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We perform immersed-boundary-method numerical simulations of small amplitude oscillatory shear (SAOS)
flow of suspensions of mono-disperse non-colloidal rigid spherical particles in non-Newtonian liquids from the
dilute to the concentrated regime. We study the influence of suspending liquid inertia and rheology and particle
concentration on the computationally measured storage and loss moduli of the suspensions. In particular, the
rheology of the suspending liquid is modeled through the inelastic shear-thinning Carreau-Yasuda constitutive
equation and the viscoelastic Giesekus and Oldroyd-B constitutive equations. The role of inertia is quantified
by the Stokes number, St, whereas the relevance of the non-Newtonian effects of the suspension matrix is
measured through the Carreau number, Cu, for the Carreau-Yasuda liquid and through the Deborah number,
De, for the viscoelastic liquids. In suspensions with a Carreau-Yasuda matrix, both the storage and the loss
modulus increase with St and decrease with Cu, yet the order of magnitude of Cu has to be greater than unity
for these effects to be visible. In suspensions with a viscoelastic matrix, both the moduli increase with St
and have a non-monotonic trend with De, showing a maximum, with no quantitative differences between the
results pertaining suspensions with Giesekus and Oldroyd-B constitutive equations.

I. INTRODUCTION

Suspensions have been extensively studied over the last
century due to their relevance in several processes, like,
for example, those occurring in oil, cement, paper, and
food industries22. Hence, there is a vast literature on
suspension rheology, including theoretical, experimental,
and numerical works. The rheological behavior of sus-
pensions depends on the size, shape, and concentration
of the suspended solid particles and on the rheology of
the suspending liquid. Particle concentration is usually
measured in terms of the volume fraction of the solid
fillers, φ, the suspension being said ‘dilute’ for φ ≤ 0.05,
‘semi-dilute’ for 0.05 ≤ φ ≤ 0.1, and ‘concentrated’ for
φ > 0.1. Concentrated suspensions are the most interest-
ing from the applicative point of view3. Concerning the
suspending liquid, suspensions with Newtonian matrices
have been receiving great attention since the seminal work
by Einstein10 (see, for example, the review by Tanner29

and the references therein), yet suspensions of particles
in non-Newtonian fluids play key roles in many techno-
logical fields, as energy (e.g., fracking fluids), material
design (e.g., injected composite materials, pastes, and
paints), and consumer product (e.g., liquid medicines
and drugs)28. Many scientific papers dealing with the
rheology of suspensions with non-Newtonian - especially
viscoelastic - matrices are experimental, yet in the last

a)Electronic mail: massimiliano.villone@unina.it

decade the problem has been tackled also from the compu-
tational point of view, in particular addressing the issue of
shear-thickening under simple shear flow18,19,31,33? . The
behavior of suspensions with non-Newtonian matrices has
been discussed in several reviews21,28,30. In particular,
the very recent contribution from Tanner30 contains a sur-
vey on their response under oscillatory shear flow, which
is often used in rheometry to determine the viscoelastic
properties of complex fluids.

In the literature, inertia has been usually neglected in
the determination of the storage modulus, G′, and the
loss modulus, G′′, of suspensions subjected to oscillatory
shear flow, yet it might come into play in some practical
situations, for example when low-viscosity suspending
liquids and/or high oscillatory frequencies are considered.
If the system is modeled as inertialess, this could lead
to misinterpretation of the measurements. Under certain
conditions, even a pure Newtonian liquid can exhibit an
apparent non-null G′-value5,11,17. The effects of inertia
on the apparent viscoelastic moduli of suspensions of rigid
spheres in a Newtonian matrix have been recently studied
numerically by the authors32.

In this paper, we study through immersed-boundary-
method numerical simulations the effects of inertia on the
storage and loss moduli of suspensions of mono-disperse
non-colloidal rigid spheres in non-Newtonian liquids sub-
jected to small amplitude oscillatory shear (SAOS) flow,
from the dilute to the concentrated regime. To model
the rheology of the suspending liquid, we consider the
Carreau-Yasuda constitutive equation, yielding an inelas-
tic shear-thinning behavior, the Giesekus constitutive
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equation, which predicts a shear-thinning viscoelastic be-
havior, and the Oldroyd-B constant-viscosity viscoelastic
constitutive equation.

II. MATHEMATICAL MODEL AND NUMERICAL
METHOD

FIG. 1: Schematic of a suspension of mono-disperse
non-colloidal rigid spherical particles under oscillatory
shear flow.

The system considered in our simulations is schemat-
ically represented in Fig. 1: a suspension of initially
randomly distributed mono-disperse non-colloidal rigid
spheres with diameter Dp undergoes SAOS flow in a plane
Couette geometry, with x, y, and z denoting the stream-
wise, wall-normal, and spanwise directions. The moving
walls of the flow cell are located at y = 0 and y = H,
respectively, and move streamwise in opposite directions
with oscillating velocity uw(t) = (H/2)γ0ωsin(ωt), where
γ0 is the maximum deformation to which the system is
subjected, ω is the oscillatory frequency, and t is the time.
The geometrical confinement of the particles is measured
by the blockage ratio Dp/H, which is equal to 0.2 for all
the simulations reported in this paper, following previous
studies2,23,25,27,32. This value is such that confinement
effects on the measured suspension moduli are negligible,
as it is shown in Fig. 17 by comparison with results at
lower values of the blockage ratio. The dimensions of the
flow cell in the streamwise and spanwise directions are
L = W = 8Dp. The system is considered to be periodic
along these directions.

Assuming that gravity is negligible and that the sus-
pending liquid is incompressible, its motion is governed
by the mass and momentum balance equations, reading

∇ · u = 0, (1)

ρ

(
∂u

∂t
+ u ·∇u

)
= ∇ · T + f , (2)

with ρ the density of the liquid, u its velocity, T the
Cauchy stress tensor, and f a body force used to account
for the presence of the particles.

According to the inelastic shear-thinning Carreau-
Yasuda constitutive equation, the stress tensor T can
be expressed as4

T = −pI + 2η(γ̇)D, (3)

with p the pressure, η(γ̇) the dynamic viscosity of the

liquid depending on the shear rate γ̇ =
√

2D : D, and D
the strain rate tensor defined as D = (∇u+∇uT)/2. In
particular, η depends on γ̇ as

η(γ̇) = η∞ + (η0 − η∞)[1 + (τ γ̇)a]
n−1
a , (4)

with η0 and η∞ denoting the plateau levels to which the
viscosity of the fluid tends at vanishing and diverging
shear rate, respectively, τ the characteristic time, a and
n model parameters. As said, the Carreau-Yasuda model
predicts shear-thinning, namely, a decrease of the viscosity
at increasing shear rate, with τ modulating the shear rate
level above which the phenomenon occurs, corresponding
to about 1/τ , and a > 0, n ∈]0, 1[ describing the extent
of the shear thinning. In this paper, we set η∞/η0 = 0.1,
a = 2, and n = 0.3.

Instead, when a viscoelastic liquid is considered, the
stress tensor T reads

T = −pI + 2ηsD + σ, (5)

where ηs is the ‘solvent’ contribution to the dynamic
viscosity and σ is the viscoelastic extra-stress tensor, for
which a constitutive equation has to be written. The
Giesekus constitutive equation for σ reads15

λ
5
σ + σ +

λα

ηp
σ2 = 2ηpD, (6)

with λ the relaxation time, ηp the ‘polymer’ viscosity,
α the so-called ‘mobility parameter’, and the symbol 5

denoting the upper-convected time derivative15. The at-
tributes ‘solvent’ and ‘polymer’ for the two contributions
to the viscosity of a Giesekus fluid come from its typical
use in modeling the rheological behavior of polymeric so-
lutions. Notice that the zero-shear viscosity of a Giesekus
liquid is η0 = ηs + ηp. All the fluids considered in this
paper have the same value of the zero-shear viscosity.
The viscosity ratio of a Giesekus fluid, β, is defined as
β = ηs/η0. The Giesekus model predicts shear-thinning,
with the mobility parameter α modulating such effect:
the larger α, the ‘more’ shear-thinning the fluid. On the
other hand, when α goes to zero, the fluid has a con-
stant viscosity and the Giesekus constitutive equation
degenerates into the Oldroyd-B model15

λ
5
σ + σ = 2ηpD. (7)

In Fig. 2, we report the predicted rheological behavior
of the fluids considered in this paper when subjected to
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FIG. 2: Rheological behavior of the Carreau-Yasuda,
Oldroyd-B, and Giesekus liquids considered in this paper
when subjected to simple shear flow (a) and SAOS flow
(b). The values of the constitutive parameters are given
in the legend.

simple shear and SAOS flow in the absence of particles.
From panel a, it is apparent that, given the values of
the constitutive parameters indicated in the legend, the
Carreau-Yasuda liquid undergoes shear-thinning when
O(τ γ̇) > 10−1; on the other hand, its viscosity has not
yet reached η∞ = 0.1η0 at τ γ̇ = 100, i.e., the upper limit
of the shear rate window displayed in the diagram. A qual-
itatively similar behavior is shown by the Giesekus fluid.
For all the α− β couples considered here, shear thinning
always arises when τ γ̇ is above 0.1 and it is enhanced at
increasing α and decreasing β, as the viscosity plateau at
high shear rate is equal to βη0. Of course, the Oldroyd-B
constitutive equation predicts a constant shear viscosity.
In panel b, the linear viscoelastic properties of the flu-
ids are reported. Being a generalized Newtonian fluid,
the Carreau-Yasuda constitutive equation predicts zero
storage modulus, whereas the loss modulus is substan-
tially constant over the whole window of dimensionless

frequency, τω, shown in the graph. The loss modulus of
a Giesekus liquid behaves analogously to its shear viscos-
ity, namely, it exhibits thinning for O(λω) > 10−1 until
reaching the plateau value at high frequency equal to β
times the value at vanishing ω. On the other hand, the
storage modulus has a non-monotonic trend with λω and
attains a maximum at λω = 1. From the quantitative
point of view, β has an opposite effect on the moduli, as
decreasing β makes G′ increase and G′′ decrease. Finally,
it is worth remarking that changing α has no effect at all
on the storage and loss moduli of a Giesekus liquid (or
an Oldroyd-B liquid, this being a Giesekus liquid with
α = 0).

The motion of the particles is governed by the Newton-
Euler equations. With reference to the generic k -th parti-
cle, these read

ρpVp
dup,k

dt
=

∮
∂Pk

T · nk dA+ F k, (8a)

Ip
dωp,k

dt
=

∮
∂Pk

rk × (T · nk) dA+ T k, (8b)

where up,k is the particle centroid velocity, ωp,k is the
particle angular velocity, ∂Pk identifies the particle bound-
ary, dA is a differential surface area element, and ρp, Ip,
and Vp are the particle density, moment of inertia, and
volume, respectively. In particular, for a rigid sphere with
radius rp, one gets Vp = (4/3)πr3p and Ip = (2/5) ρpVpr2p.
Moreover, rk is the position vector relative to the particle
centroid, nk is the unit normal vector pointing outwards
from the particle, and F k and T k are the force and torque
acting on the particle due to particle-particle and particle-
wall interactions. The density ratio of the suspension ρp/ρ
is considered equal to 1, i.e., the particles are neutrally
buoyant.

The balance equations reported above are supplied with
appropriate boundary conditions: a velocity −uw(t) is
assigned to the channel sliding wall at y = 0 and a velocity
uw(t) is assigned to the channel sliding wall at y = H,
the periodicity of fluid velocity and stress is prescribed
on the flow cell faces at x = 0 and x = L and at z = 0
and z = W , respectively, and the no-slip/no-penetration
conditions are imposed on the particle boundaries. At
the initial time, the fluid is considered still and stress-free
and laden with randomly distributed still particles. The
initial random spatial distribution of the particles is the
same given the values of the confinement ratio and of the
volume fraction of the solid phase.

The time integration of the equations is based on an
explicit fractional-step method14, where all the terms are
advanced with the third order Runge-Kutta scheme. The
governing differential equations are solved on a staggered
grid using a second-order central finite-difference scheme.
In order to couple the motion of the fluid and the parti-
cles, we employ the immersed boundary method (IBM)
proposed by Breugem6 and based on the direct-forcing
approach, which has been used in several previous stud-
ies on rigid particle suspensions1,2,23,24,26. Such IBM is
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second-order accurate. Lubrication interactions are au-
tomatically included in our code, yet, when the distance
between two particles is smaller than one Eulerian grid
cell, the lubrication force is under-predicted by the IBM
due to the finite grid size. To compensate for this in-
accuracy and to avoid computationally expensive grid
refinements, a lubrication correction model based on the
asymptotic analytical expression for the normal lubrica-
tion force between spheres in a Newtonian fluid is used7.
Such model proved effective also for suspensions with
non-negligible inertia. In addition, a soft-sphere collision
model with Coulomb friction takes over the interaction
when the particles touch. The restitution coefficients used
for normal and tangential collisions are 0.97 and 0.1, re-
spectively, with the Coulomb friction coefficient set to
0.15. It is worth remarking that, even if a Newtonian
lubrication model is used, the contact model influences
the results much more than the lubrication model and
it does not depend on the fluid rheology for φ . 0.37,12.
Also, due to the small displacements considered in this
work, the particles do not touch. A complete description
of the numerical scheme and a validation campaign are
reported by Izbassarov and co-authors13. In this paper,
mesh convergence is achieved with elements with a size
of 3.125× 10−2rp, thus the Eulerian grid is composed by
about 10.5×106 elements, whereas the surface of each par-
ticle is resolved through 3219 Lagrangian points, i.e., 32
points per particle diameter. Time discretization depends
on the flow characteristic time. In this work, timesteps
ranging from O(10−6/ω) to O(10−2/ω) are used, yielding
computational times between a few hours (for the cases
at largest inertia) to a couple of months (for the cases at
lowest inertia).

III. RESULTS

For both the inelastic and the elastic matrices, two
dimensionless numbers can be defined, namely, the Stokes
number, St = ρH2ω/η0, measuring the relative impor-
tance of inertial and viscous effects, and the ratio of
the fluid and the process characteristic times. For the
Carreau-Yasuda liquid, this is given by the Carreau num-
ber, Cu = τω, whereas, when a viscoelastic liquid is
considered, we introduce the Deborah number, De = λω.

In this paper, we consider St1/2 ranging between 1.0
and 50, Cu between 0.1 and 100, and De between 0.1
and 2.0. Experimental results obtained from systems
characterized by the same values of the dimensionless
parameters as those considered in the simulations could
be compared with the numerical results. Just to make
an example, a suspension of particles with a diameter
of 200 µm in a fluid with density of 1000 kg m−3 and
viscosity of 0.001 Pa× s oscillating at a frequency of 15
s−1 in a rheometer with a gap of 1 mm is character-

ized by St1/2 = 3.87. Another way of evaluating the
relative importance of inertial and viscous effects is, of
course, to compute the flow and particle Reynolds num-

bers, which are combinations of the other, independent, di-
mensionless parameters. In particular, the flow Reynolds
number can be expressed as Re = ρuw,maxH/η0 =
ρ(γ0ωH/2)H/η0 = (γ0/2)St, thus it ranges from 0.0025
to 6.25, whereas the particle Reynolds number can be
expressed as Rep = ρ(γ0ωH/2)rp/η0 = (γ0/4)(Dp/H)St,
thus it ranges from 0.00025 to 0.625.

In a suspension undergoing SAOS flow with amplitude
γ0 and frequency ω, the shear stress can be expressed as16

Txy(t) = γ0(G′cos(ωt) +G′′sin(ωt)), (9)

where G′ and G′′ are the storage and loss moduli of the
system, respectively. When SAOS flow conditions hold,
there is a linear relationship between the imposed strain
and the measured stress, namely,

Txy(t)|2γ0
2γ0

=
Txy(t)|γ0

γ0
. (10)

Consequently, one gets (G′, G′′)|2γ0 = (G′, G′′)|γ0 . We
verify that the aforementioned condition is fulfilled for
γ0 = 0.005, thus the numerical results presented below
refer to such value.

A. Carreau-Yasuda inelastic suspending liquid
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FIG. 3: Dynamics of the shear stress in a suspension of
mono-disperse non-colloidal rigid spheres in a
Carreau-Yasuda liquid subjected to SAOS flow at

St1/2 = 5.0 and Cu = 0.5 for 4 different values of the
volume fraction, φ, as indicated in the legend. The gray
dashed line gives the dimensionless applied shear rate
γ̇/(γ0ω).

In Fig. 3, we report the temporal history of the shear
stress in a suspension of mono-disperse non-colloidal rigid
spheres in a Carreau-Yasuda liquid subjected to SAOS

flow at St1/2 = 5.0 and Cu = 0.5 for four values of the
volume fraction of the solid phase from the dilute to the
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concentrated regime, namely, φ = 0.01, 0.05, 0.15, 0.25.
On the horizontal axis, the time is made dimensionless
with the oscillatory frequency, ω, whereas, on the vertical
axis, the shear stress is normalized by the ‘Newtonian’
maximum stress, γ0η0ω. It can be seen that the shear
stress undergoes periodic oscillations, that the maximum
(respectively, the minimum) stress level increases (respec-
tively, decreases) at increasing φ, and that the stress
curves corresponding to the different values of the volume
fraction are not synchronous; indeed, the greater φ the
more the stress curve ‘lags’ with respect to the applied
forcing wave, as it can be observed by looking at the
gray dashed line representing the dimensionless applied
shear rate, γ̇/(γ0ω). The increased delay at larger volume
fractions had been already observed for suspensions with
Newtonian matrices at non-negligible inertia32.

We perform a linear least squares regression of stress
data like those displayed in Fig. 3 based on Eq. (9), so
obtaining the values of the viscoelastic moduli at varying
St and Cu reported in Fig. 4, where the lines connecting
the computed data have the scope of guiding the eye.

On the left, the dimensionless storage modulus of the
suspension, G′/(η0ω), is plotted as a function of the Car-
reau number, Cu, for the different values of the particle
volume fraction, φ, under investigation. Each row pertains
a different value of the square root of the Stokes num-

ber, St1/2. Notice that the data at Cu = 0.001 actually
correspond to simulations with a Newtonian suspending
liquid, but, since the Cu-scale is logarithmic, they are
conventionally attributed to such Cu for visualization
purposes. Several remarks can be made. First of all, like
in suspensions with a Newtonian matrix32, it holds true
that, when inertia is non-negligible, i.e., St is not zero,
the oscillatory measurement ‘reads’ a non-null value of
the storage modulus, thus inertia acts as an apparent
elasticity. Fixed Cu and φ, G′ increases by orders of
magnitude with St, as it can be observed by looking at
the values on the vertical axis in each panel. On the other
hand, G′ only moderately changes with the concentration
of the solid phase, yet the direction of its variation is
non-monotonic. Indeed, G′ slightly decreases with φ at

every Cu for St1/2 = 1.0, 5.0, and 50 (see panels a1, b1,

and d1), whereas it increases with φ at St1/2 = 10, except
at Cu = 100, where the decreasing trend is recovered
(see panel c1). Such unusual behavior had been already
observed in suspensions with a Newtonian matrix (see
the values at Cu→ 0 and Fig. 4a in Villone et al.32) and
may require further investigation (even experimentally).
Finally, increasing Cu has essentially no effect on G′ at

St1/2 = 1.0, whereas, at larger St, no effect is seen for
Cu below 1. As the order of magnitude of Cu further
increases to 10 and 100, a significant decrease of the sus-
pension storage modulus occurs, which is progressively
more pronounced at increasing St. This might appear
somehow counterintuitive. Indeed, given the oscillatory
frequency, ω, Cu can be increased by increasing the liquid
characteristic time, τ , which, in turn, corresponds to a de-
crease of the characteristic value of the shear rate above

which the suspending liquid undergoes shear-thinning:
as the shear rate oscillates between zero and its maxi-
mum, γ0ω, the greater Cu the larger the time in which
the system overcomes the threshold for the occurrence of
shear-thinning, thus it should ‘feel’ a larger St than the
applied value (whose definition is based on the zero-shear
viscosity). This would suggest an increase of G′ with Cu,
yet it is observed that increasing Cu above O(10) hinders
the apparent elasticity of the suspension.

The behavior of the dimensionless loss modulus of the
suspension, G′′/(η0ω), is displayed on the right column
of Fig. 4. Given Cu and φ, G′′ significantly increases
with St (compare the values on the vertical axis among
the four panels). In addition, also the concentration
of the solid fillers has an appreciable effect on the loss
modulus that always increases with φ, even if such effect
is progressively less relevant at increasing St and Cu.

(For example, at St1/2 = 50 and Cu = 100, the values of
the loss modulus corresponding to the different particle

concentrations collapse.) Finally, at fixed St1/2 and φ,
there are no deviations of the loss moduli of suspensions
with a Carreau-Yasuda matrix from those of suspensions
with a Newtonian matrix for Cu below O(1), whereas a
significant decrease of G′′ occurs when Cu is above O(10)
that is progressively more pronounced at increasing St.
The decrease of the loss modulus at high Cu might be
explained by considering that the greater Cu the longer
the time the system undergoes shear-thinning, which leads
to a decrease of the loss modulus.

In Fig. 5, the dimensionless storage and loss moduli

of the suspension are plotted against St1/2 at Cu = 0.1
(top) and 100 (bottom) for φ = 0.01 and 0.25. At low Cu,
an analogous behavior to that observed for suspensions
with a Newtonian matrix32 is seen: when the particle
concentration is low, G′′ dominates on G′ at low St, then

G′ overlaps G′′ for St1/2 & 5.0, whereas, when the suspen-
sion is concentrated, G′ stays always below G′′, yet their
distance progressively decrease and they overlap around

St1/2 = 50. At high Cu and low φ, the behavior is anal-
ogous to that at low φ and low Cu, whereas no overlap
between the storage and the loss modulus is observed at
high particle concentration: at low St, G′′ dominates on
G′, then, at increasing St, the curves representing these
two quantities become almost parallel.

In order to deepen the interpretation of the results re-
ported above, we display in Fig. 6 the spatial distribution
of the particles in a suspension with φ = 0.15 for four

St1/2−Cu combinations. On the top row, we also display
the color maps of the fluid dimensionless streamwise ve-
locity on the flow cell moving walls, the xy-plane at z = 0,
and the yz-plane at x = 0 at tω = 5π/2. These show that

at moderate St1/2 = 5.0 (first two snapshots on the row),
the streamwise velocity profile recalls the linear velocity
profile that would characterize an inertialess pure liquid,
yet it is perturbed (see below) due to non-negligible iner-
tia and to the presence of the particles, as it is apparent
by looking at the map on the yz-plane at x = 0. When Cu
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is changed, no qualitative effects on the fluid streamwise velocity are observed. On the bottom row, the color maps
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FIG. 5: Dimensionless storage modulus, G′/(η0ω), and

loss modulus, G′′/(η0ω), as a function of St1/2 for a
suspension of mono-disperse non-colloidal rigid spheres
in a Carreau-Yasuda liquid subjected to SAOS flow at
Cu = 0.1 (a) and 100 (b). Two values of the particle
volume fraction, φ, are considered, as indicated in the
legend. The lines connecting the data have the scope of
guiding the eye.

of the fluid dimensionless wall-normal velocity show that

at St1/2 = 5.0 (first two shapshots), the particles induce
the appearance of wall-normal components in the fluid
velocity within 4% of the maximum streamwise velocity.
No significant effects are observed neither on the fluid
wall-normal velocity when Cu is changed. On the other

hand, at high St1/2 = 50, the fluid streamwise velocity
field is way different from the inertialess case. As it is
shown by the third and fourth top images, close to both
the upper and the lower wall of the flow cell, the velocity
goes from the wall value to almost zero in a thin layer
(with a height of about 0.1H), whereas a thick region in
between the walls is practically still. This explains the in-
crease of the shear stress levels, and thus of the suspension

moduli, at increasing St; indeed, since the velocity drops
from the maximum value to zero over a small distance,
the actual shear rate in the thin layers close to the walls
is much larger than the overall imposed value, leading
to an enhancement of the shear stress at the walls. In
other words, the actual deformation to which the system
is subjected in such layers is about 10 times the ‘global’
deformation. In addition, the observation that at high St
the fluid has a vanishing velocity in a large part of the
channel gap can help to explain why the effects of particle
concentration are almost negligible when inertia is very
relevant. On the bottom row, the last two color maps

show that, at St1/2 = 50, the wall-normal components

of the fluid velocity are much lower than at St1/2 = 5.0,
with a further reduction at increasing Cu.

A more quantitative description of such observations is
given in Fig. 7a, where we display the vertical profiles of
the xz-surface average of the fluid dimensionless stream-
wise velocity corresponding to the four snapshots given
in Fig. 6. We also report through a gray dashed line the
linear velocity profile characteristic of a pure inertialess
liquid, from which the profiles at non-negligible inertia are

seen to detach. At St1/2 = 5.0, the streamwise velocity
profiles get curved and show an inflection point around
the midplane of the flow cell. A quantitative effect is
observed when Cu is increased, since there is an increase
of the curvature of the two parts of the profile, below
and above the inflection point. On the other hand, a
flattening of the streamwise velocity profiles occurs at

St1/2 = 50, where the velocity drops from the wall value
to zero over a thin distance, which becomes even thinner
at increasing Cu. In Fig. 7b, we report the profiles of the
fluid dimensionless streamwise velocity at Cu = 0.1 and

St1/2 = 5.0, 50 for tω = 5π/2, 3π, 7π/2, namely, when the
upper wall has the maximum positive velocity, when the
walls invert their movement, and when the upper wall
has the maximum negative velocity. The three profiles

at St1/2 = 5.0 are all curved with an inflection point at
the channel midplane, where the velocity is always null.
In particular, it can be observed that, at tω = 3π, the
velocity of the walls vanishes, yet the fluid along the chan-
nel gap still keeps moving due to inertia. On the other

hand, at St1/2 = 50, the fluid flow induced by the walls’
oscillatory movement is confined in the aforementioned
layers close to the walls, whereas the central region of the
channel in the wall-normal direction keeps substantially
still.

It is known from the literature that inertia might induce
cross-streamline migration of rigid particles in sheared
liquids20, thus altering the random distribution of the
particles in the flow cell by deterministically ‘pushing’
them towards two equilibrium horizontal planes, and con-
sequently influencing the shear stress in the suspension.
However, due to the very modest amplitude of the oscil-
lations, lateral migration does not play any role over the
observation time in the cases considered here, neither at
the largest St. As an illustrative example, we show in Fig.
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FIG. 6: Particle distribution and maps of the fluid dimensionless streamwise (top) and wall-normal (bottom)
component on the moving walls, the xy-plane at z = 0, and the yz-plane at x = 0 for a suspension of mono-disperse

non-colloidal rigid spheres in a Carreau-Yasuda liquid with φ = 0.15 subjected to SAOS flow. Four St1/2 − Cu
combinations are considered. The snapshots refer to tω = 5π/2 and the velocity-values are normalized by the
maximum oscillatory velocity of the walls, umax = (H/2)γ0ω.

8 the temporal evolution of the vertical positions of all
the particles in the flow cell normalized over the available
space along the channel gap, (yp − rp)/(H(1−Dp/H)),

in a suspension with φ = 0.15 oscillating at St1/2 = 50
and Cu = 100. None of the particles in the flow cell has
a detectable displacement in the wall-normal direction.

B. Viscoelastic suspending liquids

In this section, we investigate the SAOS flow of suspen-
sions with viscoelastic matrices. In particular, we first
report on the effects of the variation of the Stokes and Deb-
orah numbers on the measured storage and loss moduli of
suspensions of mono-disperse non-colloidal rigid spheres
in a Giesekus fluid with mobility parameter α = 0.125
and viscosity ratio β = 0.5.

In Fig. 9, we show the dynamics of the shear stress in a

suspension subjected to SAOS flow at St1/2 = 10 and De =
1.0 for the same four values of the particle volume fraction
considered above, i.e., φ = 0.01, 0.05, 0.15, 0.25. As in
Fig. 3, the time is made dimensionless by multiplication
with the oscillatory frequency, ω, and the shear stress is
normalized by the ‘Newtonian’ maximum stress, γ0η0ω.
It is apparent that each stress curve undergoes a brief
transient, before reaching a periodic regime. The vertical
gray dashed line marks a dimensionless time equal to
4π, which is the time the moving walls take to perform
two oscillatory cycles. Such time is here observed to
be sufficient for each stress curve to reach the periodic
regime: we, therefore, perform regression of the stress
data through Eq. (9) starting from the stress value at

tω = 4π.

The regression of the stress temporal history at varying
St and De yields the viscoelastic moduli reported in Fig.
10, where the lines connecting the computed data have
the scope of guiding the eye.

On the left column, the dimensionless storage modulus
of the suspension, G′/(η0ω), is plotted as a function of
the Deborah number, De, for the different values of the
particle volume fraction, φ, under investigation. Each
row corresponds to a different value of the square root

of the Stokes number, St1/2. We also point out that the
data at De = 0.001 actually pertain simulations with a
Newtonian suspending liquid, yet, since the De-scale is
logarithmic, they are conventionally attributed to such
De for visualization purposes. By comparing the panels
along the column, it can be remarked that, given De and
φ, the storage modulus increases by orders of magnitude
with St as an effect of the increasing apparent elasticity
provided by inertia32. On the other hand, given St and
φ, G′ always attains a maximum at De = 0.1 (except at

St1/2 = 1.0, φ = 0.25) and then decreases with De. This
qualitatively reproduces the behavior of an inertialess
Giesekus liquid, yet with an important quantitative differ-
ence: indeed, at given oscillatory frequency, the storage
modulus of the pure liquid increases at low De, it attains
a maximum at De = 1, then decreases further increasing
De, as displayed in Fig. 2b . Finally, it can be observed
that G′ only moderately changes with the concentration
of the solid phase, though the direction of such variation

is non-monotonic. In fact, G′ decreases with φ at St1/2

= 1.0 and 1.0 (see panels a1 and c1), whereas it increases

with φ at St1/2 = 5.0 (see panel b1). On the other hand,
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FIG. 7: Vertical profiles of the xz-surface average of the
fluid dimensionless streamwise velocity in a suspension of
mono-disperse non-colloidal rigid spheres in a
Carreau-Yasuda liquid with φ = 0.15 subjected to SAOS
flow. The velocity-values are normalized by the
maximum oscillatory velocity of the walls,

umax = (H/2)γ0ω. In panel a, four St1/2 − Cu
combinations are considered, as indicated in the legend,
and the profiles refer to tω = 5π/2; in panel b, two

St1/2 − Cu couples are considered and the profiles refer
to tω = 5π/2, 3π, 7π/2.

there is substantially no dependence of the suspension
storage modulus on the filler volume fraction at high St:
it is apparent from panel d1 that the points at different

φ collapse when St1/2 = 50.
The data pertaining to G′′/(η0ω) are shown on the

right column of Fig. 10, following the same layout as for
G′/(η0ω) on the left. Given De and φ, G′′ increases with
St (compare the values on the vertical axis among the four
panels), but its quantitative variation is weaker than the

one experienced by G′. At low St1/2 = 1.0 (see panel a2),
fixed φ, the loss modulus monotonically decreases with
De, which is consistent with the known literature results
referring to the inertialess case8, whereas a maximum is
found at De ' 0.5 for larger values of the Stokes number.
Concerning the concentration of the particles, the loss
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FIG. 8: Temporal evolution of the normalized vertical
positions of the particles in a suspension of
mono-disperse non-colloidal rigid spheres in a
Carreau-Yasuda liquid with φ = 0.15 subjected to SAOS

flow at St1/2 = 50 and Cu = 100.
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FIG. 9: Dynamics of the shear stress in a suspension of
mono-disperse non-colloidal rigid spheres in a Giesekus
liquid with α = 0.125 and β = 0.5 subjected to SAOS

flow at St1/2 = 10 and De = 1.0 for 4 different values of
the volume fraction, φ, as indicated in the legend.

modulus of the suspension always increases with φ except

at St1/2 = 50, where the values of G′′ at different φ
collapse (see panel d2).

In Fig. 11, the dimensionless storage and loss moduli

of the suspension are plotted against St1/2 for φ = 0.01
and 0.25 at De = 0.1 (top) and 2.0 (bottom). At low De,
an analogous behavior to that observed for suspensions

with a Newtonian matrix32 is seen: at low St1/2, the
loss modulus always dominates over the storage modulus,
then, when the suspension is dilute, G′ overlaps G′′ for
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FIG. 10: Dimensionless storage modulus G′/(η0ω) (left column) and loss modulus G′′/(η0ω) (right column) as a
function of the Deborah number, De, for a suspension of mono-disperse non-colloidal rigid spheres in a Giesekus liquid
with α = 0.125 and β = 0.5 subjected to SAOS flow. The data pertain the different values of the particle volume
fraction, φ, indicated in the legend. Each row corresponds to a different value of the square root of the Stokes number,

St1/2, as indicated in the panels. The lines connecting the data have the scope of guiding the eye. The data at De =
0.001 correspond to a Newtonian suspending liquid and are conventionally attributed to such De for visualization
purposes.

St1/2 & 5, whereas, when the system is concentrated, G′′ always stays above G′ and the two trends are almost
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FIG. 11: Dimensionless storage modulus, G′/(η0ω), and

loss modulus, G′′/(η0ω), as a function of St1/2 for a
suspension of mono-disperse non-colloidal rigid spheres
in a Giesekus liquid with α = 0.125 and β = 0.5
subjected to SAOS flow at De = 0.1 (a) and 2.0 (b).
Two values of the particle volume fraction, φ, are
considered, as indicated in the legend. The lines
connecting the data have the scope of guiding the eye.

parallel for St1/2 & 5. The latter scenario holds true at
high De regardless of φ (see panel b).

In order to deepen the comprehension of the results
reported above, it might be useful to visualize separately
the solvent and polymer contributions to the suspension
shear stress, i.e., those arising from the second and the
third term of the rhs of Eq. (5). This is done in Fig. 12
for four combinations of St and De and for the lowest and
the highest particle volume fraction, namely, φ = 0.01 and

0.25. By comparing the behaviors at low St1/2 = 5.0 (top

row) and high St1/2 = 50 (bottom row), two main remarks
can be made: first, the order of magnitude of the stress
contributions increases at increasing St, which reflects
on the corresponding increase of the order of magnitude

of the moduli; in addition, quantitative differences are
detected at low St between the curves at different particle
concentration, whereas these overlap at high St, which
results in the collapse of the G′- and G′′- data at different
φ observed at large St. On the other hand, by comparing
the curves at low De = 0.1 and high De = 2.0 (right
column), the same behavior of the phase shift between
the solvent and the polymer stress contributions can be
observed regardless of St: at low De, these are almost
in phase, becoming instead almost in opposite phase at
high De. The persistence of such behavior at varying St
corresponds to the qualitative similarity among the plots
of G′ and G′′ as function of De at different St.

As a further element of analysis, we display in Fig. 13
the spatial distribution of the particles in a suspension
with φ = 0.15 and the color maps of the fluid dimension-
less streamwise (top) and wall-normal (bottom) velocity

at tω = 5π/2 for four St1/2 − De combinations. Similar
considerations as those on Fig. 6 can be made, with
De here playing the role there played by Cu. At low

St1/2 = 5.0, the streamwise velocity profile qualitatively
looks like that of an inertialess pure liquid, yet perturbed
due to non-negligible inertia and to the presence of the
particles, with no significant changes at increasing De.
As above, the particles induce wall-normal components
of the fluid velocity within 4% of the maximum stream-
wise velocity. At increasing De, no significant effects
are observed on the fluid wall-normal velocity. At high

St1/2 = 50, the fluid streamwise velocity field is such that
it goes from the wall value to almost zero in a thin layer,
whereas a thick region in between the walls is practically
still, as already observed for the Carreau-Yasuda matrix;
this explains the observed increase of the shear stress
levels, thus of the suspension moduli, at increasing St. As
above, the wall-normal components of the fluid velocity

are much lower at St1/2 = 50 than at St1/2 = 5.0, with
no significant variations at increasing De.

In Fig. 14, we report the vertical profiles of the xz-
surface average of the fluid dimensionless streamwise ve-
locity corresponding to the four snapshots in Fig. 13.
Again, similar considerations as those on Fig. 7 can be

made. At St1/2 = 5.0, the streamwise velocity profiles get
curved and show an inflection point at about y/H = 0.5,
thus departing from the linear velocity profile for a pure
inertialess Giesekus fluid (see gray dashed line). When De
is increased, the curvature of the profile correspondingly

increases. Instead, at St1/2 = 50, there is a flattening
of the streamwise velocity profiles that go from the wall
value to zero over a thin distance, with weak effects when
increasing De.

Besides inertial migration, cross-streamline migration
of particles can occur in a sheared viscoelastic liquid due
to the normal stresses arising in the suspending medium9.
As for the case of the Carreau-Yasuda suspending liquid
presented in Sec. III A, we have verified that no lateral
migration is observed in the simulations with viscoelastic
liquids.
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FIG. 12: Dynamics of the solvent (N) and polymer (VE) contributions to the shear stress in a suspension of
mono-disperse non-colloidal rigid spheres in a Giesekus liquid with α = 0.125 and β = 0.5 subjected to SAOS flow at

four St1/2 −De couples, as indicated in the legend, and for φ = 0.01, 0.25.

In order to make a direct comparison between the re-
sults pertaining suspensions with rheologically different
suspending liquids, we show in Fig. 15 the storage modu-
lus (on the left) and the loss modulus (on the right) of
suspensions with a Carreau-Yasuda and a Giesekus ma-
trix as function of the dimensionless number expressing
the ratio of the fluid and the flow characteristic times,
i.e., Cu and De. For both constitutive equations, a dilute
case with φ = 0.01 and a concentrated case with φ = 0.25
are considered. Of course, the data for the two fluids
coincide at vanishing Cu/De, as these are representative
of a suspension with a Newtonian matrix. On the top row

of Fig. 15, St1/2 is equal to 1.0. Concerning the storage
modulus (see panel a1), the trends for a Carreau-Yasuda
suspending liquid are horizontal. On the other hand, at
low φ, the storage modulus of a Giesekus suspension over-
comes that of a Carreau-Yasuda suspension at low Cu/De,
then it crosses and goes increasingly below it at increas-
ing Cu/De. At high φ, G′ is always lower in a Giesekus
suspension than in a Carreau-Yasuda suspension, with
their quantitative difference that increases at increasing
Cu/De. Instead, the loss modulus of a Giesekus suspen-
sion exhibits a way more pronounced thinning than that

of a Carreau-Yasuda suspension both in the dilute and
the concentrated regime, as shown in panel a2. At high

St1/2 = 50, the storage modulus of a Giesekus suspen-
sion stays above that of a Carreau-Yasuda suspension
for Cu/De . 1, then the curves cross each other and the
storage modulus of a Giesekus suspension becomes lower
than that of a Carreau-Yasuda suspension at the same
Cu/De (see panel b1). It can be also seen that the slope
of the decreasing curves at high Cu/De is the same for
the two fluids. Concerning the loss modulus, shown in
panel b2, G′′ is always larger in a Giesekus suspension
than in a Carreau-Yasuda suspension, yet, beyond the
maximum, the loss modulus curve for a Giesekus suspen-
sion attains a slope that would make it overlap that for a
Carreau-Yasuda suspension at high Cu/De. For both the
fluids and the moduli, the effect of the particle volume

fraction is almost negligible at high St1/2.

Let us now discuss the effects of the mobility parameter,
α, and of the viscosity ratio, β, on the computationally
measured storage and loss moduli of a suspension of
mono-disperse non-colloidal rigid spheres in a viscoelastic
liquid. Concerning α, we have performed the same set of
simulations whose results are shown above also at α =
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FIG. 13: Particle distribution and maps of the fluid dimensionless streamwise (top) and wall-normal (bottom) velocity
on the moving walls, the xy-plane at z = 0, and the yz-plane at x = 0 for a suspension of mono-disperse non-colloidal

rigid spheres with φ = 0.15 in a Giesekus liquid with α = 0.125 and β = 0.5 subjected to SAOS flow. Four St1/2 −De
combinations are considered. The snapshots refer to tω = 5π/2, the velocity-values are normalized by the maximum
oscillatory velocity of the walls, umax = (H/2)γ0ω.
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FIG. 14: Vertical profiles of the xz-surface average of the
fluid dimensionless streamwise velocity in a suspension of
mono-disperse non-colloidal rigid spheres with φ = 0.15
in a Giesekus liquid with α = 0.125 and β = 0.5

subjected to SAOS flow. Four St1/2 −De combinations
are considered, as indicated in the legend. The profiles
refer to tω = 5π/2 and the velocity-values are normalized
by the maximum oscillatory velocity of the walls,
umax = (H/2)γ0ω.

0.25, thus for a ‘more shear-thinning’ Giesekus suspending
liquid, and at α = 0, namely, for a constant-viscosity
Oldroyd-B matrix. For all the considered values of St, De,

and φ, the differences in the results obtained at varying
α are so little that they are indistinguishable from those
at α = 0.125. For this reason, they are not reported in
this paper. This would be expected for a pure inertialess
Giesekus liquid, since its storage and loss moduli do not
depend on α, as shown in Fig. 2b; apparently, neither
non-negligible inertia nor the presence of the particles
do modify this scenario. On the other hand, we show
in Fig. 16 some results elucidating the effects of β. In
particular, the top row reports the trends of G′/(η0ω) (on
the left) and G′′/(η0ω) (on the right) as a function of De

at St1/2 = 5.0 and for the four φ − β couples indicated
in the legend. It can be observed that the behavior of
the storage and loss moduli as a function of De does not
change qualitatively when β is lowered from 0.5 to 0.2, yet
there is an appreciable quantitative effect: indeed, given
φ, both the moduli are increased with respect to their
values at β = 0.5 when De is low, whereas they go below
their values at β = 0.5 when De is high. On the bottom
row of Fig. 16, we report the suspension storage and loss

moduli as a function of De at St1/2 = 50. At such high
St, the value of G′ and G′′ at β = 0.2 is greater than the
corresponding value at β = 0.5 (at the same De and φ).

In addition, it should be remarked that, when St1/2 =
50, the values of G′ and G′′ at different φ collapse even
at β = 0.2.

As indicated in Sec. II, all the numerical results re-
ported in this paper are obtained with a confinement ratio
Dp/H = 0.2. In order to verify the possible occurrence
of confinement effects, we plot in Fig. 17 the suspension
moduli as a function of Dp/H for a Carreau-Yasuda ma-
trix (panel a) and a Giesekus matrix with α = 0.125 and
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FIG. 15: Dimensionless storage modulus G′/(η0ω) (left column) and loss modulus G′′/(η0ω) (right column) as a
function of Cu for a suspension of mono-disperse non-colloidal rigid spheres in a Carreau-Yasuda liquid subjected to
SAOS flow and as a function of De for a suspension with a Giesekus matrix with α = 0.125 and β = 0.5. The data
pertain the different values of the particle volume fraction, φ, indicated in the legend. Each row corresponds to a

different value of the square root of the Stokes number, St1/2, as indicated in the panels. The lines connecting the
data have the scope of guiding the eye. The data at De = 0.001 correspond to a Newtonian suspending liquid and are
conventionally attributed to such De for visualization purposes.

β = 0.5 (panel b). In both panels, the particle volume

fraction is φ = 0.15 and four St1/2 - Cu (or De) combina-
tions are considered. As the trends shown in Fig. 17 are
all horizontal, we can infer that there are no particle con-
finement effects on the measured storage and loss moduli
for Dp/H ≤ 0.2. This is also a proof that our results do
not depend on the randomly-chosen initial distribution
of the particles. Indeed, different initial configurations
of the system are considered when Dp/H is changed at
given φ.

IV. CONCLUSIONS

In this paper, we investigate through interface-resolved
numerical simulations the SAOS flow of suspensions of
mono-disperse non-colloidal rigid spherical particles in
non-Newtonian liquids from the dilute to the concentrated
regime. We consider both an inelastic shear-thinning ma-
trix, modeled by the Carreau-Yasuda constitutive equa-
tion, and viscoelastic matrices, modeled by the Giesekus
and Oldroyd-B constitutive equations. Our simulations
aim at elucidating the effects of the interplay among
inertia, suspending liquid rheology, and particle concen-

tration on the measured storage and loss moduli of the
suspensions.

Like in suspensions with a Newtonian matrix32, in
suspensions with a Carreau-Yasuda inelastic suspending
liquid a non-zero storage modulus is always detected when
inertia, measured by the Stokes number, St, is not zero.
In particular, G′ significantly increases with St, whereas
it only moderately changes with the concentration of the
solid phase. On the other hand, increasing the character-
istic time of the Carreau liquid has almost no effect on G′

until the product between such characteristic time and
the oscillatory frequency, i.e., the Carreau number, Cu,
reaches order unity, above which a significant decrease of
the suspension storage modulus occurs, namely, increas-
ing Cu hinders the suspension apparent elasticity. The
loss modulus, G′′, increases with both St and φ. Concern-
ing the effect of Cu, there are no deviations of the loss
modulus of a suspension with a Carreau-Yasuda matrix
from that of a suspension with a Newtonian matrix below
O(Cu) = 1, whereas a significant decrease of G′′ occurs
when Cu is above O(10).

In suspensions with a Giesekus viscoelastic matrix, the
storage modulus increases by orders of magnitude with St
as an effect of the increasing apparent elasticity provided
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FIG. 16: Dimensionless storage modulus G′/(η0ω) (left column) and loss modulus G′′/(η0ω) (right column) as a
function of De for a suspension of mono-disperse non-colloidal rigid spheres in a Giesekus liquid with α = 0.125

subjected to SAOS flow. Top row: St1/2 = 5.0; bottom row: St1/2 = 50. The data pertain the different values of the
particle volume fraction, φ, and of the viscosity ratio, β, indicated in the legend. The lines connecting the data have
the scope of guiding the eye. The data at De = 0.001 correspond to a Newtonian suspending liquid and are
conventionally attributed to such De for visualization purposes.

by inertia32, whereas it has a non-monotonic behavior
passing through a maximum when increasing the ratio
of the fluid relaxation time and the flow characteristic
time, i.e., the Deborah number, De. On the other hand,
G′′ increases with St. Concerning the effect of De, the
loss modulus decreases with it at low St, whereas it has a
non-monotonic behavior passing through a maximum at
moderate and high St. The effect of the concentration of
the particles on both the moduli is progressively weaker
at increasing inertia, with data at different φ collapsing
at high St.

By making a direct quantitative comparison between
the results for suspensions with Carreau-Yasuda and
Giesekus matrices as a function of Cu and De, respec-
tively, some relevant differences arise depending on the
weight of inertia. Indeed, at high St, both the moduli of a
Giesekus suspension overcome those of a Carreau-Yasuda
suspension for a wide window of Cu/De, whereas, at low
St, the moduli of a Giesekus suspension are generally
lower than those of a Carreau-Yasuda suspension, the
extent of the difference depending on Cu/De.

For suspensions with both Carreau-Yasuda and
Giesekus matrices, the behavior of the moduli finds cor-
respondence in the observation of the fluid velocity pro-
files at varying St and Cu/De, which, in turn, reflect on
the shear stress curves. In particular, the profile of the

fluid streamwise velocity in the vertical direction becomes
non-linear when inertia is non-negligible, consequently
modifying the shear rate profile. Even, at high St the
fluid is almost still in a wide region at the center of the
channel gap and the streamwise velocity goes to the wall
value to almost zero in two narrow regions close to the
moving walls. Changing Cu/De quantitatively affects
such profiles.

Since the Giesekus constitutive equation predicts both
viscoelasticity and shear-thinning, the influence of the ex-
tent of the latter on the suspension moduli is investigated
by considering both a ‘more shear-thinning’ Giesekus ma-
trix and a constant-viscosity Oldroyd-B suspending liquid,
yet no appreciable effects are detected, thus reproducing
the behavior predicted by the constitutive equation for
a pure inertialess liquid. On the contrary, changing the
relative importance of the ‘solvent’ and ‘polymer’ contribu-
tions to the suspension matrix viscosity has a quantitative
effect on the computationally measured G′ and G′′. In
particular, at high St, lowering β enhances both the stor-
age and the loss modulus regardless of De, whereas, at
low St, lowering β makes the moduli increase at low De
and decrease at high De.

1Alghalibi, D., Fornari, W., Rosti, M. E., and Brandt, L., Interna-
tional Journal of Multiphase Flow , 103291 (2020).
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FIG. 17: Dimensionless storage modulus, G′/(η0ω), and
loss modulus, G′′/(η0ω), as a function of Dp/H for a
suspension of mono-disperse non-colloidal rigid spheres
with volume fraction φ = 0.15 in a Carreau-Yasuda
liquid (a) and in a Giesekus liquid with α = 0.125 and

β = 0.5 (b) subjected to SAOS flow. Four St1/2 - Cu (or
De) couples are considered, as indicated in the legend.
The lines connecting the data have the scope of guiding
the eye.
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