
20 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Listen Veronica! Can You Give me a Hand With This Bug? / Saenz, Juan Pablo; De Russis, Luigi. - STAMPA. - (2023),
pp. 24-30. (Intervento presentato al convegno The 15th ACM SIGCHI Symposium on Engineering Interactive Computing
Systems tenutosi a Swansea, United Kingdom nel June 26-30, 2023) [10.1145/3596454.3597179].

Original

Listen Veronica! Can You Give me a Hand With This Bug?

ACM postprint/Author's Accepted Manuscript, con Copyr. autore

Publisher:

Published
DOI:10.1145/3596454.3597179

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2978306 since: 2023-06-22T13:21:33Z

Association for Computing Machinery

Listen Veronica! Can You Give Me a Hand With This Bug?
Juan Pablo Sáenz
Politecnico di Torino

Turin, Italy
juan.saenz@polito.it

Luigi De Russis
Politecnico di Torino

Turin, Italy
luigi.derussis@polito.it

ABSTRACT
Developing software implies looking for documentation, follow-
ing tutorials, making implementation decisions, encountering er-
rors, and overcoming them. Behind each aspect is the developer’s
reasoning that, if not collected, is lost after the implementation.
Conversely, if captured and linked to the code, the developers’ rea-
soning and motivations for each step they accomplish can become a
valuable asset, meaningful for them and other developers. Looking
for a mechanism to capture such knowledge seamlessly, we present
Veronica. It is a conversational agent integrated directly into Vi-
sual Studio Code that, based on the developers’ self-explanatory
reasoning, records memos and links them with the code they are
writing. Furthermore, Veronica can interact with the web browser
to automatically gather the sources consulted by the developer and
attach them to the code. We validated our approach by conducting
a usability study with eight participants that positively assessed
the tool’s usefulness and suggested improvements in the graphical
interface.

CCS CONCEPTS
• Human-centered computing → Interactive systems and
tools; • Software and its engineering→Development frameworks
and environments.

KEYWORDS
conversational agent, development environment, software, docu-
mentation
ACM Reference Format:
Juan Pablo Sáenz and Luigi De Russis. 2023. Listen Veronica! Can You Give
Me a Hand With This Bug?. In Companion of the ACM SIGCHI Symposium
on Engineering Interactive Computing Systems (EICS ’23 Companion), June
27–30, 2023, Swansea, United Kingdom. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3596454.3597179

1 INTRODUCTION AND MOTIVATION
When approaching a new programming language or getting profi-
cient with a given development framework, programmers rely on
online tutorials, forums, or source code examples to find solutions
and overcome development and execution errors [6, 8]. Based on
their reasoning and motivations, each developer decides which

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
EICS ’23 Companion, June 27–30, 2023, Swansea, United Kingdom
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0206-8/23/06. . . $15.00
https://doi.org/10.1145/3596454.3597179

resources to follow and how to implement their solution. While,
typically, developers comment on the code once the implementation
is finished or they have reached a working version, the consulted
sources, the reasoning over the code, the implementation choices,
and the issues they found throughout the development process
remain largely undocumented.

In this context, critical aspects such as background knowledge,
the rationale for the solution, or step-by-step instructions for ar-
riving at similar or related solutions are typically left out of the
documentation [11]. Consequently, the documentation linked to
the code is not commonly helpful to themselves or other devel-
opers to overcome cognitive barriers or guide the development of
new projects. While various works aim to ease the understanding
and integration of online code examples [7, 12, 15], fewer research
efforts have been devoted to supporting novices in seamlessly doc-
umenting their development process on the go and with their own
words.

Against this backdrop, we consider that programmers can pro-
duce documentation that has the potential to become a valuable
asset, meaningful for them and other developers if enabled to cap-
ture various points of the development process seamlessly and add
self-explanatory insights to it [3]. In particular, we rely on the fact
that a self-explanation strategy can increase their awareness of
the implemented solution [23, 24]. Indeed, when learners provide
explanations — even to themselves — they learn more effectively
and generalize more readily to novel situations [9, 26]. It is well-
known from the literature that novice programmers usually lack
metacognitive awareness — the ability to think about and reflect
on their problem-solving process — and fail to progress toward a
working solution [17].

In this paper, we present Veronica, a conversational agent in-
tegrated into Visual Studio Code to help developers self-explain
and document their development process through “memos” that
they can create textually or vocally. Such memos consist of self-
explanatory comments or the URLs of the online resources con-
sulted by the programmer, which Veronica automatically gathers
from the browser. We choose a conversational agent (CA) since,
in recent years, they have become widely used in several contexts,
including for software engineering. CAs are software components
designed to respond to human statements with a specific set of
predefined replies. In the software engineering context, they react
to external stimuli, such as events triggered by tools and messages
posted by users, and run automated tasks in response. They work
as an interface between developers and services, e.g., acting as
Q&A bots for information retrieval and are integrated into IDE for
automating bug repair [20], like in our proposal.

Finally, after design and implementing Veronica, we evaluated
it by conducting a usability study. The study results revealed that

https://orcid.org/0000-0003-0928-3089
https://orcid.org/0000-0001-7647-6652
https://doi.org/10.1145/3596454.3597179
https://doi.org/10.1145/3596454.3597179

EICS ’23 Companion, June 27–30, 2023, Swansea, United Kingdom Sáenz and De Russis

developers with diverse expertise find the tool helpful and distin-
guished the improvements we must implement in the extension to
improve its usability.

2 BACKGROUND
Veronica is built upon three research topics: Software Engineering
Bots, Conversational Agents, and Developers’ Notetaking. In the
following, we provide context and describe how our approach builds
upon them.

2.1 Software Engineering Bots
Software Engineering Bots are applications that react to external
stimuli, such as events triggered by tools and messages posted
by users, and run automated tasks in response. They work as an
interface between users and services and include conversational
capabilities to interact with end users through textual messages
(in chatbots) and speech (in voice bots) [20]. Several bots have
been implemented to improve developers’ workflow through better
productivity [10]. Indeed, according to Wang et al. [25], over 60% of
one thousand popular GitHub Open Source repositories employ at
least one bot to automate routine workflows. Furthermore, Storey et
al. [22] characterized the types of bots used in software development
based on their roles. The identified types were: code bots, test bots,
DevOps bots, support bots, and documentation bots.

In this context, Veronica’s approach lies in the category of a doc-
umentation bot. These bots commonly aim at automating documen-
tation generation from resources such as Stack Overflow1, easing
the process of extracting useful information from software reposi-
tories [1], engaging developers by being an interactive interface to
static documentation pages [19], or generating reports and dash-
boards by integrating analytics and visualization services [22]. How-
ever, Veronica is targeted at non-experienced developers. Rather
than automating the documentation generation, it aims to ease
self-explain their development process and thoughts as they arise
and keep track of the online sources that motivated their imple-
mentation decisions.

2.2 Conversational Agents
Conversational Agents (CA) are user interfaces that interact with
users via written or spoken natural language. As input, they accept
natural language as speech, text, or video, process it, and provide
relevant advice or feedback through text or speech or by manipulat-
ing a physical or virtual body [2]. In recent years, CAs have become
widely used in several contexts, mainly to increase accessibility
for people with physical disabilities or language barriers [14, 18].
When coupled with bots, such conversational interfaces are com-
monly called conversational bots. In Software Engineering tasks,
developers can access and command bots through natural language
communication by using conversational bots [19]. They establish a
natural communication between bots and developers, reducing the
tasks’ learning curve. Conversational bots range from chat-based
communications to voice-controlled bots [4].

In our proposal, we decided to implement Veronica as a conversa-
tional agent that can interact with users, either textually or vocally.

1https://stackoverflow.com/, last visited on January 19, 2023

Since software development already requires switching among var-
ious contexts [16], we propose that integrating the conversational
agent directly into the Integrated Development Environment (IDE)
might represent an advantage to the programmers. Similarly, our
decision to support the vocal input was to avoid distractions or
interruptions in the developers’ regular coding workflow.

2.3 Developers’ Notetaking
Finally, notetaking is the most common way for developers to cope
with task suspension and resumption. However, according to Parnin
et al. [16], although 77% of developers use notes to keep track of
their progress during programming, 75% of these notes are unsitu-
ated, meaning they are not kept in the editor. Similarly, notes are
commonly taken to support developers’ own comprehension of the
code [13], for keeping track of helpful resources [12], and for keep-
ing track of their progress in a development task [5]. Nevertheless,
Shinyama et al. [21] determined that information designed for code
authors appeared less often than formal types of documentation,
indicating that developers are not frequently commenting on the
code for their own benefit.

Given this context, Veronica’s design, from the notetaking point
of view, aims to: (i) enable developers to attach self-explanatory
comments in their code, (ii) persist such comments directly in the
development environment, and (iii) link helpful online resources to
the code.

3 USAGE SCENARIO
To illustrate how Veronica looks and works, we present a usage
scenario framed in the context of a novice developer solving pro-
gramming exercises using Python.

• Laura is a non-experienced developer working on her univer-
sity programming course exercises. She opens Visual Studio
Code, her preferred IDE.

• At some point, she gets stuck in solving an exercise requiring
the implementation of a bubble sort algorithm. As commonly
happens when a developer gets stuck in the coding, she starts
thinking aloud, reviewing the code she has written. Then,
after some seconds without changing the code, Laura decides
to enable Veronica, the conversational agent.

• A right sidebar opens in Visual Studio Code, displaying
Veronica’s chat. Veronica starts the interaction with the de-
veloper by showing a message greeting and offering its help
to create memos and track the Google Chrome browser nav-
igation. Apart from displaying the chat, the microphone is
also enabled when Veronica is launched. In this manner,
Laura can interact vocally or textually.

• Laura is not sure about where to start. So she opens her
browser and heads to the course website, where she finds
a step-by-step conceptual explanation of how the bubble
sort algorithm works. Additionally, she opens a video on
YouTube explaining the algorithm and how to implement it
in a programming language different from Python.

• With a clear idea of how the bubble sort algorithm works
from a conceptual point of view, Laura switches back to
Visual Studio Code and resumes the writing of the code.
Veronica automatically notices this behavior and gathers the

https://stackoverflow.com/

Listen Veronica! Can You Give Me a Hand With This Bug? EICS ’23 Companion, June 27–30, 2023, Swansea, United Kingdom

Figure 1: Snapshot of the Veronica Visual Studio Code extension. For illustrative purposes, the figure shows several functionali-
ties co-occurring. Veronica provides the following functionalities: (i) seamlessly record memos natively pinned into the code
and directly from the IDE; and (ii) automatically track the user navigation on the web browser to link the consulted online
resources to a particular memo. In this manner, developers can trace the relevant pages upon which they implemented their
solution.

URLs of the consulted websites. It then asks Laura if she
wants to save the visited URLs as a memo. Since she prefers
to describe how the algorithm works in her own words, she
replies “no.”

• Laura has been able to overcome the doubt that was blocking
her, she wants to create a memo to remember in her own
words what she understood from the documentation and
how it helped her to keep going with the implementation.
Therefore, she says, “Veronica, I want to create a new memo.”

• Veronica asks Laura, via the chat and audio, if she wants
to attach the new memo to a line or a block of code. Laura
answers out loud that she wants to attach it to line 86. Then
Veronica asks what she would like to insert in the memo,
and Laura inserts by voice the explanation she wants to
remember on how to deal with the indexes of the nested
loop correctly.

• Later, while developing another exercise, Laura starts again
the conversation with Veronica, asking her to create a new
memo to remember why she decided to use a dictionary
as the data structure. Although there is the option to do it
vocally, Laura makes the new memo by writing it on the
chat. Veronica then asks Laura if she wants to attach the
website currently open in theweb browser. Since her decision

was influenced by the online sources she consulted, Laura
answered affirmatively.

• Finally, Laura disables Veronica from listening by saying
“Goodbye, Veronica.” Naturally, all the memos remain at-
tached to the code file at the specific line numbers. Therefore,
Laura or anyone else can consult them when the code file is
open again.

4 VERONICA DESIGN AND
IMPLEMENTATION

Figure 2: Veronica’s architecture

EICS ’23 Companion, June 27–30, 2023, Swansea, United Kingdom Sáenz and De Russis

4.1 Design goals
We now revisit the features of Veronica, with a focus on design mo-
tivations and implementation details. The tool was inspired by the
authors’ observations throughout their experience teaching web
development courses at their university during the last four years.
We refined the graphical interface design over several rounds of dis-
cussions producing hand-drawn sketches. Then, we implemented
the Visual Studio Code extension as a Typescript project. The main
graphical component is the right sidebar (Figure 1). Veronica ad-
dresses the following three considerations:

• Supporting the documentation ‘on the go’ directly from
the IDE. Veronica aims to encourage programmers to docu-
ment their development process while programming in the
most fluid way possible. For this reason, we decided to keep
the extension visible next to the code. Consequently, the user
can enable Veronica by clicking the button on the right of
the Visual Studio Code Status Bar, as shown in the figure
indicated with the number (1). Once Veronica is activated,
the chat displays on the right sidebar as indicated in (2).
Besides, the text color becomes red, and a recording icon is
placed next to the label ‘CA listening,’ indicating that from
that moment, Veronica will continuously listen to the mi-
crophone and transcribe everything into the chat. Similarly,
when the user wants to disable the extension, they has to
click the same button (2). Finally, a memo can be created in
three ways: by typing ‘Create new memo’ in the chat, saying
it out loud, or manually clicking on a + button displayed
when hovering the cursor over the code (4). The deletion
of a memo can be achieved with the command ‘Delete the
memo in line...’ or by clicking the trash icon button, as shown
in (5).

• Automatically gathering information from the web
browser and integrating it into the code. Programmers
commonly switch between the IDE and the browser, search-
ing for documentation and ways to overcome the errors they
find along the development process. For this reason, every
time the programmer returns to Visual Studio Code after
opening the browser, Veronica automatically gathers the
URL of the latest visited websites and asks the developers if
they want to link such URLs to some portion of the code as
indicated in (3). This functionality prevents the programmer
from forgetting which documentation inspired their imple-
mented solution. In this sense, if another developer opens
the code file, he would understand the reasoning behind the
implementation decisions. Additionally, the URLs automati-
cally gathered from the browser are always associated with
a memo. Therefore, a memo is pinned to a specific line or
portion of code, and its content consists of self-explanatory
annotations and, eventually, links to the consulted documen-
tation.

• Visualizing and navigating the memos present in a file.
To enable the developers to navigate through the memos
they created, we decided to add a panel listing all the memos
in the file currently opened in the editor, as shown in (6). In
this manner, the developer has a consolidated view of the
self-explanatory comments. Naturally, these memos do not

aim at replacing the comments on the code file. While the
comments in the code commonly follow some conventions
and intend to provide technical explanations of how the
code works, the memos account for explanations, in the
developers’ words, regarding why they implemented a given
function in a certain way and which documentation inspired
their decision.

4.2 Implementation notes
As illustrated in Figure 2, Veronica has three main components: the
Visual Studio Code Extension, the Selenium Standalone Server, and
the Google Chrome extension. The developer working on Visual
Studio Code can communicate their intent to Veronica either with
a voice command or textual input. For natural language processing,
it relies on Google Dialogflow2. If the user has expressed their
intentions vocally, the Visual Studio extension invokes a Speech
Recognition API that transforms the audio input into text. Then
the Visual Studio extension invokes the Google Dialogflow API,
passing the textual input as a parameter, and evaluates it against a
set of intents. Once the corresponding intent is executed, the result
is displayed textually in the chat and audio. As shown in the Figure,
a Speech Synthesis API is invoked by the extension to transform the
textual response obtained from the Google Dialogflow into audio
to achieve the audio answer functionality.

Furthermore, the Google Chrome extension runs in the back-
ground and gathers the URLs of the websites opened in the browser.
However, to enable communication between the Visual Code ex-
tension and the Google Chrome extension (also implemented by
us), an instance of the Google Chrome server runs in the back-
ground within a Selenium Standalone Server. In this manner, via
the Standalone Server, the Visual Studio Code extension can collect
the URLs and ask the developer if they wishes to attach them to
the newly created memos. The data exchange between the Visual
Studio Code extension with the Standalone Server and between
the Server and the Google Chrome extension was achieved using
sockets.

5 USER STUDY
Once the tool’s implementation was concluded, an usability evalu-
ation was conducted to identify any efficiency problems associated
with the various tool’s functionalities. These tests comprised a first
phase in which the users were asked to complete a set of tasks
(listed in Table 1), each focused on specific functionality, and a
second phase in which we posed feedback questions during a de-
briefing session to measure their perception on the tool’s usability
in a standardized way.

Before the usability test, the participants were asked for con-
sent and were given an introductory questionnaire to gather their
programming level of experience, familiarity with Visual Studio
Code, and familiarity with chatbots. Additionally, since Veronica’s
language is English, participants were asked about their English pro-
ficiency. Precisely, Table 2 presents the questions asked along with
the collected answers. In the usability test, participants were given
a Python file opened in Visual Studio Code. All the participants,
indeed, were familiar with Python. It contained three functions
2https://cloud.google.com/dialogflow/es/docs, last visited on January 19, 2023

https://cloud.google.com/dialogflow/es/docs

Listen Veronica! Can You Give Me a Hand With This Bug? EICS ’23 Companion, June 27–30, 2023, Swansea, United Kingdom

Table 1: Tasks used during the validation of Veronica

ID Assigned task Success criteria and
think-aloud

Max. time

T-01 Start Veronica and ask
for help

Veronica has been
started and the “help
intent” has been trig-
gered

5 mins.

T-02 Create a memo at-
tached to the function
“bubbleSort”

The memo has been
created (manually or
with the bot)

8 mins.

T-03 Search online the algo-
rithms computational
complexity

The URL related to the
page found has been
saved by the bot (not
manually)

8 mins.

T-04 Delete the memo that
contains a wrong
description of the
attached code

The memo has been
found and deleted with
success (manually or
with the bot)

8 mins.

T-05 Disable Veronica listen-
ing

The listening has been
disabled, leaving the
rest of the functionali-
ties online

5 mins.

Table 2: Answers to the introductory questionnaire

ID Questions Answers

Q-01 How would you assess your
level of programming?

beginner (1) - intermediate (5)
- expert (2)

Q-02 Have you ever used Visual Stu-
dio Code?

no (0) - sometimes (3) - yes, I
use it often (5)

Q-03 If yes to the previous question,
have you ever used an exten-
sion on Visual Studio Code?
Did any of the extensions you
used have a graphical inter-
face?

no (1) - yes, someone in back-
ground (5) - yes, someonewith
visible graphical interface (0) -
yes, both types (2)

Q-04 Have you ever interacted with
a chatbot?

yes (3) - no (5)

Q-05 What is your level of English? A1/A2 (0) - B1/B2 (6) - C1/C2
(2)

Q-06 What programming languages
do you know, at least at a basic
level?

Python (8) - C (7) - JavaScript
(5) - C++ (3) - Java (2) - Assem-
bly (1) - Bash (1) - HTML (1) -
Kotlin (1) - PHP (1)

Q-07 What browser do you usually
use?

Google Chrome (3) - Microsoft
Edge (2) - Brave (1) - Mozilla
Firefox - (1) Safari (0)

corresponding to sorting algorithms and a memo wrongly associ-
ated with one of those functions. Participants did not receive any
instruction on how to use the tool for further understanding the
intuitiveness of the presented interface.

5.1 Methodology
Eight participantswere recruited from various programming courses
in the computer engineering degree at our university. Seven of them
self-identified as male, and one self-identified as female. Their av-
erage age was 22.7 years (min = 21, max = 27), and they covered
different levels of expertise. After the experiment with Veronica, we
conducted a debriefing session by asking some feedback questions
regarding the experience and use of the extension. We provided
the participants with a laptop we configured for the study, and the
screen was video recorded. The whole study, including the experi-
ment and the follow-up interview, happened in person and lasted
an average of 27 minutes. We audio-recorded and transcribed the
interviews.

Finally, by rewatching the video recordings, we evaluated each
of the tasks listed above according to the following metrics: (i) the
number of critical errors: errors that prevent the completion
of the task, (ii) the number of non-critical errors: errors that
enable the fulfillment of the task but incompletely or erroneously,
(iii) completion rate: percentage of the students that did not make
any critical errors, and (iv) error-free rate: percentage of students
who did not make mistakes.

6 RESULTS
In this section we present the observations that emerged from the
tasks’ metrics results and we link them to the feedback gathered in
the debriefing session.

Table 3: Tasks’ metrics

ID Critical
errors

Non-
critical
errors

Completion
rate

Error-free
rate

T-01 0 7 1 0.25
T-02 0 6 1 0.5
T-03 1 1 0.875 0.875
T-04 0 1 1 0.875
T-05 0 6 1 0.375

6.1 Tasks’ metrics results
Table 3 reports the tasks’ metrics. Although there were no critical
errors, only half of the participants completed T-01 (Start Veronica
and ask for help). Most tried to activate it through a command in the
integrated terminal. Additionally, just one participant completed it
smoothly, and the other three completed it almost at the end of the
maximum time after trying to execute it from the terminal.

Task T-02 (Create a memo attached to the function “bubble sort”)
did not present critical errors. Five participants completed it manu-
ally (clicking on the “+” button displayed when hovering the cursor
over the code), two used Veronica’s chat with textual input, and
one used the vocal input. Non-critical errors concerned attempts to
create the memo with commands that were not understandable by
Veronica.

Task T-03 (Search online the algorithms computational complex-
ity) had one critical error: when Veronica asked the participant if

EICS ’23 Companion, June 27–30, 2023, Swansea, United Kingdom Sáenz and De Russis

he wanted to save the URL, by mistake, he answered negatively.
After trying to get back to the browser and then again to Visual
Studio Code, Veronica did not ask him again if he wanted to save
the URL because it had already been discarded. Apart from this
case, all the participants completed the task successfully.

Task T-04 (Delete the memo that contains a wrong description
of the attached code) was completed by all the participants without
critical errors. One participant made one non-critical error because
instead of deleting the memo, he manually deleted the memo’s con-
tent. However, then he noticed his mistake and deleted the memo.
Three participants deleted the task by giving textual instructions
to the bot, while the others did it manually.

Finally, no critical errors were made in completing T-05 (Disable
Veronica listening). However, participants made six non-critical
errors, all related to trying to disable Veronica by writing a com-
mand in the chat instead of clicking the same button that was used
to activate the extension. Nevertheless, in the end, 7 out of the 8
participants succeeded in disabling Veronica.

6.2 Debriefing feedback
The most common piece of feedback among the participants con-
cerned the lack of guidance on which functionalities Veronica pro-
vides and how to use them. They wished to see a contextual menu
showing a list of available commands upon opening the extension
and a help button to be always available for consultation in case they
needed guidance on how to respond to Veronica. In the P-02 words,
“apart from the functionalities specified in the tasks, I would like to
see what else Veronica can do.” Similarly, P-04 suggests including
“a help module more explanatory; for example, to understand better
what it meant when Veronica asked me if I wanted to save changes.”
Finally, P-08 envisioned that “the first textual message once you
open the extension might explain the available features. It is not
clear what kind of voice commands to use.”.

Furthermore, participants did not understand intuitively that
from the moment the extension is activated; it remains in con-
tinuous listening. Indeed, they would prefer the listening to be
activated or deactivated by the users. P-01 said: “I thought the chat
was separated from the voice commands. I did not consider it would
synthesize everything I said.” P-04 commented: “I suggest adding
a microphone icon because I was unsure if the microphone was
recording when I opened the extension.” Furthermore, P-06 pro-
poses: “I would expect more for a kind of push-to-talk mechanism,
something optional. In this way, when there is ambient noise, I can
decide whether I want to be heard by Veronica.”

Participants struggled to find out how to enable Veronica. The
button in the status bar on the bottom left side of the IDE was not
visible enough for them. In this sense, P-03 commented: “Once I
understood how to activate the extension, I could do everything
very intuitively and smoothly. The only challenging thing was to
find how to activate it.” P-02 said: “It took me a while to understand
where to activate Veronica. I was not expecting it to be at the
bottom.”

However, participants appreciated that Veronica automatically
gathered the URL they consulted and linked it to their code as a new
demo. In P-03 words: “It is very convenient to save your last search
on the browser. This way, you do not forget where you found the

documentation, and this feature speeds up the code development.”
Furthermore, as previously described, practically all the participants
understood and used this feature correctly. Indeed, the feedback
provided by P-04 is in line with the design goals we established for
this tool. He commented:

I find the tool helpful, especially for those starting to
program. With the memos, someone who sees an imple-
mented piece of code for the first time can say, ‘fine, now
I see what it does,’ which is nice because each person
has a programming style.

Similarly, P-02 said: ‘I like that having the self-explanatory com-
ments pinned to the code instead of having them interleaved with
the code keeps the files more navigable and cleaner”, which again
align with the main goal of Veronica.

7 CONCLUSIONS AND FUTUREWORK
This paper introduces Veronica, a Visual Studio Code extension in
the form of a conversational agent, to help developers self-explain
their development process and thoughts as they arise. Veronica
does this through “memos,” which can be added by text and voice.
In addition, Veronica supports the process of collecting developers’
reasoning by tracking the web pages that developers visit while
programming. This way, Veronica can propose the developer save,
in a memo, the URLs of the relevant web pages they visit.

After the design and first development of Veronica, the usability
study we performed with eight university students showed that
the tool has the potential to support the overall goal of producing
documentation with self-explanatory insights, which has the po-
tential to become a valuable asset for them and other developers.
The usability study also highlights some issues in the current im-
plementation, such as the difficulty of activating the chatbot or the
need to provide more help for the commands that Veronica accepts.

Future work on Veronica will start with solving the usability
issues that have emerged so far, which mainly pertain to the spe-
cific implementation of the tool. In addition, we would like to work
toward two different yet complementary directions. First, we want
to perform a more extensive, in-the-wild evaluation of the tool
with developers of varied expertise to assess its capabilities of pro-
moting documentation based on self-explanations. Results from
this study will enable us to identify if the adopted mechanisms
(i.e., the memos, the chat-based interaction, and the URL tracking
from a web browser) are enough or if more advanced strategies
are needed. Lastly, we want to use Veronica as a starting point
to experiment with more direct strategies to elicit the recording
of self-explanations, for instance, through periodical prompts and
rich-text memos.

ACKNOWLEDGMENTS
The authors would like to thank Gianluca Filippo Fasulo, who con-
tributed to the development and evaluation of Veronica as part of
his master’s thesis. This work was partially supported by project
SERICS (PE00000014) under the MUR National Recovery and Re-
silience Plan funded by the European Union - NextGenerationEU.

Listen Veronica! Can You Give Me a Hand With This Bug? EICS ’23 Companion, June 27–30, 2023, Swansea, United Kingdom

REFERENCES
[1] Ahmad Abdellatif, Khaled Badran, and Emad Shihab. 2020. MSRBot: Using bots

to answer questions from software repositories. Empirical Software Engineering
25, 3 (01 May 2020), 1834–1863. https://doi.org/10.1007/s10664-019-09788-5

[2] Merav Allouch, Amos Azaria, and Rina Azoulay. 2021. Conversational Agents:
Goals, Technologies, Vision and Challenges. Sensors 21, 24 (Dec 2021), 8448.
https://doi.org/10.3390/s21248448

[3] Kiran Bisra, Qing Liu, John C. Nesbit, Farimah Salimi, and Philip H. Winne. 2018.
Inducing Self-Explanation: a Meta-Analysis. Educational Psychology Review 30, 3
(01 Sep 2018), 703–725. https://doi.org/10.1007/s10648-018-9434-x

[4] Bruno da Silva, Chloe Hebert, Abhishu Rawka, and Siriwan Sereesathien. 2020.
Robin: A Voice Controlled Virtual Teammate for Software Developers and Teams.
In 2020 IEEE International Conference on Software Maintenance and Evolution
(ICSME). 789–791. https://doi.org/10.1109/ICSME46990.2020.00092

[5] H. Happel and W. Maalej. 2009. From work to word: How do software developers
describe their work?. In 2009 6th IEEE International Working Conference on Mining
Software Repositories. MSR 2009. IEEE Computer Society, Los Alamitos, CA, USA,
121–130. https://doi.org/10.1109/MSR.2009.5069490

[6] Björn Hartmann, Daniel MacDougall, Joel Brandt, and Scott R. Klemmer. 2010.
What Would Other Programmers Do: Suggesting Solutions to Error Messages. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(Atlanta, Georgia, USA) (CHI ’10). Association for Computing Machinery, New
York, NY, USA, 1019–1028. https://doi.org/10.1145/1753326.1753478

[7] Andrew Head, Elena L. Glassman, Björn Hartmann, and Marti A. Hearst. 2018.
Interactive Extraction of Examples from Existing Code. In Proceedings of the
2018 CHI Conference on Human Factors in Computing Systems (Montreal QC,
Canada) (CHI ’18). Association for Computing Machinery, New York, NY, USA,
1–12. https://doi.org/10.1145/3173574.3173659

[8] Michelle Ichinco and Caitlin Kelleher. 2015. Exploring novice programmer ex-
ample use. In 2015 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC). 63–71. https://doi.org/10.1109/VLHCC.2015.7357199

[9] Kyungbin Kwon and David H. Jonassen. 2011. The Influence of Reflective Self-
Explanations on Problem-Solving Performance. Journal of Educational Computing
Research 44, 3 (2011), 247–263. https://doi.org/10.2190/EC.44.3.a

[10] Carlene Lebeuf, Margaret-Anne Storey, and Alexey Zagalsky. 2018. Software
Bots. IEEE Software 35, 1 (2018), 18–23. https://doi.org/10.1109/MS.2017.4541027

[11] Hongwei Li, Zhenchang Xing, Xin Peng, and Wenyun Zhao. 2013. What help
do developers seek, when and how?. In 2013 20th Working Conference on Reverse
Engineering (WCRE). 142–151. https://doi.org/10.1109/WCRE.2013.6671289

[12] Michael Xieyang Liu, Jane Hsieh, Nathan Hahn, Angelina Zhou, Emily Deng,
Shaun Burley, Cynthia Taylor, Aniket Kittur, and Brad A. Myers. 2019. Unakite:
Scaffolding Developers’ Decision-Making Using the Web. In Proceedings of the
32nd Annual ACM Symposium on User Interface Software and Technology (New
Orleans, LA, USA) (UIST ’19). Association for Computing Machinery, New York,
NY, USA, 67–80. https://doi.org/10.1145/3332165.3347908

[13] Walid Maalej, Rebecca Tiarks, Tobias Roehm, and Rainer Koschke. 2014. On the
Comprehension of Program Comprehension. ACM Trans. Softw. Eng. Methodol.
23, 4, Article 31 (sep 2014), 37 pages. https://doi.org/10.1145/2622669

[14] Michael F. McTear. 2017. The Rise of the Conversational Interface: A New Kid
on the Block?. In Future and Emerging Trends in Language Technology. Machine
Learning and Big Data, José F Quesada, Francisco-Jesús MartínMateos, and Teresa
López Soto (Eds.). Springer International Publishing, Cham, 38–49.

[15] StephenOney and Joel Brandt. 2012. Codelets: Linking Interactive Documentation
and Example Code in the Editor. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (Austin, Texas, USA) (CHI ’12). Association for
Computing Machinery, New York, NY, USA, 2697–2706. https://doi.org/10.1145/
2207676.2208664

[16] Chris Parnin and Robert DeLine. 2010. Evaluating Cues for Resuming Interrupted
Programming Tasks. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (Atlanta, Georgia, USA) (CHI ’10). Association for Computing
Machinery, New York, NY, USA, 93–102. https://doi.org/10.1145/1753326.1753342

[17] James Prather, Raymond Pettit, Brett A. Becker, Paul Denny, Dastyni Loksa, Alani
Peters, Zachary Albrecht, and Krista Masci. 2019. First Things First: Providing
Metacognitive Scaffolding for Interpreting Problem Prompts. In Proceedings of
the 50th ACM Technical Symposium on Computer Science Education (Minneapolis,
MN, USA) (SIGCSE ’19). Association for Computing Machinery, New York, NY,
USA, 531–537. https://doi.org/10.1145/3287324.3287374

[18] Peter Robe and Sandeep Kaur Kuttal. 2022. Designing PairBuddy—A Conversa-
tional Agent for Pair Programming. ACM Trans. Comput.-Hum. Interact. 29, 4,
Article 34 (may 2022), 44 pages. https://doi.org/10.1145/3498326

[19] Sivasurya Santhanam, Tobias Hecking, Andreas Schreiber, and Stefan Wagner.
2022. Bots in software engineering: a systematic mapping study. PeerJ Computer
Science 8 (2022), e866.

[20] Emad Shihab, Stefan Wagner, Marco A. Gerosa, Mairieli Wessel, and Jordi Cabot.
2022. The Present and Future of Bots in Software Engineering. IEEE Software 39,
5 (2022), 28–31. https://doi.org/10.1109/MS.2022.3176864

[21] Yusuke Shinyama, Yoshitaka Arahori, and Katsuhiko Gondow. 2018. Analyzing
Code Comments to Boost Program Comprehension. In 2018 25th Asia-Pacific
Software Engineering Conference (APSEC). 325–334. https://doi.org/10.1109/
APSEC.2018.00047

[22] Margaret-Anne Storey and Alexey Zagalsky. 2016. Disrupting Developer Pro-
ductivity One Bot at a Time. In Proceedings of the 2016 24th ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering (Seattle, WA, USA)
(FSE 2016). Association for Computing Machinery, New York, NY, USA, 928–931.
https://doi.org/10.1145/2950290.2983989

[23] Camilo Vieira, Alejandra J. Magana, Michael L. Falk, and R. Edwin Garcia. 2017.
Writing In-Code Comments to Self-Explain in Computational Science and En-
gineering Education. ACM Trans. Comput. Educ. 17, 4, Article 17 (aug 2017),
21 pages. https://doi.org/10.1145/3058751

[24] Camilo Vieira, Alejandra J. Magana, Anindya Roy, and Michael L. Falk. 2019.
Student Explanations in the Context of Computational Science and Engineering
Education. Cognition and Instruction 37, 2 (2019), 201–231. https://doi.org/10.
1080/07370008.2018.1539738

[25] Zhendong Wang, Yi Wang, and David Redmiles. 2022. From Specialized Mechan-
ics to Project Butlers: The Usage of Bots in Open Source Software Development.
IEEE Software 39, 5 (2022), 38–43. https://doi.org/10.1109/MS.2022.3180297

[26] Joseph J. Williams and Tania Lombrozo. 2010. The Role of Explanation in Dis-
covery and Generalization: Evidence From Category Learning. Cognitive Science
34, 5 (2010), 776–806. https://doi.org/10.1111/j.1551-6709.2010.01113.x

https://doi.org/10.1007/s10664-019-09788-5
https://doi.org/10.3390/s21248448
https://doi.org/10.1007/s10648-018-9434-x
https://doi.org/10.1109/ICSME46990.2020.00092
https://doi.org/10.1109/MSR.2009.5069490
https://doi.org/10.1145/1753326.1753478
https://doi.org/10.1145/3173574.3173659
https://doi.org/10.1109/VLHCC.2015.7357199
https://doi.org/10.2190/EC.44.3.a
https://doi.org/10.1109/MS.2017.4541027
https://doi.org/10.1109/WCRE.2013.6671289
https://doi.org/10.1145/3332165.3347908
https://doi.org/10.1145/2622669
https://doi.org/10.1145/2207676.2208664
https://doi.org/10.1145/2207676.2208664
https://doi.org/10.1145/1753326.1753342
https://doi.org/10.1145/3287324.3287374
https://doi.org/10.1145/3498326
https://doi.org/10.1109/MS.2022.3176864
https://doi.org/10.1109/APSEC.2018.00047
https://doi.org/10.1109/APSEC.2018.00047
https://doi.org/10.1145/2950290.2983989
https://doi.org/10.1145/3058751
https://doi.org/10.1080/07370008.2018.1539738
https://doi.org/10.1080/07370008.2018.1539738
https://doi.org/10.1109/MS.2022.3180297
https://doi.org/10.1111/j.1551-6709.2010.01113.x

	Abstract
	1 Introduction and motivation
	2 Background
	2.1 Software Engineering Bots
	2.2 Conversational Agents
	2.3 Developers' Notetaking

	3 Usage scenario
	4 Veronica design and implementation
	4.1 Design goals
	4.2 Implementation notes

	5 User study
	5.1 Methodology

	6 Results
	6.1 Tasks' metrics results
	6.2 Debriefing feedback

	7 Conclusions and future work
	Acknowledgments
	References

