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CONFIDERAI: a novel CONFormal
Interpretable-by-Design score function for

Explainable and Reliable Artificial Intelligence
Alberto Carlevaro †, Sara Narteni∗†, Fabrizio Dabbene, Marco Muselli and Maurizio Mongelli

Abstract—Everyday life is increasingly influenced by artificial intelligence, and there is no question that machine learning algorithms
must be designed to be reliable and trustworthy for everyone. Specifically, computer scientists consider an artificial intelligence system
safe and trustworthy if it fulfills five pillars: explainability, robustness, transparency, fairness, and privacy. In addition to these five, we
propose a sixth fundamental aspect: conformity, that is, the probabilistic assurance that the system will behave as the machine learner
expects. In this paper, we propose a methodology to link conformal prediction with explainable machine learning by defining
CONFIDERAI, a new score function for rule-based models that leverages both rules predictive ability and points geometrical position
within rules boundaries. We also address the problem of defining regions in the feature space where conformal guarantees are
satisfied by exploiting techniques to control the number of non-conformal samples in conformal regions based on support vector data
description (SVDD). The overall methodology is tested with promising results on benchmark and real datasets, such as DNS tunneling
detection or cardiovascular disease prediction.

Index Terms—Conformal Prediction, Explainable AI, Conformal Critical Regions, Error Control, Rule Based Models, SVDD.

✦

1 INTRODUCTION

T Rustworthy Artificial Intelligence (AI) is an umbrella-
term that gained increasing importance in recent

years to establish the requirements of real-world AI
systems for their proper design, development and de-
ployment. Among its principles, explainability (or trans-
parency) and technical robustness and safety (or reliabil-
ity) have an essential role [1]. Explainability allows each
actor involved to understand the reasoning behind any
machine learning (ML) decision. There is a plethora of
techniques to achieve explainability today, falling under
the eXplainable AI (XAI) research theme [2]. At a high
level, the main categorization of XAI distinguishes post-
hoc explanations of black box models and transparent-by-
design techniques [3]. The latter category includes rule-
based models, where predictions are characterized by
easy-to-understand decision rules (often expressed in the
if-then format).
Nevertheless, even though very helpful thanks to their
native interpretability, rule-based models alone are not
enough to ensure a correct performance of the model.
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Therefore, many approaches have been proposed so far
to guarantee the safety of ML models [4], [5], also relying
on (or devoted to) XAI methodologies [6], [7], [8], [9].
Among them, conformal prediction (CP) stands out with
its solid mathematical foundation, that allows to generate
prediction sets with predefined probabilistic guarantees
for any ML model [10]. However, as discussed in Section 2,
we were not able to find in the current literature works
specifically focusing on CP for transparent-by-design XAI
models. Motivated by this observation, in this paper we
investigate this topic, by proposing an innovative score
function that enables CP for rule-based models. On the
other hand, various studies exploit CP to perform false
positives or negatives control. For example, [11] proposes
a multi-label conformal prediction approach in which the
false positive rate is probabilistically controlled by requir-
ing prediction sets to eliminate non-conformal points. [12]
inserts the performance control directly on the expected
value of any loss function and [13] introduces the concept
of safety score that warns the system when a predefined
level of error is reached.
In our work, which is the multidimensional extension of
our previous work [14], we will pursue the same objective
by defining a set in which the performance on a target
class is guaranteed by the score function of the conformal
prediction itself. Specifically, we introduce a conformal
critical set containing target points with high guarantees
provided through the CP.
From this set, a region in the feature space is constructed
through a binary classifier that distinguishes between
conformal-critical points (i.e., those belonging to the con-
formal critical set) and non-conformal/non-critical points
(not belonging to the set) and, in this case, a false positive
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control is applied (i.e., non-conformal/non-critical points
predicted as conformal-critical points) as in [15].

1.1 Contribution

Based on the above considerations, in our viewpoint,
combining CP framework with XAI is thus essential in the
direction of trustworthy AI. However, this topic is little
explored in current literature, hence our paper attempts
to address such a research gap through the following
contributions:

• We design and develop CONFIDERAI, a new score
function that allows to build conformal predictors
for rule-based models, by leveraging the combi-
nation of the global performance properties of
decision rules (i.e., their covering and error) and
the geometrical position of the points inside rule
boundaries.

• We introduce the concept of conformal critical set,
i.e., the set of target points for which CON-
FIDERAI indicates high probabilistic guarantees of
the underlying ML model. Moreover, by exploiting
SVDD-based techniques for the false positives con-
trol, we individuate conformal critical regions char-
acterized by the largest number of target points
and the minimum non-target points, thus ensuring
further precision of the decision-making algorithm.

The remaining of the paper is structured as follows:
Section 2 reports existing approaches concerning CP and
XAI models, with particular focus on rule-based ones;
Section 3 introduces the fundamentals of conformal pre-
diction framework and provides the mathematical defi-
nition of the Conformal Critical Set; Section 4 describes
our core contribution, the CONFIDERAI score function,
along with simple toy examples to provide the reader
with a visual intuition on how the score works; Section 5
describes the fundamental properties of the specific rule-
based model adopted in our case studies, i.e., the Logic
Learning Machine (LLM); Section 7 reports and discusses
the application of the proposed approach on relevant
benchmarks and real-world datasets; finally, Section 8
concludes the paper.

2 RELATED WORKS

As anticipated, conformal prediction for XAI models is
still little investigated in research. Authors in [16] pro-
posed the application of conformal predictors for eval-
uating the confidence of tree ensemble models, such as
random forests. Also, [17] studied CP for random forests
in a multi-label classification scenario. Standard inductive
conformal prediction (ICP) for classification through de-
cision tree models is investigated in [18], and the same
authors [19] present such a framework to perform rule
extraction with guarantees, either considering rule extrac-
tion for opaque models or rule extraction using opaque
models. Recently, in [20], [21], the same approaches were
extended to regression tasks. In all cases, authors define
a conformity function based on the margin between true
and predicted target probability estimates.

Even more recently, [22] introduced a conformal decision
rule learning algorithm, where rule generation and Mon-
drian conformal prediction [23] processes are combined
together, by devising a separate ICP on each rule at hand.
Given unseen test samples satisfying a generic rule of
any XAI model, conformal decision rules provide a point
prediction according to the consequent of the rule and a
prediction set based on the results of conformal prediction
for that rule. Another study [24] involves the combination
of rule-based models and CP frameworks for multi-label
classification, by defining a conformity score that, for
any candidate point, depends on the predictive quality
of the top-performing rule. However, compared to our
work, this score does not take into account the different
position of instances within rule geometrical shape. To the
best of our knowledge, no previous study of these type
address score functions and quantile, tailored for rule-
based models (Sec. 3-4 here).

3 CONFORMAL PREDICTIONS AND CRITICAL
SETS

Theory behind CP is substantially based on two,
exchangeable, approaches: either i) (non)-conformity
measure and p-value as in [10] or ii) score functions
and quantile as in [25]. As already pointed out, these
two methodologies are actually the same but, in our
opinion, the use of score functions and quantile is of more
efficiency to understand properly the potential of XAI in
CP, since score function links directly the conformal sets
with the model. Moreover, we introduce a slightly new
concept, the conformal critical set, that allows to insert CP
in a more safety-based context. As a matter of fact, our
aim is to define a subset of the input feature space in
which probabilistic guarantees can be provided to the ML
model and to exploit explainable techniques to make it a
fully trustworthy and easy-to-understand model.

Let X be a measurable feature space and Y be the output
space. We here consider the case of binary classification,
with Y = {0,+1}. Note that this choice of labels is
without loss of generality, since any binary classifier can
be converted to these labels. Conformal prediction states
that, for any machine learning model f̂(x)y : X −→ Y ,
it is possible to define a score function s : X × Y −→ R,
which depends in some suitable way from the model:

s(x, y) ∼ f̂(x)y.

The score function should be designed so that larger
scores encode worse agreement between point x and
label y.

In our context, we assume that the label +1 denotes the
target class S, which is to be interpreted as the presence
of critical situations in the system. The label 0 refers to
the non-target class instead, which denotes the absence
of such conditions.
Remark 3.1 (On the meaning of critical points). Note that
the meaning of the term “critical” is context-dependent.
For example, in a situation in which safety is of paramount



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 3

importance, i.e. for instance in the case of collision avoid-
ance, one may be interested in finding regions of the
feature space where collision is avoided with high proba-
bility. In this case, the terms “critical” and “safe” may be
seen as synonyms*. On the other hand, there are cases in
which one would like to report only critical cases when
the probability of failure is very high, so to avoid false
alarms. In this case, the class +1 would correspond to the
“failure” case.

On the basis of the score function, a prediction set at level of
confidence 1− ε, ε ∈ (0, 1), can be defined for any x ∈ X :

Cε(x) = {y | s(x, y) ≤ sε} ∈ 2Y , (1)

where sε is the ⌈(nc + 1)(1 − ε)⌉/nc quantile of the score
values computed on a calibration set Zc

.
= {(xi, yi)}nc

i=1 , of
size nc. The prediction set guarantees the marginal coverage
property

1− ε ≤ Pr{y ∈ Cε(x)} ≤ 1− ε+
1

nc + 1
, (2)

where “marginal” means that the probability is averaged
over the randomness of the calibration set.
Keeping in mind all the above considerations on how
to properly set a conformal prediction, we define the
conformal critical set (CCS) at confidence level 1−ε the subset
Sε ⊆ X as follows:

Sε =

{
x | s(x,+1) ≤ sε, s(x, 0) > sε

}
. (3)

In words, the CCS is a subset of the input space where
the prediction set is composed by only unsafe points
(x,+1). This means that the model f̂ is likely to make
safe predictions for inputs in Sε with a specified level of
error ε.

3.1 Explicit bounds on the sample complexity of the
calibration set
It should be remarked that the choice of the size of the
calibration set is of crucial importance, since its affects the
conformal prediction. The point is that the probability in
equation (2) can vary by sampling differently the calibra-
tion set. However, [26] introduces the concept of (E, δ)-
validity, i.e., given δ ∈ (0, 1) and E ∈ (ε, 1), it holds that

Pr
z1,...,znc

{
Pr{y ∈ Cε(x)} ≥ 1− E

}
≥ 1− δ. (4)

(E, δ)-validity guarantees that, on average, the proportion
of errors made by the conformal prediction is bounded by
E, with a probability of at least 1 − δ. In practical terms,
this means that if we were to repeat the prediction process
multiple times on different calibration sets, the average
proportion of errors made by the conformal prediction
should not exceed E, and the probability of observing an
error larger than E should be at most δ.

We note here that the above concepts allow the number of
samples (i.e. the so-called sample complexity) in the calibra-
tion set to be chosen operationally. Indeed, introducing

*In this case, the label +1 will denote no collision, and 0 will
correspond to collision.

the notation B(n;N, p) for the binomial of n trials and
probability of success p, it is shown in [26] that (4) is
guaranteed if:

B (ν;nc, E) ≤ δ, (5)

with
ν

.
= ⌊(E(nc + 1)− 1⌋.

An important observation is that one can then exploit
recent results obtained in the field of chance-constraint
approximation to derive explicit bounds on the number of
samples necessary to guarantee the desired probabilistic
properties. Indeed, from [27, Theorem 1], it is easy to see
that (5) is guaranteed if we choose

nc ≥
1

E

(
ν + ln

1

δ
+

√
2ν ln

1

δ

)
(6)

which [28] proves to be satisfied by sampling

nc ≥
7.47

E
log

1

δ
(7)

independent and identically distributed (i.i.d.) samples.
Remark 3.2. In what follows, we identify E with ε. Al-
though this may not match (ε, δ)−validity, it simplifies
the calculations inherent to the desired score function. We
use the identification E = ε for the sake of operativity,
thus applying (7) directly. A more accurate setting would
investigate how E should be chosen in the interval (ε,
1) under the (ε, δ)−validity constraint and consequently
deriving nc under the bound in Equation (7). Such a
setting is currently under study.

4 RULE-BASED CONFORMITY

In the conformal prediction framework, as stated in Sec-
tion 3, any score function value s(x, y) is higher for any
label y that is less likely to be the correct prediction for
the considered point x. In this work, we aim at designing
a new score function suitable for rule-based machine
learning models.

4.1 Rule-based models notation
Before going into the design details, let us briefly describe
the main characteristics and notation of rule-based mod-
els.
Let us consider an input example space for classification
T = {(xj , yj)}Nj=1 ∈ X × Y, with x = (x1, x2, . . . , xd) ∈
RD and y ∈ {0, 1}.
A rule-based binary classifier g : X −→ Y is expressed
by a set of decision rules R = {rk}Mr

k=1 in the following
form: if premise then consequence. The premise constitutes
the antecedent of the rule and is a logical conjunction (∧)
of conditions cik , with ik = 1k, . . . , Nk.
Any condition cik corresponds to one of the following
intervals:

1) xπ(i) ≥ lik
2) xπ(i) ≤ uik

3) lik ≤ xπ(i) ≤ uik

where lik , uik are proper numerical thresholds deter-
mined by the learning algorithm and π : N −→ N denotes
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the permutation of the indexes of the feature vector x that
associates the rule ith condition with the corresponding
feature component. Finally, the consequence expresses the
output class of the decision rule.

Another useful concept in rule-based learning is the no-
tion of rule relevance, assigning to each rule a value in the
[0,1] range which resembles its predictive ability. Specifi-
cally, it is computed by combining the covering C(rk) and
error E(rk) metrics (commonly known as True Positive
Rate and False Positive Rate of the rule, respectively),
defined as follows:

C(rk) =
TP (rk)

TP (rk) + FN(rk)
(8)

E(rk) =
FP (rk)

TN(rk) + FP (rk)
(9)

Denoting with ŷj the class label predicted by the rule
rk for point (xj , yj), TP (rk) and FP (rk) are defined
as the number of instances that correctly and wrongly
satisfy rule rk, being ŷj = yj and ŷj ̸= yj respectively;
conversely, TN(rk) and FN(rk) represent the number of
samples (xj , yj) which do not meet at least one condition
in rule rk, with ŷj ̸= yj and ŷj = yj , respectively.
Then, rule relevance R(rk) of rule rk can be found as:

R(rk) = C(rk) · (1− E(rk)) (10)

4.2 CONFIDERAI score function

Given a rule rk generated by a rule-based model after
training, and predicting an output class y, it implies a
hyper-rectangle as a decision boundary in the feature
space (being defined by the premise of the rule). The
closer a point covered by rk is to this boundary, the higher
is its probability of being wrongly covered by the rule.
Conversely, points lying inside the rule hyper-rectangle,
but farther from the boundary are most probably well
conforming to the rule output. So we have to take into
account a score that penalizes more the points closer to
the classification boundary. For this reason, we introduce
the quantity γ = γ(x, rk) defined as:

γ =
Nk∑
i=1

(
1

d−i (x, cik)
+

1

d+i (x, cik)

)
, (11)

where

d−i (x, cik) = |xπ(i) − lik | and d+i (x, cik) = |xπ(i) − uik |

and φ(d) : R → R being a monotonically decreasing
(scalar) function.
In the sequel, we will let φ(d) = 1

d , but other choices are
possible. For example, one could set φ(d) = exp(−αd).
In this way, a variation on α leads to a variation on the
velocity of descent, allowing to control it properly.

In order to compute both d−i and d+i when either lik or uik

are missing, i.e., when condition cik assumes, respectively,
the second or the first form described in Section 4.1, the
minimum and maximum value of feature xπ(i) across the
dataset is considered.

Example 4.1. To give the reader a complete understanding
of the γ factor, consider the following two-dimensional
example as in Figure 1. In this case, the green point should
be more conformal than the red point, since its position is
farther from the boundaries of the rule. Then, the γ factor
associated with x1, γ1, should be smaller than the one
associated with x2, γ2:

γ1 =
2∑

i=1

(
1

d−i (x1, cik)
+

1

d+i (x1, cik)

)
=

1

8
+

1

14
+

1

4
+

1

6
=

103

168
= 0.6131

γ2 =
2∑

i=1

(
1

d−i (x2, cik)
+

1

d+i (x2, cik)

)
=

1

18
+

1

4
+

1

2
+

1

8
=

67

72
= 0.9306

Figure 1. Example of γ factor construction for a two-dimensional
feature vector x = (x1, x2).

Finally, we apply the sigmoid function to γ so that its val-
ues vary in the [0, 1] range, thus obtaining the following
term:

τ(x, rk) =
1

1 + e−γ
, (12)

which is used in combination with rule relevance to define
a score for point x and class label y:

s(x, y)
.
=

∑
rk∈Ry

x

τ(x, rk)(1−R(rk)), (13)

where the sum is on the set Ry
x of rules predicting label y

and verified by the input point x.
Remark 4.1. The presence of the sum term brings the
assumption that multiple rules can overlap. However, the
proposed score function does not lose generality and re-
mains valid even for models resulting in non-overlapping
rules: in this case, ruleset Ry

x will have cardinality fixed to
one.

In this way, the introduced score takes into account both
the geometrical position of points with respect to rule
boundaries and, by depending on rule relevance, the
predictive ability of the rules. The latter contribution is
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(a) (b) (c)

(d) (e) (f)

Figure 2. Toy example showing rule relevance contribution to the score function

expressed through the term (1 − R(rk)) (and not directly
through R(rk)) in order to keep the score low when
classification has better performance, that is when rule
relevance is higher. To better show this behavior, an il-
lustrative example is shown in the next Section 4.3.

4.3 Toy Examples in 2D

To point out the contribution of rule relevance on the score
values, we designed a simple yet explicative example.
Let us consider a bidimensional feature space formed by
features X1 and X2, and suppose that a rule rk is learned
on such a space, being characterized by the following
premise:

1 ≤ X1 ≤ 10 ∧ 1 ≤ X2 ≤ 10

Assuming these thresholds fixed, the geometrical bound-
aries of the rule remain unchanged and Figure 2 shows
the effect of increasing relevance values of rk (from 0 in
Fig. 2a to 1 in Fig. 2f). By looking at the figure, we can
observe that when R(rk) ≤ 0.5, the score values mainly
depend on the geometrical contribution defined by Eq.
11 and 12: indeed, points that are closer to rule bound-
aries are well distinguishable to the others. Conversely,
as relevance grows (R(rk) = 0.7), its contribution gets
more significant, by lowering the score value even for
points that lie close to the boundaries. This is even more
pronounced in the extreme case of R(rk) = 1, where
the predictive ability of the rule would be so high that
it overwhelms the geometrical contribution.
In practice, this design choice handles the possible case
when multiple rules have the same geometrical shape

(in terms of aspect ratio of their boundary), but different
relevance value. As shown in Fig. 3, two points (red
cross) located at the same distance to the respective rule
boundary are scored with a higher value when the rule
has a low relevance (left rectangle), and, viceversa, a lower
value when the relevance is high (right rectangle).

Figure 3. Toy example showing two rules rk, k = {1, 2} with relevance
R(r1) = 0.3 and R(r2) = 0.9, respectively, whose boundaries share
the same aspect ratio. The red cross point in r1 has a higher score
than the one in r2.
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5 LOGIC LEARNING MACHINE

The rule-based model adopted in our work is the Logic
Learning Machine (LLM), designed and developed by
Rulex† as a more efficient variant of Switching Neural
Networks [29]. Rule generation through LLM takes place
in three steps: first, the process starts by discretizing the
features and binarizing them via the inverse-only-one
coding. The resulting binary strings are then concatenated
into a single large string representing the considered
samples. Subsequently, shadow clustering is used to build
logical structures, called implicants, in the Boolean lattice,
which are finally transformed into sets of conditions and
combined into a collection of intelligible rules [30], [31]. It
is worth underlying that the LLM design process is thus
based on an aggregate-and-separate approach [32] able to
generate a set of rules that can overlap. As a result, an
input sample x may verify multiple rules predicting the
same class label and it even may cover rules predicting
different output classes.
Let us denote with Rx the set of all rules satisfied by
x. LLM class assignment is then performed based on
relevance values.
Specifically, given a generic point x, and the set Ry

x of
rules predicting label y and verified by the point, a class
label ŷ is assigned to x by solving the following problem
[33]:

ŷ = argmax
y

( ∑
r∈Ry

x

R(r)

)
(14)

The topical issue in the conformal framework relies on
the fact that the predictions ŷ in (14) are not exploited
directly as they do not provide any guarantee alone (on
the reliability of label assignments). They rather drive the
search of guaranteed subspaces of data, on the basis of
the set of predictions in Cε(x). This is the argument of the
following section.

6 FROM CONFORMAL CRITICAL SETS TO CON-
FORMAL CRITICAL REGIONS

As per Equation 3, a conformal critical set at a fixed ε
can be identified. Subsequently, test points belonging to
this set can be labelled as conformal-critical, providing a
new way to look at the dataset. Indeed, we can train a
new classifier to individuate the largest region of only
conformal-critical points as possible, i.e., a Conformal Critical
Region (CCR), that is a good approximation of the CCS
defined in (3).
The conformal-critical points enclosed in these regions
thus constitute the set of points with label +1 for which
the classification is statistically validated. The identifica-
tion of their boundaries proves very important in real
applications, since going outside of them identifies a zone
in the feature space where the correct classification of
+1 points is no more guaranteed, hence other solutions
should be sought, such as another training configuration,
another model, etc. In light of the Trustworthy AI princi-
ple of technical robustness and safety, this result is crucial.

†https://www.rulex.ai

6.1 Examples
Some examples may help understand. In case of a dynam-
ical system (e.g., robots moving in a given environment,
vehicle approaching specific maneuvers), the critical re-
gion may represent the subsets of states in which the
application is considered safe (e.g., collision avoidance
states, as to the vehicle platooning considered in the
performance evaluation section). Finding those subsets
may be a hard task in many practical situations and only
data driven solutions are applicable (e.g., platooning is
again a good example in that respect). On the other hand,
those solutions need some guarantee and this is where
the conformal framework comes into play. It consists of
finding the regions with zero (or at least controllable) false
negatives of (predicted) safety states, namely, the zones in
which the dynamical system may move without experi-
encing any danger (such as collision with other agents or
obstacles). The conformal critical set gives such an assur-
ance. The safety engineer knows that the AI application
has been properly designed as soon as the trajectories lye
within that set. Characterizing the boundaries of the set
is even more important in order to trigger appropriate
alarms before any danger may take place.
Other examples may be provided with respect to the
control of false positive rate. A first example deals with cy-
bersecurity. In many cases, the alarms inherent to ongoing
attacks lead to severe digital (sometimes even physical)
countermeasures, such that security analysts want to be
sure that an attack is really in play before unleashing
all the necessary restrictions. In that respect, the con-
formal critical set profiles the conditions of the system
(a network or a critical infrastructure) surely associated
with the presence of attack (i.e., zero false positive). A
second example deals with disease diagnosis by AI, as
being made on the basis of clinical data over a population
of patients (in comparison with healthy individuals). In
this case, positive answer by the AI means the disease
is predicted; false positive means the prediction was not
realistic (e.g., after additional exams, the inauspicious di-
agnosis becomes invalidated). Circumventing the cases in
which patients are surely affected by the disease is of great
interest, also in respect to differentiating them with re-
spect to the other cases where the disease prediction does
not lie in the conformal borders. In the latter situation,
additional exams should be even more urgent to settle the
matter (disease or not disease). We believe the reader may
think to many other circumstances of analogous practical
interest.

6.2 Approximating the conformal critical sets
The construction of conformal critical regions is model-
agnostic, i.e. it is possible to use any binary classifier that
individuates conformal-critical points, obtaining a region
S̃ε that approximates the CCS Sε. However, it should be
pointed out that our target is to construct closed and
well defined sets. In this perspective, a good model is
the Support Vector Data Description [34], a variation of
the well-known SVM, since it is able to define closed
envelopes enclosing target points (i.e. conformal-critical)
controllable by a radius and a center. In this case, a

https://www.rulex.ai
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gaussian-kernel based SVDD has been trained to separate
and characterize the conformal-critical points. Moreover, a
technique to minimize the number of misclassified points
inside the conformal critical region was adopted as in [15]
by performing successive iterations of SVDD inside the
classification boundary (SafeSVDD, or SSVDD in short). In
this case, since conformal critical regions must guarantee
the highest level of confidence as possible, the number
of false positives (i.e. non-conformal/non-critical points
wrongly classified as conformal-critical points) has been
minimized. We also remark that this kind of control is
equivalent to ensuring that the minimum number of non-
target points remains within the CCR.

Remark 6.1. What we obtain with the CCR S̃ε is only a
(good) approximation of the conformal critical set, i.e. a
region where conformity is expected but not guaranteed.

In the following we present a pseudo-code to describe the
algorithm for the construction of the CCR. But first, let us
indicate with n+ the number of critical points (i.e. labelled
with +1) in the calibration set, and with n0 the non-critical
ones. We have then nc = n+ + n0. Moreover we indicate
with the acronym FPR the false positive rate. ‡

Algorithm 1 Conformal Critical Region
Input Critical class calibration set (x1,+1),
(x2,+1), . . . , (xn+

,+1), conformal critical set Sε,
threshold on FPR η.
Output CCR S̃ε.

1: Classify

xi −→
{
+1 if xi ∈ Sε

−1 otherwise

and create a new dataset

X × Ỹ = {(xi, ỹi) | ỹi ∈ {−1,+1}} .

2: Train a binary classifier on X × Ỹ (e.g. SVDD).
3: While FPR < η, control the misclassification
error (e.g. SSVDD as in [15]).
4: If FPR < η then output S̃ε.

We remark again that the procedure to obtain a CCR
is model-agnostic, i.e. in principle it is possible to use
any (binary) classifier. We decided to use SVDD (and its
controllable version SSVDD as in [15]) because it already
contains in its definition the property of defining closed
regions: since our intention is to contour critical points,
we evaluated it to be the most suitable choice for an initial
evaluation of our method.
As final remarks, it is worthy to underline that CCRs
represent an applicative tool to assess conformity in real
contexts, where the aim is to individuate an envelope
with high probabilistic guarantees on a specific class of
interest. Indeed, the introduced CCS and the related new

‡We are interested in FPs since our target (critical) class is labelled
with +1. Since our intention is to find a region that contains the high-
est number of conformal-critical points (+1) we want to minimize the
number of non-critical points (0) incorrectly identified as conformal-
critical, i.e. false positives.

way to label the dataset to find CCRs can be defined in a
flexible way, according to the desired kind of guarantees
for the problem at hand. In this paper, our focus was on
finding a proper envelope for target (+1) points and the
CCS of Eq. 3 was accordingly defined to contain points
that led to singleton +1 labels; therefore, the boundaries
of the obtained CCRs in our experiments outline the zones
of the features space that lead to a critical situation with
very low presence of false alarms. However, by moving
the focus on the non-target (0) points, a CCS could have
been defined so to enclose only singleton 0 labels, and the
same SVDD-based approach (or any other classifier) could
have been used to find CCRs that delimited these points,
this time defining an area where a non-critical situation
could have been guaranteed with high probability, with a
reduced number of missed alarms.

7 EXPERIMENTAL RESULTS

In this Section, we present the results of the experiments
devoted to test CONFIDERAI score functions, both in
terms of canonical metrics in conformal prediction eval-
uation (i.e., accuracy and efficiency, see Sec. 7.2) and of
our newly introduced conformal critical set (Sec. 7.3).

7.1 Datasets description

To evaluate the goodness of CONFIDERAI, we tested the
method on 10 datasets, which we briefly describe:

• P2P and SSH: two datasets concerning peer-to-
peer (P2P) and secure shell (SSH) applications of
a Domain Name Server (DNS) tunneling detection
system [35]; the aim is to detect the presence or
absence of DNS attacks by monitoring network
traffic and collecting statistical information.

• BSS: the Body Signals of Smoking dataset § collects
personal and biological measurements from sub-
jects, with the aim of predicting if these quantities
can represent biomarkers of smoking or non-smoking
habits.

• CHD: the Cardiovascular Heart Disease dataset¶

contains patients records with personal, clinical
and behavioral features to predict the presence or
the absence of a cardiovascular disease.

• Vehicle Platooning: the dataset consists of simu-
lations of a vehicle platooning system [36] with
a binary output of collision or not-collision under
physical features like the number of cars per pla-
toon or the initial distance between cars.

• RUL: the Turbofan Engine Degradation Simulation
dataset|| deals with damage propagation modeling
for aircraft engines. The goal is to understand
which conditions are inherent to imminent faults
of the engine by estimating its Remaining Useful
Life.

§Reference link: https://www.kaggle.com/datasets/kukuroo3/
body-signal-of-smoking?select=smoking.csv

¶Reference link: https://www.kaggle.com/datasets/sulianova/
cardiovascular-disease-dataset.

||Reference link: https://www.kaggle.com/datasets/behrad3d/
nasa-cmaps.

https://www.kaggle.com/datasets/kukuroo3/body-signal-of-smoking?select=smoking.csv
https://www.kaggle.com/datasets/kukuroo3/body-signal-of-smoking?select=smoking.csv
https://www.kaggle.com/datasets/sulianova/cardiovascular-disease-dataset
https://www.kaggle.com/datasets/sulianova/cardiovascular-disease-dataset
https://www.kaggle.com/datasets/behrad3d/nasa-cmaps
https://www.kaggle.com/datasets/behrad3d/nasa-cmaps
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• EEG: the Eye State Classification EEG dataset**

reports the state of patients’ eyes (open or closed)
based on continuous electroencephalogram (EEG)
measurements.

• MQTTset [37]: based on Message Queue Teleme-
try Transportation communication protocol, this
dataset collects measurements from different In-
ternet of Things devices to simulate a smart envi-
ronment; cyber-attacked data are also included to
detect malicious and legitimate traffic.

• Magic: the Magic Gamma Telescope dataset†† re-
ports Monte Carlo simulations of high energy
gamma particles in a ground-based atmospheric
Cherenkov gamma telescope to distinguish be-
tween gamma and hadron radiation.

• Fire Alarm: this dataset‡‡ contains data to develop
an AI-based smoke detection device.

7.2 Accuracy and Efficiency

For the evaluation, we explored the bounds introduced in
Section 3.1, considering both accuracy and efficiency, by
setting ε = 0.01, ε = 0.05, ε = 0.1 and ε = 0.2. Accuracy
was measured by the average error, over the test set, of
the conformal prediction sets considering points of both
classes (AvgErr), only class y = 0 points (AvgErr0) and
only class y = 1 points (AvgErr1). We remind that an
error occurs whenever the true label is not contained in
the prediction set. Efficiency was quantified through the
rate of test points prediction sets with singleton predic-
tions (Single), no predictions (Empty) and two predictions
(Double). The obtained results are reported in Table 1.
The overall metrics computed on the benchmark datasets
outline the expected behavior of the conformal prediction.
For all values of ε, the average error is indeed bounded
by ϵ in all cases, except for the MQTTset dataset at ε = 0.2
whose average error is lower than expected, probably due
to the complexity of the dataset. Also, AvgErr increases
linearly with ε. As for the size of the conformal set, results
in their overall point out that for small values of ε the
model produces more double-sized regions, since in this
way it would be ”almost certain” that the true label is
contained in the conformal set. Then, the size reduces
by increasing ε, allowing the presence of more empty or
singleton prediction sets. Exception to this general trend
is observed for P2P and Fire Alarm cases, where the rates
of singleton prediction sets are considerably high even at
low ε. These results also denote that the underlying LLM
model has a reliable performance on the two mentioned
datasets, while the relatively low efficiency on the other
datasets indicates that the original model should be im-
proved.
As an example, we chose SSH dataset to show the average
errors and prediction regions size obtained by varying
ε ∈ [0.05, 0.5]. Figure 4 reports the trends of these metrics,

**Reference link: https://archive.ics.uci.edu/ml/datasets/EEG+
Eye+State.

††Reference link: https://www.kaggle.com/datasets/
abhinand05/magic-gamma-telescope-dataset.

‡‡Reference link: https://www.kaggle.com/datasets/
deepcontractor/smoke-detection-dataset.

pointing out the aforementioned behaviors at the increase
of ε. In most of the cases, the average error on class 0 ,
i.e. the legitimate samples, is lower than the average error
on class 1, i.e. the attack points. Concerning the size, we
can notice that double-size prediction regions are always
dominant with respect to singleton and empty regions:
their percentage decreases with ε, while that of singleton
regions increases symmetrically and empty regions are
rarely observed. Also, at ε = 0.4 Single and Double metrics
assume a constant trend.

7.3 Conformal Critical Regions

Besides evaluating the error and the size of the obtained
prediction regions, we derived the conformal critical re-
gions by following our definition of conformal critical set
(Eq. 3) and the SVDD-based approach as explained in
Section 6. The performance for the CCRs is evaluated by
considering the number of conformal-critical points inside
the regions, i.e. the empirical probability Pr{S | x ∈ S̃ε}.
Specifically, we denote this probability with PrSVDD for the
classical SVDD, and PrSSVDD for the optimized Safe-SVDD
version.
The results are shown in Figure 5 for SSH dataset at
ε = 0.05 and in Table 1 for all the other datasets.
By analyzing the two empirical probabilities obtained
throughout all datasets and ε values, we can observe
that SafeSVDD always overcomes classical SVDD (as ex-
pected) and achieves more than the 80% of correct detec-
tions for the majority of the experiments. In particular, the
value of PrSSVDD for the SSH case indicates that within
the region the prediction of DNS tunneling attacks is
performed correctly in over the 92% of cases with the
SafeSVDD method.

8 CONCLUSION

This paper introduced CONFIDERAI, a new score func-
tion for rule-based models directly designed on top of the
properties of these models. Indeed, starting from the deci-
sion rules generated by the model, conformity is derived
as a function of the placement of the samples with respect
to the geometry of the model, also taking into account
rule relevance, a measure that reflects the predictive qual-
ity of a rule. Extensive experimentation by considering
the Logic Learning Machine model on several datasets
has shown a behavior in line with conformal prediction
framework, both in terms of accuracy and efficiency of
the prediction sets.
In addition, by leveraging on the results of CONFIDERAI,
we moved a step beyond the probabilistic guarantees
provided by the conformal predictions, in the direction of
a more safety-preserving solution. Thus, we first defined
the notion of conformal critical set that provides guarantee
to efficiently predict the target class points (i.e., the critical
ones) in high probability (thanks to the CP); then, we ex-
ploited further classifiers to reduce the false positives (i.e.,
non-target points) associated to such a set, leading to the
individuation of conformal critical regions, which proved
still a good approximation of the conformal critical set.
We also highlight that the idea of finding CCSs and CCRs

https://archive.ics.uci.edu/ml/datasets/EEG+Eye+State
https://archive.ics.uci.edu/ml/datasets/EEG+Eye+State
https://www.kaggle.com/datasets/abhinand05/magic-gamma-telescope-dataset
https://www.kaggle.com/datasets/abhinand05/magic-gamma-telescope-dataset
https://www.kaggle.com/datasets/deepcontractor/smoke-detection-dataset
https://www.kaggle.com/datasets/deepcontractor/smoke-detection-dataset
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Table 1
Evaluation metrics for CONFIDERAI on Logic Learning Machine model tested on 10 benchmark datasets.

Error Size CCR

avgErr avgErr0 avgErr1 Empty Single Double PrSVDD PrSSVDD

P2P

ε = 0.01 0.009 0.017 0.000 0.009 0.938 0.054 0.505 0.995

ε = 0.05 0.053 0.106 0.000 0.053 0.893 0.054 0.512 0.962

ε = 0.1 0.096 0.192 0.000 0.075 0.910 0.015 0.496 1.000

ε = 0.2 0.190 0.379 0.000 0.168 0.818 0.014 0.478 0.962

SSH

ε = 0.01 0.012 0.007 0.016 0.000 0.012 0.988 0.484 1.000

ε = 0.05 0.053 0.035 0.070 0.000 0.056 0.944 0.517 0.942

ε = 0.1 0.087 0.076 0.099 0.000 0.101 0.899 0.527 0.892

ε = 0.2 0.202 0.154 0.250 0.002 0.236 0.763 0.489 1.000

BSS

ε = 0.01 0.009 0.012 0.003 0.000 0.017 0.983 0.514 0.986

ε = 0.05 0.050 0.059 0.033 0.003 0.094 0.903 0.529 0.935

ε = 0.1 0.102 0.110 0.087 0.014 0.191 0.795 0.547 0.949

ε = 0.2 0.196 0.220 0.153 0.038 0.374 0.588 0.545 0.909

CHD

ε = 0.01 0.012 0.003 0.019 0.000 0.032 0.968 0.246 1.000

ε = 0.05 0.051 0.011 0.087 0.002 0.089 0.909 0.356 1.000

ε = 0.1 0.104 0.025 0.176 0.007 0.250 0.743 0.268 1.000

ε = 0.2 0.208 0.064 0.338 0.020 0.386 0.594 0.316 0.998

Vehicle Platooning

ε = 0.01 0.012 0.020 0.003 0.000 0.012 0.988 0.452 0.997

ε = 0.05 0.050 0.064 0.034 0.000 0.054 0.946 0.445 0.996

ε = 0.1 0.100 0.138 0.052 0.000 0.105 0.895 0.454 0.994

ε = 0.2 0.206 0.230 0.175 0.004 0.240 0.756 0.425 0.954

RUL

ε = 0.01 0.010 0.012 0.004 0.000 0.011 0.989 0.321 0.605

ε = 0.05 0.044 0.050 0.032 0.001 0.067 0.931 0.285 0.606

ε = 0.1 0.086 0.110 0.032 0.001 0.112 0.887 0.304 0.850

ε = 0.2 0.182 0.203 0.134 0.027 0.243 0.730 0.361 0.875

EEG

ε = 0.01 0.011 0.008 0.014 0.000 0.019 0.981 0.404 0.996

ε = 0.05 0.049 0.053 0.045 0.000 0.065 0.935 0.416 0.989

ε = 0.1 0.095 0.103 0.085 0.005 0.123 0.872 0.385 0.957

ε = 0.2 0.176 0.202 0.148 0.008 0.210 0.782 0.465 0.987

MQTTset

ε = 0.01 0.011 0.000 0.021 0.000 0.011 0.989 0.496 0.750

ε = 0.05 0.050 0.000 0.099 0.000 0.050 0.950 0.439 0.689

ε = 0.1 0.106 0.000 0.209 0.000 0.106 0.894 0.470 0.821

ε = 0.2 0.135 0.000 0.266 0.000 0.135 0.865 0.571 0.920

Magic

ε = 0.01 0.013 0.012 0.014 0.000 0.016 0.984 0.329 1.000

ε = 0.05 0.057 0.035 0.093 0.001 0.072 0.927 0.325 0.532

ε = 0.1 0.095 0.064 0.147 0.004 0.123 0.873 0.338 1.000

ε = 0.2 0.210 0.173 0.274 0.007 0.244 0.749 0.268 0.690

Fire Alarm

ε = 0.01 0.006 0.013 0.000 0.006 0.967 0.026 0.506 0.868

ε = 0.05 0.044 0.067 0.022 0.034 0.954 0.013 0.526 0.813

ε = 0.1 0.076 0.131 0.022 0.065 0.923 0.013 0.505 0.787

ε = 0.2 0.188 0.359 0.022 0.178 0.810 0.013 0.540 0.834
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(a) Average error on both and single classes (b) Percentage of empty, single-label and two-labels
prediction regions

Figure 4. Trend of the performance metrics obtained on the SSH dataset by varying ε ∈ [0.05, 0.5]

(a) Conformal Critical Region via SVDD.
Pr{S | x ∈ S̃ε} = 0.517

(b) Conformal Critical Region via SafeSVDD.
Pr{S | x ∈ S̃ε} = 0.942

Figure 5. Conformal safety regions with the (optimized) classical SVDD (5a) and the region obtained reducing the number of non-conformal points
with Safe-SVDD (5b).

is actually independent on the proposed score function
for rule-based models, but it rather can be adopted to
whatever CP framework and underlying algorithm.
The current work is a starting point for the development
of a fully conformal rule-based methodology for trust-
worthy AI. Future works will involve a more in-depth
experimentation of other rule-based models and their
assessment on real world applications. Moreover it will
be of crucial importance to prove the probabilistic bounds
given in Section 3, in order to determine a well specified
framework for probabilistic conformal prediction.
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