
02 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Model theft attack against a tinyML application running on an Ultra-Low-Power Open-Source SoC / Porsia, Antonio;
Ruospo, Annachiara; Sanchez, Ernesto. - (In corso di stampa). (Intervento presentato al convegno 21st ACM
International Conference on Computing Frontiers Workshops and Special Sessions (CF '24 Companion)).

Original

Model theft attack against a tinyML application running on an Ultra-Low-Power Open-Source SoC

ACM postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2987887 since: 2024-04-17T15:28:45Z

ACM

Model theft attack against a tinyML application running on an
Ultra-Low-Power Open-Source SoC

Antonio Porsia
antonio.porsia@polito.it
Politecnico di Torino

Turin, Italy

Annachiara Ruospo
annachiara.ruospo@polito.it

Politecnico di Torino
Turin, Italy

Ernesto Sanchez
ernesto.sanchez@polito.it

Politecnico di Torino
Turin, Italy

ABSTRACT
With the advent of tinyML, IoT devices have expanded their range
of operations from simple data gathering and transmission to full-
fledged inference. This expansion has been further enabled by the
rise in popularity of open-source hardware, with the RISC-V ar-
chitecture being the most prominent example. TinyML’s decen-
tralization can solve the current privacy and security issues of IoT
infrastructures. However, it also shifts the burden of security on
already resource-constrained devices. Ultra-low-power devices, in
particular, often sacrifice security features for energy and area ef-
ficiency. This work aims at showing that, in the context of edge
computing based on open-source hardware, neglecting hardware
security features for the sake of efficiency is not an acceptable
trade-off with respect to AI security.

CCS CONCEPTS
• Security and privacy→ Embedded systems security; • Com-
puter systems organization→ System on a chip.

KEYWORDS
Hardware Security, tinyML, Ultra-Low-Power Hardware, Open-
Source Hardware

1 INTRODUCTION
Nowadays, special attention is posed to embedded systems security.
In particular, when embedded devices belong to safety-critical ap-
plications, new standards, regulations and laws have been enacted
by different governments, advisory and legislative boards. This
guarantees a strong position regarding security that helps manu-
facturers to adopt a set of good manufacturing practices against
possible attacks, and at the same time, benefits customers since
the security of the final product is improved. This is the case of
automotive industry regarding security, where last year regulations
will become mandatory briefly: United Nations Regulation No. 155
(United Nations Regulation No. 155 (UNR155)). On the other hand, a
lack of regulation, and correspondingly a lower attention to security
is given to embedded systems not directly involved in safety critical
applications. This is the case of most of the adopted applications
labeled as tiny-ML, where the proposed application is low-power,
low-cost and usually may run without human intervention. In this
context, the Artificial Intelligence algorithm running in the em-
bedded device may be vulnerable to different cyber attacks. In this
context, this paper proposes a preliminary analysis regarding the
possible security vulnerabilities presented by a tiny-ML application
based on an open-hardware core. In particular, a model theft attack
has been analyzed in a case study running a simple CNN addressing
handwritten digit recognition in a microprocessor core based on an

open source low-power RISC-V system. Thanks to the developed
case study, it was possible to experimentally demonstrate that an
attack such as model theft can be easily implemented by an attacker.
Finally, the paper addresses some low-cost countermeasures to the
presented attack. All materials used for the experiment are avail-
able in a GitHub repository1. The rest of the paper is organized
as follows: section 2 provides some necessary background about
RISC-V and tinyML. Section 3 introduces the case study, and section
4 describes the developed experiments. The last section concludes
the paper.

2 BACKGROUND
2.1 RISC-V
RISC-V is an architecture that aims at providing a completely open
and easily customizable Instruction Set Architecture (ISA) [12] tar-
geting a range of devices that goes from ultra-low-power embedded
systems [2] to high-performance clusters [12]. Openness and cus-
tomizability have been, and still are, key factors in the proliferation
of hardware based on RISC-V, from CPU cores, to System-on-Chips,
to Deep Learning (DL) accelerators.

Security Features. Two optional security features are defined in
the RISC-V Privileged Specification [13]:

• Execution Privilege Separation – From most to least
privileged modes: Machine mode (M), Supervisor mode (S)
and User mode (U). M-mode is the only mandatory privilege
level

• Physical Memory Protection – The PMP unit enforces
access control on memory accesses granting or revoking
access privileges for each physical memory region. PMP
configuration registers feature a lock bit that, when set,
inhibits modifications to the corresponding register until
the next hardware reset, regardless of the privilege level.
Furthermore, it enables access control on M-mode accesses,
which by default have full permissions

2.2 TinyML
TinyML is an emerging field of Machine Learning that aims at bring-
ing ML capabilities to resource-constrained devices that up until
now have been employed only for data collection at the extreme
edge of the IoT network. These devices often consist of a battery-
powered microcontroller unit (MCU) and various sensors, with
power consumption in the range of 1 mW or lower [10]. TinyML
enables these devices to analyze sensor data on the spot while keep-
ing power consumption low, effectively eliminating various security,

1https://github.com/cad-polito-it/x-heep-tflite-cfoshw24

Antonio Porsia, Annachiara Ruospo, and Ernesto Sanchez

privacy and connectivity issues, since data almost never leaves the
device [3]. TinyML use cases include safety- and security-critical
systems, such as healthcare devices [11] and self-driving vehicles
[1]. For this reason, securing tinyML models and devices is crucial.

2.3 AI security
The growing use of artificial intelligence in critical systems natu-
rally raises concerns about the potential security issues that may
arise during the lifecycle of an ML model.

2.3.1 Securing AI. According to the the European Telecommuni-
cations Standards Institute (ETSI) GR SAI 004 group report [4],
securing an AI system means ensuring its confidentiality, integrity
and availability at all stages of its life cycle: data acquisition, data
curation, model design, software build, training, testing, deploy-
ment/inference and update. As for the deployment phase, the role
of hardware in AI security is addressed by ETSI GR SAI 006 [5] and
ETSI GR SAI 009 [6]. However, both reports focus on hardware as
an inherently trusted defense mechanism, without fully investigat-
ing the impact of hardware design choices on the available attack
surface of the AI application. As far as this work is concerned, the
most interesting threats outlined by the group reports are:

• Poisoning attacks – can be further categorized into (1)
data set poisoning, (2) algorithm poisoning and (3) model
poisoning. The latter consists in manipulating the model’s
parameters or simply replacing it entirely to alter its behav-
ior

• Reverse engineering – consists in reconstructing a model
able to reproduce the behavior of the target model. Includes
techniques such as model stealing, consisting of the exfil-
tration of the model’s parameters and structure.

3 CASE STUDY
In this section, the tinyML device used as case study is presented.
The device is based on an open-source microcontroller. Interest-
ingly, a preliminary analysis regarding the secure weaknesses of
the device are provided.

3.1 X-HEEP
X-HEEP (eXtendable Heterogeneous Energy-Efficient Platform)
is an open-source RISC-V MCU developed specifically for edge-
computing platforms [7]. X-HEEP allows to choose one of three
RISC-V CPU cores from the OpenHW group: (1) CV32E20 (a fork of
the Ibex core), aimed at control-oriented tasks; (2) CV32E40P (for-
merly known as RI5CY) for processing-oriented tasks; (3) CV32E40X,
a fork of CV32E40P featuring an external interface for coprocessors
and lacking the floating-point unit and custom Xpulp ISA exten-
sions. All of the cores only offer M-mode execution and have no
PMP unit.

3.1.1 X-HEEP weaknesses. X-HEEP can be extended with a copro-
cessor or an accelerator to offer security functionalities or accelerate
AI operations. However, such critical tasks require additional pre-
cautions and hardware support that X-HEEP currently lacks. While
some shortcomings may be taken care of by extending X-HEEP

with a security coprocessor, the platform itself presents some weak-
nesses pertaining to the RISC-V cores available by default that must
be addressed:

• Lack of memory protection mechanisms – The default
configuration of the RISC-V cores shipped with X-HEEP has
no PMP unit, hence depriving the CPU of a basic memory
protection mechanism. As a result, an attacker that gains
unauthorized code execution gains also unrestricted access
to memory. Besides, Data Execution Prevention (DEP), i.e.,
the prohibition of executing code located in data sections,
cannot be enforced.

• Lack of execution privilege separation – All the RISC-V
cores that can be integrated in X-HEEP implement only
M-mode execution, making it impossible to adequately per-
form access control based on execution privileges. As a con-
sequence, an attacker who gains code execution through a
software exploit, automatically gains full access to the sys-
tem. This weakness can lead to a breach of confidentiality
and/or integrity even in the presence of a PMP unit, if the
lock bit is unset or unimplemented.

It should be noted that these are no vulnerabilities per se, but
rather they are weaknesses that may enable attacks by making some
vulnerabilities, such as buffer overflows, more easily exploitable.

3.2 Threat model
The system upon which this analysis is based is composed of the
X-HEEP platform, a tinyML application, the necessary runtime
software for the application to interact with the hardware and a
command protocol running over the UART port to allow external
interaction with the application. The software is assumed to contain
a vulnerability that can result in unauthorized code injection and
execution.

3.2.1 Adversary model. For the purposes of this work, the attacker
is assumed to have unrestricted physical access to the device and
full knowledge of the device architecture and memory map, as well
as the capability to interact with the device by sending commands
and reading the output.

3.2.2 Critical assets and possible threats. The main asset to be
protected is the ML model. The OWASP Machine Learning Security
Top Ten offers a good overview of what are currently the critical
security issues of AI systems [8]. The item of interest on the list is
model theft, an attack that consists in gaining access to the model’s
parameters. This threat is enabled by the underlying hardware’s
weaknesses, since it requires the adversary to gain read access to
the location where the model is stored. If there are no hardware
facilities to control memory accesses, the confidentiality of the
model completely relies on the assumption that software is and
always will be vulnerability-free.

3.3 Attack outline
For the purposes of this work, the ML model is assumed to reside in
the .data section of the application executable. Since by hypothesis
Data Execution Prevention (DEP) cannot be enforced and no access
control can be performed on memory accesses, it is possible to
inject and execute code such that the entire data section of memory

Model theft attack against a tinyML application running on an Ultra-Low-Power Open-Source SoC

can be dumped and analyzed to exfiltrate the ML model, hence
resulting in a model theft attack.

4 EXPERIMENTAL RESULTS
Experiments were conducted on a TUL PYNQ-Z2 board, which
includes a Xilinx Zynq Z7020 SoC. Additional details about the
setup of the hardware and software components are provided in
the following section.

4.1 Setup
Table 1: FPGA Resource Utilization for X-HEEP FEMU with
16 memory banks

Resource Used Available Percentage
LUTs 37,486 53,200 70.46%

Flip-Flops 49,087 106,400 46.13%
Block RAM 585 KiB 630 KiB 92.86%

4.1.1 Hardware. The TUL PYNQ-Z2 board features a Programmable
Logic (PL) side, i.e., the FPGA, and a Processor Subsystem (PS) side,
which is capable of running Linux and communicating with the PL
side.

The X-HEEP-based FPGA Emulation Platform (FEMU) was uti-
lized to deploy X-HEEP on the PYNQ-Z2 and take advantage of
features such as on-chip JTAG and UART virtualization for easy
debugging.

The X-HEEP MCU has been resynthesized using Vivado 2023.2
with sixteen 32KB memory banks, providing a total of 512 KB of
SRAM to accommodate the application and ML model. The rest of
the hardware has been kept with the default configuration. The
FPGA resource utilization is reported in Table 1.

4.1.2 Software. An example application was developed to high-
light weaknesses in the underlying hardware. The application sim-
ply runs an infinite loop, waiting for commands from the user. The
command interface uses the SCPI protocol, which is designed for
communicating with measurement equipment such as oscilloscopes
and multimeters and was standardized by IEEE in the IEEE/IEC
60488-2-2004 standard. SCPI commands are sent over the UART
port.

Vulnerability. The application accepts custom inputs for the ML
model using the arbitrary block feature of SCPI, which allows pass-
ing a data block of custom length as a command parameter. A buffer
overflow vulnerability has been inserted here: instead of copying a
fixed number of bytes into the input buffer that will be passed to
the model, the application copies the number of bytes specified in
the command, hence allowing an attacker to overwrite data on the
stack, including the return address.

4.1.3 MLmodel. The deployedMLmodel is a simple Lenet5 Convo-
lutional Neural Network trained on theMNIST dataset for handwrit-
ten digit recognition. The library used to deploy it is Tensorflow Lite
for Microcontrollers (TFLM), one of the most popular tinyML frame-
works. It is specifically targeted at low power resource-constrained
MCUs, with the core runtime fitting into just 16KB on an ARM
Cortex M3 [9]. The model is stored in a C array, hence it resides in
the read-only data section of the executable.

4.2 Model theft attack
The first stage of the attack consists in finding the starting address
of the buffer, in order to be able to include loops into the injected
code. This has been achieved through a payload that executes the
following operations: first it loads a canary, i.e., an easily recogniz-
able value, into a register, then executes a series of nop instructions
interleaved periodically with a load of a second canary into an-
other register, and finally it prints the two canaries over the UART
port. Once the execution reaches the end of the function, there are
three possibilities: (1) if the injected return address points outside
the buffer, the program likely crashes and restarts, allowing to try
again; (2) if it points inside the nop section, only the second canary
is printed; (3) if it points to the start of the buffer, both canaries
are printed. The purpose of the nop section is to identify with less
possible attempts an address inside the buffer. Once the second
canary is printed, it is possible to fine-tune the address until the
buffer start is found. Note that this is possible due to the executable
being statically linked. Starting from the highest possible address,
the process may require roughly 30 minutes.

The second stage consists in the proper model theft. The second
payload loops over the whole data memory and writes it to the
UART port, then it jumps to the first instruction of the boot ROM,
resulting in a software reset. The data read from the UART port has
been dumped to a file for further analysis.

4.2.1 Model recovery. TensorFlow Lite models are stored using
FlatBuffers, an object serialization format designed specifically with
mobile hardware in mind. A FlatBuffer contains a series of nested
tables, structures and vectors that can be accessed using offsets
stored in the FlatBuffer itself, so that the data structure may be
traversed in place without prior loading and parsing. A FlatBuffer
has to follow a precise schema defined a priori. In the case of TFLM,
the schema is publicly available on the TFLM GitHub repository.
In particular, TFLM’s FlatBuffer schema contains the file identifier
string "TFL3", which is placed exactly 4 bytes after the start of the
model. Note that since offsets are stored into the FlatBuffer itself,
knowing the exact size of the model is not necessary to successfully
steal it and use it: it is possible to copy whatever comes after the
"TFL3" string and TFLM will load it without a hassle.

4.2.2 Possible mitigations. This attack could be easily prevented
if PMPs and U-mode were implemented. In particular, the TFLM
code must be executed in M-mode, while the main logic of the
program, including the vulnerable command parser, in U-mode. A
PMP register must be configured to allow memory accesses to the
model only in M-mode. Another mitigation could have consisted in
configuring a PMP register to disable execution of the data section
regardless of the privilege mode, using the Lock functionality of
the PMP unit. As a further security measure, direct access to the
UART port must be disabled in U-mode. Since none of these func-
tionalities are available in X-HEEP, it is not possible to implement
these mitigations. Instead, the user must hope that the software is
and will always be vulnerability-free.

Antonio Porsia, Annachiara Ruospo, and Ernesto Sanchez

5 CONCLUSIONS
In this paper, a preliminary analysis of the security vulnerabilities
related to the implementation of a tinyML application in an open-
source microcontroller is provided. The implemented application
runs a light version of a CNN for handwritten digit recognition in
a RISC-V low-power SoC. As experimentally demonstrated, secu-
rity issues are easily exploited by an attacker due to the missing
security extensions in the open-source hardware. Finally, some
countermeasures have been presented.

ACKNOWLEDGMENTS
This publication is part of the project PNRR-NGEU which has re-
ceived funding from the MUR – DM 118/2023.

Thisworkwas partially supported by project SERICS (PE00000014)
under the MUR National Recovery and Resilience Plan funded by
the European Union - NextGenerationEU.

REFERENCES
[1] Michael Bechtel, QiTaoWeng, and Heechul Yun. 2022. DeepPicarMicro: Applying

TinyML to Autonomous Cyber Physical Systems. arXiv:2208.11212 [cs.LG]
[2] Pasquale Davide Schiavone, Francesco Conti, Davide Rossi, Michael Gautschi,

Antonio Pullini, Eric Flamand, and Luca Benini. 2017. Slow and steady wins
the race? A comparison of ultra-low-power RISC-V cores for Internet-of-Things
applications. In 2017 27th International Symposium on Power and Timing Modeling,
Optimization and Simulation (PATMOS). 1–8. https://doi.org/10.1109/PATMOS.

2017.8106976
[3] Dr. Lachit Dutta and Swapna Bharali. 2021. TinyMLMeets IoT: A Comprehensive

Survey. Internet of Things 16 (2021), 100461. https://doi.org/10.1016/j.iot.2021.
100461

[4] ETSI SAI ISG. 2020. Securing Artifical Intelligence (SAI); Problem Statement. Group
Report DGR/SAI-004. ETSI.

[5] ETSI SAI ISG. 2022. Securing Artifical Intelligence (SAI); The role of hardware in
security of AI. Group Report DGR/SAI-006. ETSI.

[6] ETSI SAI ISG. 2023. Securing Artifical Intelligence (SAI); Artificial Intelligence
Computing Platform Security Framework. Group Report DGR/SAI-006. ETSI.

[7] Simone Machetti, Pasquale Davide Schiavone, Thomas Christoph Müller, Miguel
Peón-Quirós, and David Atienza. 2024. X-HEEP: An Open-Source, Configurable
and Extendible RISC-V Microcontroller for the Exploration of Ultra-Low-Power
Edge Accelerators. arXiv:2401.05548 [cs.AR]

[8] OWASP Machine Learning Security Top Ten 2023. OWASP Machine Learning
Security Top Ten. Retrieved March 1, 2024 from https://mltop10.info

[9] TensorFlow Lite for Microcontrollers 2024. TensorFlow Lite for Microcon-
trollers. Retrieved February 19, 2024 from https://www.tensorflow.org/lite/
microcontrollers

[10] tinyML Foundation 2024. tinyML Foundation. Retrieved Feburary 19, 2024 from
https://www.tinyml.org

[11] Vasileios Tsoukas, Eleni Boumpa, Georgios Giannakas, and Athanasios Kakaroun-
tas. 2022. A Review of Machine Learning and TinyML in Healthcare. In Pro-
ceedings of the 25th Pan-Hellenic Conference on Informatics (Volos, Greece)
(PCI ’21). Association for Computing Machinery, New York, NY, USA, 69–73.
https://doi.org/10.1145/3503823.3503836

[12] Andrew Waterman and Krste Asanović (Eds.). 2019. The RISC-V Instruction Set
Manual, Volume I: User-Level ISA, Document Version 20191213. RISC-V Founda-
tion.

[13] Andrew Waterman, Krste Asanović, and John Hauser (Eds.). 2021. The RISC-
V Instruction Set Manual, Volume II: Privileged Architecture, Document Version
20211203. RISC-V International.

https://arxiv.org/abs/2208.11212
https://doi.org/10.1109/PATMOS.2017.8106976
https://doi.org/10.1109/PATMOS.2017.8106976
https://doi.org/10.1016/j.iot.2021.100461
https://doi.org/10.1016/j.iot.2021.100461
https://arxiv.org/abs/2401.05548
https://mltop10.info
https://www.tensorflow.org/lite/microcontrollers
https://www.tensorflow.org/lite/microcontrollers
https://www.tinyml.org
https://doi.org/10.1145/3503823.3503836

	Abstract
	1 Introduction
	2 Background
	2.1 RISC-V
	2.2 TinyML
	2.3 AI security

	3 Case Study
	3.1 X-HEEP
	3.2 Threat model
	3.3 Attack outline

	4 Experimental Results
	4.1 Setup
	4.2 Model theft attack

	5 Conclusions
	Acknowledgments
	References

