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Abstract—The potential of motor imagery-based brain-
computer interfaces (BCIs) is hindered by long calibration times.
Therefore, this study investigates a classification model that
minimises BCI calibration time while maximising its accuracy by
exploiting transfer learning. To this end, a modified version of the
Sinc-EEGNet architecture is proposed. Analyses were carried out
with data from multiple subjects. Notably, when the model was
trained with data from subjects other than the test subject, Sinc-
EEGNet-32 achieved a mean classification accuracy of 78±10%.
This outperformed the reference EEGNet-4 architecture by 10%.
Instead, when considering also data from the test subject for
a fine tuning, Sinc-EEGNet-32 achieved a mean accuracy of
80 ± 10% by exploiting only 10% of test subject’s data and
83 ± 10% by exploiting 40% of test subject’s data. These
correspond to a system calibration of less than 2.0min and
of approximately 8.0min, respectively. Overall, there was an
increasing trend in performance for Sinc-EEGNet-32 as higher
percentages of data were exploited for fine-tuning. In contrast,
EEGNet-4 only achieved an accuracy of 72±13% even with fine
tuning.

Index Terms—brain-computer interface, motor imagery, elec-
troencephalography, Sinc-EEGNet, transfer learning.

I. INTRODUCTION

A motor imagery-based brain–computer interface (BCI)
relies on measuring brain signals during the mental execution
of a movement. It enables a direct interaction between the hu-
man brain and external devices without peripheral (muscular)
activity [1]. Such an interface demonstrated great potential as
an assistive technology or in rehabilitation [2].

However, motor imagery-based BCIs still face limitations,
including a low signal-to-noise ratio, strong dependency on
specific tasks, and the non-stationarity. Specifically, the non-
stationarity introduces intra-subject and inter-subject variabil-
ity [3], [4]. Training artificial intelligence algorithms faces
domain shift issues. Such an issue is associated with mis-
matching data distributions for training and test sets, where
data from prior sessions of the subject or from other subjects

would be adopted [5]. As a result, motor imagery-based BCIs
often require recalibration from scratch for each new subject or
session of the same subject. This poses a significant limitation
for widespread usage in clinical and daily-life applications.

To address the calibration challenge, several research studies
explored transfer learning techniques to cope with low data
availability [6]. Many authors focused on traditional machine
learning approaches, mostly relying on filter-bank common
spatial pattern [7], [8]. These studies employed transfer learn-
ing to enhance the invariance of features extracted from multi-
ple pre-recorded sessions [9], [10]. However, these approaches
are constrained by the a priori extraction and selection of
handcrafted features. In contrast, deep learning methods offer
the advantage of processing raw data directly, with minimal or
no pre-processing. However, the need to train a huge number
of parameters and the low data availability typical of the
context of interest could lead to ineffective learning [11].
Consequently, transfer learning emerged as a valuable resource
for extending the success of deep learning methods to motor
imagery-based applications.

In [12], an adaptive layer on the top of a filter-bank common
spatial pattern was introduced into a fully connected deep
network. The pre-trained model on previous sessions of the test
subject was found to be effective. However, a transfer learning
across subjects was not explored. In [13], the authors achieved
relevant performance improvements by applying transfer learn-
ing to multiple deep learning models. When adopting an online
modality, the convenience of a transfer involving different
sessions of the same subject rather than multiple subjects was
highlighted. More recent studies also explored the subject-to-
subject transfer. In [14], a ”golden” subject’s data were used
to train a standard deep network, followed by the design of an
encoder-decoder network to align individual test subjects’ data
with that of the golden subject. However, the subject-specific
network required extensive and time-consuming training.



In this framework, a hybrid deep neural network named
Sinc-EEGNet was recently proposed for classifying motor
imagery [15]–[17]. This results from the merging of two
reliable and already successful architectures: the EEGNet [18]
and the SincNet [19]. Different ways for combining the two
architectures were proposed. In [15], [17], an attention module
was added to perform automatic feature selection. In [16],
modifications like the addition of extra dropout layers were
introduced. However, the main goal of these works was to
maximise the suitability of the models for learning from
single-subject data, namely the focus was on intra-subject
transfer.

Overall, while previous research tried to address the limita-
tions of motor imagery-based BCIs through transfer learning,
challenges persist in achieving efficient calibration and gener-
alisation across subjects. The present study aims to further
explore these challenges and propose a novel approach to
enhance the usability and effectiveness of motor imagery-
based BCIs.

To this end, a modified version of Sinc-EEGNet with a
strong generalisation capability across different BCI subjects
was designed. Then, an inter-subjective transfer was inves-
tigated to reduce calibration time for adaptation to a new
subject, hence compliant with a real-time utilisation.

The remainder of the paper is organised as follows. Section
II recalls the already existing EEGNet and SincNet architec-
tures. Section III describes the proposed hybrid architecture, its
implementation, and the data analysis approach. Sections IV
presents the exploited dataset and discusses inherent results.

II. BACKGROUND

This section presents two already existing architectures,
namely EEGNet and SincNet, before presenting the proposed
hybrid architecture.

A. EEGNet

EEGNet [18] was developed to extract various relevant
features from EEG signals in a robust manner. It is a low-
depth CNN that integrates two peculiar types of convolutions,
namely depth-wise convolution and separable convolution.

EEGNet first adopts a standard convolutional layer to learn
traditional temporal filters. It then trains frequency-specific
spatial filters by means of depth-wise convolution. Each
filtered version of the input EEG is individually optimised
by kernels that explore the spatial correlations among the
EEG channels. Following this, a separable convolution is
applied. It combines a depth-wise convolution for capturing
temporal summaries of each feature map and a point-wise
convolution for optimal mixing of the summarised feature
maps. Interestingly, EEGNet architecture resembles the main
steps of the well-known filter-bank common spatial pattern,
while adding to it a higher flexibility thanks to the end-to-end
training procedure peculiar to deep learning models.

Currently, it is adopted as the golden standard by most
studies that propose new EEG decoding approaches [20], [21].
Notably, almost half of the total amount of EEGNet trainable

parameters belongs to the first standard convolutional layer.
This layer is characterised by a parameter count of N*L, with
N the number of embedded kernels and L the filters length.

B. SincNet

SincNet [19] was originally proposed for audio signals
discrimination tasks. It aimed to discover more meaningful
initial filters than the traditional convolutional ones. Indeed,
the authors claimed that the resulting first layer kernels usu-
ally take very noisy and incongruous multi-band frequency
responses. Hence, a sinc-layer was proposed as an alternative
to a traditional convolutional one. Specifically, instead of the
traditionally learned finite impulse response filter, a peculiar
trainable kernel was adopted. It is constrained to match sinc
function in the time domain or, equivalently, band-pass filter
in the frequency domain.

This approach offers advantages in terms of interpretability
and efficiency, as the trainable weights of a sinc-layer are only
twice the number of embedded kernels.

In the context of motor imagery decoding and the present
research study, the sinc-layer proves highly suitable. Since the
number of its tunable parameters does not depend on the fil-
ters’ length, an elevated frequency selectivity in EEG filtering
can be efficiently achieved. In contrast, achieving a similar
purpose with a traditional convolutional layer would require
a large number of weights to balance time and frequency
resolution. The compactness of sinc-filters plays a crucial role
in minimising calibration requirements before BCI utilisation.

III. MATERIALS AND METHODS

A. The architecture

A modified merge of SincNet and EEGNet architectures
was designed to enhance the advantages of both networks
specifically for inter-subjective application. By incorporating a
customised bandpass filter bank, the hierarchical exploration
capability of EEGNet was improved. This allowed EEGNet
to benefit from the advantages offered by the sinc-layer,
enabling effective feature extraction from raw waveforms and
maximising filter suitability for the target application.

In contrast to previously proposed Sinc-EEGNet models
[15]–[17], a strong similarity with the original version of
EEGNet was here voluntarily preserved to fully exploit its
intrinsic generalisation capability. As reported in Table I, the
proposed Sinc-EEGNet faithfully reproduced EEGNet archi-
tecture except for the first block. Specifically:

1) the first traditional convolutional layer was replaced by
a sinc-layer;

2) spatial filters were individually trained for each fre-
quency range resulting from the simultaneous optimi-
sation of the sinc-layer;

3) the resulting feature maps were first temporally resumed
on an individual basis and then mixed;

4) finally, a fully connected layer handles the classification
task.

Similarly to EEGNet, Sinc-EEGNet compensates for the
lack of flexibility of filter-bank common spatial pattern due



to the end-to-end training procedure. This allows for multi-
resolution EEG analysis by tuning the bandwidths. Addition-
ally, in the proposed model, the preservation of the traditional
form of the bandpass filters ensures closer adherence to the
gold standard of machine learning approaches. Hence, the
initial filtering quality and human readability of the latter are
preserved.

B. Implementation

Both Sinc-EEGNet and EEGNet were implelemted in this
study. The inclusion of EEGNet was motivated by the need
for a reference model for comparative analysis.

1) EEGNet implementation: Referring to [18] as starting
point, firstly EEGNet was implemented. To guarantee a high
architectural coherence with this study, network hyperparam-
eters (such as temporal kernels lengths and pooling layers
dimensions) were re-expressed in relative terms with respect
to fs and the same proportionality relation was kept. If not
specified, the number of temporal and spatial filters, as well as
dropout percentage hyperparameters settings were maintained
identical.

EEG signals were band-pass pre-filtered in 4Hz to 40Hz
to ensure a faithful reproduction. Then, each EEG trial was
epoched such to include the cue and the motor imagery
window of a typical synchronous motor imagery trial. Finally,
a classical standardization procedure was employed.

2) Sinc-EEGNet implementation: As with EEGNet, the
Sinc-EEGNet hyperparameters were expressed by maintaining
proportionality with fs. In [18] the length of the first standard
layer was set equal to fs

2 . Here, the length of the sinc-filters
was set to fs

8 as this yielded better performance in preliminary
experiments (Tab. I). For a similar empirical reasoning, in
the third block the separable convolution kernel size was
modified from fs

8 to fs
16 . In order to maximise the potential

of the proposed network to automatically learn from raw EEG
signals, no prior pre-filtering was applied. As for EEGNet,
each EEG trial was epoched to include the cue and the motor
imagery window. Finally, a peculiar standardization strategy
was adopted to mitigate the aforementioned domain shift issue.
Among the effective standardization strategies proposed in [5],
the best one feasible with on-line applicability was selected.
Specifically, each subject belonging to the training set was
individually transformed using his/her own mean and variance,
while the test subject was standardized adopting the statistics
computed on the whole training data.

C. Data analyses

Two main analyses were carried out in this study. In the
first analysis, the models were evaluated by iteratively training
them on all subjects of the selected dataset except one. The
excluded subject was then used as the test subject to assess
the model’s performance. In the second analysis, a fine-tuning
was performed on the excluded (test) subject.

1) Inter-subject training: The initial analysis involved com-
paring four models using the inter-subject training modality:

EEGNet-4, EEGNet-32, Sinc-EEGNet-4, and Sinc-EEGNet-
32. The number following the name of each architecture
corresponds to the number of temporal filters in its first layer.
EEGNet-4 refers to the original architecture proposed by the
authors [18], while EEGNet-32 was introduced to examine the
impact of increasing the number of filters. The Sinc-EEGNet
architecture was then inspected in both configurations (i.e.,
with 4 and 32 filters).

Once the dataset was selected, the condition of a new
subject was simulated by training the models using only
data from other subjects. To ensure robust classification
performance and avoid subject bias, the leave-one-subject-
out cross-validation method was adopted, as suggested by
[22]. This method involves dividing the data into k folds,
with k equal to the number of subjects in the dataset. In
each iteration of cross-validation, a different subject served
as the test set. For implementing it, GroupKFold function
from sklearn.model selection was employed. Following the
approach in [23], the remaining subjects’ data were further
split in a 9:1 ratio. The first set was used for training the
network weights, while the second set served as validation
data for the early stopping procedure.

2) Fine-tuning adaptation: A second analysis was carried
out to explore transfer learning application.

For this purpose, the pre-trained model with data from sev-
eral subjects was fine-tuned on a new subject. The classifica-
tion performance on this new subject was evaluated by varying
his/her percentage of the data used for the fitting process.
At each leave one subject out cross-validation iteration, the
data of the relative test subject were chronologically split as
follows: the second half was chosen as fixed and unique test
set, hence it was never exploited for model subject-specific
adaptation; from the first half, subsets of different sizes were
extracted for applying the fine-tuning procedure to the model
pre-trained on the other subjects’ data. Specifically, separate
tests were performed by progressively enlarging such subsets,
thus exploring relative sizes of: 10%, 20%, 30% and 40%.
Note that these percentages were computed by considering
as 100% the total amount of data in the whole test subject’s
session (i.e. including both the first and the second half). Each
subset was further split with stratification at ratio 9:1 to obtain,
respectively, the fine-tuning training and validation data. To
guarantee a greater robustness of the results obtained from the
detailed procedure, 15 experiments were conducted per test
subject and per individual percentage by repeating the random
sampling process of the fine-tuning data from the first half of
the session.

3) Experiments setup: For the sake of reproducibility, all
the experiments were performed with random seed fixed to
42. Binary cross-entropy was minimised on mini-batches of
32 trials and on a maximum of 10000 epochs. For this
purpose, Adam optimiser [24] was employed in conjunction
with an early stopping method, respectively fixing to 0.02 the
former weight decay and to 150 the latter epochs limit. A
different learning rate was chosen for pre-training and fine-
tuning processes, respectively 0.0001 and 0.00001 as this



TABLE I: Proposed Sinc-EEGNet architecture. C = number of channels, T = number of time samples, F1 = number of sinc-
filters, D = number of spatial filters, fs = sampling frequency.

Block Layer # filters Size # tunable parameters Output Activation

Input (C,T)
Reshape (1,C,T)

1 Sinc-layer F1 (1, fs
8

) 2*F1 (F1,C,T) Linear
Batch Normalization 2 * F1 (F1,C,T)

2

Depthwise convolution D*F1 (C,1) C*D*F1 (D*F1,1,T) Linear
Batch Normalization 2*D*F1 (D*F1,1,T)
Activation (D*F1,1,T) ELU
Average Pooling (1, fs

32
) (D*F1,1, T

fs
32

)

Dropout (D*F1,1, T
fs
32

)

3

Separable convolution D*F1 (1, fs
16

) D*F1*( fs
16

+D*F1) (D*F1,1, T
fs
32

) Linear

Batch Normalization 2*D*F1 (D*F1,1, T
fs
32

)

Activation (D*F1,1, T
fs
32

) ELU

Average Pooling (1, fs
16

) (D*F1,1, T
fs
32

∗ fs
16

)

Dropout (D*F1,1, T
fs
32

∗ fs
16

)

Flatten (D*F1* T
fs
32

∗ fs
16

)

4 Dense D*F1* T
fs
32

∗ fs
16

D*F1* T
fs
32

∗ fs
16

+ 1 1 Softmax

consistently yielded good accuracy in preliminary experiments
on the training set. Due to the perfect balance of the dataset,
accuracy was adopted as the main metric for binary classifi-
cation performance evaluation. For the sake of comparability,
the F1 score was also reported.

Finally, a statistical analysis was conducted to assess the dif-
ferences between the performance obtained with the different
architectures and with the different fine-tuning conditions. The
Jarque-Bera test was used to test the assumptions of normality.
Then, depending on the normality of the sample, the paired
t-test or the Wilcoxon signed rank test were used to compare
each models pair. To be noted, these tests were performed
individually for each fine-tuning percentage. Successively,
repeated measures ANOVA test was adopted to compare the
performance of a single model across the multiple investigated
percentages. For all statistical tests, the significance level was
set to 0.05.

IV. RESULTS

A. Dataset

A benchmark dataset was used to conduct the analyses,
namely the BCI competition IV dataset 2a [25]. It contains
EEG signals of nine healthy subjects recorded by means
of 22 wet electrodes. The sampling frequency was equal to
250 Sa/s. Four motor imagery tasks were contained in the
dataset. However, two tasks were selected as classes for the
discrimination task for this study, namely right hand and left
hand. For each subject, two sessions were recorded in two
different days, namely ”T” and ”E” sessions. As the present
work inspected an inter-subjective approach, all investigations

in this study considered only session ”T”. It contains 72 trials
per motor imagery class. Each trial comprises a 2.00 s of
fixation cross at the beginning. Then, a cue appeared and
remained on the screen for 1.25 s. The subjects were asked to
perform the motor imagery task from 3.00 s to 6.00 s. Finally,
a short break followed. In the current study, each EEG trial
was epoched from 2.00 s to 6.00 s.

B. Inter-subject training results

Table II presents a comparison of the four models in-
vestigated in this study (i.e., EEGNet-4, EEGNet-32, Sinc-
EEGNet-4, and Sinc-EEGNet-32). The comparison includes
the number of trainable parameters and across subjects mean
accuracy and F1 score, together with their associated stan-
dard deviations. The performance of the replicated EEGNet-
4 model aligns with previous literature [26] when employing
the same dataset, binary task, and leave-one-subject-out cross-
validation. The sole statistically significant improvement was
achieved by Sinc-EEGNet-32. Increasing the number of initial
temporal filters from 4 to 32 in EEGNet resulted in negligible
average gain, confirming the compactness emphasised by
EEGNet authors and supporting EEGNet-4 as the optimal
model version.

Conversely, when comparing EEGNet-4 and Sinc-EEGNet-
4, an increase from 68 ± 9% (65 ± 15%) to 73 ± 10%
(72 ± 11%) in the average accuracy (F1) performance was
obtained. This average improvement supports the convenience
of adopting a sinc-layer in place of a standard convolutional
one. As a matter of fact, the former forces the network to
focus on high-level tunable parameters with the greatest impact
on the final temporal/frequency filtering process. Moreover,



EEGNet-4 EEGNet-32 Sinc-EEGNet-4 Sinc-EEGNet-32
# params 1101 12385 481 7425
accuracy (%) 68 ± 9 69 ± 9 73 ± 10 78 ± 10*
F1 (%) 65 ± 15 68 ± 11 72 ± 11 75 ± 12*

TABLE II: Inter-subject training results in terms of number of trainable parameters and across subject mean accuracy and F1
with their associated standard deviation. * indicates statistical significance (p < 0.05) of paired t-test in comparison with the
reference model EEGNet-4.

Fig. 1: Inter-subject transfer learning results when applying
fine-tuning on the test subject with variable percentages. The
across subject mean accuracy with their associated standard
deviation are represented by bars heights and error bars,
respectively.

Sinc-EEGNet-4 offers a very efficient global architecture: the
total amount of trainable parameters is more than halved with
respect to the EEGNet-4.

Finally, 10% average improvements in accuracy (F1) were
obtained when EEGNet-4 was compared with Sinc-EEGNet-
32. Specifically, the results increased from 68±9% (65±15%)
to 78± 10% (75± 12%). In that case, the difference resulted
statistically significant. Hence, in Sinc-EEGNet architecture,
the employment of sinc-filters truly enables to benefit from the
augmentation of the exploitable features for the final classifica-
tion. Notably, this possibility is intrinsically addressable to the
more efficient sinc-layer introduction, as lack of improvement
was reported in EEGNet-32 enlarged version. The chance to
dispose of more learnable temporal filters that directly process
raw EEG signals is peculiarly relevant for motor imagery
decoding. Indeed, this represents a key resource to allow
an exhaustive exploration of the wide motor imagery-related
frequency range of interest without necessarily renouncing an
elevated frequency selectivity.

C. Fine-tuning adaptation results

Figures 1 and 2 report a quantitative characterization of
the trade-off between the achievable classification performance
and the amount of data employed for the fine-tuning adaptation

Fig. 2: Inter-subject transfer learning results when applying
fine-tuning on the test subject with variable percentages. The
across subject mean F1 with their associated standard deviation
are represented by bars heights and error bars, respectively.

to the test subject. Results obtained with EEGNet-4 and Sinc-
EEGNet-32 were compared. As the previous analysis revealed
a negligible gain when increasing the initial temporal filters
in the EEGNet model, EEGNet-4 was considered as reference
for the present analysis. In the figures, the percentage of data
exploited for the test subject is reported on the x-axis. The
across subject mean accuracy and F1 expressed in percent and
their associated standard deviations are represented by bars
heights and error bars, respectively. It is worth noting that the
0% bars exactly correspond to the results reported in Table
II. For the employed dataset, each trial lasts 8.0 s and the total
number of trials in a session is 144, with a total duration of
approximately 19.0min. Hence, the investigated percentages
correspond to calibrations time of: 1.9min, 3.7min, 5.7min
and 7.6min, respectively.

Interestingly, Sinc-EEGNet-32 model reached an average of
80± 10% in both accuracy and F1 metrics by exploiting just
the 10% of a session data. It corresponds to a calibration
lasting less than 2.0min. Additionally, an increasing trend was
found for Sinc-EEGNet-32 when adopting larger percentages
of data for fine-tuning operation. It went up to an average result
of 83± 10% in both accuracy and F1 metrics when 40% of
session trials were employed. A similar trend was observed for
EEGNet-4 as well, but the highest obtained average accuracy
(F1) value was 72± 13% (71± 14%).



As evidenced in the first row of Table II, Sinc-EEGNet-32
globally offers reduced efficiency with respect to EEGNet-
4. Notably, despite that, it was found that Sinc-EEGNet-32
was not penalized concerning the benefits it could actually
retrieve from a short calibration. As a proof, the relative
average improvements computed as accuracy (F1) difference
between the 40% and 0% conditions of EEGNet-4 and Sinc-
EEGNet-32 respectively were: 4% (6%) and 5% (8%). A
further confirmation was provided by the statistical analysis
conducted to compare the two models at different fine-tuning
percentages. Statistical improvements were observed for all
the investigated percentages, except for the 20%. However,
repeated measures ANOVA test revealed that Sinc-EEGNet-
32 performance in the no extra-calibration scenario did not
statistically differ from those resulting from any percentage of
fine-tuning.

V. CONCLUSION

The aim of this study is to enhance the usability of motor
imagery-based BCIs by developing a decoding solution that
can be applied to multiple subjects, offering improved perfor-
mance on an individual basis and reduced calibration need.
The proposed Sinc-EEGNet-32 overcomes the requirement
of subject-specific data from previous sessions, and at the
same time, minimal calibration times resulted sufficient for
a satisfying adaptation to the present BCI session. Remark-
ably, referring to the popular gold deep learning architecture
EEGNet-4, statistically significant performance improvements
were achieved in inter-subject modality by the proposed Sinc-
EEGNet-32 model due to the combination of two main mod-
ifications to the EEGNet reference model: the insertion of a
sinc-layer instead of the traditional convolutional layer and
the enlargement of the architecture width. Interestingly, sinc-
layer was found to have a determinant role in allowing an
augmentation of the features exploitable for the classification.
Finally, the Sinc-EEGNet-32 high suitability for a successful
transfer learning application was demonstrated by reaching an
average accuracy of 80% with less than 2.0min calibration.
The repeated use of the BCI system by a user can be investi-
gated in the future. In addition, a comprehensive comparison
with other existing approaches should be made to provide a
more complete evaluation of the performance of the proposed
model.
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