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Abstract
In the present study, a simple method is developed to apply astigmatism particle tracking velocimetry (APTV) to transparent 
particles utilizing backlight illumination. Here, a particle acts as ball lens and bundles the light to a focal point, which is used to 
determine the particle’s out-of-plane position. Due to the distance between focal point and particle, additional features have to 
be considered in ball lens astigmatism particle tracking velocimetry (BLAPTV) compared to conventional APTV. We describe 
required calibration steps and perform parameter studies to show how the autocorrelation coefficient and the light exposure 
affect the accuracy of the method. It is found that the accuracy and robustness of the Euclidean calibration approach as also used 
in conventional APTV (Cierpka et al. in Meas Sci Technol 22(1):015401, 2010a) can be increased if an additional calibration 
curve for the light intensity of the particle’s focal point is considered. In addition, we study the influence of the particle diameter 
and the refractive index jump between liquid and particles on the calibration curves and the accuracy. In this way, particles of 
the same size, but different material, can be distinguished by their calibration curve. Furthermore, an approach is presented to 
account for shape changes of the calibration curve along the depth of the measurement volume. Overall, BLAPTV provides 
high out-of-plane particle reconstruction accuracies with respect to the particle diameter. In test cases, position uncertainties 
down to 1.8% of the particle diameter are achieved for particles of dp = 124 μm . The measurement technique is validated for 
a laminar flow in a straight rectangular channel with a cross-sectional area of 2.3 × 30 mm2 . Uncertainties of 0.75% for the 
in-plane and 2.29% for out-of-plane velocity with respect to the maximum streamwise velocity are achieved.
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1  Introduction

Astigmatism particle tracking velocimetry (APTV) is a sin-
gle-camera measurement technique to determine the three-
dimensional displacement of suspended particles in a fluid. 
Since its first application to a fluid mechanics problem by 
Kao and Verkman (1994), it has been applied and devel-
oped further by various authors (Angarita-Jaimes et al. 2006; 
Chen et al. 2009; Cierpka et al. 2010a, b; Rossi and Kähler 
2014). In APTV, astigmatism is introduced to create abber-
rated images from which the 3D particle position can be 
reconstructed from a 2D image. This is mostly achieved by 
placing a cylindrical lens into the optical path. As a single-
camera approach, APTV can be applied to flow problems 
where multi-camera approaches fail due to imaging con-
straints and calibration problems (Cierpka and Kähler 2012). 
Whereas this is the case especially in microfluidics, APTV 
has been successfully applied to geometries at various length 
scales to investigate a wide spectrum of physical phenomena. 
Ragan et al. (2006) applied APTV to measure the motion of 
living kidney cells with a measurement volume depth of 
�z = 2.5 μm . Huang et al. (2008) applied the technique in a 
nanoscale environment. Using stochastic optical reconstruc-
tion microscopy, they reconstructed the position of 200 nm 
beads labeled with photo-switchable molecules with a reso-
lution of 60 nm in the depth direction within a measurement 
volume of 600 nm depth. Huang et al. (2016) could resolve 
the protein structures in a 9 μm spermatocyte with a depth 
resolution of 10–20 nm and a measurement volume depth of 
1200 nm , by using a dual objective 4Pi-microscope system 
with deformable mirrors to compensate for aberrations as 
well as an improved scanning technique. Another example of 
the application of APTV is the work of Muller et al. (2013). 
Investigating the ultrasound-induced acoustophoretic motion 
of microparticles, they utilized APTV in a channel with a 
rectangular cross section of 377 × 157 μm2 and captured the 
trajectories of 0.5 μm and 5 μm particles to validate their 
analytical results. Apart from microfluidic applications, 
increasing efforts are undertaken to apply APTV to larger 
flow domains. Fuchs et al. (2014a, b) showed that APTV is 
suitable for measuring volumetric velocity fields in macro-
scopic domains of up to 40mm measurement volume depth. 
Likewise, Buchmann et al. (2014) measured the motion of 
110 μm particles in a supersonic, impinging jet flow, over a 
measurement volume depth of 5100 μm . Recently, APTV is 
combined with special particles to measure properties other 
than velocity. Segura et al. (2015) utilized non-encapsulated 
thermochromic liquid crystals (TLC) particles, to measure 
the volumetric 3D velocity- and temperature field in an evap-
orating droplet with a measurement volume depth of 20 μm . 
Also, Massing et al. (2016, 2018) used luminescent poly-
mer particles to measure the three-dimensional temperature 

and velocity field of a heated flow in a channel with a cross 
section of 2 × 2mm2 . Rossi et al. (2019) investigated the 
phenomena of electrokinetically induced pattern formation 
and measured the particle concentration and velocity in a 
350 × 30 μm2 trapezoidal channel. To enable tracking of 
single particles even at higher particle concentrations, they 
used a mixture of differently labeled particles, among which 
the majority of them was invisible to the camera. For a more 
detailed report of the history of APTV and its different fields 
of application, the reader is referred to Cierpka and Kähler 
(2012). In the present study, we restrain ourselves to provide 
an overview of the reconstruction accuracies and measure-
ment volume depths achieved in these and other publications 
(see Table 1 in “Appendix”).

As the performance of APTV strongly depends on the qual-
ity of defocused particle images, a central aspect is the cor-
rect selection of the imaging system and the tracer particles. 
Therefore, usually high-quality fluorescent particles are used, 
as they provide high-quality particle images, with acceptable 
signal-to-noise ratio (SNR) (Cierpka et al. 2010a).

However, commercially available fluorescent particles are 
expensive and not all sizes or materials are available. Manu-
ally coated particles may be an alternative; nonetheless, it 
is a challenge to ensure a sufficient, uniform and repeatable 
coating quality and to avoid bleeching. Furthermore, power-
ful monochromatic light sources such as lasers are required 
to excite fluorescent particles, which are an additional cost 
factor. Despite these challenges, only very few studies report 
on the use of non-fluorescent particles for APTV. One is the 
aforementioned work of Buchmann et al. (2014), who used 
a pulsed high-power LED for backlight illumination to cap-
ture the 3D motion of 110 μm opaque polyamide particles. 
Their error in reconstructing the particle position was about 
�z = 140 μm which was 2.74% of the measurement volume 
depth. However, compared to the particle diameter, the error 
was relatively large ( �z∕dp = 127% ). Segura et al. (2015) used 
a white light source with a circular polarization filter to excite 
their TLC particles and reported a relative high uncertainty 
of �z∕�z = 8.5% in reconstructing the z-position compared to 
laser-based APTV. They concluded it was due to the less bright 
particle images obtained with a white light source. Using a 
backlight illumination, Franchini et al. (2019) performed 
APTV measurements with a calibration based on fitting a 
2D, generalized Gaussian distribution to each particle image. 
They could resolve the velocity profile of a laminar flow in 
a 2 × 1.2 × 3mm3 channel covering a measurement volume 
depth of 240 μm . Due to a low SNR, an extensive calibration 
procedure including measuring the background intensity of the 
channel in each measurement plane and sophisticated neural 
network algorithms were required in their study for a reliable 
reconstruction of the particles out-of-plane position. Apart 
from APTV, other single-camera approaches have been devel-
oped to measure the 3D displacement of unlabeled, transparent 
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spheres using bright-field illumination. Ovryn and Hovenac 
(1993), Ovryn (2000) and Ovryn and Izen (2000) developed 
forward-scattering particle image velocimetry (FSPIV), where 
the scattering pattern of particles is exploited to determine 
the particles depth position. They applied the method to track 
dp = 7 μm particles in the lower half of a 6 × 48 × 0.315mm3 
channel flow. Similarly, Moreno-Hernandez et al. (2011) used 
the central spot size of the interference pattern of a particle 
diffraction image to encode the out-of-plane particle position. 
However, they reported large position reconstruction errors 
for larger particles (up to 25% of the absolute position for 
dp = 15 μm ). Here, we present a simple, low-cost APTV-based 
measurement technique to determine the three-dimensional 
displacement of transparent, non-fluorescent particles utiliz-
ing bright-field illumination. In contrast to fluorescence-based 
APTV, particles act as ball lens and focus the light to a focal 
point that is used to determine the particle’s out-of-plane posi-
tion. The method provides high accuracy and is designed for 
high magnification and particles big in comparison with the 
field of view ( dp > 30 μm and M > 10×).

2 � Experimental setup

The measurement system consists of a microscope (Nikon 
Eclipse LV100) with a continuous backlight illumination. 
For image recording, two cameras are used for a compara-
tive study. These are a 12-bit, 1280 × 800 pixel CMOS high-
speed camera (Phantom Miro Lab 110, Vision Research) 
with 20 μm pixel size, as well as a 12-bit, dual frame, 
CCD camera (Imager ProSX 5M, LaVision GmbH) with 
2456 × 2058 pixel and a pixel size of 3.45 μm . A schematic 
of the full experimental setup is shown in Fig. 1. Measure-
ments are taken with two Nikon Cfi60 objective lenses of 
M = 20× and M = 10× magnification. To introduce astigma-
tism, a cylindrical lens with a focal length of fcyl = 200mm 
is placed in front of the camera sensor. To investigate the 
influence of the magnification, the light intensity, the pro-
cessing parameters and the properties of particles and liquid 
on the calibration curves, we build a test chamber which 
allows us to easily change particles or liquid. To validate 
the accuracy of BLAPTV for macroscopic flow applications, 
a plane channel flow is realized with a rectangular cross-
sectional area of h × w = 2.305 × 30mm2 and a length of 
150mm.

3 � Measurement principle

In BLAPTV, transparent particles are illuminated in bright-
field mode as illustrated in Fig. 2. As the particle’s refractive 
index differs from the surrounding liquid, they act as ball 
lenses and focus the light, forming a focal point at some 
distance between particle and objective. A cylindrical lens, 

placed in front of the camera sensor, alters the light path 
resulting in two different focal planes for rays traveling in 
the xz and the yz plane. This induces astigmatism to the 
image of the particle’s focal point (highlighted as red dots in 
Fig. 2), henceforth called “focal image.” The shape of the 
focal image changes based on the z location of the focal 
point with respect to the focal planes, denoted as Fxz and Fyz 
in the object plane (see Fig. 2). The shape of the focal image 
is circular when the particle’s focal point is located approxi-
mately in the middle between both focal planes (see label 
“2” in Fig. 2), and it deforms to a vertically or horizontally 
stretched ellipsoid when the focal point is located closer to 
Fxz or Fyz , respectively (see label “1” and “3” in Fig. 2). In 
comparison with the focal image, the shape change of the 
particle image is not significant. In fact, the particle silhou-
ette remains almost circular as it can be seen in Fig. 3a. 
Hence, it is the deformation of the focal image that will be 
used to determine the out-of-plane position of the particles. 
This shape change can be quantified by extracting the infor-
mation of the length of the horizontal ax(z) and the vertical 

a

b

Fig. 1   Experimental setup: a sketch. b Photograph. (1) Camera, (2) 
cylindrical lens and field lens, (3) microscope objective, (4) transpar-
ent channel, (5) x, y, z-traverse, (6) mercury lamp, (7) pump, (8) tank 
and (9) cooling unit
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axis ay(z) of the ellipsoid (see Fig. 2). Hereafter, the ratio of 
the major axis max[ax, ay] and minor axis min[ax, ay] of the 
focal image is referred to as aspect ratio a(z) = max[ax, ay]

min[ax, ay]
 . Due 

to this definition, the aspect ratio is always greater than one.
As mentioned before, there is a distance between a particle 

and its focal point, viz., the particle’s focal length, which has 
to be considered for reconstructing the out-of-plane position 
of a particle. Measuring this distance is not a difficult task in a 
non-astigmatic (stigmatic) imaging system, as the system has 
only one focal plane. This can be done by scanning a station-
ary particle in z-direction to determine the scanning position 
at which the particle and its focal point are in focus. As there 
is no shape change of the focal image in the stigmatic case, 
the focal point is located in the focal plane when the focal 
image diameter is minimum. Note that the focal image always 
appears as a round bright spot in a stigmatic imaging system. 

For both stigmatic and astigmatic systems, the particle posi-
tion along the scanning path can be found where the particle 
center plane is located in the focal plane ( Fxz = Fyz ). Hence, 
the focal length can be calculated as the difference between 
the particle and its focal point position, hereafter referred to 
as �Fyz = �Fxz.

However, in the presence of a cylindrical lens, the imag-
ing system features two focal planes, and hence, the particle’s 
“focal length” can be determined with respect to both focal 
planes ( Fxz and Fyz ). To determine the out-of-plane position of 
a particle with respect to its focal point, one can choose either 
�Fxz or �Fyz as a reference length. Preferably, the reference 
length should be considered which can be determined more 
accurately. Theoretically, �Fyz and �Fxz should be identical. 
Nonetheless, because different methods are used to determine 
the particle’s position and its focal points position, measured 
values of �Fyz and �Fxz may slightly differ, depending on the 
refractive index of liquid and particles or the magnification. 
Hereinafter, the particle’s focal length measured in an astig-
matic system is referred to as �Fyz ≈ �Fxz . Similar to the stig-
matic optical system, �Fxz and �Fyz can be deducted from a 
scanning procedure. Here, the focal point is located in Fxz or 
Fyz when the axis length ax or ay is minimum, respectively. 
The particle itself is in focus when either Fxz or Fyz pass the 
particle’s center plane during the scanning procedure. Know-
ing these positions in the depth direction, the focal length of a 
particle ( �Fxz ≈ �Fyz ) can be defined in an astigmatic optical 
system. The particle’s focal length is approximately linearly 
proportional to the particle diameter and can be estimated by 
the lensemaker’s equation (see Sect. 8).

4 � Calibration measurement procedure

To determine the particle’s focal length �Fxz ≈ �Fyz as well 
as the change of the aspect ratio a(z) of the focal image, 
wall-attached particles are scanned in 1 μm steps typically 

Fig. 2   Illustration of the meas-
urement principle: the particle’s 
focal point (red dots) deforms in 
the image plane to a vertically 
or horizontally deformed ellip-
soid depending on the particle’s 
out-of-plane position ( fp = focal 
length of particle)

b

a

c d e f g

Fig. 3   a Particle images for different depth positions z ( dp = 60 μm , 
PMMA, z corrected for 25  wt% glycerol–water solution). b, c ROI 
for focus measures fxz , fyz . b Particle is focused on Fyz . c Particle 
is focused on Fxz . d Raw particle image. e Cropped particle image. 
f Autocorrelation map of e. g Autocorrelation isocontours (red line 
ca = 0.7 , green line ca = 0.4 , blue line ca = 0.155)
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over a range of 500 μm such that the shape change of the 
focal image and the focusing and defocusing of the parti-
cle itself are fully captured, as shown in Fig. 3 for a 60 μm 
PMMA particle with M = 20× magnification in a 25 wt% 
glycerol–water solution. Figure 3b and c shows the parti-
cle located in the focal planes Fyz and Fxz , respectively. To 
determine �Fxz and �Fyz, a focus detection algorithm based 
on the Tenengrad variance is applied in four regions of inter-
est (ROI) at the edge of the particle image and delimited 
by the green and blue squares in Fig. 3b and c according to 
Pertuz et al. (2013). The computed values of the Tenengrad 
variance are a measure for the sharpness of an object image, 
hence referred to as fxz and fyz . The maximum values of fxz 
(blue ROI) and fyz (green ROI) show that the focal planes 
Fxz and Fyz are located at the center plane of the particles, 
respectively. Please note that the maxima of fxz and fyz can 
be used to detect the particle center during a scanning pro-
cedure to define the absolute coordinate system with respect 
to the channel wall as will be described in Sect. 9. If the 
scanning procedure is continued, the particle image defo-
cusses and the focal image is characterized by varying axis 
lengths ax and ay (Fig. 3a, − 75 μm < z < + 75 μm ). It can 
be seen that the shape change of the focal image is much 
more pronounced than the shape change of the particle itself, 
which almost remains circular. ax(z) and ay(z) and their ratio 
a(z) are determined with an autocorrelation method as indi-
cated in Fig. 3d–g. First, the image of the detected particle 
(Fig. 3d) is cropped out by the particle radius (see Fig. 3e). 
Hence, an autocorrelation is applied to the image section and 
the aspect ratio of the autocorrelation peak is determined by 
extracting isocontours at a fixed threshold (see Fig. 3f, g). 
This procedure was found to be insensitive to light intensity 
fluctuations (Cierpka et al. 2010a). The threshold at which 
the aspect ratio is determined will hereafter be referred to as 
autocorrelation threshold ca.

To illustrate the influence of the particle image size and 
induced astigmatism on the calibration procedure, a 60 μm 
PMMA particle is dispersed in water and the same scanning 
procedure is repeated four times at M = 20× and M = 10× 
with (astigmatic case) and without cylindrical lens (stig-
matic case) (see Fig. 4). The z-position where ax(z) assumes 
its minimum value is chosen as the reference position, 
referred to as z0 such that ax(z = z0) assumes a minimum. 
As expected and shown in Fig. 4a and c, without cylindrical 
lens, the focal planes Fxz and Fyz collapse onto each other. 
This is why the evolution of the particle image sharpness 
measures fxz and fyz is identical for both magnifications (see 
Fig. 4a, c). fxz and fyz attain their maximum where the focal 
plane reaches the center of the particle (highlighted with 
Fxz = Fyz ); hence, the particle itself is focused (see Fig. 4a, 
c). As the scanning procedure is continued further, the focal 
plane ( Fxz = Fyz ) passes the particle and consequently fxz 
and fyz decrease again, as the particle itself gets defocused. 

As z − z0 increases more, the focal planes now get closer to 
the focal point of the particle. This is illustrated in the insets 
I1–I3 of Fig. 4a, c with the respective z − z0 positions high-
lighted by the crosses in the plots. As the focal plane moves 
toward the particle’s focal point, the axis lengths of the focal 
image ay(z − z0) , ax(z − z0) shown in Fig. 4a, c decrease till 
the focal point is located at F∗

xz
= F∗

yz
 ( z − z0 = 0 ). As no 

astigmatism is involved in the results presented in Fig. 4a 
and c, the aspect ratio a(z − z0) is constantly one. The dis-
tance between the particle and its focal point is given by 
�Fxz = �Fyz (see Fig. 4a, c), which is 130 μm and 119 μm for 
the particle in Fig. 4a and c. The distance between a parti-
cle and its focal point can be estimated by the lensemaker’s 
equation for thick lenses. With the refractive index of the 
liquid nL and of the particle np the focal length fp of a ball 
lens, that is the particle in the present case can be expressed 
as (1):

For a PMMA particle with dp = 60 μm ( np = 1.49 ) in 
water ( nL = 1.333 ), the lensemaker’s equation (1) results in 
fp = 138 μm . This approximates the measured values quite 
well.

As mentioned before, if astigmatism is involved two focal 
planes coexist ( Fxz ≠ Fyz ). In this case, Fyz is shifted closer 
toward the camera (see Fig. 2). Thus, fyz assumes its peak 
value at a lower z − z0 compared to fxz (see Fig. 4b, d) and 
the aspect ratio a(z − z0) shows its characteristic M-shape 
(see black curves in Fig. 4b, d). As mentioned before, the 
focal image appears circular in the image plane only when 
the focal point in the object plane is located in-between the 
focal planes Fyx and Fzx , that is when ax = ay (see Fig. 4b, d). 
The distance between both focal planes can be determined 
from Fig. 4b, d. This is equal to the distance Fxz − Fyz which 
equals F∗

xz
− F∗

yz
 (see Fig. 4b, d). For M = 10× (Fig. 4d), this 

distance is significantly larger than for M = 20× (Fig. 4b). 
The distance between the particle and its focal point is given 
by �Fxz ≈ �Fyz that is �Fxz = 136 μm ≈ �Fyz = 135.6 μm 
for M = 20× and �Fxz = 107.33 μm ≈ �Fyz = 94 μm for 
M = 10× as depicted in Fig. 4b and d, respectively. Thus, 
there is a good agreement with Eq. (1) for M = 20× . How-
ever, the discrepancy observed for M = 10× requires further 
investigations to be explained in future.

For an overview on the effect of magnification, the prop-
erties of the cylindrical lens, the distance of the focal planes 
on the measurement range in the context of conventional 
APTV, the reader is referred to Chen et al. (2009), Cierpka 
et al. (2010a) and Rossi and Kähler (2014).

Figure 5a and b displays the evolution of the light inten-
sity of the focal image for a dp = 60 μm PMMA particle 

(1)1

fp
=

4 (np − nL)

nL

(

np −
np−nL

nL

)

np dp
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in water for M = 20× and M = 10× , with and without 
cylindrical lens. For M = 20× the evolution of the light 
intensity with and without cylindrical lens remains similar 
(Fig. 5a). In contrast, for M = 10× the light intensity exhib-
its two peaks close to F∗

yz
 and F∗

xz
 when a cylindrical lens is 

mounted in the system (Fig. 5b). This is because the distance 
between the focal planes Fyz − Fxz is significantly larger for 
M = 10× than for M = 20× (see Fig. 5a, b). Please note 
that the effective magnification is higher in the stigmatic 
case, as the distance between field lens and camera sensor 
is altered ( Mstig∕Mastig ≈ 125%). This is why for M = 20×, 
the maximum light intensity is higher in the astigmatic case 
(see Fig. 5a). Figure 6a–d shows ax as function of ay for 
a dp = 60 μm PMMA particle in water with M = 20× and 
M = 10× , each with and without cylindrical lens. As can 
be seen, ax is directly proportional to ay in the stigmatic 
case (Fig. 6a, c). When astigmatism is introduced, ax plot-
ted over ay shows a characteristic curled curve (Fig. 6b, d). 
Thus, every ay , ax pair is associated with just one z − z0 
value (Fig. 6b, d). This form of representation is the base 
for the out-of-plane reconstruction based on the Euclidean 

calibration approach which will be discussed and utilized in 
the next section.

a b

c d

Fig. 4   Calibration measurements in water with PMMA particles 
of dp = 60 μm ( ca = 0.4095 ). The z-position where ax is minimum 
( F∗

xz
 ) is taken as reference position z0 . a Without cylindrical lens for 

M = 20× . b With cylindrical lens for M = 20× . c Without cylindri-

cal lens for M = 10× . d With cylindrical lens for M = 10× . Symbols: 
black dots = a, blue dots =  fxz , green dots =  fyz (see Fig. 3b, c), red 
dots = ay and orange dots = ax

a

b

Fig. 5   Maximum light intensity of the focal image for a dp = 60 μm 
PMMA particle in water. Pink dots = without cylindrical lens, light 
blue dots = with cylindrical lens a M = 20× . b M = 10× . The focal 
planes are highlighted by the dashed lines
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5 � Reconstruction of the out‑of‑plane 
particle position and outlayer detection

The calibration procedure described in Sect. 4 is repeated 
for several particles randomly distributed over the field of 
view. The major steps to generate a calibration function from 
which the out-of-plane particle positions can be determined 
are illustrated in Fig. 7 for a total number of 36 calibra-
tion particles. In fact, for all results presented later in this 
work at least ten calibration particles have been used. In the 
first step, ax(z − z0) , ay(z − z0) and the maximum intensity 
I(z − z0) of all focal images that are taken at different out-
of-plane positions ( z − z0 ) are superimposed. Hence, the 
median curve of I is generated, denoted as I (see Fig. 7a). 
From the median intensity curve I, the maximum value 
Imax is determined (see Fig. 7a). The out-of-plane measure-
ment volume depth �z is determined by only considering 
data that fulfills the following criterion: I ≥ Imax ⋅ cI (see 
vertical dashed lines in Fig. 7a). cI is hereafter referred to 
as the intensity coefficient, and its influence on the relative 
measurement accuracy will be discussed in Sect. 6. In the 

a b

dc

Fig. 6   ax as function of ay for a dp = 60 μm PMMA particle in water 
(corresponding to Fig. 4) ( ca = 0.4095 ). The color map indicates the 
out-of-plane position z − z0 . a M = 20× , without cylindrical lens. b 
M = 20× , with cylindrical lens. c M = 10× , without cylindrical lens. 
d M = 10× , with cylindrical lens

a b

d e

c

f

Fig. 7   Procedure of generating a calibration function. Scale of color-
map in b–f is given in e. z − z0 data are corrected for refractive index 
of a 25 wt% glycerol–water solution ( dp = 30 μm , M = 20× , ca = 0.7 , 
cI = 0.7 , cD = 2 ). a Selecting z − z0 range of scattered data by light 
intensity I (light blue dots = ax , dark blue dots = ay , green dots = I, 
black line = I ). b Fitting polynomials of degree 14 to ax and ay (black 
line  =  polynomials ax , ay ). c Reconstruction of z − z0 of scattered 
ax-ay data (colored dots) by Euclidean distance with the 2D calibra-
tion curve (black line  =  polynomial, red dot  =  outliers). d Fitting 

polynomials of degree 14 to I (black line = polynomial I ). e Recon-
struction of z − z0 of scattered ax-ay-I data (colored dots) by Euclid-
ean distance with the 3D calibration curve in the ay-ax-I space (black 
line = polynomials). f Position reconstruction error z� − z plotted over 
z − z0 obtained with the 3D calibration curve (colored dots) and the 
2D calibration curve (black dots). The uncertainty of the 2D and 3D 
position reconstruction procedure is �∗

z
= 1.71 μm and �∗

z
= 1.18 μm , 

respectively
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next step, a polynomial of 14th order is fitted to the ax and 
ay scatter data. The resulting fitting curves ax(z − z0) and 
ay(z − z0) are shown in Fig. 7b. The actual calibration func-
tion now consists of three data sets, ax , ay and z − z0 which 
can be represented as one calibration curve with ax plotted as 
function of ay , see Fig. 7c. This is known as the 2D calibra-
tion curve in APTV. For the sake of clarity, we divide the 
calibration curve into three equal sections A, B and C with 
respect to the depth position z − z0 . The section borders are 
indicated with white dots in Fig. 7b–f.

As mentioned before, z0 is the relative z-position where 
ax assumes its minimum value. With these data at hand, we 
can reconstruct the z-position of the focal point of a particle 
with respect to z0 . Fig. 7c shows the scatter data of ax plotted 
as a function of ay and the calibration curve obtained from ax 
plotted over ay . To determine the z − z0 position, measured 
ax , ay values are associated with a point on the calibration 
curve that is given by the minimum Euclidean distance (see 
Fig. 7c). Hence, this method is referred to as the Euclidean 
method and is described in detail by Cierpka et al. (2010a). 
If the Euclidean distance of a pair of ax , ay values exceeds a 
certain threshold, the measurement data are rejected. This 
threshold will be hence referred to as aD and is defined as the 
mean Euclidean distance of all ax and ay pairs of all calibra-
tion particle images multiplied by the factor cD (2):

with N being the total number of the calibration particle 
images. For the given case, the factor is set to cD = 2 with 
the detected outliers indicated as red dots in Fig. 7c.

Particles may differ in terms of shape, roughness and 
refractive index such that their ax , ay , I or z − z0 data 
deviate from the majority of the particles. Moreover, we 
noticed that the change of the particles light intensity can 
be used as additional information to encode the particles 
depth position. It is also observed that the calibration 
curve may intersect in the ay , ax space resulting in a large 
uncertainty in estimating the depth position of a particle 
(see Sect. 6). To reduce such problems, we use the infor-
mation of the particles light intensity as an extra parameter 
to increase the accuracy and robustness of the calibration 
procedure. In fact, using a polynomial fit of 14th degree 
to the I scattered data I(z − z0) (see Fig. 7d), we extend 
the 2D ( ay − ax ) calibration curve to 3D ay-ax-I space (see 
Fig. 7e). As for the 2D case, the z − z0 position of scattered 
data is determined by assigning measured ax-ay-I values 
to a point on the calibration curve that is given by the 
minimum 3D Euclidean distance (see Fig. 7e). To facili-
tate computation of the 3D Euclidean distance, the light 

(2)aD =
cD

N

N
∑

i=1

min

√

(ax − ax,i)
2 + (ay − ay,i)

2

intensity is transformed to the same order of magnitude 
as ay and ax by normalization with Imax and multiplica-
tion with the maximum width or height of the 2D calibra-
tion curve. Data points which are too far away from the 
3D-calibration curve are rejected as indicated with red 
dots in Fig. 7e. Similar to the 2D case, the threshold aD for 
rejecting data is defined as the mean Euclidean distance 
of all ax , ay and I pairs of the calibration set multiplied by 
a factor cD (3):

For the given case, the factor is set to cD = 2.
From Fig. 7c, a strong increase in the 2D calibration 

curve curvature becomes evident in regions A and C, while 
the curve is almost linear in region B. Furthermore, the 
arclength of A is small compared to B and C. These topo-
logical differences result in different depth position recon-
struction accuracies in A, B and C as depicted with the 
black dots in Fig. 7f. Here, we show the difference of the 
reconstructed depth position z� − z0 and the true scanning 
position z − z0 ( z� − z ) as a function of z − z0 (Fig. 7f). As 
can be seen the out-of-plane reconstruction error with the 
2D calibration, curve sharply increases in regions A and C 
where the curvature assumes maximum values. In contrast 
to this, the 3D calibration curve enables a more accurate 
assignment of data and significantly reduces the error in 
regions A and C (see colored dots in Fig. 7f). This leads to 
a total reduction of 30% in the reconstruction uncertainty 
for the 3D calibration procedure in comparison with the 
2D one ( �∗

z
= 1.71 μm for 2D vs �∗

z
= 1.18 μm for 3D). 

Furthermore, the 3D reconstruction procedure increases 
the number of valid data points which are Nvalid = 1995 
and Nvalid = 2120 (+  6%) for the 2D and the 3D case, 
respectively.

With the steps mentioned above, we reconstruct the out-
of-plane position of the particle’s focal point relative to z0 
with �∗

z
 being the associated uncertainty. To determine the 

absolute uncertainty in reconstructing the particle’s out-
of-plane position, the uncertainty in determining the par-
ticle’s focal length �Fyz ≈ �Fxz has to be considered: 
�z =

√

�∗2
z

+ �(�Fxz)
2 . Therefore, the overall reconstruc-

tion accuracy of the out-of-plane particle position of a 
30 μm PMMA particle in the given example is �z = 3.11 μm 
and �z = 2.85 μm for the 2D and the 3D calibration curve, 
respectively. A detailed analysis of the out-of-plane recon-
struction accuracy for different particle sizes is given in 
Sect. 8.

(3)

aD =
cD

N
⋅

N
∑

i=1

min

√

(ax − ax,i)
2 + (ay − ay,i)

2 + (I − Ii)
2
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6 � The influence of the autocorrelation 
threshold c

a
 on the relative out‑of‑plane 

reconstruction accuracy

The relative out-of-plane reconstruction uncertainty �∗

z
∕�z 

depends on the choice of the threshold values ca and cI . 
Therefore, an optimization study is performed for both 
threshold values cI of the focal image light intensity and ca 
of the autocorrelation. The optimization study is done with 
M = 20× and PMMA particles of dp = 60 μm diameter in 
water. To account for the aberrations of particle images at 
different in-plane positions, calibration particles (here 14 
particles) are randomly distributed over the whole field of 
view. As, the signal strength of the focal image depends on 
the light sensitivity of a camera, the same measurements 
are taken with a light-sensitive CCD camera (LaVision 
Imager Pro SX) and a CMOS camera (Miro 110 Phantom). 
To ensure comparability of both cameras, the same group 
of particles is used for both calibrations. For both parameter 
sets, we determine the optimum combination of ca and cI 
that leads to a minimum relative out-of-plane reconstruction 
uncertainty �∗

z
∕�z ( 0 < ca < 1 and 0 < cI < 1 ). The result-

ing uncertainties are plotted in Fig. 8a and b as function of 
ca , for the optimum value of cI for both camera types. As cI 
only affects �z , whereas ca affects �∗

z
 as well, we focus on 

discussing ca for fixed cI.
Different light intensities are used, given here as ratio 

of the median image intensity of the whole image cmed and 
the maximum camera intensity cmax , which is 8-bit (4096 
counts) for both the CCD and the CMOS camera. Tests 
showed that the median of the whole image cmed is equal to 

the median of the background intensity without the parti-
cles. Hence, cmed∕cmax describes the normalized background 
illumination intensity. As we use backlight illumination, the 
background intensity is directly proportional to the illumina-
tion intensity. Hence, the parameter cmed∕cmax can be easily 
adjusted prior to the measurements by simply increasing the 
illumination intensity. The influence of the light intensity 
will be discussed in Sect. 7 in further detail.

Four characteristic regions of ca can be identified in 
Fig. 8a and b denoted as A–D. Obviously, a range of ca 
values between 0.40 < ca < 0.75 (denoted with C) leads to 
uncertainties �∗

z
∕�z below 2% for both camera types. The 

corresponding, optimized cI values are given in the legend. 
For lower or higher values of ca (regions denoted with A, 
B and D in Fig. 8), the relative out-of-plane reconstruc-
tion uncertainty sharply increases due to ambiguities in 
the corresponding calibration curves. This can be better 
understood from the calibration curves in the ay-ax-I-space 
as plotted in Fig. 9a–d. Here, we report the 3D calibration 
curves (Fig. 9a–d II) and their projections onto the ay-ax 
plane (Fig. 9a–d I). Please note that Fig. 9a–d correspond to 
regions A–D in Fig. 8a and b. While the calibration curves 
shown in Fig. 9a and c are continuous without intersections, 
those corresponding to regions B and D in Fig. 8a and b 
exhibit a sharp kink (see Fig. 9b) or intersect in the ax-ay-I- 
space (see Fig. 9d). These characteristics lead to local ambi-
guities during the Euclidean reconstruction procedure and 
hence a sharp increase in the relative out-of-plane recon-
struction uncertainty �∗

z
∕�z . It may be noted that the ax 

and ay data are typically used in fluorescence APTV. In the 
present study, information on I are additionally utilized to 
derive 3D calibration curves for BLAPTV. Figure 9c I and II 
reveals that ambiguities in the 2D ax-ay space can be avoided 
by this extended calibration, giving rise to an improvement 
evaluation accuracy with a stable ca range of low relative 
out-of-plane reconstruction accuracies �∗

z
∕�z as mentioned 

earlier (see region C in Fig. 9a, b). Furthermore, preliminary 
tests (not shown here) indicate that significant improvements 
in the reconstruction accuracy may also be realized for flu-
orescence APTV by utilizing calibration curves in ax-ay-I
-space. Finally, Fig. 8a and b indicates that lower light inten-
sities corresponding to lower values of cmed∕cmax < 0.45 lead 
to a reduction in the relative out-of-plane reconstruction 
uncertainty �∗

z
∕�z.

For the cases under investigation, the in-plane position of 
particles has a negligible effect on the reconstruction accu-
racy compared to other parameters such as ca , cI and cD . As 
said before, in this study each calibration is performed using 
particles that are randomly distributed across the field of view. 
Hence, the resulting calibration curve can be considered as an 
averaged calibration curve. For all calibration measurements, 
the mean value of the depth position reconstruction error for all 
individual particles is monitored. The results show a negligible 

a

b

Fig. 8   �∗

z
∕�z over ca for different cmed∕cmax . All data are presented 

using optimal cI ( M = 20× , dp = 60 μm , water, cD = 3 ). a CCD cam-
era. b CMOS camera
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difference in the reconstruction accuracy with respect to the 
in-plane particle position and associated aberrations. However, 
if the 3D calibration is applied to situations where a strong 
gradient of I is present across the image or ax and ay depend on 
the in-plane particle position, the in-plane position of particles 
has to be taken into account as well in the calibration.

7 � The effect of the light intensity

Due to the ball lens effect, the light intensity of the focal 
image is much higher compared to the background light 
intensity. Thus, the ratio of focal image and background 

intensity, denoted here as signal-to-noise ratio, varies for dif-
ferent particle materials, magnifications, particle sizes and 
liquid–particle combinations. It even varies with the depth 
position of a particle (see Sect. 9). Thus, in practice it may 
not be feasible to adjust the light intensity for each particle 
species, especially in a polydisperse suspension.

In the present section, we investigate how the relative 
light intensity, defined here as the ratio between median 
image intensity cmed and the grayscale depth (maximum 
counts) of the camera cmax , influences the minimum achiev-
able relative out-of-plane reconstruction uncertainty of a 
particle �∗

z
∕�z (Fig. 10a). Hence, the signal-to-noise ratios 

(SNR), the measurement volume depths �z , the number of 
valid data points Nvalid and the cI and ca values that result 
from the optimization study (shown in Figs. 10b–f) are dis-
cussed. From Fig. 10a, it can be seen that �∗

z
∕�z assumes a 

minimum around cmed∕cmax ≈ 0.1 . Please note that �∗

z
∕�z 

assumes just slightly larger values for the CMOS camera in 
comparison with the CCD camera for cmed∕cmax < 0.5 . This 
is remarkable, as the resolution of the CMOS camera is sig-
nificantly lower than the resolution of the CCD camera, that 
is 1.78 μm and 0.29 μm per pixel at M = 20× , respectively. 
For larger relative intensity values cmed∕cmax , the relative 
uncertainty �∗

z
∕�z increases.

The increase in �∗

z
∕�z is accompanied with a decrease 

in the maximum signal-to-noise ratio (SNR) as shown in 
Fig. 10b. Here, the SNR is defined as the maximum inten-
sity of the focal image ( Imax ) divided by the median of the 
background light intensity. As can be seen from Fig. 10b, 
the SNR increases with decreasing intensity cmed∕cmax . This 
trend is counterintuitive and is reversed for very low values 
of cmed∕cmax . As cmed∕cmax drops below cmed∕cmax < 0.042 
for the CCD camera, the SNR decreases again due to the 
vanishing image contrast (Fig. 10b). On the other hand, 
it can be understood easily why the SNR decreases for 
cmed∕cmax > 0.2 and cmed∕cmax > 0.4 for the CCD and the 
CMOS camera, respectively. This is related to an overex-
posure of the focal image as indicated in Fig. 11a and b in 
which we display the evolution of the median light inten-
sity of the focal image of all 14 particles I(z − z0) for the 
CCD and CMOS camera. As the light intensity exceeds 
cmed∕cmax > 0.236 for the CCD and cmed∕cmax > 0.45 for the 
CMOS camera, the curve peak transforms into a plateau. 
Thus, the maximum exposure of the camera chip is reached. 
These limits are also indicated in Fig. 10a–f with vertical 
dashed lines for the CCD (blue) and CMOS (red) camera. 
Overall, for cmed∕cmax ≤ 0.6 uncertainties �∗

z
∕�z stay below 

2%, thus the measurement technique is also applicable 
outside the optimal range of illumination, though loosing 
accuracy.

From Fig. 10a, a strong increase in �∗

z
∕�z also becomes 

evident for the CCD camera when cmed∕cmax < 0.1 . This 
can be better understood from Fig. 10c where the effective 

a

c

d

b

Fig. 9   Calibration curves in ax-ay-space (I) and ax-ay-I-space (II) 
corresponding to A, B, C, D in Fig. 8b (CMOS, cmed∕cmax = 0.115 , 
cI = 0.375 , M = 20× , dp = 60 μm , cD = 3 , z − z0 corrected for water). 
a ca = 0.11 (A) b ca = 0.33 (B) c ca = 0.6637 (C) d ca = 0.85 (D)
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measurement volume depth �z for BLAPTV is plotted as 
function of the relative light intensity. Here, �z drops sharply 
for cmed∕cmax < 0.042 , leading to an increase in relative 
uncertainty �∗

z
∕�z . We assume that the decrease of �z origi-

nates from weaker signals of focal images with a focal point 
located behind or in front of the reference plane. In addition, 
we observed that with decreasing cmed∕cmax < 0.1 the detec-
tion of particle centers is increasingly erroneous. This leads 
to false ax and ay data and hence creates high uncertain-
ties. The increasing number of misdetections for low values 
of cmed∕cmax also leads to large standard deviations of the 
measured particle’s focal length as will be discussed later 
in this section. Figure 10a and c displays the evolution of 
the relative uncertainty and effective measurement volume 
depth for a 3D calibration procedure in ax-ay-I space (solid 
lines) and the 2D calibration in ax-ay space (dashed lines). 

It may be noted that the 3D calibration procedure decreases 
the relative uncertainty and increases the effective measure-
ment volume depth. Furthermore, utilizing a 3D calibration 
procedure increases the number of valid data points Nvalid up 
to 26% (see Fig. 10d). The minimum relative uncertainty is 
determined based on an optimization of the cI and ca com-
binations for all tested light intensities. These values are 
plotted in Fig. 10e and f. Overall, the optimal values of cI 
decrease, and hence, �z increases, if 3D calibration curves 
are utilized instead of 2D calibrations in the ax-ay plane. 
Moreover, from Fig. 10f it can be seen that the optimal val-
ues of ca differ for the CCD and CMOS camera depending 
on cmed∕cmax and they are in the range of 0.38 < ca < 0.7 
(CCD) and 0.6 < ca < 0.7 (CMOS) for cmed∕cmax values 
below the onset of overexposure.

As discussed above, the relative light intensity has a sig-
nificant influence on the accuracy of the out-of-plane parti-
cle reconstruction. This can be better understood when the 
effect of cmed∕cmax on the shape of the calibration curves 
is analyzed. For this, Fig. 12 depicts the calibration curves 
for selected values of ca and �z for both the CCD and the 
CMOS camera. As can be seen from Fig. 12a–d, an increase 
in light intensity leads to an overall decrease in the calibra-
tion curve length. Furthermore, it can be observed that the 

a b

c d

e f

Fig. 10   Optimized parameter values associated with minimum �∗

z
∕�z 

plotted over cmed∕cmax obtained with the 3D (solid lines) and the 2D 
(dashed lines) calibration procedure ( M = 20× , dp = 60 μm , water, 
cD = 3 ). a Influence of cmed∕cmax on �∗

z
∕�z . b Maximum SNR as a 

function of cmed∕cmax . c Influence of cmed∕cmax on �z . d Influence of 
cmed∕cmax on valid particle images Nvalid . e Influence of cmed∕cmax on 
cI . f Influence of cmed∕cmax on ca

a b

c

ed

f

Fig. 11   Median of I ( I ) over z − z0 for different cmed∕cmax . Hori-
zontal lines: cI ⋅ Imax . M = 20× , dp = 60 μm , z − z0 corrected 
for refractive index of water. a) I over z − z0 (CCD). b) Par-
ticle image at cmed∕cmax = 0.015 (CCD). c) Particle image at 
cmed∕cmax = 0.511 (CCD). d) I over z − z0 (CMOS) e) Particle image 
at cmed∕cmax = 0.115 (CMOS). f) Particle image at cmed∕cmax = 0.783 
(CMOS)
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significance of this shape change depends on ca . Comparing 
Fig. 12a and b, a much higher deformation of the calibra-
tion curve can be seen for ca = 0.118 in comparison with 
ca = 0.7 . Here, we conclude that if the light intensity varies 
significantly across the image, the particle in-plane position 
has to be taken explicitly into account during the calibration 
procedure.

As the light intensity affects the calibration curves, the 
question arises if it also affects the measured focal length 
of the particle, which is considered to be constant in theory. 
Fig. 13 shows the measured values of �Fxz and �Fyz plotted 
versus cmed∕cmax for both the CCD and the CMOS camera. 
As can be seen for 0.015 < cmed∕cmax < 0.5, the measured 
values of �Fxz and �Fyz are in good agreement with the lense-
maker’s equation (black horizontal line). In particular, the 
values obtained with the CMOS camera show an excellent 
agreement. As already stated before, for cmed∕cmax < 0.015 
the detection of the particle centers becomes increasingly 
erroneous, leading to a sharp increase in �Fxz accompa-
nied by large standard deviations of �Fxz and �Fyz (vertical 
error bars). For cmed∕cmax > 0.6, (CMOS) measured values 
for �Fxz show significant deviations from the lensemaker’s 
equation, yet for �Fyz there is still a good agreement. Over-
all, we conclude that changes in cmed∕cmax have a significant 
effect on the shape of the calibration curves, whereas the 
measured focal length of the particle, as a intrinsic feature 

of the particle itself, remains approximately constant. We 
will reconsider this observation in Sect. 9.

8 � Influence of particle size, material, liquid 
and magnification on the calibration 
properties

As BLAPTV is based on light being focused by particles, 
the optical properties of the system and the particles have 
an influence on the measurement technique. In this section, 
we present a parametric study to understand the influence of 
the particle diameter dp , the refractive index jump between 
particle and surrounding fluid �n = np − nL and the magni-
fication M.

From the lensemaker’s equation (1), we conclude that 
the particle’s focal length and hence �Fxz ≈ �Fyz will 
increase linearly with increasing dp and decreasing refrac-
tive index jump between particle and liquid ( �n = np − nL ). 
As these parameters determine the aperture of the focused 
light behind a particle, they are expected to affect Imax , ax , 
ay and hence the aspect ratio a(z − z0) as a function of the 
out-of-plane position z − z0 . For the sake of comparison, 
the threshold for the autocorrelation and the threshold 
for the light intensity are kept constant in the following 
( ca = 0.4095 , cI = 0.77 ). These values are found to provide 
satisfactory accuracy for the particle sizes and liquids dis-
cussed in this section. In Fig. 14a–c, calibration measure-
ments for single PMMA particles of dp = 30 μm , 60 μm and 
124 μm are presented for a 25 wt% glycerol–water solution 

a

b

c

d

Fig. 12   Influence of light intensity ( cmed∕cmax ) on the calibration 
curve shape in the ax-ay plane for a single particle and fixed ca and 
�z . a CCD, ca = 0.118 , �z = 130 μm b CCD, ca = 0.7 , �z = 112 μm c 
CMOS, ca = 0.118 , �z = 217 μm d CMOS, ca = 0.627 , �z = 180 μm

Fig. 13   Effect of increasing light intensity cmed∕cmax on the measured 
focal length of dp = 60 μm PMMA particles in water for CCD and 
CMOS camera ( M = 20× , ca = 0.7 (CCD), ca = 0.6274 (CMOS)). 
The horizontal black line indicates the focal length calculated by 
the lensemaker’s equation (1). The vertical blue and red dotted lines 
highlight the onset of overexposure for the CCD and the CMOS cam-
era, respectively
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at a magnification of M = 20× . With increasing dp, a wider 
range of z − z0 is covered by ay(z − z0) and ax(z − z0) (red 
and orange dots in Fig. 14a–c). This leads to an increase in 
measurement volume depth �z as given in Fig. 15a, which 
can be understood from Fig. 15b. Here, the maximum focal 
image intensity is plotted as function of the out-of-plane 
position z − z0 . For increasing particle sizes, a larger �z is 
determined, as a larger particle provides a sufficiently strong 
focal image signal over a bigger z − z0 range (indicated by 
dashed lines). It may be noted that, for large particles the 
measurement volume depth �z exceeds the distance between 
the focal planes by far ( Fyx − Fxz = 21 μm in Figs. 14 and 
15). This is a significant difference to conventional APTV 
with small particles where it is assumed that the measure-
ment range is primarily defined by the distance of the focal 
planes (Cierpka et al. 2010a).

Figure 14a–c indicate a linear increase in the measured 
particle’s focal length with increasing dp , as also depicted 
in Fig.15c: �Fyz (dashed lines with filled squares) and �Fxz 
(bold lines with filled circles). This is in agreement with 
the lensemaker’s equation (1), where the particle’s focal 
length increases linearly with dp . However, as can be seen 
from Fig. 15c �Fyz and �Fxz deviate from the particle’s focal 

length obtained by the lensemaker’s equation (solid thin 
lines) as the refractive index of the liquid increases. While 
for water the agreement of measured and calculated values 
is quite good (red lines), obviously this is not the case when 
the refractive index difference between particle and liquid 
is increased (see Fig. 15c). As already stated in Sect. 3, here 
further investigations are required to understand the reasons 
for this discrepancy.

In general, we observe that the shape change and hence 
the change of the aspect ratio as function of the out-of-
plane position is more pronounced with decreasing focal 
image size. As the size of the focal image increases with 
the particle size, it can be understood that the uncertainty 
of the out-of-plane particle reconstruction �∗

z
 grows with 

the particle size as shown in Fig. 15d. Also a decrease in 
�n = np − nL is associated with a decrease in focal angle 
of light rays that are bundled by the particle. Hence, a 
decreased focal image deformation is observed when mov-
ing along the out-of-plane direction. Therefore, �∗

z
 grows 

when �n = np − nL decreases, as shown in Fig. 15d. A fur-
ther overview of measured values of �∗

z
 , �z , �Fyz and �Fxz 

c

b

a

Fig. 14   Effect of particle size on the axis lengths ay(z − z0) , ax(z − z0) 
and measured particle focal lengths �Fyz , �Fxz . z − z0 is corrected for 
the refractive index of a 25 wt% glycerol–water solution ( M = 20× , 
ca = 0.4095 , cI = 0.77 , CCD camera). Symbols: red dots  =  ay , 
orange dots = ax , green dots =  fyz , blue dots =  fxz . a dp = 30 μm b 
dp = 60 μm c dp = 124 μm

a

c

b

d

Fig. 15   Effect of dp on the calibration data ( M = 20× , ca = 0.4095 , 
cI = 0.77 , cD = 3 , CCD camera). Symbols: red dots  =  0  wt% 
( nL = 1.333 ), green dots = 25  wt% ( nL = 1.364 ), dark blue 
dots =50  wt% ( nL = 1.398 ) glycerol–water solution, pink dots 
= dp = 30 μm , light blue dots = dp = 60 μm , orange dots = 
dp = 124 μm . a Effect of dp and refractive index of liquid on �z . b 
Effect of dp on I(z − z0) ( z − z0 corrected for refractive index of 
25  wt% glycerol–water solution). c Effect of dp on �Fxz (solid line 
with filled circles), �Fyz (dashed line with filled squares) and on the 
focal length fp of a particle according to the Lensemaker’s equation 
(1) (solid dotted line). d Effect of dp on �∗

z
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for different particle sizes and different ratios of glycerol 
and water is provided in “Appendix” (see Table 3).

The effect of particle size and refractive index jump on 
the calibration curves in the ay-ax plane is illustrated in 
Fig. 16a–f. Overall, an increase in particle size, shown here 
for PMMA particles in a 25 wt% glycerol–water solution for 
two magnifications (Fig. 16a and b), leads to an increase in 
ax and ay . Therefore, calibration curves are strongly shifted 
without any overlapping region. Please note that this charac-
teristics may be utilized to assign particles to one calibration 
curve. Thus, it is possible to determine both the out-of-plane 
position of the particles and at the same time perform a size 
classification, if particles of the same shape and material 
are used. Figure 16c and d reveals that a reconstruction of 
out-of-plane particle positions can be also combined with a 
classification of particles according to their refractive index. 
Here, calibration curves for PS and PMMA are shown with 

a refractive index difference of �n = np − nL = 0.258 and 
�n = np − nL = 0.154 , respectively. It may be noted that 
more stringent outlier criteria are required when calibration 
curves move closer together as it is the case for Fig. 16c and 
d compared to Fig. 16a and b. A change in refractive index 
jump can also occur when the refractive index of the liquid 
is varied. Figure 16e and f shows how changes of the refrac-
tive index affect the calibration curves. Different refractive 
indices are realized by creating different water–glycerine 
mixtures. When the refractive index jump between particle 
and fluid increases with decreasing glycerol fraction, ax and 
ay decrease. In the present study, refractive index changes of 
the liquid of �n = 0.0307 (for 25 wt%) and �n = 0.064 (for 
50 wt%) are realized. Overall, it can be seen that the differ-
ences between the individual calibration curves are more 
pronounced for M = 20× compared to M = 10× under the 
depicted experimental conditions. In the present section, 
only an excerpt of the whole parameter study is presented. 
An overview of �z , �Fxz , �Fyz , �∗

z
 , �z for all investigated 

parameter combinations of dp , M, material of the particles 
and wt% of the glycerol–water solution is given in Table 3 
of “Appendix”. For the investigated cases, �z∕�z is around 
0.7-5.2% for BLAPTV (except for two cases) which is com-
parable to the accuracies obtained by Cierpka et al. (2010b), 
Buchmann et al. (2014) and Franchini et al. (2019). In the 
present study, the uncertainty relative to the particle diam-
eter is in the range 1.8% ≤ �z∕dp ≤ 16% (except for two 
cases), see Table 3 in “Appendix”. This is even below the 
values reported in earlier studies which are also given in 
Table 2 in “Appendix.”

9 � Validation measurements

To demonstrate the capability of BLAPTV for flow domains 
with a depth beyond the submillimeter range, measurements 
in a plane channel flow with 2305 μm channel height are 
performed. For this, a 25 wt% glycerol and 75 wt% deion-
ized water solution was seeded with 10−4%wt polystyrene 
particles of diameter dp = 80 μm . The solution is density 
matched to the particles at 20 ◦C . As particles are two orders 
of magnitude smaller compared to the channel height, we 
expect them to behave as neutrally buoyant fluid tracers 
(Lindken et al. 2009). Despite the fact that the density of 
liquid and particles is matched, few particles float and stick 
to the top or settle at the bottom channel walls, due to small 
variations in the individual particle density as a result of the 
manufacturing process. These particles are used to deter-
mine the absolute position of the channel walls prior to the 
experiments. For this, the whole channel is scanned in steps 
of 1 μm , to record particles that are located at the top and the 
bottom wall within the field of view, acting as “wall mark-
ers.” As mentioned in Sect. 4, the evolution of the Tenengrad 

a b

c d

e f

Fig. 16   Effect of dp and refractive index jump on the calibration 
curves ( ca = 0.4095 , cI = 0.77 , CCD camera). For dp = 30 μm 
and M = 10× the particle and focal image size and quality are 
not sufficient enough for evaluating. a M = 20× , PMMA, 25  wt% 
( nL = 1.364 ). b M = 10× , PMMA, 25    wt% ( nL = 1.364). c 
M = 20× , 0  wt% ( nL = 1.333 ), dp = 124 μm. d M = 10× , 0  wt% 
( nL = 1.333 ), dp = 124 μm. e M = 20× , PMMA, dp = 124 μm. f 
M = 10× , PMMA, dp = 124 μm
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sharpness measure ( fxz ) is used to detect the particle center 
and hence the walls of the channel by considering the par-
ticle radius. The origin of the scanning coordinate is set to 
zero at the bottom channel wall. Hence, a volume flow rate 
of 3.75 × 10−4 m3s−1 is created using a submerged rotary 
pump (Barwig). The liquid is continuously recirculated and 
temperature regulated at 19–20 ◦C , see Fig. 1a and b. To 
measure the flow rate, we repeatedly measured the weight of 
the liquid pumped during a defined time interval. Hereafter, 
the mass flow rate was calculated based on the density of the 
glycerol–water mixture (Cheng 2008). An in situ total gap 
height of H = 2305 μm was determined.

Prior to the actual flow measurement calibrations are per-
formed. The resulting calibration curves and the associated 
scattered ax , ay and I-values are presented in Fig. 17a. For 
particles located at the top wall ( z = 2305 μm ), ax , ay , I and 
hence the calibration curve differs from those of particles 
located at the bottom wall ( z = 0 μm ). As shown in Sect. 7, 
different light intensities result in different calibration curves 
for the same particle. Therefore, we assume that the shape 
difference of the calibration curves is a result of a change in 
the light intensity along the gap height.

Due to the different shapes of the calibration curves, the 
challenge is to find a calibration function which is valid for 
particles located at any z-position in-between the bottom and 
top channel wall. To overcome this difficulty, we interpolate 
the coefficients of the ax , ay and I polynomials of the calibra-
tion curves as a linear function of z. In this way, intermediate 
calibration curves are computed, see Fig. 17b. In the present 
case, the measurement volume depth of the interpolated cali-
bration curves is set to �z = 173.22 μm . In addition to the 
calibration curve, the threshold for the Euclidean distance 
aD is also interpolated linearly.

Also the measured particle’s focal length �Fyz ≈ �Fxz dif-
fers for particles located at the top and bottom, see Table 4 in 
“Appendix.” As discussed in Sect. 7, the measured particle’s 
focal length is almost constant as light intensity is increased. 
Therefore, we assume the difference is related to the refrac-
tive index jump at the top channel wall. Hence, the particle’s 
focal length is assumed to be constant for the major part of 
the channel ( �Fxz ≈ �Fyz = const.), as the refractive index 
jump at the top wall comes only into play for particles closer 
than �Fyz = 177.32 μm ≈ �Fyz = 196.29 μm (see Table 4) to 
the channel walls. The out-of-plane position reconstruction 
uncertainties for the top and the bottom calibration curve are 
given in Table 4. As can be seen, the uncertainty of deter-
mining the particle’s z-position is decreased by 15% and 10% 
with a 3D calibration in comparison with a 2D calibration, 
while the number of valid particles is increased by 2.5% and 
4.8% for the top and bottom calibration curve, respectively. 
It should be mentioned that a maximum position error of 

0.488% of the total channel height and 14% of dp is achieved 
for the 3D calibration.

During the actual flow measurements, the gap is scanned 
in steps of 136 micron and at each measurement plane 
5300 images with a resolution of 512 × 384 pixel, covering 
a 0.93 × 0.82mm2 field of view, are recorded at 1000fps. 
Hence, the out-of-plane positions of particles, based on 
the ay , ax and I data of the flow measurement, have to be 

a

b

c d

Fig. 17   Linear interpolation of calibration curves. Dashed line= 0 μm 
(bottom), solid line= 2305 μm (top), colored dots  =  valid data, 
red dots = rejected data. M = 20× , dp = 80 μm , cD = 2 , ca = 0.7 , 
cI = 0.575 , z − z0 corrected for nL of 25  wt% glycerol–water solu-
tion. a Scattered ax-ay-I data and resulting 3D calibration curves. b 
Interpolated 3D calibration curves. c Best matching interpolated cali-
bration curve for z = 971 μm d zint of best matching 3D calibration 
curves versus measurement plane position z (blue dots =interpolated, 
white dots=best matching, black dots =shown in c)
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determined. For this, each of the 3D calibration curves dis-
played in Fig. 17b is compared with the ax , ay and I-values 
from the corresponding measurement planes. In this way, a 
suitable calibration curve with associated out-of-plane par-
ticle positions along the curve can be associated with the 
scatter data of each measurement plane. To find the most 
suitable calibration curve, it is checked how many pairs of 
ay , ax and I are valid, i.e., their minimum Euclidean distance 
to the calibration curve is smaller than aD , as described in 
Sect. 5. The curve that yields the largest number of valid 
particles is considered as a match and selected for deter-
mining the z − z0 of the ay , ax and I pairs in the respective 
measurement plane. Figure 17c displays the best matching 
calibration curve (black solid line) and corresponding scatter 
data with valid measurement points (colored markers) and 
outliers (red markers) for the measurement plane located 
at z = 971 μm . Note that the interpolated aD value corre-
sponding to the depicted calibration curve has been used 
for outlier detection. Here, an interpolation of aD is crucial 
as the scattering of ax-ay-I data varies along the gap height. 
(Compare the scattering distance of the top and bottom 
curve in Fig. 17a.)

This procedure is applied to the ax , ay and I data of all 
measurement planes, such that for each measurement plane 
the out-of-plane positions of the focal points are computed. 
Hence, the absolute particle positions can be computed with 
respect to the channel wall by summing up the focal points 
out-of-plane positions, the particles focal length ( �Fxz ) and 
the associated measurement plane position. In Fig. 17d, the 
interpolated coordinate zint of the calibration curve is plotted 
vs. the z where the curve showed the most valid pairs and 
hence is considered as a match (white dots). As can be seen z 
versus zint of the matching curves (white dots) approximately 
shows a linear behavior. This confirms the previous assump-
tion that the shape of the calibration curves can be described 
as a linear function.

Figure 18a shows a scatter plot of the position of all valid 
(green dots) and invalid (red dots) data in the x–y measure-
ment plane. As can be seen, the accepted data points are 
well distributed across the image (Fig. 18a). This means 
that any in-plane particle position effect is already included 
in the result data, as particles across the whole field of view 
are accepted. Hence, the influence of the in-plane position 
on the Euclidean distance to the calibration curve and thus 
on the particle’s out-of-plane reconstruction accuracy is not 
significant here. It may be noted that data points at the very 
corners of the images are rejected as particle images inter-
sect with the image borders and do not provide the complete 
focal image. Therefore, particle center points close to the 
FOV border do not enter the statistics.

Figure 18b shows the measured velocity profile of the 
plane channel flow that is obtained with the aforementioned 
extended calibration procedure. The velocities are calculated 

using a simple nearest neighbors algorithm. As is it clear 
from Fig. 18b, the experimentally determined velocity pro-
file matches very well the analytical solution (red line). It 
may be noted that particles assume a minimum z-distance 
of approximately 200 μm to both top and bottom chan-
nel walls which might be due to wall-induced lift forces, 
which push particles away from the walls toward the chan-
nel center. Utilizing a 3D calibration procedure 7996 valid 
data points are obtained while in-plane velocities u, v as 
well as the out-of-plane velocity w could be determined 

a

b

Fig. 18   a Particle image centroids detected within the field of view 
during the measurement. Green dots denote valid particle images, and 
red dots denote outliers. b Experimental results and analytical solu-
tion for laminar channel flow. red line = analytical solution, green 
dots (with error bar) = measurement, black straight line = channel 
walls, black dashed line = particle depletion area. The dashed lines 
indicate the minimum distance particles assume relative to the walls. 
The mean value of the streamwise velocity standard deviation along z 
is �u = 0.75% of Umax ( cD = 2)
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with standard deviations of �u = 0.75% , �v = 0.28% and 
�w = 2.29% of the maximum streamwise velocity umax , 
respectively. The same procedure with a 2D calibration 
and reconstruction yields Nvalid(2D) = 7267 (− 10%) data 
points and uncertainties of �u = 0.80% (+ 6.1%), �v = 0.27% 
(− 3%) and �w = 2.66% (+ 16%) for u, v and w, respectively. 
If cD is reduced to cD = 1.75 for the 3D calibration such 
that the number of valid particles is approximately equal 
( Nvalid(2D) = 7267 ≈ Nvalid(3D) = 7298 ) uncertainties of 
�u = 0.73% (−  8%), �v = 0.25% (−  8%) and �w = 2.05% 
(− 30%) for u, v and w are achieved. This shows that the 
3D calibration procedure provides a better accuracy and 
more reliable data in comparison with the 2D calibration 
procedure.

Overall, the accuracies obtained with the 3D as well as the 
2D calibration procedure are comparable to the uncertain-
ties obtained by Cierpka et al. (2010a), which are �u = 0.9% 
and �w = 3.72% of umax . Thus, BLAPTV shows comparable 
measurement accuracies compared to fluorescence-based 
APTV, if a proper calibration procedure as presented here 
is utilized.

10 � Discussion and conclusion

In the present study, a method is presented to apply APTV 
to large transparent particles, using bright-field illumina-
tion. As particles act here as ball lens, we referred to this 
method as ball lens astigmatism particle tracking veloci-
metry (BLAPTV). Based on a parameter study on the role 
of the background light intensity, the particle size and the 
refractive index jump between particle and fluid, it was 
shown that BLAPTV achieves comparable measurement 
accuracies as conventional APTV where fluorescent parti-
cles are typically utilized. We showed how the evaluation 
procedure, in particular the autocorrelation coefficient ca 
and the light intensity coefficient cI affect the accuracy of 
the method. Furthermore, we showed that BLAPTV may be 
utilized to combine measurements of the 3D displacement 
of particles with a particle classification by either size or 
refractive index due to different shapes of the correspond-
ing calibration curves. Given a proper calibration procedure, 
BLAPTV can provide high reconstruction accuracies with 
respect to the particle diameter even for large particles. To 
reduce the particle depth position reconstruction uncertainty, 
we proposed an extended calibration procedure in which the 
focal image intensity is used an additional parameter to the 
Euclidean method of Cierpka et al. (2010a) resulting in a 
3D calibration curve. Uncertainties of the out-of-plane par-
ticle position reconstruction of �z = 2.5 μm for dp = 60 μm 
( �z∕dp = 4.16% ) with M = 20× and �z = 2.26 μm for 
dp = 124 μm ( �z∕dp = 1.8% ) and M = 20× were reported 
using the 3D calibration procedure. We observed that the 

measurement depth �z depends on the particle diameter and 
can exceed the distance of the focal planes significantly (up 
to 11.1–13.4 times for a 124 μm particle, while it is typi-
cal of the same order of magnitude in conventional APTV 
with small particles. We also developed a method to com-
pensate for shape changes of the calibration curve inside 
a large measurement volume without the need to place a 
calibration target inside the measurement volume. Instead, 
linearly interpolated calibration curves are assigned to the 
measurement data in a best fit procedure to determine the 
out-of-plane position of particles.

Finally, we validated BLAPTV successfully by measuring 
a planar Poiseuille flow in a rectangular channel. Utilizing 
a 3D calibration procedure, we showed that the uncertainty 
of the measured streamwise and out-of-plane velocity can be 
reduced by 6.1% and 16%, respectively. Overall, the accura-
cies obtained in the measurement are comparable to those 
obtained by Cierpka et al. (2010a) for both the 2D and the 
3D calibration.

As BLAPTV is an adapted version of APTV, the same 
postprocessing code can easily be applied to both fluorescent 
and transparent particles. Also measurements can be taken 
with the same optical setup if the light source is adapted. 
This is an advantage, when measurements should be taken 
with small fluorescent tracer particles ( dp ≤ 3 μm ) combined 
with larger transparent suspension particles ( dp ≥ 30 μm ) 
with the same magnification. We conclude our observa-
tions can be transferred to conventional, fluorescent APTV, 
as from some experiments we know that the choice of ca 
affects the reconstruction accuracy �z as well in the case of 
fluorescent particles. Furthermore, using a 3D calibration 
curve has the potential to increase accuracy and robustness 
of conventional fluorescent APTV, because here outliers 
appear due to deviations in shape or coating and overlap-
ping particles.
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Table 1   Accuracies achieved in 
the literature

MT = method [A = APTV-fluorescent, B = APTV-bright field (non-fluorescent), C = pinhole plate]
*Root mean square error

Author MT dp (μm) �z (μm) �z (μm)
�z

�z
 (%) �z

dp
 (%)

Angarita-Jaimes et al. (2006) A 0.2 0.04 2.5 1.6 20
Buchmann et al. (2014) B 110 140 5100 2.74 –
Chen et al. (2009) A 2 2.8 500 0.56 140
Cierpka et al. (2010b) A 5 5.6 90 6.2 112
Cierpka et al. (2010a) A 2 0.28 35.1 0.78 14
Fuchs et al. (2014b) C 1 133 40,000 0.33 13,330
Franchini et al. (2019) B 2 7.1* 240 2.95 –
Kao and Verkman (1994) A 0.093 0.012 120 0.3 12.9
Massing et al. (2018) A – 0.68 120 0.56 –
Ragan et al. (2006) A 0.2 0.04 2.5 1.6 20
Rossi and Kähler (2014) A 2.24 0.75 102 0.74 33
Rossi et al. (2019) A 0.245 0.2 7 2.85 81
Segura et al. (2015) B 13 1.7 20 8.5 13

Table 2   Accuracies for optimized values of ca , cI in order to minimize �
∗

z
∕�z ( dp = 60 μm , M = 20× , water, 

�z =

√

�∗2
z

+min[�(�Fxz), �(�Fyz)]
2) (top two rows=CMOS camera, bottom two rows=CCD camera)

�z (μm) �
∗

z
(μm) �Fxz (μm) �Fyz (μm) �z (μm)

�z

dp
 (%) �z

�z
 (%) ca cI cD Nvalid

241 1.97 137.0 ± 7.6 137.9 ± 5.2 5.5 9.2 2.3 0.66 0.37 2 2573
241 2.02 137.0 ± 7.6 137.9 ± 5.2 5.5 9.3 2.3 0.66 0.37 2 2661
162 0.95 134.3 ± 2.3 132.3 ± 2.6 2.5 4.2 1.5 0.44 0.3 3 1683
184 1.09 134.3 ± 2.3 132.3 ± 2.6 2.5 4.3 1.4 0.44 0.26 3 1894

Table 3   Measured values of the performed parametric study for optimized values of ca , cI obtained with 3D calibration procedure (top: PMMA, 
bottom: PS �z =

√

�∗2
z

+ (min[�(�Fxz), �(�Fyz)])
2) , cD = 2)

dp ( μm) M GW (wt%) �z ( μm) �
∗

z
 ( μm) �Fxz ( μm) �Fyz ( μm) �z

dp
 (%) �z

�z
 (%)

30 20× 0 121.3 4.0 75.4 ± 2.5 60.1 ± 2.6 15.9 3.9
30 20× 25 103.6 1.3 82.4 ± 2.6 65.0 ± 3.0 10.0 2.9
30 20× 50 146.7 5.9 91.4 ± 10.8 78.4 ± 2.7 21.7 4.4
60 20× 0 179.9 1.7 136.4 ± 3.3 125.5 ± 2.1 4.5 1.5
60 20× 25 203.2 2.4 148.3 ± 2.3 136.8 ± 1.9 5.2 1.5
60 20× 50 222.2 7.7 159.9 ± 3.1 140.2 ± 2.5 13.6 3.6
60 10× 0 227.9 5.8 111.2 ± 10.4 115.1 ± 5.6 13.5 3.5
60 10× 25 250.9 4.1 126.6 ± 4.8 112.7 ± 15.0 10.6 2.5
60 10× 50 294.9 7.4 183.0 ± 13.4 90.8 ± 15.2 25.6 5.2
124 10× 0 419.8 5.4 226.2 ± 8.1 199.9 ± 8.1 7.9 2.3
124 10× 25 507.4 14.2 252.4 ± 6.0 220.7 ± 6.9 12.4 3.0
124 10× 50 478.1 7.4 259.0 ± 13.3 241.6 ± 11.4 11.0 2.8
124 20× 0 291.9 1.7 236.5 ± 1.8 213.2 ± 1.5 1.8 0.7
124 20× 25 375.1 5.6 273.1 ± 4.8 231.5 ± 3.4 5.2 1.7
124 20× 50 363.4 6.5 323.7 ± 3.4 193.7 ± 1.7 5.5 1.8
80 10× 0 106.6 2.7 114.1 ± 10.3 108.0 ± 8.7 11.5 8.6
80 20× 0 213.2 11.2 135.8 ± 3.8 123.7 ± 3.6 14.7 5.5
124 10× 0 351.9 4.0 186.7 ± 7.6 157.6 ± 7.0 6.5 2.3
124 20× 0 302.5 10.2 185.0 ± 3.6 174.8 ± 2.7 8.5 3.5
140 20× 0 321.2 8.4 211.4 ± 7.1 199.4 ± 4.8 6.9 3.0
140 10× 0 370.5 6.2 209.6 ± 6.1 183.5 ± 6.1 6.2 2.3
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Table 4   �Fxz , �Fyz , �∗

z
 and �z for particles with dp = 80 μm in a 

25  wt% glycerol–water solution located at the top z = 2305 μm and 
bottom z = 0 μm of the channel ( cI = 0.575 , ca = 0.7 , cD = 2)

z = 2305 (μm) z = 0 (μm) � (μm)

�F
xz

160.43 ± 9 μm 196.29 ± 7.8 μm 35.86
�F

yz
145.38 ± 9.1 μm 177.32 ± 10.76 μm 31.94

�
∗

z
 (2D) 5.4 μm 9 μm 3.6

�
∗

z
 (3D) 4.6 μm (− 15%) 8.12 μm (− 10%) 3.52

�
z
(�F

xz
) (3D) 10.14 μm 11.25 μm 1.11

�
z
(�F

yz
) (3D) 10.23 μm 13.48 μm 3.25

�z 173.22 μm 201.87 μm 28.65
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