
16 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Spatial distribution of microwave device harmonic electrical variables through T-dependent TCAD simulations / Catoggio,
E.; Donati Guerrieri, S.; Bonani, F.; Ghione, G.. - ELETTRONICO. - (2023), pp. 552-557. (Intervento presentato al
convegno IEEE EUROCON 2023 - 20th International Conference on Smart Technologies tenutosi a Torino, Italy nel 6-8
July 2023) [10.1109/EUROCON56442.2023.10198930].

Original

Spatial distribution of microwave device harmonic electrical variables through T-dependent TCAD
simulations

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/EUROCON56442.2023.10198930

Terms of use:

Publisher copyright

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2981004 since: 2023-09-02T09:46:00Z

IEEE



Spatial distribution of microwave device harmonic
electrical variables through T -dependent

TCAD simulations
E. Catoggio#1, S. Donati Guerrieri#2, F. Bonani#3, G. Ghione#4,

#Dipartimento di Elettronica e Telecomunicazioni, Poltecnico di Torino, Italy
{1eva.catoggio, 2simona.donati, 3fabrizio.bonani, 4giovanni.ghione}@polito.it

Abstract — TCAD simulations of electron devices operated in
the periodic large-signal regime are implemented in the frequency
domain, thus allowing extracting all internal physical variables,
such as the carrier concentration and electric field, in terms of
their harmonic content. Therefore, these simulation tools offer
a unique insight into the device operating conditions typical of
microwave applications, e.g. highlighting the regions of the device
affecting each harmonic of the terminal currents. In particular,
Conversion Green’s Functions, allow for a simple and direct way
to inspect the response of each harmonic to variations in the
device operating condition, structure, material and technological
parameters with respect to the nominal values. In this paper,
we provide a discussion of the internal quantities for a silicon
FinFET device, exploited into a power amplifier for small-cells
transceiver applications at 70 GHz. The temperature dependent
analysis highlights e.g. the impact of carrier mobility degradation
in the FinFET access regions and of the inversion channel charge
including DC, fundamental and harmonics of the drain current.

Keywords — Semiconductor devices, Nonlinear device models,
TCAD simulations, Harmonic Balance

I. INTRODUCTION

Technological CAD (TCAD) simulations in the nonlinear
large-signal (LS) regime represent an ideal environment to
model the behavior of an active device in RF/microwave
circuits, keeping trace of the underlying technological and
physical parameters. Nonlinear TCAD analysis dates back
to the pioneering work of [1], [2], where the Harmonic
Balance (HB) algorithm was introduced to solve the physical
equations in the frequency domain. The harmonics of the
device solution, in terms of both terminal variables (e.g.
drain and gate currents) and internal physical quantities (e.g.
electric field, potential and carrier densities) are made directly
accessible for the specific device LS operating condition,
driven by the external large-signal stimuli. The HB TCAD
analysis is perfectly matched to the most common simulation
techniques used in microwave circuit simulators (e.g. ADS),
making it simple to include in a seamless way the device
embedding circuit in terms of harmonic loads, transmission
lines, dividers/combiners etc. In [3] the TCAD nonlinear
analysis was further extended to represent the device behavior
around the LS working point, by a proper linearization of
the device equations around a periodic (or quasi-periodic)
condition and by an efficient algorithm to extract the Green’s
Functions of the linearized physical model. Nowadays, the
increasing capability of computation machines allows to

overcome the numerical burden of nonlinear TCAD analysis
making its application possible to investigate realistic devices
and structures, even in complex circuits [4].

In this work we focus the attention on the Si FinFET
technology, whose application in analog and microwave design
is fostered both by the development of modern communication
systems (5G/6G), and by the design of sensing circuits for
quantum computing. In the latter case, existing FinFET device
models face a double problem: first they are not usually
tailored for analog application, even less in case of nonlinear
ones; secondly, the temperature dependency is usually limited
to DC quantities, while it is not simple to predict its effect
on harmonics. Last but not least, quantum applications are
nowadays mostly found at cryogenic temperatures, making
T -dependent physically sound LS FinFET models an important
and timely research topic. Our in-house TCAD code [3],
allowing for the Harmonic Balance T -dependent Large Signal
analysis of electron devices, is the ideal tool to investigate
the effect of temperature on FinFET nonlinear operation. In
[5] we have demonstrated the temperature sensitivity of the
device LS state can be effectively treated as a particular
case of the large-signal sensitivity analysis [6], [7], where the
variations of the device terminal characteristics (namely, gate
and drain currents) are calculated as a function of the variation
of any physical or geometrical parameter, such as doping,
gate length or trap density. The sensitivity analysis is best
addressed by the Green’s Function (GF) approach, where the
variations terminal currents are recovered by a convolution of a
microscopic source of variation and of the GFs themselves. As
such, the analysis allows to inspect which parts of the device
are most affected by the parameter variations or contribute
more to the terminal variations. Compared to the static case,
also implemented in [8], the LS case addresses the variations
not only of the DC current values, but of all of the terminal
current harmonics.

In this work we apply the TCAD distributed thermal
analysis to the study of a FinFET device operating in nonlinear
condition within a Power Amplifier (PA) for small cells
applications. This work extends previous published papers
on FinFET modeling [9] and PA thermal sensitivity [5],
[10]: while previous works have mainly focused on the PA
performance in terms of output power, gain, efficiency and
terminal currents in the time domain, in this work we report



the temperature dependency of the harmonics and link them
to internal portrait of the microscopic quantities in terms of
Green’s Functions and local variations of physical quantities
due to temperature variations. We demonstrate that gate and
drain harmonics as a function of input power have peculiar
dependencies on temperature, linked to the source and drain
access region (e.g. the real part of the 3rd harmonic drain
current) or to the channel charge (e.g. the imaginary part of
the 3rd harmonic drain current). The distributed analysis opens
the way to device optimization, aiming directly to the device
harmonics and power performance.

II. GREEN’S FUNCTION TECHNIQUE FOR T -DEPENDENT
LS TCAD

In order to introduce the efficient T -dependent TCAD
analysis methodology along the lines discussed in [5], let
us consider a bipolar physical model, that for TCAD is
almost invariably made of a set of coupled partial differential
equations (PDEs). For the sake of generality, we consider
Poisson equation (referred to by index α = φ) coupled to
the electron (α = n) and hole (α = p) continuity equations,
to the energy balance equations (α = Tn and α = Tp,
respectively) involving as variables carrier temperatures Tn

and Tp, and to the electron and hole quantum potential
equations (α = qn and α = qp) in case quantum corrections
such as the density gradient approach are taken into account.
Once spatially discretized over device volume Ω after the
definition of a proper solution mesh, PDE α is converted
into a nonlinear ordinary differential equation (ODE) and it
is formally denoted as E(α)(x, ẋ) = 0, where x collects the
nodal values of all the (discretized) physical variables (i.e.,
potential φ, carrier concentrations n and p, carrier temperatures
Tn and Tp, quantum potentials qn and qp) and ẋ denotes its
time derivative. Notice that we assume to have included in the
ODE the required (discretized) boundary conditions for each
physical equation.

Extracting the time-derivative dependence of the ODEs,
and making explicit the external generators (either current or
voltage) e(t) setting the device working point, yields the ODE
system

D(α)ẋ = F(α)(x, e;T ) α = φ, n, p, Tn, Tp, qn, qp (1)

where D(α) is a diagonal matrix (possibly null, e.g. for Poisson
equation where no explicit time derivative appears).

LS operation amounts to consider source generators e(t)
that are time periodic1, which in turn suggests to exploit a
frequency domain technique such as Harmonic Balance [11] to
convert (1) into a nonlinear algebraic equation system having
as unknowns the harmonic amplitudes of the time-varying
variables. A sound implementation requires a trigonometric
representation of the Fourier series, as discussed in [1], so that
each harmonic amplitude is actually represented by two real
values (one for the sine and one for the cosine components).

1The extension to quasi-periodic operation is relatively easy, we stick to the
strictly periodic case for the sake of notation simplicity.

The involved (truncated) frequency spectrum is limited to
a finite upper harmonic NH, and it entails the (angular)
frequencies nω0 (n = 1, . . . , NH), where ω0 is the fundamental
frequency contained in e(t), plus DC. The collection of the
2NH + 1 harmonic amplitudes for each of the N elements
of x(t) is collectively denoted by the N(2NH + 1) vector x̃.
Fourier transformation of (1) results into

D(α)ΩN x̃ = F̃(α)(x̃, ẽ;T ) α = φ, n, p, Tn, Tp, qn, qp (2)

where ΩN is an N -block diagonal matrix (proportional to ω0)
representing the time derivative operator in the Fourier basis
[3].

At nominal temperature T0, the solution of (2) is denoted
as x̃0 (corresponding to the time-domain solution x0(t)).
As temperature undergoes a variation T = T0 + ∆T ,
the use of the Green’s Functions Technique reckons on
the assumption of a linear response of the device to the
variation ∆T so that a linearization of the model (1) around
(x0(t), e(t), T0) is required. The resulting linear system is
periodically time-varying, also termed LPTV. The general
description of LPTV systems is well established [3], and
amounts to consider a periodic perturbation at frequency
ω. The result is a perturbed spectrum made of sidebands
around each harmonic of the original spectrum, i.e. spectral
components concentrated at mω0±ω where m = 0, 1, . . . , NH.
As in the case of T -dependent analysis the temperature
perturbation is assumed time-invariant, we have ω = 0 and
the sidebands collapse on the original frequency spectrum.

Fourier transformation of the LPTV system resulting from
the expansion of (1) around the T0 solution leads to the
following frequency-domain system for equationα [5]

J̃(α)(x̃0, ẽ;T0)∆x̃−D(α)ΩN∆x̃ = s̃(α)(x̃0, ẽ;T0,∆T ) (3)

where ∆x̃ = x̃ − x̃0 represents the variation of the
model solution due to ∆T , s̃(α) is the corresponding
source term, and J̃(α)(x̃0, ẽ;T0) is the Jacobian of the
original model evaluated at T0. In particular, the Jacobian
takes the form of a Hankel matrix built starting from
the harmonic amplitudes (in trigonometric form) of the
time-periodic functions corresponding to the time-domain
Jacobian ∂F(α)/∂x evaluated in x0(t) and at the nominal
temperature T0. On the other hand, the source term s̃(α)

collects the Fourier coefficients of the temperature model
derivative

s(α)(t) = − ∂F(α)

∂T

∣∣∣∣∣
x0(t),e(t);T0

∆T (4)

This quantity can be very conveniently approximated through
a finite difference approximation [6] as

s(α)(t) ≈ −F(α)(x0(t), e(t);T0+∆T )+F(α)(x0(t), e(t);T0)
(5)

where, at convergence, we can assume F(α)(x0(t), e(t);T0) =
0 so that

s(α)(t) ≈ −F(α)(x0(t), e(t);T0 +∆T ) (6)
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Fig. 1. Double Gate structure representing the cross-section of each
elementary fin of the power cell.

The frequency transformation procedure leading to (3) allows
to verify that the previous relation can be extended to

s̃(α) ≈ −F̃(α)(x̃0, ẽ;T0 +∆T ) (7)

This means that also the source term in the frequency domain
can be simply estimated by computing the residual part of the
nonlinear function in (2) at the updated temperature T0+∆T .

The effect of the temperature variation ∆T on the current
harmonic amplitudes Ĩβ at terminal β = G,D, defined as

∆Ĩβ = Ĩβ(T0 +∆T )− Ĩβ(T0) (8)

can be estimated through a spatial convolution integral across
the device volume Ω of the product of the (matrix) Green’s
function G̃

(α)
β (x̃0, e;T0), linking a unit (delta function) source

term in equation α to the output current at terminal β, times
the source term in (7). Notice that the matrix nature of the
Green’s function accounts, through the non-diagonal terms as
a function of the harmonic index, for the presence of frequency
conversion mechanisms (i.e., the impact of a source term at
harmonic i on the terminal β current variation at harmonic
j, for i ̸= j). For this reason, these tensor operators are also
called conversion Green’s functions.

The discretized implementation of the spatial convolution
integral leads to a final expression of the form [5]

∆Ĩβ =
∑
α

ΩVG̃
(α)
β (x̃0, e;T0)s̃

(α)(x̃0, e;T0, T0 +∆T ) (9)

where ΩV is a block diagonal matrix containing the size of the
Vornoi volumes associated to the discretization mesh. Notice
that the matrix nature of the conversion Green’s functions in
(9) leads to the presence of frequency conversion effects, as
the matrix-vector products effectively become sums over the
frequency index of all the harmonic source components.

The computational cost of a temperature dependent device
analysis including N temperatures distributed around T0

amounts in the evaluation of the GF and N repeated
computation of (7) and (9). All these steps require minimal
additional simulation time with respect to a single Large
Signal analysis at temperature T0. Therefore the GF approach
simulation time is roughly 1/N with respect to N independent
Large Signal analyses at the selected temperatures.

III. EXAMPLE: A DISTRIBUTED THERMAL ANALYSIS OF A
FINFET POWER AMPLIFIER

As a test case we exploit a class A power amplifier for
small cells applications based on FinFET technology, with
the same topology presented in [5]. A unit cell made of a

multi-finger device (10 fingers of 30 fins each) with a fin
height of 25 nm, corresponding to a total gate periphery
of 15 µm, is used for the development of the power stage.
The cross-section of each elementary fin of the power cell is
represented in Fig. 1. The device is simulated in large-signal
conditions at an operating frequency of 70 GHz. The DC
bias (VG = 0.675 V and VD = 0.6 V) and the optimum
output load Zopt = (53 + j6) Ω, calculated at the nominal
“cold” temperature T0 = 300, are applied to the device.
The input port is unmatched and terminated over a generator
internal impedance of 50 Ω/mm. LS simulations, exploiting
the in-house Harmonic Balance code, are performed with
NH = 10 harmonics and as a function of an increasing
input power ranging from back-off to 2 dB gain compression.
At each input power, the Conversion Green’s Functions are
calculated at T0 = 300 K, while the drain current variation
with T is evaluated according to (9) for 5 temperatures,
spanning the interval [310− 350] K.

Fig. 2. Real and imaginary part of the fundamental harmonic gate current
variation as a function of temperature. Lines: INC approach. Symbols: GF
approach.

Fig. 3. Real and imaginary part of the second harmonic gate current variation
as a function of temperature. Lines: INC approach. Symbols: GF approach.



Fig. 4. Real and imaginary part of the third harmonic gate current variation
as a function of temperature. Lines: INC approach. Symbols: GF approach.

Fig. 2 shows the gate current variation at the fundamental
harmonic as a function of temperature at increasing input
power from −13 dBm to −3 dBm. We remark that gate current
harmonics are well reproduced by the Green’s Function (GF)
approach, despite the simulation time is less than 20% of
the incremental (INC) method, which consists of repeated LS
analyses at 5 different temperatures. An increasing sensitivity
can be appreciated going from back-off (Pav = −13 dBm) to
compression (Pav = −3 dBm) in both real and imaginary parts,
leading to negative and positive current variations, respectively.

The gate current second harmonic in Fig. 3 shows overall
a stronger temperature sensitivity, but exhibits the same trend
of the fundamental harmonic as a function of the input power.

Despite the real and the imaginary part of the third
harmonic show higher sensitivity with an increasing input
power, gate current variations assume positive and negative
values, respectively, highlighting an opposite behavior with
respect to the first and second harmonics. The highest
temperature sensitivity is reached at −3 dBm input power.

Concerning the drain current variation, the real part of the
fundamental harmonic has higher sensitivity to temperature
variations with lower values of the input power, while an
almost insensitive behavior is shown in compression conditions
(see Fig. 5). On the contrary, drain current variations of the
imaginary part are always relevant and exhibit approximately
the same sensitivity at −8 and −3 dBm input power.

The second harmonic dependency on T as a function of
the input power is reported in Fig. 6: the real part exhibits an
overall higher sensitivity with respect to the fundamental drain
harmonics, while an opposite behavior can be appreciated for
the imaginary part. Moreover, the latter shows a drain current
reduction with increasing temperature in all the selected
operating conditions, while the real part presents the same
trend in compression conditions only.

The T -dependency of the third drain harmonic as a
function of the input power is shown in Fig. 7. The real part

Fig. 5. Real and imaginary part of the first harmonic drain current variation
as a function of temperature. Lines: INC approach. Symbols: GF approach.

Fig. 6. Real and imaginary part of the second harmonic drain current variation
as a function of temperature. Lines: INC approach. Symbols: GF approach.

Fig. 7. Real and imaginary part of the third harmonic drain current variation
as a function of temperature. Lines: INC approach. Symbols: GF approach.



Fig. 8. Real part of the electrons distributed local sources of the third harmonic at drain contact. Left: Pav = −13 dBm. Center: Pav = −8 dBm. Right:
Pav = −3 dBm.

Fig. 9. Imaginary part of the electrons distributed local sources of the third harmonic at drain contact. Left: Pav = −13 dBm. Center: Pav = −8 dBm. Right:
Pav = −3 dBm.

presents an opposite behavior with respect to the first and
second drain harmonics: an increasing drain current variation
is reported going from back-off to compression. Furthermore,
the imaginary part is less sensitive to temperature variations for
lower input power values and reaches the highest sensitivity
in compression conditions.

In order to gain a further insight, we delve into the spatial
distributions leading to the terminal current variations. Taking
as an example the third harmonic, we report the electron
distributed local source at the drain contact, corresponding to
the electron continuity equation contribution to the total drain
current variation (9)

LS(n)
D = ΩVG̃

(n)
D (x̃0, e;T0)s̃

(n)(x̃0, e;T0, T0 +∆T ) (10)

where ∆T is set to 5 K. The real part of the distributed local
source confirms an increasing sensitivity going from −13 dBm
to −3 dBm and shows an interplay between the bulk region and
the interface between Si and oxide (see Fig. 8). The negative
drain harmonic variation (see Fig. 7, left) can be traced back
to the source and drain access regions, where the mobility
reduction due to temperature affects the harmonics. Moreover,
the strong electric field of the access regions has a further
impact on the mobility degradation, which dominates over the
channel T dependency. On the contrary, the imaginary part,
showing a higher sensitivity to T with respect to the real part, is
mostly affected by the region under the gate due to the channel
charge modulation (see Fig. 9). The effect of temperature is

stronger close to the oxide interface, where the influence of
the exponential functions involving the electrostatic potential,
rule the electron concentration in the device channel and the
capacitive coupling to the gate contact. The higher electron
concentration, the milder electric field in the channel region
and the consequent lower mobility degradation lead to a
positive drain current variation of the third harmonic.

IV. CONCLUSION

We presented a detailed discussion of the physical origin of
temperature-induced terminal current variations for Si FinFET
class A power amplifier operated at 70 GHz for transceiver
applications. The unique combination of TCAD physical
simulations of the device, and of a linearized, Green’s Function
approach to parametric perturbations in large-signal operation
of the device allow for and in depth discussion on the device
regions mostly affecting the T -induced current variations, and
to trace them back to specific regions of the device. The
numerical advantage provided by the GF approach, that was
validated up to 50 K temperature increase, allows a significant
efficiency improvement (simulation time reduced to about 20%
of the INC approach). These results pave the way towards an
optimized device design to quench self-heating effects.

ACKNOWLEDGMENT

This work has been supported by the Italian MIUR
PRIN 2017 Project “Empowering GaN-on-SiC and GaN-on-Si



technologies for the next challenging millimeter-wave
applications (GANAPP)”

REFERENCES

[1] B. Troyanovsky, Z. Yu, and R. W. Dutton, “Large signal frequency
domain device analysis via the harmonic balance technique,” in
Simulation of Semiconductor Devices and Processes. Springer Vienna,
1995, pp. 114–117.

[2] F. M. Rotella, G. Ma, Z. Yu, and R. W. Dutton, “Design optimization
of RF power MOSFET’s using large signal analysis device simulation
of matching networks,” in Simulation of Semiconductor Processes and
Devices 1998. Springer Vienna, 1998, pp. 26–29.

[3] F. Bonani, S. Donati Guerrieri, G. Ghione, and M. Pirola, “A TCAD
approach to the physics-based modeling of frequency conversion and
noise in semiconductor devices under large-signal forced operation,”
IEEE Transactions on Electron Devices, vol. 48, no. 5, pp. 966–977,
may 2001.

[4] S. Donati Guerrieri, E. Catoggio, and F. Bonani, “TCAD simulation of
microwave circuits: The Doherty amplifier,” Solid-State Electronics, vol.
197, p. 108445, nov 2022.

[5] E. Catoggio, S. Donati Guerrieri, and F. Bonani, “Efficient TCAD
thermal analysis of semiconductor devices,” IEEE Transactions on
Electron Devices, vol. 68, no. 11, pp. 5462–5468, nov 2021.

[6] S. Donati Guerrieri, F. Bonani, F. Bertazzi, and G. Ghione, “A unified
approach to the sensitivity and variability physics-based modeling
of semiconductor devices operated in dynamic conditions—Part I:
Large-signal sensitivity,” IEEE Transactions on Electron Devices,
vol. 63, no. 3, pp. 1195–1201, mar 2016.

[7] F. Bertazzi, F. Bonani, S. Donati Guerrieri, and G. Ghione,
“Physics-based SS and SSLS variability assessment of microwave
devices through efficient sensitivity analysis,” in 2012 Workshop on
Integrated Nonlinear Microwave and Millimetre-wave Circuits. IEEE,
sep 2012.

[8] [Online]. Available: https://www.synopsys.com/silicon/tcad.html
[9] A. M. Bughio, S. Donati Guerrieri, F. Bonani, and G. Ghione,

“Physics-based modeling of FinFET RF variability,” in 2016 11th
European Microwave Integrated Circuits Conference (EuMIC). IEEE,
oct 2016.

[10] E. Catoggio, S. Donati Guerrieri, C. Ramella, and F. Bonani,
“Thermal modeling of RF FinFET PAs through temperature-dependent
X-parameters extracted from physics-based simulations,” in 2022
International Workshop on Integrated Nonlinear Microwave and
Millimetre-Wave Circuits (INMMiC). IEEE, apr 2022.

[11] K. S. Kundert, J. K. White, and A. Sangiovanni-Vincentelli, Steady-state
methods for simulating analog and microwave circuits. Boston: Kluwer
Academic Publishers, 1990.


