max
i=1,...,N

(Mii),

where ◦ is the Hadamard product, i.e.
(E ◦M)i j = Ei jMi j ,

i, j = 1, . . . , N.

Dolomites Research Notes on Approximation ISSN 2035-6803



Perracchione 38

In [8] the authors proved that the interpolant defined in (2) can be equivalently written via the rational kernel:

KR(x , y) = K(x , y)
1

Ph(x )
1

Ph(y)
.

Note that KR is strictly positive definite provided so is K . In view of this we have the following result.
Property 2.1. Suppose K is a strictly positive definite kernel, then the rational kernel matrix denoted by KR assumes the form

KR = K ◦ K̂,

where

K̂i j =
1

Ph(x i)
1

Ph(x j)
, i, j = 1, . . . , N .

Moreover,
λmin(K) min

i=1,...,N
(K̂ii)≤ λi(K ◦ K̂)≤ λmax(K) max

i=1,...,N
(K̂ii),

for i = 1, . . . , N .

Proof. Since h j =
∑N

i=1 βi K(x j , x i), we have that

P̂f =
N
∑

j=1

α j

K(x , x j)
∑N

i=1 βi K(x , x i)
=

N
∑

j=1

α j

h j K(x , x j)
∑N

i=1 βi K(x , x i)
∑N

i=1 βi K(x j , x i)
.

Thus,

P̂f =
N
∑

j=1

α̃ j

K(x , x j)
∑N

i=1 βi K(x , x i)
∑N

i=1 βi K(x j , x i)
=:

N
∑

j=1

α̃ j KR(x , x j).

Trivially,
KR = K ◦ K̂,

and the thesis follows from Theorem 2.1 and by [27].

In [8], the authors show that the rational RBF interpolant (called in what follows RRBF) is a rescaled version of the standard
one. Thus, the above property confirms that the spectrum of the rational kernel is also a rescaled form of the standard one.

3 RBF-based POD approach
In order to present the POD expansion for M -variate functions, with M ≥ 3, (see e.g. [2, 3]), we need to point out a few remarks
on the POD for bivariate functions in the next subsection; refer e.g. to [1].

3.1 Remarks on the POD

Given a function f ∈ L2(X1 × X2), where here X1, X2 ⊆ R, we are interested in the Hilbert-Schmidt integral operator with kernel
f given by

(Yϕ)(x2) =

∫

X1

f (x1, x2)ϕ(x1)d x1,

where ϕ ∈ L2(X1) and in its adjoint Y ∗ : L2(X2)→ L2(X1), defined as

(Y ∗v)(x1) =

∫

X2

f (x1, x2)v(x2)d x2,

with v ∈ L2(X2). The function f is thus the kernel of the self adjoint operator P = Y ∗Y and, by virtue of the Mercer’s theorem
[29], it admits the following convergent expansion in L2(X1 × X2), see e.g. [1, Corollary 2.2]:

f (x1, x2) =
∑

i∈N

σiϕi(x1)vi(x2),

with v ∈ L2(X2) and where the eigenfunctions (ϕi)i∈N and associated eigenvalues (λi)i∈N of P form a complete orthonormal
basis of L2(X1). We assume that the eigenvalues are ordered in decreasing values. As a consequence, the sequence (vi)i∈N is an
orthogonal basis of L2(X2) and it is defined as

vi =
1
σi

Yϕi ,

where σi =
p

λi are the so-called singular values and ϕi = Y ∗vi .
Note that in the discrete case, i.e. when we have samples of function values, this is indeed equivalent to the SVD, as the

discrete Recursive POD (RPOD) that we are going to describe can be seen as a higher dimensional SVD.

Dolomites Research Notes on Approximation ISSN 2035-6803
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3.2 Multivariate POD expansion and kernel interpolation

We now suppose that f is in the Lebesgue space L2(X1 × X2 × · · · × XM ), where X1, . . . , XM ⊂ R are bounded domains. Then, in
view of the above considerations, we have

f (x1, x2, . . . , xM ) =
∑

i1∈N

σi1 vi1(x2, . . . , xM )ϕi1(x1),

where the sum is convergent in L2(X2× · · ·× XM , L2(X1)) and where (ϕi1 )i1∈N and (vi1 )i1∈N, are two orthonormal sets respectively
complete in L2(X1) and L2(X2 × · · · × XM ).

Continuing in applying recursively the POD, we construct the expansion of

vi1 , v(i1)i2
, . . . , v(i1 ,i2 ,...,iM−3)

iM−2
,

so that f ∈ L2(X1 × X2 × · · · × XM ) can be written as [3, Lemma 2.1]

f =
∑

i1∈N

∑

i2∈N

· · ·
∑

iM−1∈N

σi1σ
(i1)
i2
· · ·σ(i1 ,i2 ,··· ,iM−2)

iM−1
ϕi1 ⊗ϕ

(i1)
i2
⊗ · · · ⊗ϕ(i1 ,i2 ,...,iM−2)

iM−1
⊗ v(i1 ,i2 ,...,iM−2)

iM−1
,

=
∑

i1∈N

σi1

�

∑

i2∈N

σ
(i1)
i2
· · ·
�

∑

iM−1∈N

σ
(i1 ,i2 ,...,iM−2)
iM−1

ϕi1 ⊗ϕ
(i1)
i2

�

⊗ · · · ⊗ϕ(i1 ,i2 ,...,iM−2)
iM−1

�

⊗ v(i1 ,i2 ,...,iM−2)
iM−1

,
(3)

where sums are convergent in L2(X1 × X2 × · · · × XM ).
Computationally speaking this can be seen as a SVD in higher dimensions and thus it might be useful studying criteria for

truncating the expansion as

fT =
I1
∑

i1=0

σi1

�
I
(i1)
2
∑

i2=0

σ
(i1)
i2
· · ·
�

I
(i1,i2,...,iM−2)
M−1
∑

iM−1=0

σ
(i1 ,i2 ,...,iM−2)
iM−1

ϕi1 ⊗ϕ
(i1)
i2

�

⊗ · · · ⊗ϕ(i1 ,i2 ,...,iM−2)
iM−1

�

⊗ v(i1 ,i2 ,...,iM−2)
iM−1

.

We use a multi-index notation with T that stands for

T =
�

I1, I (i1)2 , . . . , I (i1 ,...,iM−2)
M−1

�

,

where Ti ≥ 1, i = 1, . . . , M − 1.
Concerning the truncation, we have the following result, see [3, Lemma 5.5].

Lemma 3.1. Assume that the coefficients of the RPOD expansion (3) satisfy
∑

i1>I1

�

�σi1

�

�

2 ≤ Σ1,
∑

ik>I
(i1,...,ik−1)
k

�

�σ
(i1 ,...,ik−1)
ik

�

�

2 ≤ Σk, k = 2, . . . , M − 1. (4)

Then, the following error estimate in L2 norm holds
�

�

�

� f − fT

�

�

�

�

2

L2(X1×X2×···×XM )
≤ σI1+1 + CT

�

�

�

� f
�

�

�

�

2

L2(X1×X2×···×XM )
, (5)

where CT = Σ2 +ΣM−2 +ΣM−1, with

Σk = max
i1 ,...,ik−1

σ
(i1 ,...,ik−1)
Ik+1 and Ik = min

i1 ,...,ik−1
I (i1 ,...,ik−1)
k ,

k = 2, . . . , M − 1.

Proof.

|| f − fT ||2L2(X1×X2×···×XM )
=
� I1
∑

i1=0

�

�σi1

�

�

2
I
(i1)
2
∑

i2=0

�

�σ
(i1)
i2

�

�

2 · · ·
I
(i1,...,iM−3)
M−2
∑

iM−2=0

�

�σ
(i1 ,...,iM−3)
iM−2

�

�

2
∑

iM−1>I
(i1,...,iM−2)
M−1

�

�σ
(i1 ,...,iM−2)
iM−1

�

�

2
�

+
� I1
∑

i1=0

�

�σi1

�

�

2
I
(i1)
2
∑

i2=0

�

�σ
(i1)
i2

�

�

2 · · ·
∑

iM−2>I
(i1,...,iM−3)
M−2

�

�σ
(i1 ,...,iM−3)
iM−2

�

�

2
�

+ · · ·

+
� I1
∑

i1=0

�

�σi1

�

�

2
∑

i2>I
(i1)
2

�

�σ
(i1)
i2

�

�

2
�

+
∑

i1>I1

�

�σi1

�

�

2
.
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Using (4), we deduce that

|| f − fT ||2L2(X1×X2×···×XM )
≤ΣM−1

� I1
∑

i1=0

�

�σi1

�

�

2
I
(i1)
2
∑

i2=0

�

�σ
(i1)
i2

�

�

2 · · ·
I
(i1,...,iM−3)
M−2
∑

iM−2=0

�

�σ
(i1 ,...,iM−3)
iM−2

�

�

2
�

+ΣM−2

� I1
∑

i1=0

�

�σi1

�

�

2
I
(i1)
2
∑

i2=0

�

�σ
(i1)
i2

�

�

2 · · ·
I
(i1,...,iM−4)
M−3
∑

iM−3

�

�σ
(i1 ,...,iM−4)
iM−3

�

�

2
�

+ · · ·

+Σ2

I1
∑

i1=0

�

�σi1

�

�

2
+
∑

i1>I1

�

�σi1

�

�

2 ≤ CT

I1
∑

i1=0

�

�σi1

�

�

2
+σI1+1.

Then, since
I1
∑

i1=0

�

�σi1

�

�

2 ≤
�

�

�

� f
�

�

�

�

2

L2(X1×X2×···×XM )
,

(5) follows.

In what follows, even if we will decompose the discrete tensor for interpolation without truncation, as explained in [3], such
estimate allows to derive a practical strategy for the computation of the truncated RPOD expansion. Moreover, such re-ordered
POD expansion turns out to be handy from a theoretical point of view and easy to implement. However, we suggest, for the
specific problem of reconstructing function values, the use of the multi-index notation. In fact, even if the two representations
are equivalent, i.e. the number of modes does not change, the use of the multi-index notation allows to factor out several
eigenfunctions for the interpolation process and this surely leads to a cipher procedure (see the TD-RBF Algorithm). In such
algorithm we summarize the steps of the procedure used in our experiments. In the pseudocode, we denote with “Interp” a
general interpolation procedure that corresponds to either rational or standard RBF bases.

INPUTS: The tensor constructed on the set XN , i.e. the set FN ;
the evaluation point x ∗ ∈ Ω.

OUTPUTS: f (x ∗)

Step 1: Set f (x ∗) = 0
For i1 = 0 : I1

ϕi1(x
∗
1) = Interp(ϕi1 , x∗1)

Step 2: For i2 = 0 : I (i1)2

ϕ
(i1)
i2
(x∗2) = Interp(ϕ(11)

i2
, x∗2)

...

Step M: For i(i1 ,i2 ,...,iM−2)
M−1 = 0 : I (i1 ,i2 ,...,iM−2)

M−1

v(i1 ,i2 ,...,iM−2)
iM−1

(x∗M ) = Interp(v(i1 ,i2 ,...,iM−2)
iM−1

, x∗M )

ρ = σi1σ
(i1)
i2

. . .σ(i1 ,i2 ,...,iM−2)
iM−1

Step M+1:

f (x ∗) = f (x ∗)+ρϕi1 (x
∗
1)ϕ

(i1)
i2
(x∗2) . . .ϕ(i1 ,i2 ,...,iM−2)

iM−1
(x∗M−1)v

(i1 ,i2 ,...,iM−2)
iM−1

(x∗M )

The TD-RBF Algorithm. The TD-RBF pseudocode used to estimate function values.

4 Numerical experiments
We compare standard multivariate RBF interpolation, namely in what follows ST-RBF, with the algorithm TD-RBF, eventually with
the use of RRBFs.

The numerical tests are carried out in dimension M = 2, 3,4,5. They are devoted to point out that:

1. the instability of the classical RBF interpolation grows according to the dimension M and in those cases the TD-RBF
becomes essential;

2. for high dimensions the computational effort is prohibitive without the TD-RBF scheme;

3. the TD-RRBF allows to substantially increase the accuracy, especially for the Gaussian kernel.
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In this section, we construct tensors by sampling several functions on (2k)M grid data, with M = 2, . . . , 5, and k = 1, . . . , 5, on
Ω = [0, 1]M . We then evaluate the reconstruction on 100M random data x̄ i , i = 1, . . . , 100M , by computing the Relative Maximum
Absolute Error and the Relative Root Mean Square Error, respectively given by

RMAE=max
x∈Ω

| f (x )− A(x )|
| f (x )|

,

and

RRMSE=
|| f (x )− A(x )||2
|| f (x )||2

,

where A in an approximant constructed via ST-RBF, TD-RBF or TD-RRBF. For all the experiments we take the Gaussian kernel.
At first we focus on the items 1. and 2. of the above list. To such aim, we take the following test function [20]:

f1(x ) = 16
M
∏

i=1

x i(1− x i).

The results of using ST-RBF and TD-RBF are plotted in Figure 1. The shape parameter for both cases is fixed as ε = 0.8. We
can note that, as expected, in the 2-dimensional framework the TD-RBF is meaningful only if a large number of points is involved.
Conversely, in higher dimensions the instability becomes evident and decomposing the tensor enables us to mitigate such effect.
Concerning the computational complexity, for M = 5 the memory requirement for the ST-RBF becomes prohibitive for 6M points.
Experiments are carried out with MATLAB on an Intel(R) Core(TM) i7 CPU 4712MQ 2.13 GHz processor.
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Figure 1: Number of points VS RMAE and RRMSE for ST-RBF and TD-RBF with the function f1. From top to bottom, left to right, M = 2, 3, 4
and 5.

We now focus on the possible benefits coming from the use of rational bases. In doing so, we fix ε = 1 and we consider
different test functions reported below for simplicity:

f2,2(x ) =
sinc(x1)x2

2 + ex1

1+ x1 + x2
2

, f2,3(x ) =
sinc(x1)sinc(x3)x2

2 + ex1

1+ x1 + x2
2 + x3

3

,

f2,4(x ) =
sinc(x1)sinc(x3)x2

2 x2
4 + ex1

1+ x1 + x2
2 + x3

3 − x4
4

, f2,5(x ) =
sinc(x1)sinc(x3)sinc(x4)x2

2 x2
4 + ex1

1+ x1 + x2
2 + x3

3 + x4
4 + x5

5

,
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Table 2: Condition numbers of kernel matrices.

M > 1 TD

N cond(K) cond(KR) cond(K) cond(KR)

2M 1.01E+ 01 1.01E+ 01 2.16E+ 00 2.16E+ 00
4M 1.32E+ 09 1.87E+ 09 1.09E+ 03 1.35E+ 03
6M 8.04E+ 17 7.16E+ 17 3.38E+ 06 4.14E+ 06
8M 1.90E+ 19 3.50E+ 19 2.52E+ 10 3.07E+ 10
10M 2.09E+ 20 3.64E+ 20 3.41E+ 14 4.12E+ 14

f3,2(x ) = cos(x1) +− log(x1 x2 + 7), f3,3(x ) = cos(x1) + cos(x3)− log(x1 x2 x3 + 7),

f3,4(x ) = cos(x1) + cos(x3)− log(x1 x2 x3 x4 + 7), f3,5(x ) = cos(x1) + cos(x3)− log(x1 x2 x3 x4 x5 + 7).

Before going into details and comparing ST-RBF with TD-RRBF, we report the condition numbers of the kernel interpolation
matrices. Precisely, in Table 2, we show the condition numbers of the matrices K and KR. As expected, being the spectrum of the
RRBFs a rescaled version of the one obtained via RBFs, the condition numbers are comparable. Of course, being the matrices
dependent on the distance among points, the results are analogous for each M > 1. While, in the last two columns we report the
condition numbers for the univariate interpolation matrices involved in the computation after decomposing the tensors.

The results of using f2,M , M = 2, . . . , 5 are shown in Figure 2. We can note that in this case the use of rational bases is
particularly meaningful in higher dimensions. Such improvement is even more evident with the second set of test functions; refer
to Figure 3. We conclude that, if in addition to the tensor decomposition one also uses rational bases, the proposed tool turns out
to be robust and stable. As a confirm, we consider in the next section an application to wine preferences.
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Figure 2: Number of points VS RMAE and RRMSE for ST-RBF and TD-RRBF with the function f2,M . From top to bottom, left to right, M = 2, 3, 4
and 5.
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Figure 3: Number of points VS RMAE and RRMSE for ST-RBF and TD-RRBF with the function f3,M . From top to bottom, left to right, M = 2, 3, 4
and 5.

Dolomites Research Notes on Approximation ISSN 2035-6803



Perracchione 44

Table 3: Numerical simulations for the red wine data.

Method ST-RBF TD-RRBF

RMAE 8.71E+ 00 6.66E− 01
RRMSE 1.24E+ 00 1.28E− 01

5 Applications to wine preferences
As fancy application, we consider the problem of scoring wines based on several input parameters. This is indeed, a typical example
of multivariate data analysis. The data set we consider is available at: https://archive.ics.uci.edu/ml/datasets/wine
and has been created in [12]. This is frequently used for testing both classification (support vector machine) and regression
(support vector regression) algorithms. However, due to the high number of input parameters the problem becomes challenging
and we here apply our tensor decomposition tool. The 311 toy tensor used in the simulation is constructed via RBF interpolation
as in [15].

The data set takes into account Vinho Verde wine (from the Minho region of Portugal; see http://www.vinhoverde.pt/)
with a total of 1599 red samples. Based on 11 inputs each wine is classified on a quality range that varies from 0 to 10. We briefly
describe below the inputs and we refer to [9, 12, 32] for further details.

VA. Volatile acidity (tartaric acid - g /dm3): it is the amount of acetic acid in wine. It is a relevant physicochemical parameter
and at too high levels it can lead to an unpleasant vinegar taste. As a consequence, it is monitored during the winemaking
process.

FA. Fixed acidity (acetic acid - g / dm3): it is represented by the acids that do not evaporate readily. It is defined as the
difference among the total acidity and the volatile acidity. The former, in must or wine, takes into account all types of acids.

CA. Citric acid (g / dm3): it appears in small quantities and adds freshness and flavor to wines.

RS. Residual sugar (g/dm3): it measures the amount of sugar solids remaining after fermentation. Dry wines are characterized
by low levels of residual sugar, while if the latter is greater than 45 g/dm3, then the wine is usually referred to as sweet.

CH. Chlorides (sodium chloride - g/dm3): such measure corresponds to the amount of salt in the wine.

FD. Free sulfur dioxide (mg / dm3): it prevents microbial growth and the oxidation of wine.

TD. Total sulfur dioxide (mg / dm3): it appears in small quantities and becomes evident in the nose only for high concentrations
of free sulfur dioxide.

DE. Density (g / cm3): it is close to that of water depending on the alcohol and sugar concentration.

PH. pH: it describes how acidic or basic a wine is. Its scale is from 0 to 14. Since it influences microbiological stability and
affects the equilibrium of tartrate salts, it is largely responsible for the flavor balance [9].

PS. Potassium sulphate (g / dm3); it is a wine additive which might affect the sulfur dioxide gas levels.

AL. Alcohol: the percentage of alcohol content of the wine. It is used to express the wine’s strength.

The output variable, i.e. the Wine Quality (WQ), based on sensory data, is a score between 0 and 10. Thus, to predict the final
score we need to approximate the 11-variate function f that classifies the wine and depends on the above parameters, i.e.

WQ= f (VA,FA,CA,RS,CH,FD,TD,DE,PH,PS,AL).

About the 10% of the data set, specifically s = 160 instances, is used for testing the methods.
The results are reported in Table 3. We can note that, the simple interpolation via RBF suffers from the curse of dimensionality.

This stresses the fact that, even if RBFs can be applied in any dimensions, the use of tensor decomposition tools becomes essential.

6 Concluding remarks
In this paper we proposed a technique which turns out to be extremely useful in approximating functions in high dimensions. The
main advantage consists in the fact that we reduce the large scale problem in interpolating eigenfunctions, which are univariate
functions. Both theoretical and numerical evidence confirm that the investigated tools turn out to be robust when approximating
multivariate functions. Work in progress consists in coupling local schemes, as the PU method, with the TD tools and investigating
applications to the solution of PDEs via collocation algorithms. Moreover, because of the flexibility of the current scheme with
respect to the basis functions, extensions to multivariate polynomial interpolation without resampling [5, 16] need further
investigations.
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