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Domain Randomization for Robust, Affordable and Effective
Closed-loop Control of Soft Robots

Gabriele Tiboni1,†, Andrea Protopapa1,†, Tatiana Tommasi1, and Giuseppe Averta1

Abstract— Soft robots are gaining popularity thanks to their
intrinsic safety to contacts and adaptability. However, the
potentially infinite number of Degrees of Freedom makes
their modeling a daunting task, and in many cases only an
approximated description is available. This challenge makes
reinforcement learning (RL) based approaches inefficient when
deployed on a realistic scenario, due to the large domain
gap between models and the real platform. In this work, we
demonstrate, for the first time, how Domain Randomization
(DR) can solve this problem by enhancing RL policies for
soft robots with: i) robustness w.r.t. unknown dynamics pa-
rameters; ii) reduced training times by exploiting drastically
simpler dynamic models for learning; iii) better environment
exploration, which can lead to exploitation of environmental
constraints for optimal performance. Moreover, we introduce
a novel algorithmic extension to previous adaptive domain
randomization methods for the automatic inference of dynamics
parameters for deformable objects. We provide an extensive
evaluation in simulation on four different tasks and two
soft robot designs, opening interesting perspectives for future
research on Reinforcement Learning for closed-loop soft robot
control.

I. INTRODUCTION

Soft robotics is a rapidly developing field that has the
potential to revolutionize how robots interact with their
environment [1]. Unlike their rigid counterparts, soft robots
are made from materials that can deform and adapt to
their surroundings, enabling them to perform novel and
unprecedented tasks in fields such as healthcare [2] and
exploration [3]. However, controlling continuous soft robots
is a challenging task: an accurate kinematic model would re-
quire infinite degrees of freedom (DoF) [4], and their highly
nonlinear dynamics are difficult to model realistically [5]. In
addition, novel actuation mechanisms have introduced further
challenges to approach optimal closed-loop control of soft
robots. Popular designs include (1) cable-driven soft robots,
which employ cables that can be extended or retracted to
control the robot’s shape and motion, or (2) pneumatic-based
models, which rely on the pressurization of air chambers
within the soft robot.
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Fig. 1: Paradigms in RL-based robot learning: a) training di-
rectly on the real world; b) naı̈ve Sim-to-Real transfer suffers
from the reality gap; c) Training with domain randomization
increases robustness to modelling approximations and errors;
d) distributions over simulator dynamics parameters may be
automatically inferred from real-world data for use with DR.

Many attempts have been made to control soft devices
through model-based techniques, also pushed by the ad-
vancement of modelling techniques [6]. Yet, most complex
tasks appear to be still unfeasible without the use of data-
driven learning methods [7]. In particular, Reinforcement
Learning has been showing promising results in recent years
to learn effective closed-loop control policies for soft robots
[8], [9], avoiding the need to know the exact dynamics of
the system. Due to the notoriously low sample efficiency of
current RL algorithms, these methods often rely on learned
forward dynamics models [9], [10], or on simulated models
to train a policy that can later be transferred to the real world
for evaluation [11], [12] (See Fig. 1.b). The latter approach
has been gaining more traction thanks to recent advances in
accurate and efficient simulators for deformable objects [13],
[14]. This line of research is commonly denoted as Sim-
to-Real Transfer, which already demonstrated remarkable
results for rigid robots in recent years [15], [16]. However,
the performance of learned policies in the real-world often
falls short of expectations due to the differences between
the simulation and the real-world, namely policies are af-
fected by the reality gap. This is further exacerbated by the



complexity of measuring deformable object parameters and
designing accurate modeling, limiting current applications in
soft robotics to overly simplified models for locomotion en-
vironments [17], [11] or simple trajectory tracking tasks [12].
Therefore, we identify the need to design novel sim-to-
real transfer methods to scale the training of soft robots to
more complex tasks, such as manipulation and contact-rich
settings, and to overcome modeling approximations.

To bridge the reality gap, Domain Randomization (DR)
has been proposed as a promising technique to learn trans-
ferable policies for rigid robotic systems [15], [16], [18]. DR
involves training policies on simulated environments with
randomized dynamics parameters sampled from a predefined
distribution, promoting a policy that is robust to variations
(see Fig. 1-c). Recent studies have also attempted to auto-
matically estimate DR distributions [19], [20], [21], a method
referred to as Adaptive Domain Randomization (ADR) (see
Fig. 1-d). While DR and ADR have been successful in
improving the transferability of policies for rigid robots, their
effectiveness in soft robotics remains largely unexplored.

In this work, we present a thorough investigation of
Domain Randomization in the context of closed-loop soft
robot control. We include the examination of existing DR
techniques for learning robust control policies on recently
proposed soft robot benchmark environments [17], [22]—
namely a reaching task for a trunk robot and walking for a
MultiGait soft design. Moreover, we design a novel extension
to state-of-the-art ADR methods and evaluate its capabilities
to infer complex deformable object parameters. Finally, we
propose two novel challenging manipulation setups in simu-
lation for the cable-driven trunk robot (pushing and lifting)
which we release to the public.

Our findings demonstrate that our method may accurately
infer complex dynamics parameters such as Poisson’s Ratios
and Friction coefficients, and lead to policies that are robust
to parameter discrepancies among domains. Furthermore, we
discover that such policies can even be learned using simpler
modeling approximations in simulation, yielding affordable
and drastically reduced training time complexity. Finally, we
test the capabilities of Domain Randomization to improve the
task efficiency altogether, by acting as a regularization effect
on the exploration of the environment. Interestingly, we
notice that randomizing the surrounding environment allows
the agent to find more effective strategies to solve the same
task, exploiting task-specific environmental constraints.

II. RELATED WORK

A. Soft Robotics: modeling, actuation and simulation

As previously anticipated, describing continuous soft
robots is a challenging task, because their modeling lays
in the domain of continuum mechanics. Soft robots are
actuated devices usually composed by viscoelastic material
(such as silicone). Their dynamics, therefore, is regulated by
infinite-dimensional Partial Differential Equations. Interest-
ingly, recent works have demonstrated that finite-dimensional
approximations of the robot’s dynamics provide a reason-
able trade-off between model tractability and accuracy [6].

The most popular designs implement either pneumatic or
cable-driven actuation mechanisms [23]. The first consist of
inflatable chambers which, when filled with air or fluids,
may change their length, curvature and shape. The latter,
instead, present cables or other extensive elements attached
to specific points of the robot body. Cables are then actuated
through external bodies, producing pushing or pulling forces
on the insertion points. A proper combination of multiple ac-
tuation elements (i.e. different chambers or cables actuation
schemes) can provide complex open loop robot behaviors.

Based on different modeling strategies (reviewed e.g. in
[6], [23] and here omitted for the sake of space), several
engines have been proposed so far to provide tools for an
efficient and effective simulation of soft robotic devices.
Among the others, it is worth mentioning SOFA [13], Chain-
Queen [24], Abaqus [25], which use volumetric FEM tech-
niques, and Elastica [14], SimSOFT [26], and SoRoSim [27]
that, instead, leverage on discretization of rod models.

B. Sim-to-Real Transfer with Domain Randomization
Domain randomization has become a popular approach for

transferring learned policies from simulation to real-world
hardware for rigid robotic systems [18]. Such approach has
been widely investigated both for randomizing the visual
appearance of the simulator [28], [29], [30], and its dynamics
parameters [15], [16]. In these cases, the goal is to learn
a policy that is invariant to changes in state space or
transition dynamics, respectively. However, training a single
policy to perform well on overly large variations of the
environment may not always be possible, opening the chal-
lenge to design sensible posterior distributions over dynamics
parameters [31], [32]. In [15], the authors proposed to use
memory-based policies to allow the agent to readily adapt
its behavior through implicit dynamics inference, while in-
creasing complexity at training time. Alternatively, Adaptive
Domain Randomization (ADR) methods attempt to automat-
ically estimate DR distributions over dynamics parameters of
interest, e.g. object masses and friction coefficients. Methods
such as DROID [19], DROPO [21], and BayesSim [20]
fall in the latter category, and have been recently shown
to produce effective inference and promising policy transfer
results for rigid robotic systems. These ADR methods move
from the iterative-based online counterparts [33], as they
don’t interact with real hardware at optimization time and
can make use of off-policy collected data—see [34] for
reference on online vs. offline ADR approaches. Critically,
DROID is confined to rigid robotics due to its reliability on
joint torques measurements for position-controlled systems.
Similarly, DROPO makes strict assumptions that prevent it
from being applied to partially-observable environments—
i.e. configurations of deformable bodies.

Despite recent advances, Domain Randomization has yet
to be thoroughly investigated in the context of soft robotic
systems. Two initial attempts are conducted by injecting
random noise in the state observations [10], and more re-
cently to both observations and policy actions [12]. However,
although encouraged by the community [11], [17], no ran-
domization of dynamics parameters for parametric physics



engines currently exists. The same statement applies to the
investigation of ADR methods for parameters inference of
deformable bodies. We aim to fill this gap by sheding light
on the novel challenges concerning the application of DR on
infinite-DoF systems, providing evidence for its effectiveness
and designing a novel algorithmic modification to DROPO
to cope with partially-observable environments.

III. BACKGROUND

A. Reinforcement Learning

Consider a discrete-time dynamical system described by
a Markov Decision Process (MDP) M, with state space
S, action space A, initial state distribution µ(s0), transition
dynamics probability distribution P(st+1|st, at) and reward
function r(st, at). At each time t, the environment M
evolves according to the current state st ∈ S and action
at ∈ A taken by an agent, i.e. the decision maker, with
initial state drawn according to µ(s0). Denote as πθ(at|st)
the stochastic policy used by the agent to interact with the
environment, parameterized by θ. Under this formulation,
Reinforcement Learning (RL) addresses the problem of
finding an optimal policy π∗θ(a|s) such as to maximize the
expected (discounted) cumulative reward:

π∗θ = arg max
πθ

Eπθ,P,µ

[
T∑
t=0

γtr(st, at)

]
(1)

with discount factor γ ∈ (0, 1]. For complex problems with
a continuous state space S, the policy πθ is in practice
parameterized by a neural network θ, learned, e.g., through
policy gradient RL algorithms such as Proximal Policy
Optimization (PPO) [35].

B. Learning from randomized simulators

In the sim-to-real transfer paradigm a simulator is used
as training environment, referred to as the source domain
and denoted with Ms. We assume Ms to share the same
state space and action space of the real-world environment
Mr, noted as the target domain. In contrast, the source
environment is further parameterized by its dynamics pa-
rameters ξ ∈ Rnξ , such as masses, friction coefficients, and
Poisson’s ratio of deformable objects, which ultimately affect
the source transition dynamics Pξ. Dynamics parameters
can be generally assumed to be random variables that obey
a parametric distribution pφ(ξ), parameterized by φ. In a
domain randomization setting, the agent’s goal is therefore
to learn a policy that maximizes (1) while acting in a
randomized environment according to pφ(ξ):

π∗θ = arg max
πθ

Eξ∼pφ(ξ)

[
Eπθ,Pξ,µ

[
T∑
t=0

γtr(st, at)

]]
(2)

In practice, DR may be easily integrated into existing RL
algorithms by randomly sampling new dynamics parameters
ξ ∼ pφ(ξ) at the beginning of each training episode.

C. Adaptive Domain Randomization

We consider here the offline Adaptive Domain Random-
ization paradigm, i.e. the more general case of ADR where
no assumptions are made on how target domain data is
collected for the inference phase—hence suitable to work
with off-policy data or human demonstrations. In partic-
ular, let D be a dataset of state-action transitions D =
{(s0, a0, s1), . . . , (sT , aT , sT+1)}, previously collected on
the target domain. Under this formulation, ADR methods
introduce an inference phase prior to policy optimization,
that aims to find the optimal p∗φ(ξ) domain randomization
distribution given D. Later, p∗φ(ξ) is used to train a policy
using DR with the objective in (2), which can ultimately be
transferred to the target domain for evaluation.

IV. RESET-FREE DROPO

We describe our novel algorithmic modification to the
current state-of-the-art offline ADR method DROPO [21], to
cope with partial observability in soft robotic environments.

A. Method overview

By design, Domain Randomization Off-Policy Optimiza-
tion (DROPO) relies on replaying real-world data in sim-
ulation, by resetting the simulator to each visited real-
world state and executing the same corresponding action.
On one hand, this allows the method to avoid the rising of
compounding errors when replaying real trajectories [34]. On
the other hand, this approach assumes that target observations
encode full information on the configuration of the scene,
such that the internal state of the simulator may be reset
to each state. While this may be a reasonable assumption
in rigid robotics, where robot state is typically observable
at all times, it prevents the algorithm from being applied
to partially-observable environments. In other words, a soft
robot manipulator may only be tracked by a discrete number
of points, but its exact infinite-DoF configuration is too
complex to encode, hence impossible to recover in simula-
tion. In this work, we relax this algorithmic assumption and
develop an extension named Reset-Free (RF) DROPO. Our
novel implementation draws inspiration from DROID [19],
where only the initial full configuration of the environment
is assumed to be known, and actions are replayed in open-
loop during inference. In contrast to DROID, however, we
retain the likelihood-based objective of DROPO which does
not suffer from converging to point-estimates—as in [19]—
due to inherent convergence properties of the evolutionary
search algorithm CMA-ES [36]—see claims in [21], [34].
Finally, we introduce a novel regularization technique to
allow our method to effectively deal with compounding
errors and obtain informative likelihood estimates. Following
the original pipeline, RF-DROPO ultimately consists of (1) a
data collection phase where the dataset D is made available,
(2) an inference phase where pφ(ξ) is optimized to maximize
the likelihood of real-world data to occur in simulation, and
(3) policy training with the converged domain randomization
distribution.



Algorithm 1: Reset-Free DROPO
input : Initialize φ, sequence NonDecrSeq, τ0 = 1
output: Parameters φ∗ of pφ∗(ξ)

1 Collect a dataset of transitions
D = {(st, at, st+1)}Tt=0 from the target domain;

2 for i = 0, . . . ,M opt. iterations do
3 Sample a set Λ of min(τi, L) transitions from D;

forall (st, at, st+1) ∈ Λ do
4 Estimate Sφt+1 ∼ Pφ(·|s0, a0,...,t;φ) through

repeated sampling;
5 Compute likelihood estimate of st+1 under

Sφt+1: Lt = Pφ(Sφt+1 = st+1|s0, a0,...,t;φ)
6 end
7 L =

∑
t logLt;

8 Update φ towards maximizing L;
9 τi+1 ← min(T, NonDecrSeq(τi));

10 end
11 Train a policy with DR using the converged p∗φ(ξ) ;

...

...

Fig. 2: Overview of (bottom) Reset-Free DROPO algorithm
vs. (top) its original counterpart with intermediate state-
resetting.

B. Implementation

1) Data collection: A fixed dataset D with target domain
state-action transition shall be made available to run the in-
ference phase. Such data may be collected with any desirable
strategy, such as kinesthetic teaching or hard coded policies.
Note that no reward computation in the real-world is needed,
as the inference phase relies on state-action transition pairs
only.

2) Dynamics parameter inference: Our objective follows
the original DROPO implementation, as we seek to maximize
the likelihood of real-world state transitions s0,...,T according
to the simulation transition dynamics Pξ, under randomized
parameters ξ ∼ pφ(ξ). Therefore, let Sφt+1 be the random
state variable distributed according to the new transition
dynamics Pφ(·|st, at;φ), with stochasticity induced by the
domain randomization distribution pφ(ξ). Our modification
implies the avoidance of resetting the simulator state to each

st ∈ D. Instead, the probability of observing a target state st
is estimated through the execution of all preceding actions
a0,...,t−1, starting from the initial known configuration s0—
assumed to be the same as in the real-world. Note how,
for t = 1, RF-DROPO and DROPO coincide, whereas
longer-horizon likelihood computations differ. An illustra-
tion of the proposed algorithmic modification is depicted
in Fig. 2. Overall, RF-DROPO maximizes the following
objective function, acting upon the DR distribution φ:

φ∗ = arg max
φ

T∑
t=0

logPφ(Sφt+1 = st+1|s0, a0,...,t;φ) (3)

where the log-likelihood is considered for better numerical
stability. In practice, the likelihood function—which models
the relationship between dynamics parameters and state
transition dynamics—is assumed to be unknown, as physics
simulators act as black-box non-differentiable systems. The
quantity in (3) is then estimated independently for each
time step by sample estimates, i.e. repeatedly observing
and inferring the sim dynamics distribution Pφ for different
values ξk ∼ pφ(ξ), as in the original implementation. It is
worth noting that the likelihood computation for different
timesteps t is still independent, assuming i.i.d. sampling
of ξk ∼ pφ(ξ) for different time steps and noting that a
function—simulator dynamics— of i.i.d. random variables
still leads to statistically independent random variables. For
the sake of simplicity, we stick to uncorrelated multivariate
Gaussian distributions as parameterization for pφ(ξ), with
additive homoschedastic variance ε to all dimensions—See
Sec. 3.4 in [21].

In the attempt to stabilize likelihood estimation for long-
horizon time steps—which could suffer from compound-
ing errors when executing multiple consecutive actions—
we introduce a regularization temperature parameter 0 ≤
τ ≤ T . We then propose to limit the time-horizon of our
objective function (3) to τ—instead of T—and set τ to
gradually increase during each optimization iteration until
finally reaching the full trajectory length T . Such addition
allows the algorithm to focus on a smaller number of
state transitions in the near-future at the beginning of the
inference phase, guiding the process to optimize dynamics
parameters that capture gradually further state-transitions. In
principle, any non-decreasing sequence of τ may be adopted;
throughout our experiments, we use an exponential schedule
τ(i) = T

(
1− e−i · (2 log 10/M)

)
for each opt. iteration

i = 0, . . . ,M , which reaches 90% of the total number of
transitions T half-way through the process.

Finally, without loss of generality, we allow the algorithm
to consider only a random sub-sample of L transitions at
each CMA-ES iteration, among the total number of τ transi-
tions considered within the current time horizon. Note how
such extension draws inspiration from Stochastic Gradient
Descent (GD) vs. vanilla GD, allowing to reduce inference
time. The overall modifications of RF-DROPO to the original
implementation are summarized in Algorithm 1.

3) Policy Training: The converged distribution p∗φ(ξ) ob-
tained through the inference phase may be finally used to



Fig. 3: TrunkReach and TrunkPush setups. a) Purple dots
define the box of possible goal locations sampled at training
time, green dots are 27 fixed target locations for evaluation,
with the red dot being the current goal. b) Green dot is the
desired target location for the box center of mass.

train a policy with Domain Randomization. We train our
policies through Proximal Policy Optimization (PPO) [35]
across all our experiments.

V. EXPERIMENTS

We carry out a thorough experimental evaluation in simu-
lation on the effectiveness of Domain Randomization in the
context of soft robotics. In particular, we aim at answering
the following research questions:
• can RF-DROPO infer accurate posterior distributions over

dynamics parameters for deformable objects?
• is Domain Randomization capable of efficiently transfer-

ring policies learned from simplified dynamics models,
hence reducing training time and modeling complexity?

• can Domain Randomization lead to more effective strate-
gies through better exploration, e.g. by exploiting environ-
mental constraints?

A. Tasks

We test our method by building on recently introduced
benchmark tasks in the domain of soft robotics for ma-
nipulation and locomotion [17]. In particular, we consider
four evaluation domains for the purpose of our analysis:
TrunkReach, TrunkPush, TrunkLift, MultiGait. The Trunk
robot [22] is a cable-driven continuum deformable manip-
ulator, depicted in Fig. 3. Its configuration is encoded in
a 63-dimensional vector of positional keypoints along the
robot, used as input observation vector for RL agents. The
action space consists of a discrete set of 16 actions, encoding
the extension or retraction of one of the 8 cables.

TABLE I: Posterior parameter estimation for the TrunkReach
task. Search space is reported in [min,max] format. Numer-
ical values RF-DROPO and BayesSim (MDNN) are reported
in mean and standard deviation (µ± σ).

Trunk Mass
[kg] Poisson’s Ratio Young’s Modulus

[kg/(mm · s)]

Target 0.42 0.45 4500

Search space [0.005, 1] [0.4, 0.5] [2000, 7000]

BayesSim 0.32 ± 1.28E-01 0.49 ± 2.30E-03 1914.25 ± 7.31E+06
RF-DROPO 0.64 ± 1.00E-05 0.45 ± 1.00E-05 6878.01 ± 2.77E-02

Fig. 4: Multigait locomotion environment: (a) simplified vs.
(b) accurate simulation model.

First, we test the trunk’s capabilities in a reaching task,
where the agent’s goal is to reach a randomly located point
in space with the robot’s endpoint (TrunkReach). Then, we
design two novel manipulation settings to analyse the effects
of DR in contact-rich settings: pushing a cube to a desired
target location (TrunkPush), and lifting a flat object in the
presence of a nearby wall (TrunkLift)—see Fig. 8. Finally,
we consider the multi-gait design [22], a complex pneumatic
soft robot tasked with walking forward (see Fig. 4). The latter
setting introduces critical challenges by means of modeling
approximations, which can drastically reduce the training
time at the cost of higher modeling errors. In this context,
we investigate the ability of DR to overcome modeling
approximations and allow more affordable models to be used
at training time. To do this, we instantiate two multi-gait
models, the first (see 4-b) is the original detailed model,
while the second (see 4-a) is a simplified version obtained
through Model Order Reduction [22].

All DR-compatible benchmark tasks, together with
an implementation of our method, are publicly avail-
able at https://andreaprotopapa.github.io/
dr-soro/.

B. DR for robustness: parameter discrepancies
We compare the capabilities of RF-DROPO and the more

established method BayesSim [20] to infer complex de-
formable object parameters in simulation. We consider the
TrunkReach and TrunkPush tasks, and feed the respective
methods with a single trajectory—the equivalent of 5 seconds
in wall time—collected on each environment, by rolling
out a semi-converged policy. In principle, collecting more
data may increase the accuracy of the inference phase,
but we found one trajectory to be sufficient while limiting
the computational time for running RF-DROPO to roughly
the same as policy optimization (≈48 hours on 20 CPU
cores). It’s also worth noting that target data in D does
not need to contain high-reward state-transition pairs, but
simply informative data to estimate the desired parameters.
We present our inference results in Tab. I and II, respectively
for the TrunkReach and TrunkPush tasks. In particular,
we experiment with both MDNN and MDRFF features
of BayesSim and report the best results for brevity—as
uncorrelated approximation of the full Gaussian distributions.
Noteworthy, although a Gaussian mixture model is returned
by BayesSim, a single modality was often found to be
dominant. In general, MDRFF provided less stable results
with occasional unfeasible parameter values. Interestingly,
RF-DROPO demonstrated accurate and reliable estimation
of the Poisson’s Ratio and Friction coefficient to impressive
precision, whereas BayesSim fell shorter. On the other hand,

https://andreaprotopapa.github.io/dr-soro/
https://andreaprotopapa.github.io/dr-soro/


(a) TrunkReach (b) TrunkPush

Fig. 5: Vanilla parameter estimation: policy evaluation in
terms of distance from the goal position (lower is better).

Fig. 6: Unmodeled parameter estimation setting for the
TrunkPush task. Evaluation on the nominal target domain
in terms of distance from the goal position (lower is better).

accurate inference of the Young’s Modulus and respective
masses proves to be more challenging in general, likely due
to parameter correlations. Later, we investigate whether poli-
cies trained with Domain Randomization on the estimated
posterior distributions may transfer well to the target domain
with nominal parameter values. For each method and task,
three policies are trained with three different repetitions of
the inference phase, and finally evaluated (see Fig. 5). In
addition, we compare the results with a Uniform Domain
Randomization (UDR) baseline, which reflects the perfor-
mance of 10 policies trained on uniform DR distributions
randomly sampled from the search space in Tab. I and II.
Notably, although the estimated parameters do not perfectly
match, the performance of RF-DROPO on the target domain
are still comparable to that of an oracle policy directly
trained on it. On the other hand, BayesSim fails to transfer
effectively in the TrunkPush task, likely due to a poorer
posterior estimation—which is pivotal for contact-rich tasks.
In particular, note how a random search over sensible uni-
form distributions (i.e. UDR) may produce well-performing
policies for a simple reaching task, yet fails on average when
contacts and more complex dynamics are involved. Finally,
we design a more challenging unmodelled setting for the
TrunkPush task where the Young’s Modulus is misspecified
by 80% and excluded from the estimation process of ADR
methods. In this context, DR distributions should then be
inferred to compensate for such misidentified parameter. The
final performance of compared ADR methods is reported in
Fig. 6, with their respective estimated posteriors in Tab. II.
Similarly to the vanilla setting, we notice the performance
gap between RF-DROPO and BayesSim, with the former
consistently pushing the box about 8mm away from the
target location on average over three repetitions.

C. DR for affordability: simplified vs. complex modeling

Due to their modeling complexities, directly training on
accurate models of soft robots is not always feasible. This
is the case for the MultiGait robot, where a full training

procedure would take an estimated time of ∼ 55days (see
Tab. IV) on 24 parallel CPU threads. For this reason, we
investigate the effect of DR to overcome modeling approxi-
mations by training with a substantially simpler model and
transferring the policy for evaluation to the more accurate
MultiGait model. In particular, we vary the Poisson’s Ratio
and Young’s Modulus of both its constituent materials, and
its overall mass at training time. Note how no parameters
discrepancy in principle exists between the two models,
hence no inference is performed in this analysis. There-
fore, domain randomization is applied by means of a ran-
dom Gaussian noise applied to the nominal values, namely
with a fixed σ = {0.005, 0.005, 500, 0.01, 10} respectively
for the mass, PDMS-PoissonRatio, PDMS-YoungModulus,
EcoFlex-PoissonRatio, and EcoFlex-YoungModulus. We
train policies on the simple model only, with both 6-timestep
long episodes (i.e. the original version [17]) and 12-timestep
long episodes, for 500k timesteps. The former version is
heavily limited by the low cardinality of possible strategies1

and could be simply solved by a brute-force search, failing
to motivate the use of RL. We illustrate the results in
Fig. 7, depicting the final displacement achieved by the
robot when rolling out the policies in both the simplified
(training) and complex (test) models—3 seeds per training
setting. We notice that policies trained with DR converged
to the same strategy as non-DR policies in the training
environment (vanilla setting). More importantly, we observe
that DR led to significantly more robust policy behaviors on
the complex model, achieving either on par or better average
return. The performance gap is exacerbated when testing
under noisy observations (5 rollouts per seed), as non-DR
policies would sometimes even lead to a backward motion.
Overall, we conclude that Domain Randomization for the
MultiGait soft robot design may reduce the training time
by 7.9x by leveraging approximated models for training, yet
transfer the learned behavior well to more accurate models
at evaluation time.

D. DR for effectiveness: environment exploitation

Motivated by the intrinsic compliance of soft robot bodies,
we finally investigate the ability of RL policies to adapt
to an unknown environment and explore it in an effective
manner. In particular, our analysis revolves around the effects
of training on randomized properties of the simulator which,
besides allowing robustness to parameter discrepancies and
modeling errors, may bias soft agents towards learning more
effective strategies. Indeed, note how soft robots offer a much
broader spectrum of potential solutions for completing a
task, due to their infinite-DoF nature. For the sake of this
analysis, we consider the TrunkLift setup as a representative
example of a task which may be solved through different
strategies—e.g. exerting a force on the object’s longitudinal
side or leverage the nearby wall to lift it up from the shorter
side. Arguably, the latter strategy would allow more effective
execution under different circumstances—such as different

1possible strategies = 66 = 46656, as only 6 discrete actions are
available at each timestep.



TABLE II: Parameter estimation in the vanilla and unmodelled settings for the TrunkPush task.
Cube Mass

[kg]
Friction

Coefficient
Trunk Mass

[kg]
Poisson’s Ratio

Young’s Modulus
[kg/(mm · s2)]

Target 0.05 0.3 0.42 0.45 4500
Search space [min, max] [0.005, 1] [0.01, 1] [0.005, 1] [0.4, 0.5] [2000, 7000]
BayesSim (µ± σ) 0.37 ± 9.43E-02 0.37 ± 1.07E-01 0.69 ± 1.29E-01 0.42 ± 3.50E-03 1855.10 ± 8.17E+06Vanilla
RF-DROPO (µ± σ) 0.06 ± 4.40E-03 0.30 ± 1.51E-03 0.52 ± 3.24E-03 0.45 ± 4.50E-04 5557.07 ± 2.45E+00
BayesSim (µ± σ) 0.52 ± 8.96E-02 0.51 ± 8.29E-02 0.48 ± 7.47E-02 0.44 ± 9.00E-04 3600 (fixed -20%)Unmodelled
RF-DROPO (µ± σ) 0.07 ± 1.01E-02 0.30 ± 1.70E-03 0.50 ± 1.10E-03 0.45 ± 8.00E-04 3600 (fixed -20%)

TABLE III: TrunkLift: policies trained with a randomized
location of the wall learn to exploit environmental constraints
and lift up the object’s center of mass to a higher elevation.

Object
Mass [kg]

DR Wall
Environmental

Exploitation
Final Object Pose

Elevation [mm]
(µ± σ)

0.1 No No Unchanged 2.34 ± 4.03
Yes Yes Horizontal 7.96 ± 1.67

0.05 No No Horizontal 8.55 ± 1.27
Yes Yes Vertical 12.07 ± 4.72

Vanilla

Simple model (training) Complex model (test)

6 steps - no DR
6 steps - DR
12 steps - no DR
12 steps - DR

0 5 10 15
x-axis displacement from start (mm)

Noisy

0 5 10 15
x-axis displacement from start (mm)

Fig. 7: Mean and stdev. displacement achieved by policies
trained on the simplified MultiGait model. A mild Gaussian
noise with σ = {0.5mm, 100Pa} is optionally applied at test
time respectively to the center of mass and the air pressure
observations of the MultiGait, compared to the initial state
values of 83mm and 3500Pa.

object masses and friction coefficients—and would require
inferior effort. One could inject prior knowledge through
reward shaping and bias policy search towards specified
goals. Instead, we simply randomize the position of the
wall at training time, without including it among the agent
observations, to encourage a more effective exploration of
the environment. Note how, in accordance with Sec. III-
B, this effectively corresponds to an instance of Domain
Randomization, forcing the agent to find a robust strategy
in response to varying wall positions at the start of each
episode—which are unknown to the agent. Notably, the
uniform randomization range used (see blue shaded area

TABLE IV: Training and test time complexity on the Multi-
gait simple vs. complex model. Trainings are run on CPU-
only, with 24 parallelized environments.

Simple model Complex model
Training (500k timesteps) 7 days ∼55 days
Test (12 timesteps) 1 min 8 minutes

Fig. 8: TrunkLift: policies learned with a randomized posi-
tion of the wall (blue shaded area) learn to exploit it to lift
up the object reliably and reach higher average reward.

in Fig. 8) does not affect the object at its initial location,
even in the right-most case. A tabular description of the
experimental analysis is reported in Tab. III, highlighting how
the lift-up learned strategy is affected by the introduction
of DR. In particular, we observe that for a heavier object
mass (0.1kg), a feasible solution that does not exploit the
wall may not be found, and only policies trained with DR
reliably converged to strategies that leveraged the available
environmental constraint—3 training repetitions. Note how
all policies are tested with the wall location fixed to the
nominal location, making it a fair comparison with non-DR
policies. Intuitively, decreasing the mass of the object makes
it easier to solve the task, and resulted in both settings (with
vs. without DR) finding a way to lift up the object. However,
the DR-trained policies converged to the most favorable
strategy, as shown in Fig. 8.

VI. CONCLUSIONS

In this work, we provide evidence on how Domain Ran-
domization can improve the robustness, affordability and ef-
fectiveness of closed-loop RL policies for soft robot control.



In particular, we propose a novel method to automatically
infer posteriors over simulator dynamics parameters given a
single trajectory collected on the target domain. We demon-
strate that such distributions can be used to train control poli-
cies robust to parameter discrepancies and unmodeled phe-
nomena (TrunkReach, TrunkPush). Additionally, we show
that DR with a fixed Gaussian distribution can be used to
learn on simplified dynamics models of deformable objects,
with a drastic reduction in training time (MultiGait). Finally,
we report evidence that randomizing the agent’s surrounding
environment may implicitly induce better exploration, and,
e.g. lead to exploitation of environmental constraints for
optimal performance (TrunkLift). Future directions of work
should thoroughly analyse the deployment of DR-trained
policies on real-world setups, closing the sim-to-real loop
for soft robot control in contact-rich tasks.
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