
22 November 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Layer-by-layer unsupervised clustering of statistically relevant fluctuations in noisy time-series data of complex
dynamical systems / Becchi, Matteo; Fantolino, Federico; Pavan, Giovanni M.. - In: PROCEEDINGS OF THE NATIONAL
ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA. - ISSN 0027-8424. - 121:33(2024).
[10.1073/pnas.2403771121]

Original

Layer-by-layer unsupervised clustering of statistically relevant fluctuations in noisy time-series data of
complex dynamical systems

Publisher:

Published
DOI:10.1073/pnas.2403771121

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2994570 since: 2024-11-19T14:42:04Z

National Academy of Science

“Layer-by-layer” unsupervised clustering of statistically

relevant fluctuations in noisy time-series data of complex

dynamical systems

Matteo Becchi1, Federico Fantolino1, and Giovanni M. Pavan∗1,2

1Department of Applied Science and Technology, Politecnico di Torino, Torino
10129, Italy

2Department of Innovative Technologies, University of Applied Sciences and Arts of
Southern Switzerland, Lugano-Viganello 6962, Switzerland

March 12, 2024

Abstract

Complex systems are typically characterized by intricate internal dynamics that are often
hard to elucidate. Ideally, this requires methods that allow to detect and classify in unsupervised
way the microscopic dynamical events occurring in the system. However, decoupling statistically
relevant fluctuations from the internal noise remains most often non-trivial. Here we describe
“Onion Clustering”: a simple, iterative unsupervised clustering method that efficiently detects
and classifies statistically relevant fluctuations in noisy time-series data. We demonstrate its
efficiency by analyzing simulation and experimental trajectories of various systems with complex
internal dynamics, ranging from the atomic- to the microscopic-scale, in- and out-of-equilibrium.
The method is based on an iterative detect-classify-archive approach. In similar way as peeling
the external (evident) layer of an onion reveals the internal hidden ones, the method performs
a first detection and classification of the most populated dynamical environment in the system
and of its characteristic noise. The signal of such dynamical cluster is then removed from the
time-series data and the remaining part, cleared-out from its noise, is analyzed again. At every
iteration, the detection of hidden dynamical sub-domains is facilitated by an increasing (and
adaptive) relevance-to-noise ratio. The process iterates until no new dynamical domains can
be uncovered, revealing, as an output, the number of clusters that can be effectively distin-
guished/classified in statistically robust way as a function of the time-resolution of the analysis.
Onion Clustering is general and benefits from clear-cut physical interpretability. We expect that
it will help analyzing a variety of complex dynamical systems and time-series data.

∗To whom correspondence should be addressed. E-mail: giovanni.pavan@polito.it

1

ar
X

iv
:2

40
2.

07
78

6v
5

 [p
hy

si
cs

.d
at

a-
an

]
11

 M
ar

 2
02

4

Introduction

Understanding the dynamics of complex systems is typically a hard task and presents inherent
challenges. Cause-and-effect relationships, as well as the spatial and temporal correlations, are often
hidden within the noise generated by a large number of units that dynamically communicate with
each other in an intricate network of interactions [1, 2, 3, 4, 5, 6]. The behavior of these systems is
often controlled by local (rare) fluctuations, but detecting and distinguishing them from the intrinsic
noise of datasets extracted from their trajectories is often non-trivial [7]. This holds for a variety of
systems across different scales, from the atomic- and molecular- to the macroscopic-level [8]. The
relevance of local microscopic fluctuations has been shown, for example, in studies of metal surfaces
and nanoparticles [9, 10], supramolecular fibers [11, 12, 13], and nucleation processes [14, 15]. On a
macroscopic scale, the effects of local fluctuations and events on the behavior of the whole system
are seen in collective phenomena such as, e.g., bird flocks [16, 17, 18], fish banks [19, 20], as well
as in the dynamics of economic and stock market systems [21, 22, 2]. The study of the behavior of
these complex systems over time, by either computer simulations or experimental setups, typically
generates a large amount of multivariate data that are often non-trivial to analyze. In particular,
extracting meaningful and interpretable information from such noisy time-series is generally hard.
To address this issue, common strategies involve the use of either knowledge-based or data driven
descriptors. Such descriptors serve as a crucial intermediary step, effectively reducing the amount
of data to an interpretable form and facilitating the extraction of useful information for elucidating
the underlying dynamics.

Structural descriptors – either specific and knowledge-based, or abstract, general ones – are often
used to extract comprehensive insights into the structural features of complex systems. As an ex-
ample, general high-dimensional structural descriptors, such as, e.g., the Smooth Overlap of Atomic
Positions (SOAP) descriptor [23], have been recently used to obtain a data-driven structural char-
acterization of, e.g., water and ice systems [24, 25, 26, 27, 28], metallic [10, 29], ionic [30], and soft
(biological or artificial) molecular systems [11, 31, 32, 33] from molecular dynamics (MD) simula-
tions. However, at the same time, pattern recognition analyses based on such structural descriptors
typically struggle in capturing infrequent dynamical events and local fluctuations that play a pivotal
role in determining their behavior [34, 8, 10, 35, 36]. Conversely, it has been demonstrated how
time-series analyses tracking the temporal evolution and fluctuations of descriptors in time allow
retaining a richer amount of information all the events occurring in complex molecular systems.
One recent example is the time-SOAP (tSOAP) descriptor, which measures the rate of change of the
SOAP power spectrum of each unit in a multi-unit trajectory of a dynamical molecular system [35].
A time-series analysis of tSOAP was recently shown to retain rich information information of the
structural change events that occur within molecular systems, including rare local events. Another
example is the Local Environments and Neighbor Shuffling (LENS) descriptor, which tracks changes
in the identity of the neighbor units that surround every unit in a dynamical network [36]. While
these examples show the potential of studying the behavior of complex systems based on the tra-
jectories of their individual units over time, this shifts the focus from pattern recognition on global
datasets to the study of time-series data and of their dynamical fluctuations.

One key challenge in time-series analysis is clustering [37, 38, 39, 40], and in particular the
identification and classification of fluctuations that are relevant against the background noise [41,
42]. Unsupervised clustering algorithms frequently struggle in identifying rare events and sparse
fluctuations due to their negligible statistical weight, and because the detection of more populated
clusters implicitly sets a metric that is too coarse to discriminate well less populated ones. Typically,
the higher the density of certain clusters, the more difficult is to detect and classify the less populated
ones. Detecting and retaining information on relevant fluctuations, separating them from noise, is

2

of key importance to reconstruct the physics of the studied systems [43].
Furthermore, this is particularly relevant in complex systems, whose collective and adaptive

behaviors often emerge locally (both in time and space) and are intimately related to rare events
and local fluctuations [12, 44]. Unsupervised approaches capable of providing a microscopic analysis
of time-series via systematic and robust detection and clustering of the fluctuations occurring within
them would be desirable to this end. However, the most common clustering algorithms are either
built to handle static datasets, or to perform whole time-series clustering [45, 46, 47, 48], and are
thus not well-suited to obtain a single-point (microscopic-level) clustering of the local dynamical
events occurring in the time-series [49, 50, 51].

Here we introduce Onion Clustering, a general, simple, unsupervised, and physically interpretable
algorithm tailored for single-point clustering of fluctuations in noisy time-series data. Our approach
is founded on the general concept that every (microscopic) environment in a system is characterized
by an average dynamics and by a characteristic noise (amplitude of fluctuations around the mean).
As a core idea, the algorithm is based on an iterative detect-classify-archive approach where, step-by-
step, the highest-density microscopic dynamical environment present in the system is detected, its
dynamical features (average dynamics and characteristic noise) are classified, and its signal (and the
related noise) is then removed from the time-series, which is then analyzed again according to the
same iterative procedure. In similar way as peeling the external layer of an onion reveals the internal
hidden ones, after the classification of the evident dynamical environments, at every iteration the
method can efficiently uncover and classify the hidden (least populated) dynamical domains thanks
to an iteratively enhancing signal-to-noise ratio. In this way, Onion Clustering allows extracting all
the features that can be effectively classified in a time-series. Noteworthy, instead of leaving the user
to make an a priori choice on the resolution to be used for an analysis (which is critical, and typically
requires a prior knowledge of the system under study), Onion Clustering reveals as an outputs the
number of clusters that can be effectively classified in a statistical robust way in a time-series as a
function of the time-resolution used in the analysis. This provides a robust unsupervised clustering
algorithm with a non-common physical interpretability that allows for a transparent intuition into
the mechanism of clusters detection and an informed interpretation of the obtained results.

We demonstrate the efficiency and generality of Onion Clustering by analysing a variety of
complex dynamical systems, ranging from the microscopic to the mesoscopic scales, with diverse
internal dynamics, in- and out-of-equilibrium conditions. Onion Clustering is open-source [52, 53],
and is released as a Python3 package [54]. We expect that this method will constitute a precious
tool to study complex dynamical systems in general, and the microscopic events occurring within
them and controlling their behavior.

Results and discussion

The method and a test on water-ice dynamic coexistence

In this section, we illustrate the algorithm using as a first demonstrative case the clustering of data
extracted from a 50 ns long MD simulation trajectory containing 2048 TIP4P/ICE [55] molecules
(1 : 1 liquid water:ice) in dynamic equilibrium in correspondence of the melting temperature. A
complete description of the algorithm is provided in the Methods section and in the Supplementary
Information (SI).

Fig 1A shows, as an example, the LENS signals [36] for all 2048 individual water molecules in
the system sampled every ∆t = 0.1 ns. The input dataset in this example thus consists of N = 2048
univariate time-series xi(t), 1 ≤ i ≤ N labelling the water molecules in the simulation trajectory,
each containing 0 ≤ ∆t < T sampled time-steps. We underline that the same analysis can be

3

0 20 40
Time t [ns]

0.0

0.2

0.4

0.6

0.8

LE
NS

0 1e7
Counts

ENV1

Iteration 1...

0 1e6
Counts

ENV2

... 2...

0 1e6
Counts

ENV3

... 3...

0 1e5
Counts

ENV4

... 4...

0 1e5
Counts

ENV0

... 5

0 1e7
Counts

0 20 40
Time t [ns]

0.0

0.2

0.4

0.6

0.8

LE
NS

1 10
Time resolution t [ns]

2

3

4

5
#

 o
f E

N
Vs

40.7

13.5

41.3

0.02
4.41

47.4

13.4

36.0

0.01
3.22

51.2

14.1

32.7

0.01
2.10

42.4

13.6

40.4

0.01
3.70

ENV1

ENV2

ENV3

ENV4
ENV0

6.8 ns 24.2 ns 27.7 ns 46.7 ns

10 100

t [frames]

0

20

40

60

80

Po
pu

la
ti

on
 o

f E
N

V0
 [

%
]

A B C D

E F G H

Figure 1: Clustering of LENS signals on ice/water coexistence MD simulation. A: Snap-
shot of the simulation of ice/water coexistence; the simulation is performed on 2048 TIP4P/ICE
molecules, lasts 50 ns and it’s sampled every 0.1 ns. B: LENS signals for all the oxygen atoms, as a
function of time. C: Data cumulative histograms at the five iterations of the algorithm, using a time
resolution ∆t = 0.4 ns. The solid lines are the Gaussian best fit of the maximum of the distribution.
The dashed lines are the threshold between the identified clusters. At the fifth iteration, no data are
assigned to the proposed cluster, and the algorithm stops. D: final clustering of the LENS signals.
E: Snapshot of the simulation, colored according to the clustering. F: Same LENS signals of panel
B; background is colored according to the thresholds given by the clustering algorithm. G: Sankey
diagram between four different times along the simulation. Colored bars are proportional to the
clusters’ populations, gray lines are proportional to the number of molecules moving from one clus-
ter to another. H: Blue line: number of clusters identified as a function of the time resolution ∆t;
orange line: percentage of the data points classified in the ENV0 cluster as a function of the time
resolution ∆t. The red dashed line at ∆t = 0.4 ns indicates at which time resolution the analysis
shown in the previous panels was performed.

conducted also using different descriptors – see, e.g., Fig S1 for the consistent results obtained using
the tSOAP descriptor [35]: as it is shown in the next sections, Onion Clustering is general and can
be applied virtually to any time-series data.

LENS is a permutation-invariant descriptor that measures how much the neighborhood of each
(water) molecule in the system changes in term of neighbor molecular individuals in the sampling
time-interval (∆t = 0.1 ns in this case). In detail, LENS captures local events such as reshuffling,
addition, or loss of neighbor molecules, and it can be thought of as a local dynamicity parameter

4

related, in some sense, to a local diffusivity of the molecules in the system. The LENS signal is thus
expected to be lower in the solid phase (ice) and higher in the liquid water phase, where the molecular
rearrangement is faster. Fig 1B shows the LENS signals time-series. It is worth mentioning that
typical unsupervised pattern recognition approaches used to analyze the entire dataset basically
detects two main environments – liquid water and solid ice – in such a system [24, 56, 28, 35], where
both states are well represented statistically (see also leftmost panel of Fig 1C: two peaks in the
density of the signals at LENS values of ∼ 0.05 and ∼ 0.3) [36]. However, this becomes problematic
in cases where there are states/environments that are present in a low fraction and that are typically
overlooked in pattern recognition analyses due to their negligible statistical weight. Similarly, for the
same reasons such approaches struggle in providing information on the (rare) transitions between
the main states and on the involved intermediate transition states. On the other hand, recently it
has been demonstrated that studying the time-series of such signals allow detecting and retaining
information also of rare/local transition events that appear as outliers in the time-series [36, 35].
However, to what extent one fluctuation is different from noise or from another fluctuation, how
similar/different the various fluctuations are, and, in particular, with what statistical confidence it
is thus possible to group them based on their similarity are typically non-trivial questions.

Using this as a first demonstrative case, we show how Onion Clustering is capable of performing
a microscopic analysis of the time-series, subdividing them into different dynamical environments
whose fluctuations have characteristic fingerprints in terms of intensities and oscillation amplitudes.
The algorithm automatically identifies in an unsupervised way the dynamical micro-clusters that
may be present in the system (the number of clusters is thus not set a priori, but is rather an
output of the algorithm) and assign points to them, assessing their difference/similarity in a statis-
tically robust way. The method follows an “onion-like” approach, where the environments that are
more evident/certain are first detected and classified and, after removing them from the signal, the
algorithm proceeds iteratively in classifying the less-evident/hidden ones. In particular, in a first
iteration (“Iteration 1”), Onion Clustering starts by computing the cumulative histogram of all the
data points in the time-series (leftmost panel of Fig 1C). The global maximum of the histogram is
then identified: in this test case, the LENS signals have the maximum density at LENS ∼ 0.05 (a
relatively low value, corresponding to the solid-ice phase: vide infra). The idea behind the algorithm
is to assume that each maximum of the histogram corresponds to one well determined dynamic en-
vironment in the system, which is thus characterized by an average dynamics (average LENS value)
and by a normally-distributed characteristic noise. Based on this concept, once identified the highest
density peak, the algorithm fits a Gaussian distribution of the form

P (x) =
A√
πσ

exp

[
−
(
x− µ

σ

)2
]

(1)

to the histogram maximum, as shown in Fig 1C (black solid curve). The mean µ, the (rescaled)
standard deviation σ and the area A of the Gaussian are the fit parameters.

This identifies a first dynamical environment, labelled as “ENV1”, which is characterized by
LENS values within the interval [µ− 2σ, µ+ 2σ] (and that in this case identifies the solid ice do-
main). This criterion is equivalent to discard data points that do not belong to ENV1 with a
probability higher that 99.5%. As a next step, the algorithm slices the time-series in consecutive
(non-overlapping) time-windows of length ∆t. The algorithm identifies all the molecules that re-
main always in ENV1 (without jumping in/out ENV1) in ∆t, for all ∆ts along the trajectory, thus
classifying all molecules that, at the resolution of the analysis (∆t), appear as persistently belonging
to ENV1 for time intervals at least equal to (or multiple of) ∆t. After this step, all these already
classified ENV1 signals are removed from the data and the time-series is analyzed again in another
iteration.

5

It is worth noting that ∆t is the only parameter required by Onion Clustering. In time-series
analysis the choice of the ∆t is critical, as it sets de facto the time-resolution in the analysis (as
it will be discussed in more detail below). Larger values of ∆t correspond to a lower resolution,
while smaller values of ∆t correspond to a higher resolution in the study of the time-series, respec-
tively reducing/enhancing the discretization of the events that occur along the studied trajectory.
To prevent the use of the algorithm by the users as a black box (or leveraging too much prior as-
sumptions/knowledge on/of the system), Onion Clustering performs the analysis at many different
∆ts and outputs the results that can be effectively obtained at the different resolutions (see next
section for a detailed discussion on the effect of changing the ∆t in the analysis). As a demonstrative
case, here in Fig 1 we show the results obtained by using a ∆t = 0.4 ns, which corresponds to 4
simulation time-frames in the analysis of water-ice molecules that coexist in dynamic equilibrium
(results obtained with other ∆t values are available in Fig S2 in the SI).

The second iteration starts again by computing the cumulative histogram of the data points. As
can be seen in the “Iteration 2” panel of Fig 1C, the removal of the points classified into ENV1
changes the histogram. Now, environments that before were difficult to identify as hidden by the
ENV1 data/noise become the new prominent features of the histogram. In this way, by identifying
and removing a new environment at each iteration, the algorithm automatically adjusts the data
range in order to improve its efficiency in identifying environments which are less and less statistically
relevant (note, in fact, the finer and finer scale on the x−axes of Fig 1C).

The algorithm then proceeds exactly as in the previous iteration. The global maximum is iden-
tified, and fitted with a Gaussian distribution (solid red line in Fig 1C), which gives the limit of
the new environment, “ENV2”. Then, the data-windows entirely included into ENV2 are detected,
stored and removed. The same procedures is repeated iteratively. As it is shown in Fig 1C, in
this specific system at this resolution (∆t = 0.4 ns) four environments can be identified, which are
characterized by increasing values (and lower densities) of LENS signal.

Such find-classify-archive strategy builds on a hierarchical certainty approach that classifies first
the data that are more certain and then, layer-by-layer, proceeds in classifying hierarchically the
remaining part of the time-series. Noteworthy, eliminating the ENV1 data after the classification
results also in the deletion of the associated noise, which augments in the next iteration the sensitivity
of the method and the relevance-to-noise ratio. At the fifth iteration, a new environment “ENV5” is
fitted. But no signal window in the remaining dataset is entirely included within it: i.e., there are
no molecules that stay into such ENV5 at least for the duration of ∆t = 0.4 ns. The algorithm thus
meets a termination condition, and the iterative process stops. The remaining data points, which
were not classified into any of the previously identified environments (at least with this choice of
∆t) are classified as a last cluster, labelled as “ENV0”. ENV0 contains all the data that are not
persistently part of ENVs1-4 for at least ∆t (e.g., transitions). The key importance of such ENV0
environment from the physical, statistical, and methodological points of view is discussed in detail
in the next section.

Once the iterative analysis terminates, the algorithm determines the thresholds between the
different environments, defined as the intersection points between the various Gaussian distributions
(Fig 1D-F: dashed lines). This identifies the main ENV1-4 clusters colored in Fig 1D-F. In this
specific case, the algorithm finds 4 statistically relevant LENS environments (ENVs1-4), along with
the ENV0 cluster. The characterization of the LENS signals within each cluster is displayed in
Fig S3 in the SI. As can be seen from the simulation snapshot in Fig 1E and in Supplementary
Movie S1, the cluster ENV1 corresponds to the solid ice phase, ENV2 to the solid/liquid interface
(ice surface), ENV3 comprises the majority of the molecules in the liquid water phase, while ENV4
contains a smaller fraction of water molecules that, as described recently [28], may occasionally
form ephemeral ice-like clusters that in such conditions continuously freeze and re-melt in the liquid

6

domain.

The key importance of time-resolution

Changing the time resolution of the analysis, ∆t, determines what type of information can be
effectively captured and how much information is lost. Setting the ∆t means setting the sensitivity
and uncertainty in the analysis, in that the resolution is sufficient to classify some events but not
other (faster) ones. This reflects in the number of clusters (ENVs) that are classified by the analysis.
For example, reducing the ∆t increases the resolution in the study of the time-series, and results in
an augmented discretization and a higher number of detected clusters (ENVs). At the same time,
the amount of information that remains “undetermined” at a given ∆t is also exactly quantified by
the ENV0 cluster. In particular, the higher is the data content of the ENV0 cluster, the higher is
the amount of information that cannot be classified in a statistically robust way. In this specific
case, where ∆t = 0.4 ns, the molecules belonging to the ENV0 cluster and corresponding to fast
transitions between the ENVs1-4 environments weight ∼ 3.5% of the total data points.

As anticipated above, instead of making an a priori choice of the time-resolution – typically
leveraging on a considerable prior knowledge of the system by an expert user, or on a “blind”
unsupervised choice that risks to make the software a “black box” – Onion Clustering uses a different
strategy that improves its transparency and physical interpretability. In particular, the software
always performs the analysis at different values of ∆t, ranging from the maximum resolution of
∆t = 2 frames, to the minimum one, corresponding to ∆t = T , where T is the entire time-series
(the latter case results in a typical pattern-recognition analysis conducted on the entire dataset).
In this demonstrative case, the analysis is conducted ranging from ∆t = 0.2 ns (2 frames) to
∆t = 47 ns (470 frames, comparable with the entire trajectory length). At every usage, Onion
Clustering outputs a plot such that of Fig 1G. In blue and orange are respectively shown the
number n of statistically relevant clusters that can be classified in a robust way (ENV1-to-n) and
the fraction (in %) of unclassified data contained in the ENV0 cluster as a function of the ∆t. For
smaller ∆t values (up to ∆t = 0.4 ns) 5 clusters are found (4 statistically relevant ones – ENV1-
to-4 – plus the ENV0, which collects the unclassified data points). For intermediate ∆t values
(0.5 ≤ ∆t ≤ 10 ns), the ENV clusters reduce to 4. Reducing the resolution of the analysis (increasing
the ∆t), ENV4, which corresponds to molecules with very high LENS values (identifying ephemeral
ice-like domains forming/dissolving in the liquid water), merges with ENV3 (corresponding to liquid
water: see also Fig S2 in the SI). Evidently, the resolution is no more high enough to discriminate such
molecules from liquid ones. Noteworthy, this outcome is also physically relevant, because it reveals
the maximum time-scale at which such ephemeral ice-like domains can be effectively discriminated
from a statistical point of view and provide a rough information on their survival lifetime (which is
shorter than 500 ps).

Increasing further the ∆t (> 10 ns) starts producing a loss of information that can be effectively
classified. It is not possible anymore to distinguish ENV2 – i.e., the solid/liquid interface – as
a distinct cluster, and only ENV1 (solid ice) and ENV3 (liquid water), along with the unclassified
ENV0 cluster, can be identified. This outcome provides a qualitative estimate for the average lifetime
of a water molecule in ENV2 (0.5−10 ns), which is compatible with previous studies on the diffusion
coefficient of water molecules at the ice/water interface [57].

It is worth noting how for ∆t > 10 ns the fraction of data in the ENV0 cluster (unclassified data)
sharply increases. This indicates that the time resolution starts to be insufficient to reconstruct
the microscopic physics of the system, and a significant fraction of data points remain unclassified
during the iterative process. In particular, for ∆t > 20 ns the sole environments that can be
detected are ENV1, corresponding to the bulk of solid ice (molecules that do not diffuse along the

7

entire simulation) and ENV0, gathering in this case ∼ 80% of the total data points, which includes
all molecules that move in the system. Interestingly, in this case the result of the analysis becomes
consistent with the typical result that is obtained via unsupervised clustering approaches on datasets
extracted from the entire trajectory [24, 56, 28, 35].

The plot of Fig 1G is a key feature of Onion Clustering, providing relevant information. On the
one hand, it sheds light on the physics underlying the system under study. On the other hand, it
provides important information on the performance of the clustering algorithm and on the robustness
of the classification that this provides. The correlation between the number of detected clusters and
∆t unveils the characteristic time-scales of the various dynamic environments and the transitions
occurring within the system. Conversely, the correlation between the population of the ENV0 cluster
and ∆t indicates the time resolution at which the algorithm begins to struggle, having insufficient
resolution and statistics to classify large parts of the time-series. The plot of Fig 1G is a key output of
Onion Clustering in that it provides the user with a statistically-robust litmus paper useful to choose
a posteriori the resolution of the analysis depending on the type of events that one wants to study
(instead of a priori, e.g., based on human-based assumptions). This is a non-common feature for a
fully unsupervised method, which in this way gets rid of “black box” issues/limitations and gains
physical interpretability. Instead of attempting to fit all data into clusters, the philosophy of Onion
Clustering is to determine the amount of information that cannot be statistically classified at a given
resolution (starting from the concept that every measurement method has intrinsic limitations that
cannot be neglected), to subtract it, and to classify only the data that can be effectively classified
from a statistical point of view. This is key, as it provides an advantage in terms of transparency,
reliability, robustness, and repeatability of the analysis.

Characterizing the microscopic dynamics of the system

Having assigned every data point to one of the identified clusters, it is easy, e.g., to track not only
how the different clusters populations vary with time, but also the transitions of the individual
water molecules between the various environments along the time-series. In the Sankey diagram of
Fig 1H, the height of the colored bars is proportional to the populations of the 5 detected clusters
at 4 different representative time steps taken along the trajectory. The gray bands between the
time steps provide a coarse-grained representation of the number of molecules that moved between
any pair of clusters in the time-interval between the two represented snapshots. While the diagram
of Fig 1G is here purely demonstrative, and it shows just the departure and arrival clusters for
water molecules between distant time intervals, a more detailed characterization of the exchange
pathways and of the inner microscopic dynamics of the system can be easily attained by tracking
the transitions between shorter time intervals. Nonetheless, this plot clearly shows that, as expected,
the exchange of water molecules between solid and liquid phases occurs mainly via an intermediate
dynamical environment (i.e., via the ice/water interface). The unclassified (ENV0) events occur
mainly in connection with the liquid phase. This indicates that, among the various transitions that
this encompasses, considerable part of ENV0 is related to local ephemeral ice-like domains that
fastly form/dissolve in the liquid domain in these conditions [28] (events that occurs too fast to be
statistically classified as a distinct cluster at the time resolution of ∆t = 0.4 ns).

Different test cases in different conditions

The results discussed above refer to a case of a system in dynamical equilibrium, with a rather “fluid”
internal dynamics and characterized by exchange events taking place between similarly-populated
liquid and solid phases. While this is a particular case, to prove the generality of the method

8

we tested Onion Clustering on time-series obtained from a variety of systems with diverse internal
dynamics: e.g., systems far from the equilibrium, or dominated by local rare fluctuations. Finally, to
prove the broad applicability of the algorithm, this is also tested on multivariate/multidimensional
time-series extracted both from synthetic and experimental datasets.

Onion Clustering of out-of-equilibrium time-series: water freezing

0 2 4
Time t [ns]

0.02

0.03

0.04

tS
OA

P

0 1e9
Counts

ENV1

Iteration 1...

0 1e8
Counts

ENV2

... 2...

0 1e7
Counts

ENV3

... 3...

0 1e6
Counts

ENV4

... 4...

0 4e4
Counts

ENV0

... 5

0 1e9
Counts

0 2 4
Time t [ns]

0.02

0.03

0.04

tS
OA

P

0.1 1
Time resolution t [ns]

2

3

4

5

#
 o

f E
N

Vs

75.1

16.3

7.96
0.63

92.5

6.79
0.68
0.05

96.6

3.32
0.10

0.0 ns 1.5 ns 5.0 ns

100 1000

t [frames]

0

20

40

60

80
Po

pu
la

ti
on

 o
f E

N
V0

 [
%

]

A B C

D E F

Figure 2: Analysis of out-of-equilibrium time-series: freezing water. A: tSOAP values for
2048 TIP4P/ICE molecules, along the 5 ns long MD simulation sampled every ps, smoothed with a
moving average with width 25 frames (25 ps). B: Data cumulative histograms at the five iterations
of the algorithm. The solid lines are the Gaussian best fit of the maximum of the distribution. The
dashed lines are the thresholds between the identified clusters. At the fifth iteration, the Gaussian
fit does not converge, and the algorithm stops. C: final clustering of the tSOAP signals. D: The
tSOAP signals; background is colored according to the threshold given by the clustering. E: Blue
line: number of clusters identified as a function of the time resolution ∆t; orange line: percentage of
the data points classified in the ENV0 cluster as a function of the time resolution ∆t. The red dashed
line at ∆t = 0.025 ns indicates at which time resolution the analysis shown in the previous panels
was performed. F: Sankey diagram between three different times along the simulation. Colored bars
are proportional to the clusters’ populations, gray lines are proportional to the number of molecules
moving from one cluster to another.

Analyzing time-series data that are out-of-equilibrium poses additional challenges compared to
well-sampled equilibrium trajectories. Short-lived clusters and transient states may rapidly emerge
and disappear, representing only a small fraction of the data with a negligible weight on the entire

9

dataset. Furthermore, in such systems the result of pattern recognition approaches conducted on
the entire trajectory changes over time (as the density of the states does). In fact, information on
transient states that, e.g., may emerge only in the beginning of the time-series disappearing rapidly,
but that may be key to understand the evolution of the system, is lost when the time-series that is
analyzed becomes longer and longer. Retaining information on these short-lived states is essential
for understanding the time evolution of a system, but keeping memory of these, or in some cases
even realizing that they ever appeared during a trajectory, is not always easy.

We thus tested Onion Clustering in a prototypical test case where, starting from the equilibrium
condition of Fig 1, the temperature in the system is reduced to T = 267 K. Such temperature is
below the melting point of the TIP4P/ICE model (see Methods section for details). In this case,
the simulation trajectory that is analyzed is approximately 5 ns long, with sampling every 1 ps (for
a total of ∼ 5000 frames), which is a sufficient time to observe the entire system freezing. As an
example, we computed the tSOAP descriptor [35] for all water molecules in these out-of-equilibrium
trajectories (for comparison with the same system at the equilibrium, see Fig. S1). In brief, tSOAP
is a scalar descriptor that measures the rate of variation of the SOAP spectrum [23] of all molecules
in the system. It thus gauges the rate of structural rearrangement within the atomic environment
of the molecules: lower in the ice phase, and higher in liquid water. The resulting time-series are
shown in Fig 2A. In this plot, it can be seen that the highest values of tSOAP (> 0.03), identifying
molecules in the liquid phase (faster structural rearrangement of their neighbors), tend to disappear
after ∼ 2 ns, leaving only the lower tSOAP values corresponding to molecules in the solid ice phase.
As can be seen in the leftmost cumulative histogram of Fig 2B, already after ∼ 5 ns the statistical
weight of the data points with tSOAP > 0.03 is negligible, which makes it hard to detect, in analysis
conducted on the entire dataset, that there has even been liquid water in this system (and the
problem becomes more severe if the simulation last longer).

Fig 2B shows the iterations of Onion Clustering (here as an example, the results obtained using a
∆t = 25 ps are shown). The classified clusters are shown in Fig 2C-D. Also in this case, at most five
environments can be identified in the time-series, corresponding respectively to the ice, the ice/water
interface, and two liquid water micro-environments with different tSOAP values (and that can be
discriminated only at high resolution), along with the ENV0 cluster encompassing the unclassified
data points. The significance of these clusters becomes evident in the simulation snapshots shown in
Fig 2F and in the Supplementary Movie S2. Noteworthy, using ∆t = 25 ps the algorithm accurately
classifies liquid water and the ice/water interface, despite these environments vanishing after only
2 ns of simulation.

Fig 2E shows the number of clusters and the population of the ENV0 cluster as a function of
the ∆t. The number of clusters decreases from a maximum of 5 for ∆t < 40 ps to 2 for ∆t > 0.5 ns.
At the same time, the fraction of unclassified data in the ENV0 cluster remains negligible up to
∆t = 0.1 ns, while it begins to rise increasing the ∆t, since the time-resolution is insufficient to
track the fast evolution of the the system. Notably, this ∆t value is considerably lower than that
observed in the previous section (see Fig 1 for the LENS analysis and Fig S1 for the tSOAP analyses
of the equilibrium system). Such a discrepancy is essentially due to a different relevance/noise
ratio between the tSOAP and LENS descriptors and to the fact that the events become faster
when the system evolves rapidly far-from-the-equilibrium. Anyways, such a test shows how also
in this case Onion Clustering reveals in automatic and unsupervised way the resolution necessary
to statistically characterize the events that occurred in the beginning of the trajectory, not only
providing information that are non trivial to retain but also a physical anchor to prove their relevance
and robustness.

In this test case, an examination of the cluster populations and exchange rates in Fig 2F offers
a deeper insights, clearly demonstrating the out-of-equilibrium behavior observed in the trajectory.

10

As the simulation time progresses, the proportion of liquid water diminishes, then followed by the
interface and ultimately leading to their disappearance, while the majority of molecules undergo
transition to the solid phase.

Rare local events in time-series: atomic dynamics on metal surfaces

MD

xy

z

12 5
0 50 100 150

Time t [ns]

0.0

0.1

0.2

0.3

LE
NS

0 1e9
Counts

ENV1

Iteration 1...

0 2e7
Counts

ENV2

... 2...

0 2e5
Counts

ENV3

... 3...

0 3e4
Counts

ENV4

... 4...

0 2e3
Counts

ENV0

... 5

0 50 100 150
Time t [ns]

0.0

0.1

0.2

0.3

LE
NS

Atom ID = 144
Atom ID = 144

x

yz

40 ns 61 ns 150 ns
0.1 1

Time resolution t [ns]

2

3

4

5

6

#
 o

f E
N

Vs

10 100

t [frames]

0

1

2

3

4

5

6

7

8

Po
pu

la
ti

on
 o

f E
N

V0
 [

%
]

A B C

D E F

Figure 3: Analysis of time-series dominated by rare events. A: Snapshots of the MD simu-
lation of Cu surface composed by 2400 atoms at T = 600 K; atoms are colored according to their
coordination number. The upper snapshot is at T = 0 K, the lower one during the simulation at
T = 600 K. B: LENS values for all the Cu atoms, along the 150 ns long simulation sampled every
10 ps, smoothed with a moving average with width 10 frames. C: Data cumulative histograms at
the five iterations of the algorithm. The solid lines are the Gaussian best fit of the maximum of
the distribution. The dashed lines are the threshold between the identified clusters. After the fifth
iteration, no data are assigned to the proposed cluster, and the algorithm stops. D: the LENS signal
for the atom with ID = 144, colored according to the cluster it belongs at each frame. E: Top view
of the simulation box, at three different times t = 40, 61 and 150 ns. The atom with ID = 144 is
highlighted in black, and its trajectory up to that point is colored according to its environment. F:
Blue line: number of clusters identified as a function of the time resolution ∆t; orange line: per-
centage of the data points classified in the ENV0 cluster as a function of the time resolution ∆t.
The red dashed line at ∆t = 0.12 ns indicates at which time resolution the analysis shown in the
previous panels was performed.

Another scenario where clustering algorithms often struggle is in detecting amidst background
noise and classifying rare events and local fluctuations that may be dominant but have a negligible

11

statistical weight. As a prototypical example of such a system, we tested Onion Clustering on LENS
time-series extracted from an atomistic MD simulation trajectory of a FCC(211) copper surface
consisting of 2400 Cu atoms. The simulation is conducted at a temperature T = 600 K using a
deep-potential neural network force field that has been recently reported [10] (see Methods section
for details). The MD trajectory lasts 150 ns and is sampled every 10 ps (for a total of 15000 frames).
As shown in Fig 3A, it is known that in this system, while the majority of the surface atoms
vibrate within the atomic lattice, a small number of sparse atoms may undergo rapid long-distance
sliding motion on the Cu surface [10, 36, 29]. Specifically, such sliding motions are well captured
by the LENS descriptor, which has been computed for all atoms along the trajectory, obtaining the
time-series of Fig 3B (LENS values ≳ 0.1 identify atomic sliding events).

We performed an Onion Clustering on these LENS time-series (Fig 3B-C), using a time resolution
for the analysis of ∆t = 0.12 ns (equal to 12 simulation frames). Four statistically relevant LENS
environments are identified (ENV1-4), along with the ENV0 cluster. Fig 3B shows the thresholds
between the LENS environments/clusters. ENV1 and ENV2 together encompass ∼ 99.95% of the
data points, which correspond to static bulk and surface atoms in the system. Remarkably, despite
this issue, the algorithm is able to correctly assign the remaining data points to the other microscopic
dynamical environments (ENV3-4), which identify the rapid sliding motion of some atoms on the
Cu surface. Fig 3D shows a detail of the LENS time-series for one atom (ID: 144) that slides on the
surface along the simulation. Fig 3E shows the atom’s positions at three distinct time frames along
with its preceding trajectory, color-coded according to the visited LENS clusters. Until t ∼ 40 ns,
the atom remains nearly stationary on the surface (classified in ENV1-2). For t ≳ 40 ns the atom
starts sliding along one of the surface facets (and is classified in ENV3-4: orange, cyan). From
t ∼ 125 ns, the atom is reincorporated into the surface lattice, returning to ENV1-2. Supplementary
Movie S3 shows the complete MD trajectory colored based on the detected clusters.

Fig 3F shows how 6/5 LENS clusters can be clearly classified with a negligible information loss up
to ∆t ∼ 0.1−0.2 ns time resolution. However, such atomic sliding events are so rapid that for larger
∆t these get lost in the analysis. From ∆t > 0.3 ns the total number of LENS clusters diminishes
to 2, and the algorithm can distinguish only the static (ENV1) from the non-static (ENV0) atoms.

Analysis of multivariate time-series

While the examples above show the efficiency of Onion Clustering in analysing univariate (uni-
dimensional) time-series, in many case it is desirable to conduct multidimensional analyses to mini-
mize information loss. We thus extended the method to made it capable of processing also multivari-
ate time-series. The main adaptation concerns the use of a multivariate Gaussian distribution for
fitting the histogram maxima. As a proof of efficiency, we thus tested the method on prototypical
examples of 2− or 3−dimensional time-series data, using a factorized Gaussian distribution (see
Methods section for details).

As a first test case, we constructed a synthetic 3−dimensional time-series data, generated by
simulating N = 2 non-interacting particles. The particles move via Langevin dynamics in a three-
dimensional free energy landscape featuring 5 distinct minima. Shown in Fig 4A-B, such a simple
dataset shows 5 clear maximum density clusters separated by sparse data points. As illustrated in
Fig 4C, Onion Clustering effectively detects the 5 clusters (results obtained using ∆t = 5 frames).

The plot of Fig 4D shows the impact of varying the time resolution ∆t. The correct number of
clusters is accurately identified up to ∆t = 16 frames. Reducing the resolution and using a larger
∆t in the analysis of the time-series, the clusters start to merge leading to a clear information loss.
In fact, the population of ENV0 remains < 10% up to ∆t = 7 frames, while beyond this limit it
increases rapidly.

12

0 2000 4000 6000 8000 10000
Time t [frames]

0.0

0.2

0.4

0.6

0.8

1.0
Pa

rti
cle

 ID
 =

 0

x
y
z

0 2000 4000 6000 8000 10000
Time t [frames]

0.0

0.2

0.4

0.6

0.8

1.0

Pa
rti

cle
 ID

 =
 1

0.0
0.5

1.0x 0.0

0.5

1.0

y

0.0

0.5

1.0

z

0.0
0.5

1.0x 0.0

0.5

1.0

y

0.0

0.5

1.0

z

10 100 1000
Time resolution t [frames]

1

2

3

4

5

6

#
 o

f E
N

Vs

0

20

40

60

80

100

Po
pu

la
ti

on
 o

f E
N

V0
 [

%
]

A

B C D

Figure 4: Analysis of synthetic multivariate time-series. A: Time-correlated data-points where
generated simulating two particles (shown on the left and right panel) with Langevin Dynamics in
a three-dimensional free-energy landscape with 5 minima. B: the same trajectories, represented as
a three-dimensional signal. C: The output of the clustering algorithm. The identified clusters are
represented as ellipsoidal surfaces, including the points closer than 2σ from the center. D: Blue line:
number of clusters identified as a function of the time resolution ∆t. Orange line: percentage of the
data points classified in the ENV0 cluster as a function of the time resolution ∆t. The red dashed
line at ∆t = 5 frames indicates at which time resolution the analysis shown in the previous panels
was performed.

This simple example shows how Onion Clustering can be used also to analyze in general multi-
variate time-series data. This includes also dataset that are less artificial and more noisy than this
synthetic example, and not necessarily coming from simulated trajectories, as discussed in the next
section.

Onion Clustering of experimental multidimensional time-series

As a last example, we tested Onion Clustering onto multivariate experimental time-series data
sourced from a recent study of the complex dynamics of colloidal Quincke roller particles by Liu et
al [58]. Briefly, Quincke rollers are µm scale dielectric colloidal particles suspended in a conducting
fluid and exposed to a vertical DC electric field (see Fig 5A). While for a detailed description
of these systems we refer the reader to the original publication, what is interesting to us here is
that, under the stimulus of the electric field, these particles exhibit complex collective motions,
eventually manifesting as collective density waves or vortexes. Noteworthy, unlike the molecular-

13

scale examples, this test deals with a complex mesoscopic system, and the data originate from
experimental observations rather than from simulations. As a proof of concept, we considered an
optical microscope movie tracking N = 6921 particles in a field of view is 700 × 700 µm2 for 0.25
s of real time (for a total of T = 310 frames), where a collective density wave emerges and runs in
the system [58]. From this movie we extracted the particles’ positions at each time-frame along the
trajectory using the python package Trackpy [59, 60].

For each particle in the system, we extracted from the trajectory data at each sampled frame (i)
the minimum neighbor distance (dmin: a proxy for the local particle density), and (ii) the particles’
local velocity alignment, computed as:

ϕi ≡
1

ni
c

∑
j

v⃗i · v⃗j
|v⃗i||v⃗j |

(2)

In Eq 2, j iterates over the ni
c particles inside a specified cutoff distance rc from particle i (rc =

15 pixels). v⃗i and v⃗i are the velocities of particles i and j, respectively. The variable ϕi captures the
average cosine value of the angle between the velocities of particle i and its neighboring particles: this
value ranges between −1 and 1, indicating the level of alignment or orientation similarity between
the velocities of the particle and its neighbors.

We thus obtained the bi-dimensional time-series data shown in Fig 5B (showing the time-series
for all particles) and Fig 5C (showing a single particle, in black, and its two components (i) and (ii),
in orange and cyan) over time. dmin was rescaled within the range [0, 1] to facilitate the visualization
and give the to variables (i) and (ii) a comparable weight.

Fig 5D-F show as an example the results obtained by Onion Clustering employing a time resolu-
tion of ∆t = 5 frames. The algorithm identifies 3 distinct statistically-relevant environments (blue,
red and green) alongside the ENV0 cluster encompassing all unclassified data points (in yellow). The
significance of the clusters becomes apparent when observing the simulation snapshots in Fig 5F and
Supplementary Movie S4. Environment ENV1 (in red) is characterized by dmin = (0.20± 0.08) and
ϕ = (0.01 ± 0.10), and primarily consists of stationary particles. ENV2 (blue) is characterized by
dmin = (0.12 ± 0.15) and ϕ = (0.97 ± 0.14), and corresponds to particles moving coherently within
the wavefront. ENV3 (green) contains particles with dmin = (0.38 ± 0.04) and ϕ = (0.01 ± 0.06),
stationary particles located in an area with very low density (exhibiting high dmin values). The
unclassified data points (ENV0: yellow) correspond to particles situated on the two edges of the
wave, whose surrounding environment is changing too rapidly to be classified as persistent clusters
at this time-resolution.

Reducing ∆t reduces the population of the ENV0 cluster and increases the ability of the algorithm
to precisely characterize the edges of the wave (see Fig S4). Fig 5E shows the number of clusters and
the population of ENV0 as a function of the ∆t. Notably, 4 clusters are discernible when employing
∆t ≤ 6 frames, a timescale comparable to the residence time of a single particle inside the wave.

Conclusions

In this paper we introduced Onion Clustering, a new unsupervised clustering algorithm for the
microscopic analysis of time-series data. Onion Clustering automatically identifies fluctuations and
microscopic dynamic environments in a time-series, and classifies the data points into micro-clusters.
Typically, unsupervised clustering methods suffer, e.g., of lack of physical interpretability of the
results, multiple parameters that have to be tuned (and that may considerably change the results),
and difficulties in identifying clusters/environments that are way less sampled/populated than others,
such as rare and/or local dynamical events, transient states, etc. Here, using various types of test

14

0
100

200
300t [frame]

0.0

0.2

0.4

0.6

dmin

0.0
0.2
0.4
0.6
0.8

0
100

200
300t [frame]

0.0

0.1

0.2

0.3

dmin

0.0
0.2
0.4
0.6
0.8

0.0 0.2 0.4 0.6 0.8 1.0
dmin [m/ m]

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

50.0s 95.0s 200.0s

20

40

60

80

100

Po
pu

la
ti

on
 o

f E
N

V0
 [

%
]

10 100
Time resolution t [frames]

1

2

3

4

#
 o

f E
N

Vs

A B C

D E

F

Figure 5: Analysis of experimental multivariate time-series. A. Cartoon representation of
Quincke rollers, dielectric colloidal particles suspended in a conducting fluid and exposed to a vertical
DC electric field. These particles exhibit collective motion, see Liu et al [58] for more information.
B: The rescaled minimum neighbor distance dmin and the local velocity alignment ϕ are plotted as a
function of time, for all the particle in the video. C: Example signal for a single particle is shown (in
black), together with its two separate components (in orange and cyan). D: The algorithm identifies
three clusters, in red, blue and green respectively. E: Blue line: number of clusters identified as a
function of the time resolution ∆t; orange line: percentage of the data points classified in the ENV0
cluster as a function of the time resolution ∆t. The red dashed line at ∆t = 5 frames indicates
the time resolution for the show results. F: Three snapshots from the video, colored according the
detected clusters.

15

examples, we demonstrate how Onion Clustering can mitigate such issues, standing out as a general
and reliable unsupervised method characterized by non-common physical interpretability, statistical
robustness, ease of use, and flexibility in analyzing different types of time-series data.

Onion Clustering is based on an iterative “certainty-based” approach. The most evident and
statistically populated environment is classified first, and then it is removed, together with its noise,
from the time-series, which is then analyzed again in iterative fashion. The algorithm can thus rely
on an adaptive metric that, at every successive iteration, enhances the signal-to-noise ratio. In an
“onion peeling” fashion, this allows to unveil all the dynamical subdomains (also the least populated
ones) that can be classified in a statistically-robust way at a given time-resolution. In this way,
the method can extract and retain all information information that are statistically significant in
a time-series as a function of the resolution at which this is studied. At the same time, Onion
Clustering quantifies – via the population of the ENV0 cluster (i.e., the data points which was not
possible to classify) – the amount of information that cannot be statistically classified and that
gets lost at a certain time resolution ∆t, which is a non-trivial added value for an unsupervised
method. While in such a method, the time-resolution ∆t is the sole determinant parameter, instead
of choosing the time-resolution a priori, Onion Clustering performs the analysis at every possible
resolution (the bottom limit being the time-interval between the frames in the time-series itself) and
plots the results. This allows the user to make an a posteriori informed choice of the resolution at
which it is best to study a time-series to analyze determined phenomena/events. This makes Onion
Clustering a fully unsupervised, substantially parameter-free clustering method that is transparent,
controllable, statistically robust, and that avoids typical problems emerging from the use of such
unsupervised algorithms as a black box.

The examples discussed herein demonstrate how Onion Clustering can efficiently reconstruct all
the statistically-relevant events contained in time-series with extremely variegated features: from
systems in dynamical equilibrium conditions, to systems out-of-equilibrium, to systems dominated
by rare events and local fluctuations (difficult to detect by pattern recognition analyses due to their
negligible statistical weight), from synthetic and simulation time-series, to experimental trajectories.
We expect that, thanks to its generality and simplicity, Onion Clustering will constitute a useful
tool in the study of complex systems from the atomistic to the macroscopic scale.

Methods

Simulations and data analysis

Water-ice in dynamic coexistence

The data for Fig 1 (available in the SI: Dataset S1) are obtained by the MD simulations described in
details in [36, 35, 29], of 2048 TIP4P/ICE molecules in correspondence of the melting temperature
(T = 268 K for this force field [61]). In the initial configuration, half of the molecules are in the
solid phase in hexagonal ice packing, the other half are in the liquid phase. Being at the melting
temperature, solid and liquid phase are in dynamical equilibrium. The simulation lasts 50 ns with
a configuration sampling interval of 0.1 ns. For every molecule in the system, the LENS signals are
computed on the sampled configurations using a cutoff of 10 Å (close to the third minimum of the
radial distribution function), for the 2048 oxygen atoms [36, 29].

16

Water freezing

The data for Fig 2 (available in the SI: Dataset S2) are obtained by continuing the simulation
at coexistence using the same setup, but lowering the temperature to T = 267 K (just below
the TIP4P/ICE melting point [61]). In this case, the system is evolved for 40 ns, sampling its
configuration every ps, while only the last 5 ns of the simulation were used in the analysis: right
before the freezing started, in such a way to have a prevalence of signal related to the ice domain
and in order to test the algorithm in an unfavorable case, and to prove that this can keep track that
some liquid water has been present in the trajectory even in the case where this has a low statistical
weight in the time-series. The tSOAP signals [35] are computed, with a cutoff of 10 Å (close to the
third minimum of the radial distribution function), for the 2048 oxygen atoms. The tSOAP signals
are then smoothed with a moving average with 25 frames width (to reduce the noise).

FCC(211) copper surface

The data for Fig 3 (available in the SI: Dataset S3) are obtained by the MD simulation described in
details in [10], of 2400 Cu atoms at T = 600 K . Periodic boundary conditions are applied in the xy
plane, while the system is finite along the z direction, simulating de facto an infinte copper/vacuum
surface along the (211)-plane. The system is evolved for 150 ns, sampling its configuration every
10 ps, for a total of 15000 frames. The LENS signals [36] are then computed, with a cutoff of 6 Å,
for all the atoms. The signals are then smoothed with a moving average with 10 frames width (to
reduce the noise).

Multivariate/multidimensional synthetic data

The data for Fig 4 (available in the SI: Dataset S4) are obtained simulating 2 non-interacting particles
with Langevin dynamics, in a bounded potential energy surface with five minima, with coordinates
(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 0) and (1, 1, 0). The system is evolved for 2 · 106 integration steps,
sampling its configuration every 200 steps. Particles’ coordinates are then given as input to the
clustering algorithm.

Experimental trajectories of Quincke rollers

The data for Fig 5 (available in the SI: Dataset S5) are obtained via image recognition and a tracking
code (trackpy [59]) from experimental microscopy videos from [58]. From the video, the x− and
y−coordinates of 6921 particles for 310 consecutive frames are extracted. For each particle at each
frame, the distance from the closest neighbor dmin and the local alignment of the velocities ϕ (as
defined in the main text, with a cutoff distance of rc = 15 pixels) are computed. The two quantities
are then separately smoothed with a moving average with 2 frames width (to reduce the noise).

The clustering algorithm

Univariate/monodimensional data analysis

Let’s call xi(t), with 0 ≤ i < N indexing the particle and 0 ≤ t < T indexing the discrete time, the
set of signals we want to cluster. The algorithm proceeds as follow:

1. The signals xi(t) are divided in windows of length ∆t, the time resolution of the analysis:

Xi,w = [xi(w∆t), xi(w∆t+ 1), xi(w∆t+ 2), ..., xi(w∆t+∆t− 1)]

with w ∈ {0, 1, 2, ..., int(T/∆t)}.

17

The following procedure is then repeated iteratively, each time identifying a candidate environment
En, until a termination condition is met:

2. The cumulative histogram Hj of all the data is computed, with 0 ≤ j < nbins. nbins is set
automatically [62], but can be also set to a custom value.

3. The absolute maximum of the histogram is identified, and a Gaussian distribution of the form
Eq 1 is fitted on the histogram in an interval around the maximum, with µ, σ and A as free
parameters. The details about the choice of the fitting interval are reported in SI. If the fitting
procedure does not converge, go to step 7.

4. A candidate environment En is identified as the signal interval

En = [µn − 2σn, µn + 2σn]

The values of µn, σn and An are stored for later use.

5. For every pair (i, w), the window Xi,w is removed from the signals if and only if it’s entirely
included in the environment En, that is, if and only if{

min {Xi,w} ≥ µn − 2σn

max {Xi,w} ≤ µn + 2σn
(3)

If no window satisfies this requirements, go to step 7.

6. If after this step the signals xi(t) are still not empty, the procedure is repeated from the step
2. Otherwise, go on to step 7.

7. At this point, a list of environment En, 0 ≤ n < nstates, has been identified, each one described
by its center µn, its width 4σn and its weight An. Moreover, a fraction fn of windows Xi,w has
been assigned to each environment. From this information, strongly overlapping environments
are merged together. The details about this procedure are reported in SI. After this, each data
point xi(t) is assigned to the environment i in which its window is contained.

Multivariate/multidimensional data analysis

The case of D−dimensional signals is handled in basically the same way as in one-dimensional ones.
The Gaussian used of the fit around the maxima are factorized, i. e. of the form

P (x1, x2, ..., xD) =

D∏
d=1

Ad√
πσd

exp

[
−
(
xd − µd

σd

)2
]

and the fit is performed inside a D−dimensional rectangular region, where the limit of the rectangle
along each dimension are selected with the same procedure shown in SI for the univariate data.

Acknowledgements

G.M.P. acknowledges the funding received by the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation program (grant agreement no. 818776–
DYNAPOL).

18

Data availability

The algorithm presented in this paper is implemented as a Python3 package [54]. The code is
available open-source at this GitHub repository [52, 53]. All the relevant code, Supporting Datasets
and Movies for this work are available on Zenodo at [63].

Competing interests statement

The authors declare no competing interests.

References

[1] Sulimon Sattari et al. “Modes of information flow in collective cohesion”. In: Science advances
8. 6 (2022), eabj1720.

[2] Tony Liu, Lyle Ungar, and Konrad Kording. “Quantifying causality in data science with quasi-
experiments”. In: Nature computational science 1. 1 (2021), pp. 24–32.

[3] Javier Borge-Holthoefer et al. “The dynamics of information-driven coordination phenomena:
A transfer entropy analysis”. In: Science advances 2. 4 (2016), e1501158.

[4] Mor Nitzan, Jose Casadiego, and Marc Timme. “Revealing physical interaction networks from
statistics of collective dynamics”. In: Science advances 3. 2 (2017), e1600396.

[5] Udoy S Basak et al. “An information-theoretic approach to infer the underlying interaction
domain among elements from finite length trajectories in a noisy environment”. In: The Journal
of Chemical Physics 154. 3 (2021), p. 034901.

[6] Martina Crippa et al. “Molecular communications in complex systems of dynamic supramolec-
ular polymers”. In: Nature Communications 13 (2022), p. 2162.

[7] Yi Hong et al. “Unsupervised data pruning for clustering of noisy data”. In: Knowledge-Based
Systems 21. 7 (2008), pp. 612–616.

[8] Yukio Cho et al. “Dynamics in supramolecular nanomaterials”. In: Soft Matter 17. 24 (2021),
pp. 5850–5863.

[9] Francesca Baletto. “Structural properties of sub-nanometer metallic clusters”. In: Journal of
Physics: Condensed Matter 31. 11 (2019), p. 113001.

[10] Matteo Cioni et al. “Innate dynamics and identity crisis of a metal surface unveiled by machine
learning of atomic environments”. In: The Journal of Chemical Physics 158 (2023), p. 124701.

[11] Piero Gasparotto et al. “Identifying and tracking defects in dynamic supramolecular polymers”.
In: The Journal of Physical Chemistry B 124. 3 (2020), pp. 589–599.

[12] Davide Bochicchio et al. “How defects control the out-of-equilibrium dissipative evolution of
a supramolecular tubule”. In: ACS Nano 13. 4 (2019), pp. 4322–4334.

[13] Anna L de Marco et al. “Controlling exchange pathways in dynamic supramolecular polymers
by controlling defects”. In: ACS Nano 15. 9 (2021), pp. 14229–14241.

[14] Pieter Rein ten Wolde and Daan Frenkel. “Enhancement of protein crystal nucleation by
critical density fluctuations”. In: Science 277. 5334 (1997), pp. 1975–1978.

[15] James F Lutsko. “How crystals form: A theory of nucleation pathways”. In: Science advances
5. 4 (2019), eaav7399.

19

[16] Máté Nagy et al. “Hierarchical group dynamics in pigeon flocks”. In: Nature 464. 7290 (2010),
pp. 890–893.

[17] Andrea Cavagna et al. “Scale-free correlations in starling flocks”. In: Proceedings of the Na-
tional Academy of Sciences 107. 26 (2010), pp. 11865–11870.

[18] Alessandro Attanasi et al. “Information transfer and behavioural inertia in starling flocks”.
In: Nature physics 10. 9 (2014), pp. 691–696.

[19] Sachit Butail, Violet Mwaffo, and Maurizio Porfiri. “Model-free information-theoretic approach
to infer leadership in pairs of zebrafish”. In: Physical Review E 93. 4 (2016), p. 042411.

[20] Maurizio Porfiri. “Inferring causal relationships in zebrafish-robot interactions through transfer
entropy: a small lure to catch a big fish”. In: Animal Behavior and Cognition 5. 4 (2018),
pp. 341–367.

[21] Rosario N Mantegna and H Eugene Stanley. Introduction to econophysics: correlations and
complexity in finance. Cambridge university press, 1999.

[22] Chao Duan et al. “Network structural origin of instabilities in large complex systems”. In:
Science advances 8. 28 (2022), eabm8310.

[23] Albert P Bartók, Risi Kondor, and Gábor Csányi. “On representing chemical environments”.
In: Physical Review B 87. 18 (2013), p. 184115.

[24] Bartomeu Monserrat et al. “Liquid water contains the building blocks of diverse ice phases”.
In: Nature communications 11. 1 (2020), p. 5757.

[25] Edward Danquah Donkor, Alessandro Laio, and Ali Hassanali. “Do machine-learning atomic
descriptors and order parameters tell the same story? The case of liquid water”. In: Journal
of Chemical Theory and Computation 19. 14 (2023), pp. 4596–4605.

[26] Adu Offei-Danso, Ali Hassanali, and Alex Rodriguez. “High-dimensional fluctuations in liquid
water: Combining chemical intuition with unsupervised learning”. In: Journal of Chemical
Theory and Computation 18. 5 (2022), pp. 3136–3150.

[27] Narjes Ansari et al. “Insights into the emerging networks of voids in simulated supercooled
water”. In: The Journal of Physical Chemistry B 124. 11 (2020), pp. 2180–2190.

[28] Riccardo Capelli, Francesco Muniz-Miranda, and Giovanni M Pavan. “Ephemeral ice-like local
environments in classical rigid models of liquid water”. In: The Journal of Chemical Physics
156 (2022), p. 214503.

[29] Martina Crippa et al. “Machine learning of microscopic structure-dynamics relationships in
complex molecular systems”. In: Machine Learning: Science and Technology 4. 4 (2023),
p. 045044.

[30] Chiara Lionello et al. “Supramolecular semiconductivity through emerging ionic gates in ion–
nanoparticle superlattices”. In: ACS Nano 17. 1 (2022), pp. 275–287.

[31] Riccardo Capelli et al. “A data-driven dimensionality reduction approach to compare and
classify lipid force fields”. In: The Journal of Physical Chemistry B 125. 28 (2021), pp. 7785–
7796.

[32] Andrea Gardin et al. “Classifying soft self-assembled materials via unsupervised machine learn-
ing of defects”. In: Communications Chemistry 5 (2022), p. 82.

[33] Annalisa Cardellini et al. “Unsupervised data-driven reconstruction of molecular motifs in
simple to complex dynamic micelles”. In: The Journal of Physical Chemistry B 127. 11 (2023),
pp. 2595–2608.

20

[34] Tristan A Sharp et al. “Machine learning determination of atomic dynamics at grain bound-
aries”. In: Proceedings of the National Academy of Sciences 115. 43 (2018), pp. 10943–10947.

[35] Cristina Caruso et al. “TimeSOAP: Tracking high-dimensional fluctuations in complex molec-
ular systems via time variations of SOAP spectra”. In: The Journal of Chemical Physics 158
(2023), p. 214302.

[36] Martina Crippa et al. “Detecting dynamic domains and local fluctuations in complex molecular
systems via timelapse neighbors shuffling”. In: Proceedings of the National Academy of Sciences
120. 30 (2023), e2300565120.

[37] Pradeep Rai and Shubha Singh. “A survey of clustering techniques”. In: International Journal
of Computer Applications 7. 12 (2010), pp. 1–5.

[38] Alex Rodriguez and Alessandro Laio. “Clustering by fast search and find of density peaks”.
In: Science 344. 6191 (2014), pp. 1492–1496.

[39] Diego Ulisse Pizzagalli, Santiago Fernandez Gonzalez, and Rolf Krause. “A trainable clustering
algorithm based on shortest paths from density peaks”. In: Science advances 5. 10 (2019),
eaax3770.

[40] Inigo Barrio-Hernandez et al. “Clustering predicted structures at the scale of the known protein
universe”. In: Nature 622. 7983 (2023), pp. 637–645.

[41] Eamonn Keogh, Stefano Lonardi, and Bill’Yuan-chi’ Chiu. “Finding surprising patterns in a
time series database in linear time and space”. In: Proceedings of the eighth ACM SIGKDD
international conference on Knowledge discovery and data mining. 2002, pp. 550–556.

[42] Manish Gupta et al. “Outlier detection for temporal data: A survey”. In: IEEE Transactions
on Knowledge and data Engineering 26. 9 (2013), pp. 2250–2267.

[43] Daniel Fernex, Bernd R Noack, and Richard Semaan. “Cluster-based network modeling—From
snapshots to complex dynamical systems”. In: Science Advances 7. 25 (2021), eabf5006.

[44] Lorenzo Albertazzi et al. “Probing exchange pathways in one-dimensional aggregates with
super-resolution microscopy”. In: Science 344. 6183 (2014), pp. 491–495.

[45] Xiaozhe Wang, Kate Smith, and Rob Hyndman. “Characteristic-based clustering for time
series data”. In: Data mining and knowledge Discovery 13 (2006), pp. 335–364.

[46] Martin Längkvist, Lars Karlsson, and Amy Loutfi. “A review of unsupervised feature learning
and deep learning for time-series modeling”. In: Pattern recognition letters 42 (2014), pp. 11–
24.

[47] Naveen Sai Madiraju. “Deep temporal clustering: Fully unsupervised learning of time-domain
features”. PhD thesis. Arizona State University, 2018.

[48] Ali Javed et al. “Somtimes: self organizing maps for time series clustering and its application
to serious illness conversations”. In: Data Mining and Knowledge Discovery (2023), pp. 1–27.
doi: 10.1007/s10618-023-00979-9.

[49] Saeed Aghabozorgi, Ali Seyed Shirkhorshidi, and Teh Ying Wah. “Time-series clustering–a
decade review”. In: Information systems 53 (2015), pp. 16–38.

[50] Eamonn Keogh and Jessica Lin. “Clustering of time-series subsequences is meaningless: im-
plications for previous and future research”. In: Knowledge and information systems 8 (2005),
pp. 154–177.

21

https://doi.org/10.1007/s10618-023-00979-9

[51] Anthony T Bogetti, Jeremy MG Leung, and Lillian T Chong. “LPATH: A Semiautomated
Python Tool for Clustering Molecular Pathways”. In: Journal of Chemical Information and
Modeling 63. 24 (2023), pp. 7610–7616.

[52] timeseries analysis. https://github.com/matteobecchi/timeseries_analysis. 2023.

[53] GMPavanLab GitHub. https://github.com/GMPavanLab/timeseries_analysis. 2023.

[54] onion-clustering. https://pypi.org/project/onion-clustering/. 2024.

[55] JLF Abascal et al. “A potential model for the study of ices and amorphous water: TIP4P/Ice”.
In: The Journal of chemical physics 122 (2005), p. 234511.

[56] Claudio Zeni et al. “Exploring the robust extrapolation of high-dimensional machine learning
potentials”. In: Physical Review B 105. 16 (2022), p. 165141.

[57] Omar A Karim and ADJ Haymet. “The ice/water interface: A molecular dynamics simulation
study”. In: The Journal of chemical physics 89. 11 (1988), pp. 6889–6896.

[58] Zeng Tao Liu et al. “Activity waves and freestanding vortices in populations of subcriti-
cal Quincke rollers”. In: Proceedings of the National Academy of Sciences 118. 40 (2021),
e2104724118.

[59] Trackpy. https://doi.org/10.5281/zenodo.60550. 2016.

[60] John C Crocker and David G Grier. “Methods of digital video microscopy for colloidal studies”.
In: Journal of colloid and interface science 179. 1 (1996), pp. 298–310.

[61] MM Conde, M Rovere, and P Gallo. “High precision determination of the melting points of
water TIP4P/2005 and water TIP4P/Ice models by the direct coexistence technique”. In: The
Journal of chemical physics 147 (2017), p. 244506.

[62] Numpy documentation. https://numpy.org/doc/stable/reference/generated/numpy.
histogram_bin_edges.html#numpy.histogram_bin_edges. 2022.

[63] Zenodo repository. https://zenodo.org/doi/10.5281/zenodo.10638735. 2024.

22

https://github.com/matteobecchi/timeseries_analysis
https://github.com/GMPavanLab/timeseries_analysis
https://pypi.org/project/onion-clustering/
https://doi.org/10.5281/zenodo.60550
https://numpy.org/doc/stable/reference/generated/numpy.histogram_bin_edges.html#numpy.histogram_bin_edges
https://numpy.org/doc/stable/reference/generated/numpy.histogram_bin_edges.html#numpy.histogram_bin_edges
https://zenodo.org/doi/10.5281/zenodo.10638735

Supporting Information for:

“Layer-by-layer” unsupervised clustering of statistically relevant fluc-
tuations in noisy time-series data of complex dynamical systems

Matteo Becchi1, Federico Fantolino1, Giovanni M. Pavan12

Further algorithm details

Identification and selection of the fitting interval

The identification of the correct fitting interval surrounding the histogram maximum is often critical
to ensure not only the convergence, but also the quality of the Gaussian fit. Our algorithm selects
the best fitting interval between two candidate intervals defined as follow:

• The “minima” interval is defined by the positions of the two local minima immediately before
and after the maxima.

• The “half height” interval is determined by identifying the points on either side of the maximum
in the histogram where the histogram reaches half of its maximum height. If the edge of the
histogram is reached before finding a point with half height, the interval will extend up to the
edge.

The fit is then attempted inside both candidate intervals, and (if both fits converge) a quality score
is assigned to the intervals, according to the following desired properties:

• the value of the maximum of the fitting Gaussian is close enough to the value of the maximum
of the histogram;

• the Gaussian mean µ is inside the fitting interval;

• the Gaussian width σ is smaller than the fitting interval;

• the relative uncertainty on each fitting parameter is smaller than 0.5.

Finally, the fitting interval with the highest quality score is selected. If only one of the fits converges,
that one is selected. If none of them converges, a termination condition is met and the algorithm
exits the iterative loop.

Removing strongly overlapping clusters

Once the algorithm has identified the set of candidate environments {En}, all the possible pair of
environments En and Em are compared. If

An

σn
>

Am

σm

(meaning, En has a peak higher than Em), and

|µn − µm| < σn

1Department of Applied Science and Technology, Politecnico di Torino, Torino 10129, Italy
2Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Lugano-

Viganello 6962, Switzerland

23

(meaning, Em is closer to En then En’s typical fluctuation amplitude), then Em is considered
contained in En. Em is thus removed from the list of candidate environments, and all the data
points previously classified inside Em are now consider classified inside En. If Em meets the criteria
for being contained in more that one different environment, the one with the mean closer to µm is
chosen.

24

0 20 40
Time t [ns]

0.02

0.04

0.06

0.08

0.10

tS
OA

P

0 5e7
Counts

ENV1

Iteration 1...

0 1e7 2e7
Counts

ENV2

... 2...

0 1e5
Counts

ENV3

... 3...

0 5e4
Counts

ENV0

... 4

0 5e7
Counts

0 20 40
Time t [ns]

0.02

0.04

0.06

0.08

0.10

tS
OA

P

1 10
Time resolution t [ns]

2

3

4

#
 o

f E
N

Vs

10 100

t [frames]

0

10

20

30

40

Po
pu

la
ti

on
 o

f E
N

V0
 [

%
]

A B C D

E F G

Fig. S1: Clustering on tSOAP signals with ∆t = 10 frames. A: Snapshot of the simulation of
ice/water coexistence; the simulation is performed on 2048 TIP4P/ICE molecules, lasts 50 ns and
it’s sampled every 0.1 ns. B: tSOAP signals for all the oxygen atoms, as a function of time. Data are
smoothed with a rolling average with width of 8 frames. C: Data cumulative distribution function
at the four iterations of the algorithm. The solid lines are the Gaussian best fit of the maximum of
the distribution. The dashed lines are the threshold between the identified clusters. At the fourth
iteration, no data are assigned to the proposed cluster, and the algorithm stops. D: final clustering
of the tSOAP signals. E: Snapshot of the simulation, colored according to the clustering. F: Same
tSOAP signals of panel B; background is colored according to the thresholds given by the clustering
algorithm. G: Blue line: number of clusters identified as a function of the time resolution ∆t; orange
line: percentage of the data points classified in the ENV0 cluster as a function of the time resolution
∆t. The red dashed line at ∆t = 1 ns (10 frames) indicates at which time resolution the analysis
shown in the previous panels was performed.

25

0 20 40
Time t [ns]

0.0

0.2

0.4

0.6

0.8

LE
NS

0 1e7
Counts

ENV1

Iteration 1...

0 1e6
Counts

ENV2

... 2...

0 1e6
Counts

ENV3

... 3...

0 1e5
Counts

ENV0

... 4

0 1e7
Counts

0 20 40
Time t [ns]

0.0

0.2

0.4

0.6

0.8

LE
NS

1 10
Time resolution t [ns]

2

3

4

5

#
 o

f E
N

Vs

10 100

t [frames]

0

20

40

60

80

Po
pu

la
ti

on
 o

f E
N

V0
 [

%
]

A B C D

E F H

Fig. S2: Clustering on LENS with ∆t = 10 frames. A: Snapshot of the simulation of ice/water
coexistence; the simulation is performed on 2048 TIP4P/ICE molecules, lasts 50 ns and it’s sampled
every 0.1 ns. B: LENS signals for all the oxygen atoms, as a function of time. C: Data cumulative
distribution function at the four iterations of the algorithm. The solid lines are the Gaussian best
fit of the maximum of the distribution. The dashed lines are the threshold between the identified
clusters. At the fourth iteration, no data are assigned to the proposed cluster, and the algorithm
stops. D: final clustering of the LENS signals. E: Snapshot of the simulation, colored according to
the clustering. F: Same LENS signals of panel B; background is colored according to the thresholds
given by the clustering algorithm. G: Blue line: number of clusters identified as a function of the
time resolution ∆t; orange line: percentage of the data points classified in the ENV0 cluster as a
function of the time resolution ∆t. The red dashed line at ∆t = 1 ns (10 frames) indicates at which
time resolution the analysis shown in the previous panels was performed.

26

0.0 0.1 0.2 0.3
Time t [ns]

0.1

0.2

0.3

0.4

0.5

0.6

Av
er

ag
e

LE
NS

ENV0
ENV1
ENV2
ENV3
ENV4

Fig. S3: Characterization of the clusters shown in Fig1 in the main text. The plot shows,
for each cluster (ENVs0-4), the average, over all the windows classified in that cluster, of the LENS
signal in the consecutive frames inside the window. The data refers to the clustering performed
with a time-resolution ∆t = 0.4 ns (i.e., 4 simulation frames). The solid dots are the average,
the transparent bands the standard deviation. It can be seen that the clusters ENV1 (in black,
corresponding to solid ice), ENV2 (in red, corresponding to solid/liquid interface), ENV3 (cyan,
corresponding to the majority of the liquid water) and ENV4 (blue, corresponding to liquid water
with high values of LENS) are well separated with respect to their standard deviation. The ENV0
cluster instead (in yellow) includes data windows with high variability, which reflects in its large
standard deviation.

27

0.0 0.2 0.4 0.6 0.8 1.0
dmin [m/ m]

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

50.0s 95.0s 200.0s

20

40

60

80

100

Po
pu

la
ti

on
 o

f E
N

V0
 [

%
]

10 100
Time resolution t [frames]

1

2

3

4

#
 o

f E
N

Vs

A B

C

Fig. S4: Analysis of multivariate data from experimental microscopy video of colloidal
particles, using ∆t = 3 frames. Compare with Fig5 in the main text. A: the algorithm
identifies three environments, in red, blue and green respectively, plus the ENV0 cluster in yellow.
E: Blue line: number of clusters identified as a function of the time resolution ∆t; orange line:
percentage of the data points classified in the ENV0 cluster as a function of the time resolution ∆t.
The red dashed line at ∆t = 3 frames indicates at which time resolution the analysis shown in the
previous panels was performed. F: three snapshots of the video, colored according the clustering
output.

28

Movie S1 MD trajectory of solid/liquid water coexistence used for the analysis of Fig1 in the
main text, colored according to the clustering with ∆t = 0.4 ns. 5 clusters are found; the black
one (ENV1) correspond to solid ice, the red one (ENV2) mainly to the solid/liquid interface, the
cyan (ENV3) and blue (ENV4) ones to liquid water, and the yellow one (ENV0) to the unclassified
points.

Movie S2 The MD trajectory of freezing water at T = 267 K used for the analysis of Fig2 in
the main text, colored according to the clustering with ∆t = 25 ps. 5 clusters are found; the black
one (ENV1) correspond to solid ice, the red one (ENV2) mainly to the solid/liquid interface, the
cyan (ENV3) and blue (ENV4) ones to liquid water, and the yellow one (ENV0) to the unclassified
points.

Movie S3 The MD trajectory of copper 211 surface used for the analysis of Fig3 in the main text,
colored according to the clustering with ∆t = 0.12 ns. 5 clusters are found; the black one (ENV1)
correspond to the atoms in the bulk, the red one (ENV2) to a fraction of the surface atoms, the
orange (ENV3) and cyan (ENV4) ones to atoms sliding on the surface, and the yellow one (ENV0)
to the unclassified points.

Movie S4 Reconstruction of the experimental video used for the analysis of Fig5 in the main
text, colored according to the clustering with ∆t = 5 frames. 4 clusters are found; the red one
(ENV1) correspond to the majority of stationary rollers, the blue one (ENV2) to rollers inside the
wave moving in a coherent and ordered way, the green (ENV3) one to stationary rollers in areas
with exceptionally low particle density, and the white one (ENV0) to the unclassified points, mainly
located before and after the wave.

Dataset S1: timeseries Fig1.npy LENS signals for Fig1 of the main text. The file contains an
array of shape (N,T), where N = 2048 is the number of TIP4P/ICE molecules and T = 500 is the
number of simulation frames.

Dataset S2: timeseries Fig2.npy tSOAP signals for Fig2 of the main text. The file contains
an array of shape (N,T), where N = 2048 is the number of TIP4P/ICE molecules and T = 40000
is the number of simulation frames.

Dataset S3: timeseries Fig3.npz LENS signals for Fig3 of the main text. The file contains an
array of shape (N,T), where N = 2400 is the number of Cu atoms and T = 15270 is the number of
simulation frames.

Dataset S4: timeseries Fig4.npy Synthetic signals for Fig4 of the main text. The file contains
an array of shape (D,N, T), where D = 3 is the number of signal components, N = 2 is the number
of Langevin molecules and T = 10000 is the number of simulation frames.

Dataset S5: timeseries Fig5.npy dmin and ϕ signals for Fig5 of the main text. The file contains
an array of shape (D,N, T), where D = 2 is the number of signal components, N = 6921 is the
number of colloidal particles and T = 311 is the number of video frames.

29

