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Abstract—Networks of coupled nonlinear oscillators are among
the recently proposed computation structures that can possibly
overcome bottlenecks and limitations of current designs. It has
been shown that coupled oscillator networks are capable of
solving complex combinatorial optimization problems, such as
the MAX-CUT problem and the Boolean Satisfiability (SAT)
problem. The goal of this work is to provide a theoretical
framework for designing logic gates based on coupled nonlinear
oscillators. We show how a simplified model for the network
can be derived using the phase reduction technique. The phase
deviation equations obtained are then used to design simple
networks that achieve the desired phase patterns implementing
the corresponding logic gates.

I. INTRODUCTION

For almost a century, the von Neumann architecture has
been the standard reference for the design of electronic com-
puting machines, especially for the general purpose ones. Its
most basic description encompasses an input module, a central
processing unit, a memory bank and an output module. Sets
of instructions (programs) can be written in the memory, and
the processing unit accesses the program and processes input
data performing a sequence of operations, including reading
and writing repeatedly the memory, before ending the program
and returning the output [1].

The von Neumann architecture represents the ideal hard-
ware design of a Turing machine [1], [2], and it inherits its
versatility and limitations. In fact, there is no known design
that can be used to create better artificial general purpose
computing machines and, at the same time, be completely and
deterministically programmable and controllable. The same
design naturally reveals its drawbacks, such as the famous von
Neumann bottleneck [1], dictating that the system throughput
is limited by the data transfer between CPU and memory, as
the majority of the computation energy is used for the data
movement rather than for the actual computation [1].

Recently, novel or rediscovered alternative architectures for
computation have been proposed. Artificial intelligence, deep
learning and artificial neural networks [3], [4], are driving
industry and academia towards new computing architectures
specialized for the training or the inference of neural networks
[5], [6]. For these applications two main approaches exist:
digital, such as Google’s TPU [7], and analogue, as the
memristor crossbar neural networks on chip [8]–[10].

The quest for non-conventional computing solutions has
also recently revived the use of oscillators as building blocks

for both von Neumann and non-von Neumann architectures.
They were initially introduced independently by Goto [11],
[12] and von Neumann [13] in the 1950s. In a network of
nonlinear oscillators, information is encoded in the relative
phase among the oscillators, and basic logic operations are im-
plemented manipulating these phases, exploiting the network
dynamics and couplings [11]–[15]. In the 1960s, machines
called Parametrons implementing the Goto design were built
in Japan [11], [12]. Parametrons saw some successes, but
were soon eclipsed by the rapid growth of digital computers.
Today, the interest is renewed not only because there are many
other modern and more compact ways to integrate oscillators,
ranging from ring oscillators [16] to spin-torque [17] and
laser-based [18] structures and beyond [19]–[24], but also
because coupled oscillators potentially represent a very low
power computing system when employed in von Neumann
architectures [15], [25], [26].

In this paper we present a theoretical framework for the
analysis of networks of coupled nonlinear oscillators, and the
design of logic gates based on this type of dynamical systems.
We give a rigorous definition for the phase of nonlinear
oscillators of arbitrary order, and we show how a phase
equation, defining the time evolution of the oscillators’ phases,
can be derived from the state equations. The phase equation
greatly simplifies the analysis of the network dynamics. In fact
for a network composed by N nonlinear oscillators of order
n, the problem of finding stable synchronous oscillations in
a system of n×N ordinary differential equations (ODEs), is
reduced to the quest of stable equilibrium points in a system
of N ODEs. Stability analysis is simplified as well. Finally,
we show how the phase equation can be used to design logic
gates, implementing a complete set of logic operation. The
procedure is based on a proper design of the couplings between
the oscillators, in such a way that the stable synchronous states
correspond to the desired set of phase relationships among the
oscillators. The logic gates proposed are reciprocal, meaning
that there is no formal distinction between input and output
terminals. For instance for the proposed NOT gate, any of
the two terminals can be used as input, the other becoming
the output. For a three terminals gate, such as an OR or an
AND gate, any pair of terminals can be used as inputs, and
the remaining one becomes the output. We also discuss the
advantages of reciprocal logic gates in terms of scalability
and self-organizing properties of the network.



II. NONLINEAR OSCILLATORS AND PHASE DYNAMICS

We consider nonlinear oscillators described by the ordinary
differential equations (ODEs)

dx

dt
= f(x) (1)

where x : R 7→ Rn is the state of the oscillator, and f : Rn 7→
Rn is a C1(Ω ⊆ Rn) vector valued function that describes the
oscillator’s dynamics. We assume that equation (1) admits of
an asymptotically stable T -periodic solution xs(t) = xs(t +
T ), corresponding to a limit cycle γ in its state space.

The phase of a nonlinear oscillator can be defined intro-
ducing the concept of isochrons. Consider a reference initial
point on the limit cycle x0 ∈ γ, and assign phase zero to
this point φ(x0) = 0. The phase of the solution xs(t) with
initial condition xs(0) = x0, at any arbitrary time instant is
φ(xs(t)) = 2πt/T = ωt, where ω = 2π/T is the oscillator
free running frequency. The isochron based at x0 ∈ γ is
defined as

Ix0
=

{
xα(0) ∈ Rn/γ : lim

t→+∞
||xα(t)− x0(t)|| = 0

}
(2)

That is, the isochron Ix0
is the Rn−1 dimensional manifold

consisting of all the initial conditions xα(0), such that the
trajectories starting from xα(0) eventually meet on γ at x0(t).
We define the phase for points within the basin of attraction
of γ, assigning the same phase to all points belonging to the
same isochron, that is, isochrons are the level sets of the scalar
field φ(x).

To give a complete decomposition of the oscillator’s state
space, we also define a vector valued function R(x) : Rn 7→
Rn−1, representing an amplitude deviation from the limit
cycle. The amplitude deviation is most conveniently measured
on the linear subspace locally tangent to the isochrons on the
limit cycle. Consider an infinitesimal perturbation added to the
vector field, and decompose this perturbation into two com-
ponents: one along the tangent bundle to the limit cycle Tγ ,
and the other along the tangent bundle to the isochron TIx0

.
As long as the perturbation is infinitesimal, the component
tangent to the cycle is responsible for a phase shift, leaving
the amplitude unchanged. Conversely, the component tangent
to the isochron modifies the amplitude, without modifying
the phase. This decomposition allows for a decoupling, up
to linear terms, of the phase and amplitude dynamics [27],
[28]. The coordinate transformation x 7→ (φ,R) is locally
invertible in a small enough neighborhood of the limit cycle,
and by their very definitions

dφ

dt
= ∇φ(x) · f(x) = ω (3)

and R(x)→ 0 for t→ +∞.
A network composed by N coupled nonlinear oscillators

can be conveniently described by the ODEs (from now on,
subscripts will identify the oscillator)

dxi
dt

= f(xi) + ε

N∑
j=1

gij(xi,xj) i = 1, . . . , N (4)

where ε � 1 is a parameter that measures the coupling
strength, and gij : Rn×n 7→ Rn are vector fields describing
the coupling between the i-th and the j-th oscillators. For
the sake of simplicity, we have assumed that all oscillators
are identical (the vector field f is the same for all the
oscillators) and that only pairwise couplings occur. The theory
can be generalized to more complicated structures composed
by nonidentical oscillators and to couplings involving more
than two arguments.

Introducing φi(xi) and Ri(xi), representing the phase and
amplitude of the i-th oscillator, respectively, it is straightfor-
ward to derive

dφi
dt

= ω + ε

N∑
j=1

Γi,j(φi, φj ,Ri,Rj) (5a)

dRi

dt
= Fi(φi,Ri) + ε

N∑
j=1

Gij(φi, φj ,Ri,Rj) (5b)

where, taking into account that xi = xi(φi,Ri),

Γij(φi, φj ,Ri,Rj) =
∂φi
∂xi
· gij(xi,xj) (6)

Fi(φi,Ri) =
∂Ri

∂xi
f(xi) (7)

Gij(φi, φj ,Ri,Rj) =
∂Ri

∂xi
gij(xi,xj) (8)

and ∂Ri/∂xi is the Jacobian matrix of partial derivatives.
The asymptotic stability of the limit cycles implies that,

for small values of ε, the amplitude deviation remains close
to zero. Therefore, it is common assuming Ri ≈ 0 for all
i = 1, . . . , N , and the phase equation (5a) becomes

dφi
dt

= ω + ε

N∑
j=1

Γij(φi, φj) (9)

Introducing the phase deviation ψi = φi − ωt yields

dψi
dt

= ε

N∑
j=1

Γij(ψi + t, ψj + t) (10)

For small values of ε, the phase deviation is a slow (nearly
constant) variable. Time averaging over one period does not
introduce a large error, and leads to the averaged phase
deviation equation

dψi
dτ

=

N∑
j=1

Γij(ψj − ψi) (11)

where τ = εt is the slow time, and

Γij(ψj − ψi) =
1

T

∫ T

0

Γij(ψi + t, ψj + t) dt (12)

The coupling function Γij is periodic, as periodic functions
are its arguments. Moreover, symmetry considerations imply
that, in many practical situations, it is also an odd function,
and therefore it can be expanded into a Fourier sine series. If



it also low-pass, retaining only the leading terms of the series
leads to the celebrated Kuramoto model

dψi
dt

= ε

N∑
j=1

γij sin(ψj − ψi) (13)

where the coupling parameters γij are the coefficients of the
two variables Fourier series.

III. LOGIC GATES BASED ON COUPLED OSCILLATORS

We shall choose an oscillator as a reference, and we shall
measure all phase deviations with respect to the its phase φR,
that is

ψi = φi − φR (14)

In logic gates based on nonlinear oscillators, bits of informa-
tion are encoded into the phase deviations. A phase deviation
ψi = 0 corresponds to logic state 0, whereas ψi = π
correspond to logic state 1. Information is manipulated through
the oscillator dynamics and the couplings. The design of the
logic gates proceeds as follows:

• Determine the phase pattern (stable equilibrium points
of the phase deviation equation) corresponding to the
desired truth table;

• Determine the phase deviation equation, and in particular
the couplings, providing the desired phase pattern;

• Find the network of coupled oscillators implementing the
desired phase deviation equation.

A. NOT gate

Consider the phase deviation equations

dψi
dt

=ρ sin(ψi − ψj)− γ sin(ψi − ψDi
) (15a)

dψj
dt

=ρ sin(ψj − ψi) (15b)

where ρ and γ are real valued positive parameters, and ψDi

represents the phase deviation of an external driving signal,
used to set the state of oscillator i.

Theorem 1 (NOT gate): The phase deviation equations (15),
with ρ > 0 and γ > 0 admit the asymptotically stable
equilibrium point ψi = ψDi , ψj = ψDi + π.
Proof : Equations (15) admit the equilibrium points ψi =
ψDi + kiπ, ψj = ψi + kjπ, with ki, kj = 1, 2, . . .. The
Jacobian matrix at ψi = ψDi , ψj = ψDi + π has determinant
det(J) = ρ γ, and trace Tr(J) = −2ρ − γ implying that the
eigenvalues are both real and negative. By Hartman-Grobman
theorem, the equilibrium is locally asymptotically stable. �

Similar arguments show that the other equilibria, for ex-
ample ψi = ψj = ψDi

or those involving ψi = ψDi
+ π,

are asymptotically unstable. Therefore the phase deviation
equations (15) implements a NOT gate, where i-th oscillator
locks in phase with the external driving ψDi , and thus with the
same logic state, while j-th oscillator locks to the driving with
phase shift equal to π, and thus to the opposite logic state.

B. AND gate and OR gate

To form a complete set of logic gates, AND gate and
OR gate have to be designed. This can be done designing
a MAJORITY gate. MAJORITY gate is a three inputs, one
output gate, that realizes either an AND gate, or an OR gate.
Consider a network composed by three nonlinear oscillators
denoted by i, j and k, subject to three external driving signals.
The first driving signal, denoted by ψD, is applied to all three
oscillators, its role being to determine the behavior of the
MAJORITY. For ψD = 0 the MAJORITY gate works as an
AND, while for ψD = π it works as an OR. The other two
drivings are applied to two oscillators, for example oscillators
i and j, while oscillator k represents the output terminal.
Consider the phase deviation equations

dψi
dt

=− γi sin(ψi − ψDi
)− γ sin(ψi − ψD)

− γ
∑
m=j,k

sin(ψi − ψm) (16a)

dψj
dt

=− γj sin(ψj − ψDj
)− γ sin(ψj − ψD)

− γ
∑
m=i,k

sin(ψj − ψm) (16b)

dψk
dt

=− γ sin(ψk − ψD)− γ
∑
m=i,j

sin(ψk − ψm)

Theorem 2 (AND gate): Consider the phase deviation equa-
tion (16), with ψD = 0 and γi = γj > γ > 0. Then:

1) If ψDi
= ψDj

= 0, then ψi = ψj = ψk = 0 is an
asymptotically stable equilibrium point.

2) If ψDi
= π, and ψDj

= 0 (respectively ψDi
= 0, and

ψDj = π), then ψi = π, ψj = ψk = 0 (respectively
ψj = π, ψi = ψk = 0) is an asymptotically stable
equilibrium point.

3) If ψDi
= ψDj

= π then ψi = ψj = ψk = π is an
asymptotically stable equilibrium point.

Proof : Equilibrium points of the phase deviation
equations are readily found. Consider function
V : [0, 2π[×[0, 2π[×[0, 2π[ 7→ R

V (ψi, ψj , ψk) = −(γi cosψDi + γ cosψD)(cosψi +Ni)

− (γj cosψDj + γ cosψD)(cosψj +Nj)

− γ cosψD(cosψk +Nk)− γ[cos(ψi − ψj)

+ cos(ψi − ψk) + cos(ψj − ψk)

+Nij +Nik +Njk] (17)

where

Nα =

 +1 if ψα = π

−1 if ψα = 0,
(18)

Nαβ =

 +1 if ψα − ψβ = ±π

−1 if ψα − ψβ = 0,
(19)



Function V (ψi, ψj , ψk) is a strict Lyapunov function, thus the
equilibrium points mentioned in the theorem are asymptoti-
cally stable. �

The stable phase patterns of theorem 2 correspond to the
truth table of an AND gate as required. Proving that all other
equilibrium points of the phase deviation equations are unsta-
ble is more involved, and it is currently under investigation.

Theorem 3 (OR gate): Consider the phase deviation equation
(16), with ψD = π and γi = γj > 2γ > 0. Then:

1) If ψDi
= ψDj

= 0, then (ψi = ψj = ψk = 0 is an
asymptotically stable equilibrium point.

2) If ψDi = 0, and ψDj = π (respectively ψDi = π, and
ψDj = 0), then ψi = 0, ψj = ψk = π (respectively
ψj = 0, ψi = ψk = π) is an asymptotically stable
equilibrium point.

3) If ψDi
= ψDj

= π then ψi = ψj = ψk = π is an
asymptotically stable equilibrium point.

Proof : The proof is completely analogous to theorem 2. �
Similarly to theorem 2, theorem 3 establishes a set of phase

patterns corresponding to the truth table of an OR gate. Again,
proving that the desired pattern is the unique stable equilibrium
point is very complicated, and require further analysis.

An important aspect to be mentioned is that the logic gates
based on coupled nonlinear oscillators are reciprocal.

Definition 1 (Reciprocal logic gate): A logic gate is recip-
rocal if any terminal can be used as an input or as an output,
indifferently.
For example, in the AND gate and in the OR gate oscillators
i and j were used as inputs (by the application of the driving
signals to set their states), and oscillator k has been used as
the output. It is trivial to see, by simple symbol permutation,
that the driving signals can be applied to any set {i, j}, {i, k}
or {j, k}, with the remaining oscillator working as the output.

IV. CONCLUSIONS

In this contribution we have presented a general framework
for the design of logic gates implemented through coupled
nonlinear oscillators. The design procedure is based on a phase
reduction of the state equations of the coupled oscillators, that
allows for a simplified description of the oscillator dynamics
as far as the coupling is feeble. By defining an oscillator as
a reference to measure phase deviations, we have shown the
conditions that allow for the implementation of a complete set
of logic operations (NOT, AND and OR). These gates share
the important property of reciprocity, meaning that the input
oscillators can be chosen at will among the ones forming the
gate, thus leaving the remaining oscillator as the output.
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