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Abstract—Electrodermal Activity (EDA) is a broadly-
investigated physiological signal, whose behaviour is connected
to nervous system arousal. Such system, indeed, influences the
properties of the skin, producing a measurable electrical signal.
Among the possible applications of such measurements, several
studies have correlated the signal behaviour to engagement
during mental and physical tasks, and the subjects’ response
to specific multimodal stimuli. Also due to the possibility of
performing remote assessment and rehabilitation, telemedicine
applications are gaining ground in the healthcare system.
However, acceptance and engagement, hence continuity of usage,
still remain significant obstacles. Therefore, it would be highly
beneficial to verify, through objective measures, if these solutions
are actually providing a sufficient stimulation to properly engage
subjects while playing. This study investigates the possibility
of employing EDA in the automatic recognition of different
levels of user engagement, while playing a motor-cognitive
exergame specifically designed for this purpose. Preliminary
results, obtained on a cohort of 25 healthy subjects, seem to
confirm that features extracted from EDA analysis are significant
and able to train supervised classifiers, achieving high accuracy
and precision in the engagement recognition problem.

Index Terms—EDA, Telemedicine, Exergames, User’s Engage-
ment

I. INTRODUCTION

Electrodermal Activity (EDA), also known as Galvanic Skin
Response or Skin Conductance is widely used in the field
of neuroscience. It is the continuous variation in the skin
electrical characteristics due to sympathetic nervous system
arousal. Indeed, different emotional states and stimuli can
provoke the activation of the sympathetic system that will
influence the sweat glands and pores functioning, modifying
skin conductance properties. In the literature, the EDA is used
in evaluating the arousal level for various purposes: stress as-
sessment, classification of emotional states, engagement recog-
nition and assessment of the subjects’ response to various
stimuli (relaxing music, images, standardized tasks) [1]–[5].
Nowadays, many sectors are converting to smart, automatic
solutions which require advanced human-computer interaction
approaches. As a result, there is an increasing interest in
technologies that could understand the needs of customers or
potential customers. For instance, automatically recognising the
emotional effect due to human-technology interaction could
allow for optimisation in the learning process in education or
for an increase in engagement in the entertainment industry,

particularly video-gaming [6], [7]. Also in the medical field,
telemedicine is rapidly gaining ground [8], especially in the
wake of the COVID-19 pandemic. Patient-support facilities,
diagnostic procedures and follow-up protocols are being con-
verted into remote solutions, making extensive use of techno-
logical aids of various kinds. Consequently, monitoring and
regulating the arousal state in order to optimise the design and
customisation of telemedicine applications can be useful in this
framework. Indeed, many remote protocols involve contact be-
tween the caregiver and the patient via a device and/or envisage
replacing or complementing the in-person health assessment
with alternative measures to be carried out at home or in the
outpatient clinic. For instance, several attempts to implement
e-Health platforms for motor and cognitive assessment and
rehabilitation can be found in the literature [9], [10]. Among
those, an approach of increasing interest consists in the use of
serious games and exergames paradigms to gamify traditional
exercises for assessment and rehabilitation purposes [11]–[15].
These telemedicine solutions are often targeting the elderly
population, that is constantly growing and commonly presents a
complex clinical picture. Indeed, telemedicine solutions would
be a great economic advantage and could guarantee continuity
of care if applied to this group of subjects. Unfortunately, this
segment of the population is usually also the most wary of
technology adoption [16], which could make these telemedicine
solutions substantially useless or less performing than those in
person. Being able to determine a-priori and in an objective
and quantitative manner whether an interface, a protocol or
a device is able to stimulate the desired emotional response in
the user (e.g., engagement, attention, fear) can be pivotal in this
situation. Notably, this is crucial in the case of exergames and
rehabilitation protocols, where entertainment and motivation
are essential to get the user/patient to perform the assigned
tasks and guarantee continuity of use. Attempts to evaluate the
arousal state, in order to optimise the platforms and games, have
already been carried out in this field [17]–[20], employing EDA
as well [21]. The novelty presented in this paper is set within
this last framework: the aim is to establish if EDA could be
used to identify distinct levels of engagement while playing
a custom exergame, designed for remote cognitive and motor
rehabilitation. The developed exergame has four levels in which
different elements are progressively introduced to solicit the
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users’ response, providing four levels of user engagement to be
measured. In this pilot study, twenty-five young subjects were
enrolled to play the exergame while wearing the Empatica E4
sensor for EDA recording. The measured EDA was analysed
through different approaches: 26 features were computed in
each level. An automatic recognition of the engagement reached
in each game level was attempted using these features. The
analysis of the obtained results allowed preliminary conclusions
to be drawn on the use of EDA for this purpose.

II. MATERIALS AND METHODS

A. Setup and experimental protocol

This preliminary study involved 25 healthy young subjects
(27±7 years old; 11 females, 14 males; no mental or physical
disorders, no medications). Each subject played a custom-
developed exergame while seated in front of a RGB-Depth
camera (i.e., Microsoft Azure Kinect). The game involves the
use of the dominant arm and hand to complete each level.
The detailed description of the exergame can be found in the
following dedicated paragraph. During the exergame play, the
CE-medical certified Empatica E4 device was employed for
recording EDA. The wristband was applied on the not-used
arm in order to minimise the artefact due to movement and
it was worn at least ten minutes before the game beginning.
The Empatica device provides the EDA as a Comma Separated
Value (CSV) file containing 4Hz-sampled EDA values in µS
and also including the initial time of the recording stored as an
unique timestamp in Coordinated Universal Time (UTC). This
last information is used to synchronize the EDA samples with
the starting time of each game level.

B. Exergame

The exergame has been developed in Unity and uses Mi-
crosoft Azure Kinect to capture real-time movements of arm
and hand. The game was originally designed for high motor and
cognitive involvement, by stimulating goal-oriented movements
of the upper limb. It was created for rehabilitation/evaluation
purposes and appropriately adapted for this preliminary investi-
gation on EDA in healthy young subjects, stressing the engage-
ment modulation aspect. The simplicity and non-invasiveness of
the solution allows it to be played also in home environments,
thus making it suitable for any Telemedicine application aimed
at these purposes. The exergame includes four game levels
designed to increase the difficulty of the task and the subject’s
engagement. Each subject is asked to keep the dominant hand in
front of the RGB-Depth camera, at about a 50–60 cm distance
from it. On the screen, the virtual hand follows the movements
of the real hand, through the GMH-D algorithm [22], which
combines Google Mediapipe Hands solution with the depth
sensor of the Azure Kinect for high accuracy tracking [23].
The game consists of grasping the correct object, among the
four displayed, whose shape and colour are specified through
textual on-screen instructions, and carrying it into the box
displayed at the bottom of the game scene. This needs to be
done for all scheduled objects in each level and thus requires

Fig. 1: Example of a user performing the exergame. The game
scene of level 1 is shown here.

the execution of specific hand actions including grab, drag, and
release. An example of the game scene is shown in Figure
1. The levels were designed to increase the engagement and
difficulty progressively. For this purpose, background music is
played at an increasing speed and the time available to complete
each movement (i.e., grab, drag, and release) is shortened, thus
making the game progressively more pressing [24]. In addition,
specific elements are introduced in each level: in the second
level, multiple objects displayed on screen have the same colour
or shape as the one specified by the on-screen instruction;
in the third level, the on-screen instruction is displayed in a
discordant color with respect to the color of the required object
(Stroop Test style [25]); in the fourth and last level, moving
objects are added, i.e., the box in which to release the objects
continuously moves along the horizontal direction, making the
task very difficult. In this fashion, levels 1 and 2 – that are
conceived to make the user familiar with the game interface
and are considered as low engagement levels – are not expected
to provoke a strong response in users, whereas levels 3 and 4
should provide a strong response, as they contain high engaging
features [26]. In particular, level 4 introduces a sudden change
in difficulty and requires a different approach to be completed.
As a consequence, the user has to come up with a new strategy
in the shortest time possible, inducing a sudden increase in the
required cognitive skills (e.g., attention, logic), hence causing
additional involvement and challenge.

C. EDA Analysis and Feature Extraction

The EDA analysis and feature extraction were performed
in MATLAB R2021a. There is not a standardised protocol
for the EDA analysis; hence, a multi-approach was carried
out. Twenty-six features were computed in four main types of
analysis, considering: (1) the EDA signal amplitude, computing
descriptive statistical features; (2) the EDA signal trend; (3)
the frequency domain; (4) the EDA signal decomposition in
tonic and phasic components. For the first type of analysis,
the EDA signal was firstly low pass filtered with a cut-off
frequency of 1.5 Hz, as in [27]. The z-score of the whole
signal and the descriptive statistical features of its amplitude
in each level were computed. The first derivative of the EDA
signal was also calculated and used for feature extraction
regarding EDA trend. In addition, Hjorth features (Activity
and Mobility) [28] were calculated on the EDA amplitude
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TABLE I: Features Description

Features Description
range_EDA Range of z-scored EDA (zEDA) signal
kurt_EDA Kurtosis of zEDA signal
std_EDA Standard Deviation of zEDA signal

mean_EDA Mean of zEDA signal
max_der Absolute maximum of the EDA first derivative

meannegder Mean of the negative EDA first derivative
Activity (Hjorth) Variance of EDA signal

Mobility (Hjorth) Square root of the variance of the
first derivative of EDA divided by activity

P_B5 Power in the [0.05 0.5] Hz band of EDA signal
P_90 Frequency corresponding to the 90% of spectral power
P_std Standard Deviation of the Power Spectrum

cvx_Tmean Mean of the Tonic component
cvxT_range Range of the Tonic component
ske_cvxT Skewness of the Tonic component
kur_cvxT Kurtosis of the Tonic component

cvxTmedian Mean of the Tonic component
cvxTstd Standard Deviation of the Tonic component

cvx_Pmean Mean of the Phasic (p) Component
cvxP_range Range of Phasic (p) Component
ske_cvxP Skewness of the Phasic (p) Component
kur_cvxP Kurtosis of the Phasic (p) Component

cvxPmedian Mean of the Phasic (p) Component
cvxPstd Standard Deviation of the Phasic (p) Component

cvx_Pmax Maximum value of the Phasic (p) Component
cvx_Prmax Maximum value of the Phasic (r) Component

in order to explore their usability also in the EDA Analysis
framework, as suggested in [29]. Frequency domain analysis
of the EDA signal was performed by considering each level
separately as well. The power spectrum was calculated on the
filtered EDA signal (no z-scored) through the Fast Fourier
Transform. A detailed description of these features is reported
in Table I. Moreover, the EDA is usually evaluated in controlled
experimental protocols, where a known stimulus is administered
to the user. Therefore, the signal analysis takes into account
specific activities (usually a single peak or a train of peaks)
that occur after the stimulus by computing features concerning
number of peaks, latency, and decay time. This kind of analysis
is very popular and the Ledalab software [30] and EDA Ex-
plorer [31] are common tools employed for it. Nevertheless, the
protocol used in this work does not involve the use of controlled
stimuli because it measures the EDA during the execution
of an exergame that involves continuous and differentiated
stimulation over a prolonged period of time. This makes it
impossible to identify a single stimulus response window and
requires taking into account the presence of simultaneous and
different stimuli. As a consequence, we employed the EDA
analysis decomposition (tonic and phasic components) through
convex optimisation (cvxEDA), as proposed by [32]. In [32],
indeed, the implementation of the model under the cvxEDA
algorithm is physiologically inspired and directly deals with
the not controlled interstimulus interval (ISI) aspect, as it is
in real life conditions. This is why this approach was chosen
from the rich landscape of EDA analysis tools available in
the literature. On the other hand, the algorithm cvxEDA is
prone to typical recording artefacts such as detachment. Indeed,
wearable wristbands, such as the Empatica E4, rely on two
metal sensors leaning against the skin. During motion or in

the case of pressure applied, the sensors can be slightly moved
and cause loose contact with the skin (detachment). In this
case, the signal will present sudden changes in amplitude.
Physiologically, the EDA signal cannot have sudden droppings;
thus, the cvxEDA algorithm used cannot deal with them. Hence,
all signals were preliminarily visually checked for the presence
of such artefacts. The set-up chosen for this study guaranteed a
robust signal (the wrist for the data recording was not involved
in the game and the participants were asked to keep it still
while playing); indeed, no detachment artefacts were found.
Moreover, visual inspection of the accelerometer signal, also
available from Empatica E4, confirmed the absence of wrist
motion during the game execution. From the decomposition
found from the cvxEDA algorithm, the tonic component (t), the
phasic component (r) and the sparse SMNA driver of phasic
component (p) were identified. From them, the last part of the
EDA analysis was performed, and 14 features were further
estimated in each level (for a total of 26 features per level
obtained from the four analysis performed). The mean, range,
median, standard deviation, skewness and kurtosis of t and p
were estimated for each level, as well as the maximum value
of p and r, as shown in Table I.

D. Features Analysis and Classification

In order to understand the behaviour and significance of the
extracted features and to create graphical representation, Python
(Plotly and Seaborn libraries) and Jamovi tools were exploited
[33]. The four game levels were also rearranged in 2 classes:
levels 1 and 2 were considered the Low Engagement class while
levels 3 and 4 were considered the High Engagement one. This
was done not only to simplify the visualization, but also to
better understand the discriminating power of the features in
a binary or multi-class classification problem. On top of that,
this arrangement follows the original structure designed for the
game, as explained in section II-B. To empirically understand
the discriminating power of the features, radar plots of the aver-
aged values (among subjects) of the features for each level were
observed. Furthermore, the correlation matrix of the 26 features
plus the game level label was computed (Spearman’s correlation
coefficients ρ). The game level label, indeed, corresponds to the
progressively increasing level of engagement (game level 1 =
engagement level 1, game level 2 = engagement level 2 and
so on), thus virtually representing the true class of belonging.
Consequently, the most label-related features will likely provide
good discriminatory power of engagement level. The correla-
tion matrix was used to identify the redundant features and
determine a threshold of correlation to the class label (ρL). In
this way, the resulting sub-group of features can be fed to the
classification algorithms. In particular, to determine whether the
EDA signal is able to distinguish different levels of engagement
using this setup, automatic classification was exploited. For the
classification different supervised models were tested; namely,
the Support Vector Machine (SVM), Random Forest (RF)
and k-Nearest Neighbour (k-NN) classifiers. The classifiers
were evaluated through nested cross-validation (10 outer train-
test splits, 3 internal splits). Regarding SVM, kernel, cost of



misclassification (C), γ and degree were optimised through a
grid search approach in the internal cross-validation. As for RF,
several values of the maximum depth of the trees were explored
as well as several k values for k-NN. For a better insight into the
model performance, the confusion matrices, reporting precision
of classification for each label, were computed averaging the
single confusion matrices obtained in the 10 train-test splits
of outer cross-validation. Precision is deemed as an important
metric, considering that our goal is to precisely identify the
different engagement level reducing as much as possible the
number of false positives while doing so. After excluding the
redundant features (cross-correlation coefficient > 0.9), the
algorithms were tested with three different feature sets for both
binary and multi-class problems: using all the features, using
only the features with ρL > 0.4 and, lastly, using only the
features with ρL > 0.6.

III. RESULTS AND DISCUSSION

A. Features Relevance

The majority of the features do not present with a normal
distribution, following the p-value of the Shapiro-Wilk test
(ρ − value < 0.001), Pcvx_B5 and ske_cvxT make an
exception. For them it is not possible to infer the distribution
characteristics. The distribution of the values taken by the
selected features in the low-engagement levels versus high-
engagement ones was preliminary analysed using violin plots
and descriptive statistics. These plots were not reported, to limit
the length of the paper. However, from them it was observed
that distributions changed shape among levels and that many
features presented with promising average differences and dif-
ferent distributions, in particular cvx_Tmean, cvxTmedian,
mean_EDA, max_der, cvxP_range and cvx_Pmax. This
result has been confirmed by the visualization of the radar plot
of the averaged values through all the subjects, comparing the
behaviour in the four levels. The radar plot is shown in Figure
2 and it suggests that many of the features have discriminant
power between the four levels. cvx_Tmean, cvxTmedian
and max_der stand out, while mean_EDA seems to differ
significantly among level 1, 2 and 3 but not between level 3 and
4, finally cvx_Pmean seems to differ significantly among level
2 and 3. Moreover, the correlation matrix was computed. First,
to spot redundancy between pairs of features, cross correlation
values greater than 0.9 were considered. Between the highly
cross-correlated features, only the ones with higher ρL where
kept in the subsequent analysis. The resulting subgroup of
features in shown in Table II with ρL from the correlation
matrix. The sub-group of the remaining features such that
ρL > 0.4 and the sub-group of features ρL > 0.6 (in violet
in Table II) are created to use them as feature sets with
different selection criteria. It is possible to observe from Table
II that the trend and values of the EDA amplitude seem to
be highly correlated with the game level, especially after the
decomposition in tonic and phasic components through the
cvxEDA optimisation. It is interesting to notice that the leading
features are from 3 out of 4 main types of EDA analysis

Fig. 2: Radar plot of the averaged features in the four levels.

done in this work. Indeed mean_EDA comes from the EDA
amplitude statistical descriptive features, max_der comes from
the EDA-trend analysis, specifically from the first derivative
and, at last, cvxTmean is produced by the statistical analysis
of the amplitude of the tonic component alone as extracted
from cvxEDA. Features from the frequency domain do not
seem to be relevant observing radar (or violin) plot and ρL,
as well as the Hjorth parameters. As a consequence of the
previous observation, a 3D scatter plot in the plane cvxTmean,
max_der and mean_EDA of all the subjects in all levels
has been employed, as shown in Figure 3. The four sets are
clearly visible and the centroids well distinguished, except for
some outliers. Levels 2 and 3 appear partially superimposed,
while levels 1 and 4 are well separated, except for a single
outlier subject. The corresponding dots are highlighted with
black arrows in Figure 3 and they belong, in fact, to the same
subject trial, that actually shows a different EDA response, with
descending signal until level 4. The signal was not affected by
artefacts due to detachment or arm movement, but the subject
encountered problems with audio playback at the beginning
of the first level. The game was re-started, therefore it is not
easy to explain this behaviour. Indeed, it could be due to a
different subject response to the exergame stimulus or, as an
alternative, such response could have been modified from the
previous setback.

B. Automatic Classification of Engagement

To assess the automatic classification power of EDA be-
tween levels of engagement, SVM, RF and k-NN classifiers
are exploited using different feature set configurations. The
classifiers’ accuracy is reported in Table III. All the classifiers
perform very well, proving the significance of the extracted
features. The SVM and RF show a similar behaviour and both
outperform the k-NN in accuracy and stability, especially in
the multi-class problem. In the binary problem, an averaged



TABLE II: Sperman’s correlation coefficient of the features with respect to LABEL (level of the game = level of engagement).
A high correlation coefficient suggests good predictive performance. Values of |ρL| > 0.6 are shown in violet.

Spearman’s correlation coefficient to the level LABEL ρL (|ρL|<0.4)

P_90 kurt_EDA ske_cvxT Pcvx_B5 kur_cvxT Pcvx_90 ske_cvxP cvxPmedian P_B5 Mobility

0.008 -0.018 0.032 0.046 0.052 -0.064 0.072 0.111 -0.238 -0.375

Spearman’s correlation coefficient to the level LABEL ρL (|ρL|>0.4)

meannegder cvxT_range cvxTstd range_EDA cvxPstd max_der mean_EDA cvx_Tmean

-0.422 0.466 0.496 0.506 0.514 0.519 0.646 0.900

Fig. 3: 3D scatter plot of all the subjects in all levels represented
in the plane cvxTmean, max_der and mean_EDA. The
centroid of each game level set is shown with a cross.

accuracy above 90% is reached across all tested conditions;
the classifiers performances are comparable, and RF presents
the best accuracy (94.3 ± 5.7%) when taking into account
all features. An averaged accuracy above 80% is reached
across all tested conditions in the multi-class problem; RF
still presents with the best accuracy (93.3 ± 7.4 %) in the
all-in feature set. The feature set reduction based on ρL
(ρL > 0.4) provokes a sensible reduction in accuracy and
higher variability in the SVM and RF classifiers, suggesting
that ρL alone is not sufficient to describe the significance of
the excluded features. The k-NN presents with the opposite
trend, i.e., the smaller feature set gives the best accuracy;
this is probably due to the fact that the k-NN is affected by
the so-called dimensionality curse. As for SVM, the loss in
accuracy with features reduction is partially restored with the
smaller feature set (ρL > 0.6). This, along with the k-NN
behaviour and the overall good accuracy, suggests that the most
correlated features to the label (mean_EDA and cvx_Tmean)
are actually the strongest. However, it will be necessary to
explore other methods of feature selection to better understand
the significance of the remaining features in this classification
problem, as they actually bolster the classification, as it was also
suggested by the previously shown data such as the radar plot in
Figure 2. Looking at the averaged confusion matrix (normalised
to report precision) shown in Figure 4, the classification seem
to be robust to the noisy features. Indeed, mis-classification

TABLE III: Accuracy of the SVM, RF and k-NN Classifiers in
the binary and multi-class problem.

Multi-class (%)
SVM RF k-NN

All-in 90.8± 7.2 93.3 ± 7.4 75.0 ± 11.1

ρL > 0.4 83.9 ± 12.7 81.8 ± 12.4 71.7 ± 13.2

ρL > 0.6 86.3 ± 8.6 78.3 ± 7.9 87.5 ± 9.2

Binary (%)
SVM RF k-NN

All-in 93.2 ± 5.6 94.3 ± 5.7 91.9 ± 7.4

ρL > 0.4 91.9 ± 7.3 93.3 ± 7.4 91.9 ± 10.4

ρL > 0.6 93.3 ± 5.4 89.9 ± 6.0 93.9 ± 5.7

only occurs between neighbouring classes, and the level 4,
that is strongly demanding, is well identified. The trend is
similar also when observing the confusion matrices obtained
with the other two feature sets. The precision in the level
4 recognition increases and has very high values: the errors
seem to occur more often between level 1 and 2, while level
3 and 4 are very well separated. This seems to confirm that
level 1 and 2 have a low level of engagement and level 4
a very high one, as expected, and that the EDA analysis is
suitable to distinguish this kind of response. Indeed, the binary
classification performances are higher in all tested conditions,
confirming that, even though there is a partial superposition
between level 2 and 3, the two groups (low-engagement and
high-engagement) appear distinguished.

Fig. 4: Confusion Matrix of RF in the multi-class problem,
feature set: all-in.

IV. CONCLUSIONS AND FUTURE WORK

This work aimed to explore the use of EDA in the evaluation
of the engagement provided by the execution of an exergame
consisting of several levels. Indeed, emotional involvement
during the performance of an exercise can bring great learning



and motivation benefits, which are important in a medical
protocol such as a rehabilitation one. In this preliminary work,
the level of engagement is identified with the level of the
game, which was specifically designed for progressive difficulty
and mental/physical demand. From the qualitative statistical
analysis and the automatic classification results obtained, the
features extracted from the EDA seem to be able to describe
the trend of engagement in the various levels. The results show
that the strongest features were cvx_Tmean and mean_EDA.
However, all the features resulted to be relevant in providing the
best accuracy for RF and SVM classifiers. Therefore, a deeper
analysis of features selection methods should be explored in
the future. The employed RF classifier achieved the best perfor-
mance, with a maximum accuracy of 94.3 ± 5.7 % in the binary
problem and 93.3 ± 7.4 % in the multi-class one. In general,
the classifiers did not seem to show difficulty in correctly
distinguishing distant classes nor discriminating between the
four game levels, thus demonstrating a great sensitivity to
the engagement degree. These preliminary results should be
enriched considering the many factors that could intervene in
this setup. In particular, the number of subjects should be
enlarged to verify the robustness of this approach, involving
pathological subjects who could provide different indications
of relevant clinical interest. Moreover, the complexity of the
emotional state and its influence on the EDA response should
be disentagled, exploiting for example other approaches, like
the use of additional physiological signals of interest. Lastly,
the presented setup could be easily translated in a real time ap-
proach, using a suitable EDA sensor and data log. However, it is
very encouraging that the classification was possible with such
good results in this EDA protocol, as normally this signal is
only used to assess the response to a single, often standardised,
stimulus. In this case, instead, it was measured non-invasively
during the execution of an exergame that presented with several
simultaneous stimuli (e.g., visual, cognitive, auditory, stressors),
similarly to what would happen in a real-world application.
In fact, the interaction with the technology of a Telemedicine
application generally involves psychological and multi-sensory
stimuli, hence the good results obtained in this study bode well
for the adoption of this approach in such field.
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