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Abstract

In this research, refined structural and nonlinear theories are used in order to in-
vestigate the free vibration and post-buckling response of thin-walled beam and
flexible plate structures. In this regard, the Unified Formulation is employed to
obtain nonlinear governing equations of the finite beam and plate elements.

Then, various assessments are conducted related to the thin-walled beam and
flexible plate structures. The free vibration response of thin-walled isotropic and
composite beams is accurately evaluated, and the Vibration Correlation Technique is
used in order to investigate the variations of natural frequencies in thin-walled lami-
nated isotropic and composite beam structures under compression. The physically
and geometrically nonlinear analysis of thin-walled beams is also investigated using
Newton–Raphson linearization scheme with the path-following method based on the
arc-length constraint.

The large-deflection and post-buckling of isotropic and composite plates under
axial, in-plane shear and combined loadings are analyzed considering different strain-
displacement assumptions, and the corresponding equilibrium curves and stress
distributions are presented.

Furthermore, the effects of load and displacement boundary conditions in the post-
buckled laminated composite plates are investigated, and the effects of stiffeners are
assessed. The results show that the present method based on the Unified Formulation
can be efficiently used for accurate structural analysis, including the free vibration
and post-buckling of the thin-walled beam and flexible plate structures.
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Chapter 1

Introduction

1.1 Motivation

Nowadays, thin-walled beam and flexible plate structures are extensively used in
many engineering applications such as mechanical components, aerospace, and civil
industries. In addition, many high-performance goods and spare parts of automobiles
and airplanes are made of fiber-reinforced composite materials because of the desired
characteristics of high stiffness-to-weight ratio and corrosion resistance. The use
of efficient computational methods for the analysis of the thin-walled beam and
flexible plate structures made of composite materials has always been of primary
importance for engineers and designers. In the present work, the Carrera Unified
Formulation (CUF) is employed in order to solve the different structural problems
of thin-walled beam and flexible plate structures. The large-deflection and post-
buckling of isotropic and composite plates are investigated using the CUF and
Newton–Raphson linearization scheme with the path-following method based on
the arc-length constraint. The effects of different nonlinear theories and strain-
displacement assumptions on the equilibrium curves and stress distributions are
evaluated. The benchmarks for free vibration response of different thin-walled beams
are presented, and the Vibration Correlation Technique is used for the assessment of
vibrations under compressive loads. Using the efficient CUF-based framework, the
following points will be addressed precisely in the present research:

• Free vibration response of thin-walled beams due to the cross-sectional defor-
mations (Chapter 3)
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• Vibrations of thin-walled beams under compression and the use of Virtual
Correlation Technique for thin-walled beam structures under compression
(Chapter 4)

• Physically and geometrically nonlinear analysis of thin-walled beam structures
(Chapter 5)

• Large-deflection and post-buckling analysis of flexible plates and evaluation of
geometrically nonlinear terms in the post-buckling of flexible plates (Chapter
6)

• Investigation of stiffeners and surroundings effects on the nonlinear response
of flexible plates (Chapter 7)

• Buckling and post-buckling of flexible plates under in-plane shear and com-
bined loadings (Chapter 8)

1.2 Carrera Unified Formulation

The CUF was introduced as an accurate and cost-effective method for the solution
of different engineering problems related to the beam, plate, and shell structures.
The free vibration analysis of plate and shell structure can be found in [1–4]. A
hierarchical finite element (FE) was developed for the free vibration analysis of beam
structures. In this regard, the matrices of stiffness and mass were formulated based
on the Fundamental Nucleus (FN) [5]. The free vibration analysis of beam structures
with different cross-sections was presented by Carrera et al. [6] by employing the
CUF. The free vibration response of the beams with bridge-like cross-sections
was investigated in [7]. A formulation of exact dynamic stiffness was developed
by using the higher-order kinematic fields in order to evaluate the free vibration
response of thin-walled structures [8]. The free vibration analysis of thin-walled
structures considering the influence of nonstructural localized inertia was analyzed
by Pagani et al. [9]. The free vibration of beam structures made of composite
materials was investigated by employing higher-order beam theories [10]. Higher-
order expansions based on Chebyshev polynomials were used for the free vibration
analysis of composite beam structures [11]. Refined dynamic stiffness elements
were studied for the free vibration response of composite beams [12]. Radial basis
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functions were used in order to evaluate the free vibration response of thin-walled
beam structures [13]. The beam structures with simply-supported edge conditions
were focused [14]. Exact solutions were presented for the free vibration response
of box and sandwich composite beams [15]. The mode changes and frequencies of
beams with geometrical nonlinearities were analyzed by Pagani et al. [16]. Carrera et
al. [17] investigated the effects of large displacements and rotations on the vibration
response of composite beams. The Lagrange polynomial expansion for thin-walled
beams of various cross-sections was used by Xu et al. [18] in order to develop an FE
approach based on the CUF. A thorough investigation of free vibration analysis for
thin-walled beams was studied by Xu et al. [19]. The method based on the framework
of CUF for the vibration of isotropic and composite beams under compression was
further studied in [20, 21].

1.3 Preliminary considerations

Here, a beam structure can be assumed in such a way that the cross-section domain S
is located in the x− z plane, and the axis of the beam is located along the y axis. As a
result, the vectorial forms for the displacement, stress, and strain could be expressed
as follows:

u(x,y,z; t) = {ux uy uz}T

σ = {σxx σyy σzz σxz σyz σxy}T

ε = {εxx εyy εzz εxz εyz εxy}T

(1.1)

By the assumption of small displacements and rotations, the following relationship
between the strains and displacements can be obtained. This geometrical relation in
the matrix form is:

εεε = D u (1.2)



4 Introduction

where D is the linear differential operators expressed as:

D =



∂x 0 0
0 ∂y 0
0 0 ∂z

∂z 0 ∂x

0 ∂z ∂y

∂y ∂x 0


, (1.3)

where ∂x =
∂ (·)
∂x

, ∂y =
∂ (·)
∂y

, and ∂z =
∂ (·)
∂ z

are partial derivative operators.

The stress-strain relationship according to the Hook’s law is:

σσσ = C εεε (1.4)

For the orthotropic material, the matrix C is:

C =



C11 C12 C13 0 0 C16

C12 C22 C23 0 0 C26

C13 C23 C33 0 0 C36

0 0 0 C44 C45 0
0 0 0 C45 C55 0

C16 C26 C36 0 0 C66


(1.5)

where Ci j coefficients are functions of the elastic moduli along the longitudinal and
transverse directions, the shear moduli, and the Poisson’s ratios [22]. Interested
readers are referred to [23] for more information about the explicit form of the
material matrix C.

1.4 Free vibration analysis based on the CUF

In the CUF framework, the three-dimensional displacement field for the beam
structures is defined as follows [24]:

u(x,y,z; t) = Fτ(x,z)uτ(y; t), τ = 0,1, · · · ,N, (1.6)
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where Fτ is the set of cross-section functions and uτ is the generalized displacement
vector. It should be noted that τ is expansion function index, and varies from 1 to N,
where N refers to the number of polynomial terms in the cross-section expansion
function. As it is obvious in Eq. (1.6), using the CUF allows us to select any
expansion orders over the beam cross-section. As a result, various structural theories
and kinematics assumptions can be efficiently implemented and employed. In this
study, Taylor and Lagrange cross-section functions are used. Note that the refined
Taylor and Lagrange expansions will be further described in the next sections of this
chapter. If we use the FE approximation, the vector of displacement uτ according to
the nodal parameters uτi and shape functions Ni can be expressed as:

uτ(y; t) = Ni(y)uτi(t), i = 1,2, . . . , p+1, (1.7)

where Ni is the i-th shape function, p is related to the order of the shape functions,
and u is the vector of nodal unknowns. Note that the choice of the axial shape
functions Ni is independent of the choice of the cross-sectional expansion functions
Fτ , resulting in the significant flexibility in the structural modeling. Interested
readers are referred to [25] for more information about the Lagrange polynomials
and shape functions. As a result of employing the FE approximation and the CUF,
the following displacement field is obtained:

u(x,y,z; t) = Ni(y)Fτ(x,z)uτi(t) (1.8)

Based on the the Principle of Virtual Displacements (PVD), one can notice that:

δLint + δLine = δLext (1.9)

where Lint , Line, and Lext denote the strain energy, the work of inertial loadings, and
the work of external loadings. In the case of free vibration analysis, the work of
external loadings is zero, hence:

δLint + δLine = 0 (1.10)
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As a result, the following equations are obtained for the virtual variations of strain
energy and the inertial work.

δLint =
∫
V

δεT σdV = δuT
s j

(∫
V

Fs(x,z)N j(y)DT CDNi(y)Fτ(x,z)dV
)

uτi = δuT
s jKi jτsuτi

δLine =
∫
V

δuT ρüdV = δuT
s j

(∫
V

Fs(x,z)N j(y)ρNi(y)Fτ(x,z)dV
)

üτi = δuT
s jMi jτsüτi

(1.11)
where Ki jτs and Mi jτs are the FNs of stiffness and mass matrices. For a given i, j
pair, these 3 × 3 matrices are independent of the structure’s order, and have a fixed
form. All combinations of i, j, τ , and s indices are taken into account to get the
global matrices. Interested readers are referred to [24, 26] for additional information
on the FN formulation and its explicit forms.

The PVD might be expressed as follows if the virtual variations of strain energy
and the inertial work from Eqs. (1.11) are substituted into Eq. (1.10):

δuT
s j(K

i jτsuτi +Mi jτsüτi) = 0 (1.12)

That could be expressed as:

Mi jτsüτi +Ki jτsuτi = 0 (1.13)

Because the problem is linear, by using harmonic solutions, we can find the natural
frequencies that allows us to find the solution of the eigenvalues problem.

(−ω
2
k M+K)uk = 0 (1.14)

where ωk are the natural frequencies, and uk is the k th eigenvector.

1.5 Refined Taylor Expansion

Polynomial expansions of the kind xmzn are used as cross-section functions Fτ in
Taylor Expansion (TE) models. The integers m and n are both positive. The beam’s
structural theory is represented by the TE model’s order (N), which is specified by
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the user. N = 2 is the second-order displacement field in this example:

ux = ux1 + xux2 + zux3 + x2ux4 + xzux5 + z2ux6

uy = uy1 + xuy2 + zuy3 + x2uy4 + xzuy5 + z2uy6

uz = uz1 + xuz2 + zuz3 + x2uz4 + xzuz5 + z2uz6

(1.15)

In the above equation, there are eighteen generalized displacement variables from
ux1 to uz6 . Fig. 1.1 schematically depicts some of these variables for the linear TE
model (N = 1), where the beam example is subjected to bending around z axis. It
can be observed in this figure that for the given beam example, the unknowns ux1,
uy1, and uz1 are axis displacements of the beam. The other unknowns are ux2, uy2,
uz2, ux3, uy3, and uz3 which correspond to the rotations with respect to the axes. The
two classical beam theories of Timoshenko beam theory (TBT) and Euler–Bernoulli
beam theory (EBBT) are derived from the linear TE model [24]. When it comes to
the displacement field, for example, the TBT only considers these terms:

ux = ux1

uy = uy1 + xuy2 + zuy3

uz = uz1

(1.16)

x

x�z(y)

uy2=�z(y)

ux1=-u0(y)

y

x

y
z z

(a) Undeformed (b) Deformed  

Fig. 1.1 Some generalized displacement variables derived from the linear TE model for a
schematic beam under bending around the z axis

1.6 Refined Lagrange Expansion

The effectiveness of Lagrange Expansions (LE) has been proved in a variety of
applications, including aerospace and civil constructions [27–29]. The unknown
variables in the LE models are pure displacements (refer to Fig. 1.2). For the
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expansion function over the cross-section, four-node Lagrange polynomials (L4) and
nine-node Lagrange polynomials (L9) are used in this study. The displacement field
when using L9 polynomials is quadratic and could be written in the following form:

ux(x,y,z; t) = F1(x,z)ux1(y; t)+F2(x,z)ux2(y; t)+ ...+F9(x,z)ux9(y; t)
uy(x,y,z; t) = F1(x,z)uy1(y; t)+F2(x,z)uy2(y; t)+ ...+F9(x,z)uy9(y; t)
uz(x,y,z; t) = F1(x,z)uz1(y; t)+F2(x,z)uz2(y; t)+ ...+F9(x,z)uz9(y; t)

(1.17)

where ux1, ...,uz9 denote the displacements of the cross-sectional elements’ points
and F1, ...,F9 denote functions of the cross-sectional coordinates which are the first
nine Lagrange polynomials of order three [17]. More information regarding the
beam models with LE may be found in the book by Carrera et al. [24], which is
recommended for interested readers.

Eqs. (1.18) and Table 1.1 report the interpolation functions and point coordinates
for the L9 Lagrange polynomials using the isoparametric formulation for beams with
arbitrary cross-sections. The actual and normalized geometries of the L9 Lagrange
elements are shown in Fig. 1.3. For a schematic beam subjected to bending around
the z axis, pure displacement variables according to the Lagrange model (L4) are
illustrated in Fig. 1.2.

ux3,uy3,uz3

ux2,uy2,uz2

ux1,uy1,uz1

ux4,uy4,uz4

y

x
y

xzz

(a) Undeformed (b) Deformed  

Fig. 1.2 schematic depiction of pure displacement variables according to the Lagrange model
(L4) for an example beam subjected to bending around z axis
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Normalized GeometryActual Geometry

x

Z

2

2

Fig. 1.3 Nine-node Lagrange polynomials in the actual and normalized geometries

Fτ =
1
4(α

2 +αατ)(β
2 +ββτ), τ = 1,3,5,7

Fτ =
1
2β 2

τ (β
2 +ββτ)(1−α2)+ 1

2α2
τ (α

2 +αατ)(1−β 2), τ = 2,4,6,8

Fτ = (1−α2)(1−β 2), τ = 9
(1.18)

Table 1.1 Normalized coordinates of L9 element

Points 1 2 3 4 5 6 7 8 9
ατ -1 0 1 1 1 0 -1 -1 0
βτ -1 -1 -1 0 1 1 1 0 0

1.7 Shear locking

Shear locking [30, 31] is a numerical phenomenon that can occur when the thickness
of beams or plates decreases. In fact, this is due to the overestimation of the shear
stiffness of the structures, which tends to be infinite as the thickness approaches
zero [24]. This problem may be addressed using the techniques such as reduced
integration, selective integration, and Mixed Interpolation of Tensorial Components
(MITC).

To lessen the stiffness of displacement-based elements, Zienkiewicz [32, 33]
presented the reduced integration approach that suggests reducing the order of nu-
merical integration in some terms of the stiffness matrix. Another method according
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to the reduced integration for transverse shear terms is selective integration [34, 35].
For the other stiffness matrix terms, a full quadrature is taken into account when
using the selective integration approach. A reduced Gauss integration of the terms of
the stiffness matrix that are connected to the shear is the basis of this method. Hence,
the structure’s shear stiffness is decreased as a result of the reduction in the number
of Gauss points.

Furthermore, the MITC method for reducing the shear locking problem has
been successful [36, 37]. In the MITC formulation, the FE approximation for the
transverse shear strains is brought into the element domain. The phenomenon of
transverse shear locking is thus eliminated as a result of this procedure. For the
transverse shear terms and, finally, membrane terms of the stiffness matrix of FEs,
this method relies on the usage of assumed strain distributions [38]. Refer to [38] for
further information on the formulation and the development of the MITC technique
for higher-order beam theories.



Chapter 2

Nonlinear Governing Equations

2.1 Introduction

By employing refined structural models, nonlinear analysis can be made more
affordable without affecting their accuracy or reliability. In recent years, the CUF
has been extended to nonlinear structural problems, allowing to generate of any
order structural theory [39–42, 22, 43]. A refined beam model based on the CUF
was developed by Pagani and Carrera to address geometrically nonlinear structural
problems [40, 44]. They employed a path-following method in conjunction with the
Newton-Raphson linearization scheme. By using the layer-wise approach [45, 46]
based on the LE, interface compatibility conditions could be easily imposed between
different layers, and the expansions along the thickness could be chosen of any order.
The CUF and layer-wise theory were used to study the large-deflection and post-
buckling in composite beam structures [39]. Petrolo et al. [41] proposed a CUF-based
global-local technique that considered physical nonlinearities to study elastoplastic
structures. The isotropically work-hardening von Mises constitutive model for
material nonlinearity was implemented by Carrera et al.[42] to conduct nonlinear
analysis on the elastoplastic structures. Based on the one-dimensional component-
wise CUF models, Kaleel et al. [47] developed a computational framework for
predicting the delamination of laminated structures. For the delamination problems
of composite structures with von Mises plasticity and cohesive interface modeling,
the influence of kinematic enrichment was evaluated [48]. The elastoplastic contact
problems of metallic structures were investigated by Nagaraj et al. [49]. Petrolo
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et al. [50] analyzed the nonlinear response and stress distributions for the beam
structures with geometrical and physical nonlinearities. Using the refined beam and
plate models in the framework of CUF with a total Lagrangian scenario, nonlinear
theories based on the different strain-displacement assumptions were evaluated [51–
53]. In the same framework, Carrera et al. [54] studied the large-deflection and
post-buckling equilibrium states of plate structures subjected to different loading
conditions. The nonlinear analyses of two-dimensional isotropic and composite shell
structures based on the CUF are provided in [55–57].

2.2 Geometrically nonlinear analysis based on the
CUF

An elastic system that is in the equilibrium state, subjected to external forces and
prescribed geometrical constraints is assumed. According to the principle of virtual
work, the sum of all the virtual work which is done by the internal and external forces
in the system is zero in any arbitrary infinitesimal virtual displacements satisfying
the geometrical constraints [58]. Hence:

δLint −δLext = 0 (2.1)

where Lint is the strain energy, Lext is the work of external loadings, and δ represents
the variation.

In the analysis of elastic systems, the Large deflection leads to complex nonlinear
differential equations for the problem. The analytical solutions for these problems
are rarely available and only in a limited number of applications. A broader range
of geometrically nonlinear problems can be analyzed if the FE method is used. In
this regard, a system of nonlinear algebraic equations can be used to define the
equilibrium state of the structure. By employing the framework of CUF (Eq. (1.6))
along with Eqs. (1.7) and (2.1), the equilibrium conditions and the corresponding FE
arrays could be expressed as follows:

Ki jτs
S qs j −ps j = 0 (2.2)
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where ps j and Ki jτs
S denote the FNs of the vector of the nodal loadings and the

secant stiffness matrix, respectively, refer to [59] for more information about the
derivation of the loading vector’s FN. Moreover, the detailed formulation of the
FNs of the secant stiffness matrix for the beam and plate structures are discussed in
sections 2.4.1 and 2.4.2, respectively.

Using the indexes τ,s = 1, ...,M and i, j = 1, ..., p+1, and expanding Eq. (2.2),
the following FE governing equations can be obtained:

KS q−p = 0 (2.3)

where KS, q, and p denote global, assembled FE arrays of the structure.

2.3 Newton-Raphson linearization with path-following
constraint

Eq. (2.3) constitutes the starting point for FE calculation of geometrically nonlinear
systems, and it is usually solved through an incremental linearized scheme, typically
the Newton-Raphson method (or tangent method).

The Newton-Raphson approach or tangent method commonly used to incremen-
tally linearize Eq. (2.3) as the starting point for FE calculations of geometrically
nonlinear problems. Based on the Newton-Raphson method, Eq. (2.3) is expressed
as [60]:

ϕres ≡ KS q−p = 0 (2.4)

where ϕres denotes the vector of residual nodal forces. Therefore, Eq. (2.4) could
be linearized by Taylor’s series expanding ϕres about a known solution (q,p). By
removing the second-order terms, the following equation are obtained:

ϕres(q+δq,p+δp) = ϕres(q,p)+
∂ϕres

∂q
δq+

∂ϕres
∂p

δλ pre f = 0 (2.5)

where
∂ϕres

∂q
= KT represents the tangent stiffness matrix, and −∂ϕres

∂p
is equal to

the unit matrix I. One can obtain λ , p = λ pre f under the assumption that the load
varies directly with the vector of reference loadings pre f and has a rate of variations
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equal to the load parameter. Thus, Eq. (2.5) can be rewritten in the following form:

KT δq = δλ pre f −ϕres (2.6)

Because λ is a load-scaling variable, another governing equation is required, i.e.
constraint relationship c(δq,δλ ), as a result:

KT δq = δλ pre f −ϕres

c(δq,δλ ) = 0
(2.7)

Different incremental techniques can be implemented in accordance with the con-
straint equation, for instance, in the case of constraint equation c(δq,δλ ) = δλ = 0,
one can note that Eq. (2.7) represents the load-control method. c(δq,δλ ) = δq = 0,
on the other hand, refers to the displacement control approach. Fig. 2.1 illustrates the
differences between the load control, displacement control, and path-following ap-
proaches. In this research, a path-following method based on the arc-length constraint
is used in which the constraint equation is the function of both the displacement
and load parameter variations. More information regarding different incremental
methods can be found in [60–62].

q

p

?

q

p

?

q

p

Fig. 2.1 Different incremental techniques based on the load control, displacement control,
and path-following methods [40]

Fig. 2.2 shows the details of incremental method implemented here. In this figure,
δ n

m(·) represents the finite variations, m = 1,2, ... refers to the global variations of
load-step, and n = 0,1,2, ... refers to the local iteration within the load-step m,
where δ n

m(·) = (·)n
m − (·)n−1

m , (·)m = (·)m−1 +∑n δ n
m(·). Therefore, n = 0, and δ 0

mq
correspond to the initial solution; δ 0

mλ is the initial increment of load parameter.
Furthermore, qm−1 and λm−1 pre f refer to the displacement and load vectors at the
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previous load-step, respectively; and finally, ϕn
mres

is the residual force vector of the
current iteration. According to Eq. (2.7) and Fig. 2.2, the equilibrium iterates (solid
dots) are provided by the intersection of the linearized governing equations and the
constraint equation c(δq,δλ ) = 0, which is depicted as a series of arcs. At each
iteration, tn

m = tn−1
m +δ n

mt = tn−1
m +(δ n

mq+δ n
mλ pre f ) refers to the vector connecting

the current equilibrium iterates to the solution at the previous load-step.

q

p

d l m

0
pref

d l m

1
pref

m-1

m

d l m

2
pref

dm

0
q dm

1
q dm

2
q

dm

3
q

d l m

3
pref

m+1

tm

0

tm

1
tm

2

qm-1
qm+1qm

1
qm

0
qm

...

jm

1

res

tm

3

l  m-1 pref

lm pref

l  m

0
pref

l  m

1
pref

..
.

dm

1
t

K qT m( )

Fig. 2.2 The details of implemented incremental method [40]

According to the strategy proposed by Batoz and Dhatt [63], the incremental
displacement vector at the current iteration could be rewritten in the following form:

δ
n
mq = δ

n
mλ q̄n

m +δ
n
mq̂ (2.8)

where q̄n
m and δ n

mq̂ are the solutions of the following linear systems:
KT q̄n

m = pre f

KT δ n
mq̂ =−ϕn

mres

(2.9)
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Therefore, based on the arc-length method proposed by Crisfield [64, 65], the
following quadratic constraint equation is obtained:

a(δ n
mλ )2 +2bδ

n
mλ + c = 0 (2.10)

where

a = q̄nT

m q̄n
m +pT

re f pre f

b = (qn−1
m −qm−1)

T q̄n
m + q̄nT

m δ n
mq̂+(λ n−1

m −λm−1) pT
re f pre f

c =
(
(qn−1

m −qm−1)+δ n
mq̂

)T (
(qn−1

m −qm−1)+δ n
mq̂

)
+

(λ n−1
m −λm−1)

2 pT
re f pre f − (∆l0

m)
2

(2.11)

In this research, a full Newton-Raphson method is used in such a way that an
updated tangent stiffness matrix at each iteration is utilized. The tangent stiffness
matrix KT is calculated from the linearization of the constitutive equations and geo-
metrical relations. Readers are referred to [66–68] for more information about other
linearization methods. Based on the total Lagrangian formulation, the expressions of
both KS and KT are given in the following sections for the beam and plate structures.
These matrices are provided in terms of FNs, and the use of CUF gives the possibility
to engender the element matrices of any arbitrary refined theories.

2.4 Secant stiffness matrix

The secant stiffness matrix KS can be obtained from the virtual variation of the strain
energy δLint:

δLint =< δεεε
T

σσσ > (2.12)

where < (·)>=
∫

V (·) dV , where V is the initial volume of the structure.

By using the strain-displacement relations, the Green-Lagrange strain vector ε is
calculated as:

εεε = εεε l + εεεnl = (bbbl +bbbnl)qqq (2.13)
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where bbbl and bbbnl represent the 6×3 linear and nonlinear differential operators as
follows:

bl =



0 ∂y 0

∂x 0 0

0 0 ∂z

∂z 0 ∂x

0 ∂z ∂y

∂y ∂x 0


, bnl =



1
2
(∂y)

2 1
2
(∂y)

2 1
2
(∂y)

2

1
2
(∂x)

2 1
2
(∂x)

2 1
2
(∂x)

2

1
2
(∂z)

2 1
2
(∂z)

2 1
2
(∂z)

2

∂x ∂z ∂x ∂z ∂x ∂z

∂y ∂z ∂y ∂z ∂y ∂z

∂x ∂y ∂x ∂y ∂x ∂y



, (2.14)

in which ∂x = ∂ (·)/∂x, ∂y = ∂ (·)/∂y, and ∂z = ∂ (·)/∂ z.

The strain vector εεε can be written in terms of the generalized nodal unknowns
qs j by employing the CUF and FE approximation as:

εεε = (Bs j
l +Bs j

nl)qs j (2.15)

Similar to Eq. (2.15), the virtual variation of the strain vector δεεε can be written in
terms of nodal unknowns as:

δεεε = δ
(
(Bτi

l +Bτi
nl)qτi

)
= (Bτi

l +2Bτi
nl)δqτi (2.16)

Therefore,
δεεε

T = δqT
τi(B

τi
l +2Bτi

nl)
T (2.17)

By substituting the constitutive relations, Eqs. (2.15), and (2.17) into Eq. (2.12), we
have:

δLint = δqT
τi <

(
Bτi

l +2Bτi
nl
)T C

(
Bs j

l +Bs j
nl

)
> qs j

= δqT
τi Ki jτs

0 qs j +δqT
τi Ki jτs

lnl qs j +δqT
τi Ki jτs

nll qs j +δqT
τi Ki jτs

nlnl qs j

= δqT
τi Ki jτs

S qs j

(2.18)
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in which the secant stiffness matrix is Ki jτs
S = Ki jτs

0 +Ki jτs
lnl +Ki jτs

nll +Ki jτs
nlnl . In

Eq. (2.18), Ki jτs
0 is referred to as linear stiffness matrix and contains the linear

component of KS, Ki jτs
lnl and Ki jτs

nll are related to nonlinear contributions of order one,
and Ki jτs

nlnl corresponds to nonlinearities of order two. The following equations can
be used for the calculation of these matrices:

Ki jτs
0 =< (Bτi

l )
T CBs j

l > Ki jτs
lnl =< (Bτi

l )
T CBs j

nl >

Ki jτs
nll = 2 < (Bτi

nl)
T CBs j

l > Ki jτs
nlnl = 2 < (Bτi

nl)
T CBs j

nl >

(2.19)

In sections 2.4.1 and 2.4.2, the expressions for the FNs of Ki jτs
0 , Ki jτs

lnl , Ki jτs
nll , and

Ki jτs
nlnl matrices are provided for the sake of completeness. These are 3×3 matrices

that, given the expansion functions and the shape functions, can be expanded by
using the indexes τ,s = 1, ...,M and i, j = 1, ..., p+1 in order to obtain the element
secant stiffness matrix of any arbitrarily refined model. Then, the element secant
stiffness matrix can be assembled based on the classical FE methods (see [24]).

2.4.1 FN of the secant stiffness matrix for finite beam element

A schematic description of the CUF and FE approximation for the beam structures
is shown in Table 2.1. Therefore, the two matrices of Bs j

l and Bs j
nl for the beam

structures are obtained as follows:

Table 2.1 A schematic description of the CUF and FE approximation for the beam struc-
tures [24]

uuu(x,y,z) = Ni(y)Fτ(x,z)uuuτi

δuuu(x,y,z) = N j(y)Fs(x,z)δuuus j
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Bs j
l = bl(Fs N j) =



Fs,xN j 0 0
0 FsN j,y 0
0 0 Fs,zN j

Fs,zN j 0 Fs,xN j

0 Fs,zN j FsN j,y

FsN j,y Fs,xN j 0


(2.20)

and

Bs j
nl =

1
2



ux,xFs,xN j uy,xFs,xN j uz,xFs,xN j

ux,yFsN j,y uy,yFsN j,y uz,yFsN j,y

ux,zFs,zN j uy,zFs,zN j uz,zFs,zN j

ux,xFs,zN j +ux,zFs,xN j uy,xFs,zN j +uy,zFs,xN j uz,xFs,zN j +uz,zFs,xN j

ux,yFs,zN j +ux,zFsN j,y uy,yFs,zN j +uy,zFsN j,y uz,yFs,zN j +uz,zFsN j,y

ux,xFsN j,y +ux,yFs,xN j uy,xFsN j,y +uy,yFs,xN j uz,xFsN j,y +uz,yFs,xN j


(2.21)

where Bl and Bnl represent linear and nonlinear geometrical matrices, and commas
denote partial derivatives. Accordingly, if we consider r as the row number (r =
1,2,3) and c as the column number (c = 1,2,3), the nine components of the 3×3
FN of linear stiffness matrix in the form of Ki jτs

0 [r,c] could be expressed as follows:

Ki jτs
0 [1,1] = <C11 Fτ,x Fs,x Ni N j >+<C44 Fτ,z Fs,z Ni N j >

+ <C66 Fτ Fs Ni,y N j,y >

Ki jτs
0 [1,2] = <C66 Fτ Fs,x Ni,y N j >+<C12 Fτ,x Fs Ni N j,y >

Ki jτs
0 [1,3] = <C13 Fτ,x Fs,z Ni N j >+<C44 Fτ,z Fs,x Ni N j >

Ki jτs
0 [2,1] = <C12 Fτ Fs,x Ni,y N j >+<C66 Fτ,x Fs Ni N j,y >

Ki jτs
0 [2,2] = <C66 Fτ,x Fs,x Ni N j >+<C55 Fτ,z Fs,z Ni N j >

+ <C22 Fτ Fs Ni,y N j,y >

Ki jτs
0 [2,3] = <C23 Fτ Fs,z Ni,y N j >+<C55 Fτ,z Fs Ni N j,y >

Ki jτs
0 [3,1] = <C44 Fτ,x Fs,z Ni N j >+<C13 Fτ,z Fs,x Ni N j >

Ki jτs
0 [3,2] = <C55 Fτ Fs,z Ni,y N j >+<C23 Fτ,z Fs Ni N j,y >
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Ki jτs
0 [3,3] = <C44 Fτ,x Fs,x Ni N j >+<C33 Fτ,z Fs,z Ni N j >

+ <C55 Fτ Fs Ni,y N j,y >

(2.22)

Similarly, the components of the FNs of the first-order nonlinear stiffness matrix
Ki jτs

nll are obtained as:

For c = 1:

Ki jτs
nll [r,c] = < u,x[r]C11 Fτ,x Fs,x Ni N j >+< u,x[r]C44 Fτ,z Fs,z Ni N j >

+ < u,x[r]C66 Fτ Fs Ni,y N j,y >+< u,y[r]C66 Fτ,x Fs Ni N j,y >

+ < u,x[r]C12 Fτ Fs,x Ni,y N j >+< u,z[r]C44 Fτ,x Fs,z Ni N j >

+ < u,z[r]C13 Fτ,z Fs,x Ni N j >

For c = 2:

Ki jτs
nll [r,c] = < u,x[r]C12 Fτ,x Fs Ni N j,y >+< u,x[r]C66 Fτ Fs,x Ni,y N j >

+ < u,y[r]C66 Fτ,x Fs,x Ni N j >+< u,y[r]C55 Fτ,z Fs,z Ni N j >

+ < u,y[r]C22 Fτ Fs Ni,y N j,y >+< u,z[r]C23 Fτ,z Fs Ni N j,y >

+ < u,z[r]C55 Fτ Fs,z Ni,y N j >

For c = 3:

Ki jτs
nll [r,c] = < u,x[r]C13 Fτ,x Fs,z Ni N j >+< u,x[r]C44 Fτ,z Fs,x Ni N j >

+ < u,y[r]C55 Fτ,z Fs Ni N j,y >+< u,y[r]C23 Fτ Fs,z Ni,y N j >

+ < u,z[r]C44 Fτ,x Fs,x Ni N j >+< u,z[r]C33 Fτ,z Fs,z Ni N j >

+ < u,z[r]C55 Fτ Fs Ni,y N j,y >

(2.23)

Based on Eq. (2.19), it is proved that
(
Ki jτs

lnl

)T
=

1
2

Ki jτs
nll . Therefore, the components

of Ki jτs
lnl are not provided here for the sake of brevity. The component [r,c] of the
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matrix Ki jτs
nlnl is expressed as follows:

2×Ki jτs
nlnl[r,c] = < u,x[r]u,x[c]C11 Fτ,x Fs,x Ni N j >+< u,x[r]u,x[c]C44 Fτ,z Fs,z Ni N j >

+ < u,x[r]u,x[c]C66 Fτ Fs Ni,y N j,y >+< u,y[r]u,y[c]C66 Fτ,x Fs,x Ni N j >

+ < u,y[r]u,y[c]C55 Fτ,z Fs,z Ni N j >+< u,y[r]u,y[c]C22 Fτ Fs Ni,y N j,y >

+ < u,z[r]u,z[c]C44 Fτ,x Fs,x Ni N j >+< u,z[r]u,z[c]C33 Fτ,z Fs,z Ni N j >

+ < u,z[r]u,z[c]C55 Fτ Fs Ni,y N j,y >+< u,x[r]u,y[c]C12 Fτ,x Fs Ni N j,y >

+ < u,x[r]u,y[c]C66 Fτ Fs,x Ni,y N j >+< u,y[r]u,x[c]C12 Fτ Fs,x Ni,y N j >

+ < u,y[r]u,x[c]C66 Fτ,x Fs Ni N j,y >+< u,x[r]u,z[c]C13 Fτ,x Fs,z Ni N j >

+ < u,x[r]u,z[c]C44 Fτ,z Fs,x Ni N j >+< u,z[r]u,x[c]C13 Fτ,z Fs,x Ni N j >

+ < u,z[r]u,x[c]C44 Fτ,x Fs,z Ni N j >+< u,y[r]u,z[c]C23 Fτ Fs,z Ni,y N j >

+ < u,y[r]u,z[c]C55 Fτ,z Fs Ni N j,y >+< u,z[r]u,y[c]C55 Fτ Fs,z Ni,y N j >

+ < u,z[r]u,y[c]C23 Fτ,z Fs Ni N j,y >
(2.24)

In the expressions above, u,x[r] denotes the r-th component of the vector
∂u
∂x

; for

instance, u,x[2] = uy,x . Similarly, u,y[c] is the c-th component of the vector
∂u
∂y

, etc.

2.4.2 FN of the secant stiffness matrix for finite plate element

A schematic description of the CUF and FE approximation for the plate structures
is shown in Table 2.2. Therefore, the two matrices of Bs j

l and Bs j
nl for the plate

structures are obtained as follows:

Table 2.2 A schematic description of the CUF and FE approximation for the plate struc-
tures [24]

uuu(x,y,z) = Ni(x,y)Fτ(z)uuuτi

δuuu(x,y,z) = N j(x,y)Fs(z)δuuus j
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Bs j
l = bl(Fs N j) =



FsN j,x 0 0
0 FsN j,y 0
0 0 Fs,zN j

Fs,zN j 0 FsN j,x

0 Fs,zN j FsN j,y

FsN j,y FsN j,x 0


, (2.25)

and

Bs j
nl =

1
2



ux,xFsN j,x uy,xFsN j,x uz,xFsN j,x

ux,yFsN j,y uy,yFsN j,y uz,yFsN j,y

ux,zFs,zN j uy,zFs,zN j uz,zFs,zN j

ux,xFs,zN j +ux,zFsN j,x uy,xFs,zN j +uy,zFsN j,x uz,xFs,zN j +uz,zFsN j,x

ux,yFs,zN j +ux,zFsN j,y uy,yFs,zN j +uy,zFsN j,y uz,yFs,zN j +uz,zFsN j,y

ux,xFsN j,y +ux,yFsN j,x uy,xFsN j,y +uy,yFsN j,x uz,xFsN j,y +uz,yFsN j,x


,

(2.26)
where Bl and Bnl represent linear and nonlinear geometrical matrices, and commas
denote partial derivatives. Accordingly, if we consider r as the row number (r =
1,2,3) and c as the column number (c = 1,2,3), the nine components of the 3×3
FN of linear stiffness matrix in the form of Ki jτs

0 [r,c] could be expressed as follows:

Ki jτs
0 [1,1] = <C11 Fτ Fs Ni,x N j,x >+<C44 Fτ,z Fs,z Ni N j >

+ <C66 Fτ Fs Ni,y N j,y >+<C16 Fτ Fs Ni,y N j,x >

+ <C16 Fτ Fs Ni,xN j,y >,

Ki jτs
0 [1,2] = <C66 Fτ Fs Ni,y N j,x >+<C12 Fτ Fs Ni,x N j,y >

+ <C45 Fτ,z Fs,z Ni N j >+<C16 Fτ Fs Ni,x N j,x >

+ <C26 Fτ Fs Ni,y N j,y >,

Ki jτs
0 [1,3] = <C13 Fτ Fs,z Ni,x N j >+<C44 Fτ,z Fs Ni N j,x >

+ <C45 Fτ,z Fs Ni N j,y >+<C36 Fτ Fs,z Ni,y N j >,
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Ki jτs
0 [2,1] = <C12 Fτ Fs Ni,y N j,x >+<C66 Fτ Fs Ni,x N j,y >

+ <C45 Fτ,z Fs,z Ni N j >+<C16 Fτ Fs Ni,x N j,x >

+ <C26 Fτ Fs Ni,y N j,y >,

Ki jτs
0 [2,2] = <C66 Fτ Fs Ni,x N j,x >+<C55 Fτ,z Fs,z Ni N j >

+ <C22 Fτ Fs Ni,y N j,y >+<C26 Fτ Fs Ni,x N j,y >

+ <C26 Fτ Fs Ni,y N j,x >,

Ki jτs
0 [2,3] = <C23 Fτ Fs,z Ni,y N j >+<C55 Fτ,z Fs Ni N j,y >

+ <C45 Fτ,z Fs Ni N j,x >+<C36 Fτ Fs,z Ni,x N j >,

Ki jτs
0 [3,1] = <C44 Fτ Fs,z Ni,x N j >+<C13 Fτ,z Fs Ni N j,x >

+ <C45 Fτ Fs,z Ni,y N j >+<C36 Fτ,z Fs Ni N j,y >,

Ki jτs
0 [3,2] = <C55 Fτ Fs,z Ni,y N j >+<C23 Fτ,z Fs Ni N j,y >

+ <C45 Fτ Fs,z Ni,x N j >+<C36 Fτ,z Fs Ni N j,x >,

Ki jτs
0 [3,3] = <C44 Fτ Fs Ni,x N j,x >+<C33 Fτ,z Fs,z Ni N j >

+ <C55 Fτ Fs Ni,y N j,y >+<C45 Fτ Fs Ni,y N j,x >

+ <C45 Fτ Fs Ni,x N j,y > .

(2.27)
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Similarly, the components of the FNs of the first-order nonlinear stiffness matrix
Ki jτs

nll are derived:

For c = 1:

Ki jτs
nll [r,1] = < u,x[r]C11 Fτ Fs Ni,x N j,x >+< u,x[r]C44 Fτ,z Fs,z Ni N j >

+ < u,x[r]C66 Fτ Fs Ni,y N j,y >+< u,x[r]C16 Fτ Fs Ni,y N j,x >

+ < u,x[r]C16 Fτ Fs Ni,x N j,y >+< u,y[r]C66 Fτ Fs Ni,x N j,y >

+ < u,y[r]C12 Fτ Fs Ni,y N j,x >+< u,y[r]C45 Fτ,z Fs,z Ni N j >

+ < u,y[r]C16 Fτ Fs Ni,x N j,x >+< u,y[r]C26 Fτ Fs Ni,y N j,y >

+ < u,z[r]C44 Fτ Fs,z Ni,x N j >+< u,z[r]C13 Fτ,z Fs Ni N j,x >

+ < u,z[r]C45 Fτ Fs,z Ni,y N j >+< u,z[r]C36 Fτ,z Fs Ni N j,y >,

For c = 2:

Ki jτs
nll [r,2] = < u,x[r]C12 Fτ Fs Ni,x N j,y >+< u,x[r]C66 Fτ Fs Ni,y N j,x >

+ < u,x[r]C45 Fτ,z Fs,z Ni N j >+< u,x[r]C16 Fτ Fs Ni,x N j,x >

+ < u,x[r]C26 Fτ Fs Ni,y N j,y >+< u,y[r]C66 Fτ Fs Ni,x N j,x >

+ < u,y[r]C55 Fτ,z Fs,z Ni N j >+< u,y[r]C22 Fτ Fs Ni,y N j,y >

+ < u,y[r]C26 Fτ Fs Ni,y N j,x >+< u,y[r]C26 Fτ Fs Ni,x N j,y >

+ < u,z[r]C23 Fτ,z Fs Ni N j,y >+< u,z[r]C55 Fτ Fs,z Ni,y N j >

+ < u,z[r]C45 Fτ Fs,z Ni,x N j >+< u,z[r]C36 Fτ,z Fs Ni N j,x >,

For c = 3:

Ki jτs
nll [r,3] = < u,x[r]C13 Fτ Fs,z Ni,x N j >+< u,x[r]C44 Fτ,z Fs Ni N j,x >

+ < u,x[r]C45 Fτ,z Fs Ni N j,y >+< u,x[r]C36 Fτ Fs,z Ni,y N j >

+ < u,y[r]C55 Fτ,z Fs Ni N j,y >+< u,y[r]C23 Fτ Fs,z Ni,y N j >

+ < u,y[r]C45 Fτ,z Fs Ni N j,x >+< u,y[r]C36 Fτ Fs,z Ni,x N j >

+ < u,z[r]C44 Fτ Fs Ni,x N j,x >+< u,z[r]C33 Fτ,z Fs,z Ni N j >

+ < u,z[r]C55 Fτ Fs Ni,y N j,y >+< u,z[r]C45 Fτ Fs Ni,x N j,y >

+ < u,z[r]C45 Fτ Fs Ni,y N j,x > .

(2.28)
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The nine components of Ki jτs
lnl can be easily obtained from Eq. (2.19) as

(
Ki jτs

lnl

)T
=

K jisτ

nll /2. The nine components of the matrix Ki jτs
nlnl[r,c] are given in the following:

2×Ki jτs
nlnl[r,c] = < u,x[r]u,x[c]C11 Fτ Fs Ni,x N j,x >+< u,x[r]u,x[c]C44 Fτ,z Fs,z Ni N j >

+ < u,x[r]u,x[c]C66 Fτ Fs Ni,y N j,y >+< u,x[r]u,x[c]C16 Fτ Fs Ni,x N j,y >

+ < u,x[r]u,x[c]C16 Fτ Fs Ni,y N j,x >+< u,y[r]u,y[c]C66 Fτ Fs Ni,x N j,x >

+ < u,y[r]u,y[c]C55 Fτ,z Fs,z Ni N j >+< u,y[r]u,y[c]C22 Fτ Fs Ni,y N j,y >

+ < u,y[r]u,y[c]C26 Fτ Fs Ni,x N j,y >+< u,y[r]u,y[c]C26 Fτ Fs Ni,y N j,x >

+ < u,z[r]u,z[c]C44 Fτ Fs Ni,x N j,x >+< u,z[r]u,z[c]C33 Fτ,z Fs,z Ni N j >

+ < u,z[r]u,z[c]C55 Fτ Fs Ni,y N j,y >+< u,z[r]u,z[c]C45 Fτ Fs Ni,x N j,y >

+ < u,z[r]u,z[c]C45 Fτ Fs Ni,y N j,x >+< u,x[r]u,y[c]C12 Fτ Fs Ni,x N j,y >

+ < u,x[r]u,y[c]C66 Fτ Fs Ni,y N j,x >+< u,x[r]u,y[c]C45 Fτ,z Fs,z Ni N j >

+ < u,x[r]u,y[c]C16 Fτ Fs Ni,x N j,x >+< u,x[r]u,y[c]C26 Fτ Fs Ni,y N j,y >

+ < u,y[r]u,x[c]C12 Fτ Fs Ni,y N j,x >+< u,y[r]u,x[c]C66 Fτ Fs Ni,x N j,y >

+ < u,y[r]u,x[c]C45 Fτ,z Fs,z Ni N j >+< u,y[r]u,x[c]C16 Fτ Fs Ni,x N j,x >

+ < u,y[r]u,x[c]C26 Fτ Fs Ni,y N j,y >+< u,x[r]u,z[c]C13 Fτ Fs,z Ni,x N j >

+ < u,x[r]u,z[c]C44 Fτ,z Fs Ni N j,x >+< u,x[r]u,z[c]C45 Fτ,z Fs Ni N j,y >

+ < u,x[r]u,z[c]C36 Fτ Fs,z Ni,y N j >+< u,z[r]u,x[c]C13 Fτ,z Fs Ni N j,x >

+ < u,z[r]u,x[c]C44 Fτ Fs,z Ni,x N j >+< u,z[r]u,x[c]C45 Fτ Fs,z Ni,y N j >

+ < u,z[r]u,x[c]C36 Fτ,z Fs Ni N j,y >+< u,y[r]u,z[c]C23 Fτ Fs,z Ni,y N j >

+ < u,y[r]u,z[c]C55 Fτ,z Fs Ni N j,y >+< u,y[r]u,z[c]C45 Fτ,z Fs Ni N j,x >

+ < u,y[r]u,z[c]C36 Fτ Fs,z Ni,x N j >+< u,z[r]u,y[c]C55 Fτ Fs,z Ni,y N j >

+ < u,z[r]u,y[c]C23 Fτ,z Fs Ni N j,y >+< u,z[r]u,y[c]C45 Fτ Fs,z Ni,x N j >

+ < u,z[r]u,y[c]C36 Fτ,z Fs Ni N j,x >

(2.29)
In the above-mentioned formulation, u,x[r] denotes the r-th component of the vector
∂u/∂x (e.g. u,x[2] = uy,x). Similarly, u,y[c] denotes the c-th component of the vector
∂u/∂y, etc.
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2.5 Tangent stiffness matrix

The FN of the tangent stiffness matrix Ki jτs
T can be obtained via the linearization of

equilibrium equations [69] (see Eq. (2.5)). Under the assumption that the loading is
conservative, the linearization of the virtual variation of the external loads is zero
(δ (δLext) = 0). Therefore, the tangent stiffness matrix can be derived from the
linearization of the virtual variation of strain energy as follows:

δ (δLint) = < δ (δεεεT σσσ)>

= < δεεεT δσσσ >+< δ (δεεεT )σσσ >

= δqT
τi(K

i jτs
0 +Ki jτs

T1
+Ki jτs

σ )δqs j

= δqT
τiK

i jτs
T δqs j

(2.30)

In the following, each nonlinear contribution Ki jτs
T1

and Ki jτs
σ in Eq. (2.30) will be

discussed separately. The first term, < δεεεT δσσσ >, needs the linearization of the
constitutive relations. based on Eq. (2.16), and under the assumption that the material
coefficients are constant (δC = 0), the following equations are obtained:

δσσσ = δ (Cεεε) = Cδεεε = C(Bs j
l +2Bs j

nl)δqs j (2.31)

Therefore, accoeding to Eqs. (2.17) and (2.31), we have:

< δεεεT δσσσ > = δqT
τi < (Bτi

l +2Bτi
nl)

T C(Bs j
l +2Bs j

nl)> δqs j

= δqT
τi Ki jτs

0 δqs j +δqT
τi
(
2Ki jτs

lnl

)
δqs j +δqT

τi Ki jτs
nll δqs j +δqT

τi
(
2Ki jτs

nlnl

)
δqs j

= δqT
τi
(
Ki jτs

0 +Ki jτs
T1

)
δqs j

(2.32)
where Ki jτs

T1
= 2Ki jτs

lnl +Ki jτs
nll +2Ki jτs

nlnl is the nonlinear contribution of the FN of the
tangent stiffness matrix which is stemmed from the linearization of the Hooke’s law.
Ki jτs

0 , Ki jτs
lnl , Ki jτs

nll , and Ki jτs
nlnl are the same 3×3 FNs as expressed in Eq. (2.19).

The linearization of nonlinear geometrical relations is required for the second
contribution of Eq. (2.30), (< δ (δεεεT )σσσ >). Therefore, based on the Crisfield [62],
Eqs. (1.2) and (1.3), we have:
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δ (δεεε) =



(
δux,x

)
v δux,x +

(
δuy,x

)
v δuy,x +

(
δuz,x

)
v δuz,x(

δux,y
)

v δux,y +
(
δuy,y

)
v δuy,y +

(
δuz,y

)
v δuz,y(

δux,z
)

v δux,z +
(
δuy,y

)
v δuy,z +

(
δuz,z

)
v δuz,z[(

δux,x
)

v δux,z +δux,x
(
δux,z

)
v

]
+
[(

δuy,x
)

v δuy,z +δuy,x
(
δuy,z

)
v

]
+
[(

δuz,x
)

v δuz,z +δuz,x
(
δuz,z

)
v

]
[(

δux,y
)

v δux,z +δux,y
(
δux,z

)
v

]
+
[(

δuy,y
)

v δuy,z +δuy,y
(
δuy,z

)
v

]
+
[(

δuz,y
)

v δuz,z +δuz,y
(
δuz,z

)
v

]
[(

δux,x
)

v δux,y +δux,x
(
δux,y

)
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]
+
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δuy,x
)
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(
δuy,y

)
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+
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δuz,x
)
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(
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
(2.33)

where the subscript “v” represents the variations. By using Eq. (2.33), the CUF,
and the FE approximation for both the linearized variables (δu = FsN jδqs j) and the
variations ((δu)v = FτNiδqτi), the following forms can be used for the relations:

δ (δεεε) = B∗
nl


δqxτiδqxs j

δqyτiδqys j

δqzτiδqzs j

 (2.34)

and

δ (δεεε
T ) =


δqxτiδqxs j

δqyτiδqys j

δqzτiδqzs j


T

(B∗
nl)

T (2.35)

where B∗
nl will be provided according to the CUF for the beam and plate structures

in the sections 2.5.1 and 2.5.2.
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Employing Eq. (2.35), and after simple manipulations, the following equations
are obtained:

< δ (δεεεT )σσσ > = <


δquxτi

δquxs j

δquyτi
δquys j

δquzτi
δquzs j


T

(B∗
nl)

T σσσ >

= δqT
τi < diag

(
(B∗

nl)
T σσσ

)
> δqs j

= δqT
τi < diag

(
(B∗

nl)
T (σσσ l +σσσnl)

)
> δqs j

= δqT
τi(K

i jτs
σl +Ki jτs

σnl )δqs j

= δqT
τiK

i jτs
σ δqs j

(2.36)

where diag
(
(B∗

nl)
T σσσ

)
is the 3 × 3 diagonal matrix, and the diagonal terms are

the components of the vector (B∗
nl)

T σσσ . Based on Eqs. (1.4) and (1.2), σσσ l = Cεεε l

and σσσnl = Cεεεnl . The term in Eq. (2.36) represents a tangent term arising from the
nonlinear form of the strain-displacement equations, and is often called the geometric
stiffness [69], of which Ki jτs

σ = Ki jτs
σl +Ki jτs

σnl is the FN. The explicit forms of Ki jτs
σ

for the beam and plate structures are provided in the following sections for the sake
of completeness.
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2.5.1 FN of the tangent stiffness matrix for finite beam element

Based on the CUF for the beam structures, the introduced matrix B∗
nl in Eqs. (2.34)

and (2.35) is as follows:

B∗
nl =



Fτ,xFs,xNiN j Fτ,xFs,xNiN j Fτ,xFs,xNiN j

FτFsNi,yN j,y FτFsNi,yN j,y FτFsNi,yN j,y

Fτ,zFs,zNiN j Fτ,zFs,zNiN j Fτ,zFs,zNiN j

Fτ,xFs,zNiN j +Fτ,zFs,xNiN j Fτ,xFs,zNiN j +Fτ,zFs,xNiN j Fτ,xFs,zNiN j +Fτ,zFs,xNiN j

Fτ,zFsNiN j,y +FτFs,zNi,yN j Fτ,zFsNiN j,y +FτFs,zNi,yN j Fτ,zFsNiN j,y +FτFs,zNi,yN j

Fτ,xFsNiN j,y +FτFs,xNi,yN j Fτ,xFsNiN j,y +FτFs,xNi,yN j Fτ,xFsNiN j,y +FτFs,xNi,yN j



(2.37)

Accordingly, the explicit form of Ki jτs
σ is derived as:

Ki jτs
σ =

(
< σxxFτ,xFs,xNiN j >+< σyyFτFsNi,yN j,x >

+ < σzzFτ,zFs,zNiN j >+< σxyFτ,xFsNiN j,y >

+ < σxyFτFs,xNi,yN j >+< σxzFτ,xFs,zNiN j >

+ < σxzFτ,zFs,xNiN j >+< σyzFτ,zFsNiN j,y >

+ < σyzFτFs,zNi,yN j >
)

I

(2.38)

where I is the 3×3 identity matrix. Employing Eq. (2.30), and the three matrices
of Ki jτs

0 , Ki jτs
T1

, Ki jτs
σ , the FN of the tangent stiffness matrix Ki jτs

T for the beam
structures is calculated straightforwardly.
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2.5.2 FN of the tangent stiffness matrix for finite plate element

Based on the CUF for the plate structures, the introduced matrix B∗
nl in Eqs. (2.34)

and (2.35) is as follows:

B∗
nl =



FτFsNi,xN j,x FτFsNi,xN j,x FτFsNi,xN j,x

FτFsNi,yN j,y FτFsNi,yN j,y FτFsNi,yN j,y

Fτ,zFs,zNiN j Fτ,zFs,zNiN j Fτ,zFs,zNiN j

FτFs,zNi,xN j +Fτ,zFsNiN j,x FτFs,zNi,xN j +Fτ,zFsNiN j,x FτFs,zNi,xN j +Fτ,zFsNiN j,x

Fτ,zFsNiN j,y +FτFs,zNi,yN j Fτ,zFsNiN j,y +FτFs,zNi,yN j Fτ,zFsNiN j,y +FτFs,zNi,yN j

FτFsNi,xN j,y +FτFsNi,yN j,x FτFsNi,xN j,y +FτFsNi,yN j,x FτFsNi,xN j,y +FτFsNi,yN j,x



.

(2.39)
Accordingly, the explicit form of Ki jτs

σ is derived as:

Ki jτs
σ =

(
< σxxFτFsNi,xN j,x >+< σyyFτFsNi,yN j,y >

+ < σzzFτ,zFs,zNiN j >+< σxyFτFsNi,xN j,y >

+ < σxyFτFsNi,yN j,x >+< σxzFτFs,zNi,xN j >

+ < σxzFτ,zFsNiN j,x >+< σyzFτ,zFsNiN j,y >

+ < σyzFτFs,zNi,yN j >
)

I,

(2.40)

where I is the 3×3 identity matrix. Employing Eq. (2.30), and the three matrices of
Ki jτs

0 , Ki jτs
T1

, Ki jτs
σ , the FN of the tangent stiffness matrix Ki jτs

T for the plate structures
is calculated straightforwardly

2.6 Different strain-displacement assumptions

The linear and nonlinear differential operator matrices of bl and bnl in the strain-
displacement relationship were previously defined in Eq. (2.14). Here, the parameters
Pi j are employed as coefficients of nonlinear differential operator matrix to tune the
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kinematics assumptions opportunely (see [70]):

bl =



∂x 0 0

0 ∂y 0

0 0 ∂z

∂z 0 ∂x

0 ∂z ∂y

∂y ∂x 0


, bnl =



P11
1
2
(∂x)

2 P12
1
2
(∂x)

2 P13
1
2
(∂x)

2

P21
1
2
(∂y)

2 P22
1
2
(∂y)

2 P23
1
2
(∂y)

2

P31
1
2
(∂z)

2 P32
1
2
(∂z)

2 P33
1
2
(∂z)

2

P41∂x ∂z P42∂x ∂z P43∂x ∂z

P51∂y ∂z P52∂y ∂z P53∂y ∂z

P61∂x ∂y P62∂x ∂y P63∂x ∂y



, (2.41)

in which ∂x = ∂ (·)/∂x, ∂y = ∂ (·)/∂y, ∂z = ∂ (·)/∂ z, and P11 to P63 are the parameters
used as coefficients of nonlinear differential operator matrix. As will be discussed in
the following sections of this research, these parameters play an important role in
the accuracy of problem’s kinematic model, and define the assumed geometrically
nonlinear theory.

The use of these parameters provides the possibility of opportunely tuning the
kinematics assumptions and the nonlinear theory. For instance, in the case of well-
known von Kármán theory [71], nonlinear geometric relations of the plate structures
are defined as:

εxxnl =
1
2(uz,x)

2

εyynl =
1
2(uz,y)

2

εxynl = uz,xuz,y

(2.42)

As illustrated in Fig. 2.3, the Kármán strains approximation ignores all nonlinear
quadratic components in Eq. (2.41) except for those corresponding to the in-plane
partial derivatives of the transverse displacement. Thus, except for P13, P23, and
P63, all of the parameters in Eq. (2.41) are zero for the Kármán nonlinear plate.
The Pi j matrix using several nonlinear models is shown in Table 2.3. The von Kár-
mán nonlinear theory and four modifications are assumed in here. In this regard, the
notations vK+T, vK+S, vK+IN, and vK+ALL are employed. The first three notations
respectively refer to Kármán nonlinear theory which considers the thickness stretch-
ing, shear deformations owing to transverse deflection, and in-plane displacement
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components. Additionally, vK+ALL corresponds to Kármán nonlinear theory with
all of the previously described modifications. Also, it should be noted that the nota-
tion FNL−vK represents the full nonlinear theory without von Kármán terms. The
effect of adopting these geometrically nonlinear assumptions on the post-buckling
equilibrium curves and stress distributions will be further investigated in Chapters 6
and 7. As will be highlighted in the these chapters, selecting the appropriate model
for strain-displacement relationship is critical for predicting a structure’s nonlinear
response that is both dependable and precise.

Fig. 2.3 Main geometrically nonlinear assumptions for the von Kármán nonlinear plate
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Table 2.3 Different geometrically nonlinear assumptions based on the Green-Lagrange
nonlinear strains

Theory Description Notation Theory Description Notation

Linear Lin von Kármán vK

von Kármán consider-
ing thickness stretching

vK+T

von Kármán consider-
ing shear deformations
due to the transverse de-
flection

vK+S

von Kármán con-
sidering in-plane
components of displace-
ment

vK+IN

von Kármán with all
the mentioned consider-
ations

vK+ALL

Full Nonlinear without
von Kármán terms

FNL−vK Full Nonlinear FNL



Chapter 3

Higher-order vibration modes of
thin-walled beam structures

3.1 Introduction

Lightweight thin-walled beam structures with open sections are widely demanded
by different engineering industries such as aerospace and construction. In general, a
beam should have the capability to sustain extension, compression, transverse shear,
bending, and twisting loads [72]. One-dimensional beam theories have been widely
employed in order to take advantage of their simplicity and lower computational
costs [73–76], and further by Vlasov for the thin-walled beams [77, 78].

Free vibration takes place after the initial excitation, once the system is left to
vibrate on its own (without any external forces). There are several investigations
devoted to analyzing the free vibration response of beam structures [79–81]. The
free vibration response of stepped beams are studied in [82–85]. Considering the
displacement of the beam as a combination of Fourier series and auxiliary polynomial
function, Li [86] proposed an approach for the investigation of free vibration response
in generally supported beams. Dey and Talukdar [87] studied the free vibration
response of thin-walled channel section steel beams. An FE method for the coupled
free vibration of thin-walled beams with open cross-sections was developed by
Chen and Hsiao [88] with numerical examples from the literature [89–91]. Murin
et al. analyzed the influence of torsional warping on the vibrations of thin-walled
beams with functionally graded materials [92]. The Generalized Beam Theory
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(GBT) [93] was further developed by Camotim and Silvestre [94–96] and was
effectively employed for the vibrations analysis in thin-walled structures. In a
compressed non-symmetric thin-walled beam with the cruciform cross-section, Piana
et al. [97] presented a comparison of experimental and numerical results. They
detected the frequencies by the Peak Picking technique employing PZT pickups or
Laser sensors. For the free vibration analysis of thin-walled structures, Fazzolari
[98] developed a Ritz formulation. Kugler et al. [99, 100] presented a novel GBT
based on the reference beam problem for the slender prismatic structures. Jrad
conducted a comprehensive study on the dynamic behavior of thin-walled beams
using experimental, numerical and analytical approaches [101, 102]. Also, interested
readers are referred to the books by Gorman [103], and Blevins [104] for more
information and analyses.

In many cases, the beam and plate structures are subjected to high frequencies
and large amplitude vibrations. Thus, the higher modes in the free vibration re-
sponse of structures have been studied in some studies. For the high frequency
vibrations of structures, a discrete singular convolution algorithm was developed
by Wei et al. [105]. Langley and Bardell [106] worked on the alternative analysis
methods for high frequency vibrations of aerospace structures. The displacements of
trigonometric function were considered, and a theory for high frequency vibrations
of rectangular beams was presented [107]. According to the classic Ritz method,
Sudalagunta et al. [108] presented a framework for higher modes vibrations of
one-dimensional structures. Wang [109] developed a discrete singular convolution
algorithm in order to investigate the high frequency vibrations of structures. An
energy FE formulation for the high frequency vibration of beam structures was
proposed by Lin et al. [110].

This chapter investigates the higher vibration modes of thin-walled beams with
complicated geometries using the CUF. The higher-order vibration modes are eval-
uated in a series of thin-walled beams that Chen offered as benchmark problems.
We employ both classical and higher-order beam theories and study the influence of
cross-sectional deformations on higher-order modes. The Modal Assurance Criterion
(MAC) is used to assess free vibration modes. A detailed comparison is made be-
tween classical beam theories, refined beam theories based on the CUF, shell results
from commercial FE software, and data from the literature. It is demonstrated that
classical beam theories ignore several modes in favor of rigid-cross section modes
that do not really exist. Additionally, it is demonstrated that when the CUF is used,
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the results are not only cost-effective but also accurate and consistent with shell
models with high computational costs.

3.2 Description of the Chen benchmark

This section is devoted to presenting a series of thin-walled beams with open cross-
sections by Ref. [88] as benchmark problems. Beams with C-shaped and T-shaped
cross-sections are discussed firstly, and then beams with arbitrary and complex
cross-sections will be introduced. The schematic figures of the investigated beam
examples as shown in Fig. 3.1 (dimensions in mm).

Fig. 3.1 The schematic view and material properties of the investigated benchmark beam
problems
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3.3 Convergence study

This section discusses the convergence analyses according to the displacements
and axial stresses for cantilever beams under a point load at the free end. In this
regard, the displacements at the beam’s free end are determined, as well as the
axial stresses at the beam’s clamped edge. Four beams having C-shaped, T-shaped,
and two arbitrary cross-sections are investigated here. All the beams are clamped
at one end and subjected to downward tip forces of P applied at the free end of
each beam (see points A in Fig. 3.1) with values 1000 N, 15000 N, 30000 N, and
90000 N, for the beams 1, 2, 3, and 4, respectively. In order to investigate the effect
of FE discretization, convergence analyses are conducted for the displacements and
stresses of the mentioned beam structures. Based on the models with different FE
discretizations, the results of the vertical displacements and axial stresses at the
bottom points B of Fig. 3.1 at y = L are reported in Tables 3.1, 3.2, 3.3, 3.4 for
the beams 1, 2, 3, and 4, respectively. In addition, the Degree of Freedom (DOF)
corresponding to each model is listed in the tables. Note that the results are presented
for the beam elements with two nodes (B2), three nodes (B3), and four nodes (B4),
respectively. In addition, it should be noted that the last columns of tables are devoted
to the error values of displacements and axial stresses compared to the corresponding
most refined model in the table.

Table 3.1 The convergence analysis of vertical displacements and axial stresses for the beam
1- effect of FE

Model DOF Displacement (mm) Axial Stress (MPa) Displacement Error % Axial Stress Error %
5B2-14L9 1566 3.29 64.36 78.84 77.29

10B2-14L9 2871 6.48 87.13 58.32 69.26
20B2-14L9 5481 10.72 213.14 31.06 24.81
30B2-14L9 8091 12.80 235.51 17.68 16.92
50B2-14L9 13311 14.38 263.54 7.52 7.03
5B3-14L9 2871 15.10 139.42 2.89 50.81

10B3-14L9 5481 15.37 220.11 1.15 22.35
20B3-14L9 10701 15.49 272.46 0.38 3.88
30B3-14L9 15921 15.53 281.03 0.12 0.86
5B4-14L9 4176 15.36 187.63 1.22 33.81

10B4-14L9 8091 15.49 237.92 0.38 16.07
20B4-14L9 15921 15.55 283.48 0.00 0.00
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Table 3.2 The convergence analysis of vertical displacements and axial stresses for the beam
2- effect of FEs

Model DOF Displacement (mm) Axial Stress (MPa) Displacement Error % Axial Stress Error %
5B2-15L9 1674 10.84 228.88 57.10 53.57

10B2-15L9 3069 18.82 327.71 25.52 33.52
20B2-15L9 5859 23.20 474.24 8.19 3.79
30B2-15L9 8649 24.28 475.76 3.91 3.48
50B2-15L9 14229 24.90 486.85 1.46 1.23
5B3-15L9 3069 24.84 402.06 1.70 18.43

10B3-15L9 5859 25.10 441.04 0.67 10.53
20B3-15L9 11439 25.22 486.00 0.19 1.41
30B3-15L9 17019 25.26 489.21 0.03 0.76
5B4-15L9 4464 25.09 429.61 0.71 12.85

10B4-15L9 8649 25.22 467.26 0.19 5.21
20B4-15L9 17019 25.27 492.96 0.00 0.00

Table 3.3 The convergence analysis of vertical displacements and axial stresses for the beam
3- effect of FEs

Model DOF Displacement (mm) Axial Stress (MPa) Displacement Error % Axial Stress Error %
5B2-16L9 1782 14.60 10.83 82.56 85.92

10B2-16L9 3267 33.92 27.51 59.48 64.25
20B2-16L9 6237 58.88 59.05 29.67 23.27
30B2-16L9 9207 70.00 66.13 16.39 14.07
50B2-16L9 15147 78.06 72.98 6.77 5.17
5B3-16L9 3267 82.13 39.04 1.91 49.27

10B3-16L9 6237 83.14 69.22 0.70 10.05
20B3-16L9 12177 83.56 74.97 0.20 2.58
30B3-16L9 18117 83.68 76.76 0.05 0.25
5B4-16L9 4752 83.10 47.93 0.75 37.72

10B4-16L9 9207 83.53 71.06 0.23 7.66
20B4-16L9 18117 83.73 76.96 0.00 0.00
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Table 3.4 The convergence analysis of vertical displacements and axial stresses for the beam
4- effect of FEs

Model DOF Displacement (mm) Axial Stress (MPa) Displacement Error % Axial Stress Error %
5B2-17L9 1890 32.65 73.62 72.07 61.45

10B2-17L9 3465 65.79 104.78 43.72 45.13
20B2-17L9 6615 95.65 179.66 18.17 5.92
30B2-17L9 9765 105.88 181.07 9.42 5.18
50B2-17L9 16065 112.54 188.63 3.72 1.23
5B3-17L9 3465 114.78 140.19 1.81 26.59

10B3-17L9 6615 116.09 159.44 0.69 16.51
20B3-17L9 12915 116.65 187.21 0.21 1.97
30B3-17L9 19215 116.83 189.48 0.05 0.78
5B4-17L9 5040 116.02 153.45 0.75 19.65

10B4-17L9 9765 116.62 165.39 0.23 13.39
20B4-17L9 19215 116.90 190.98 0.00 0.00

In order to evaluate the effect of structural theories, the convergence analyses
are conducted for the displacements and stresses of the previously mentioned beam
structures. Different discretizations over the beam cross-sections are schematically
shown in Figs. 3.2, 3.3, 3.4, and 3.5 for the beams 1, 2, 3, and 4, respectively. The
results of these convergence analyses are reported in Tables 3.5, 3.6, 3.7, and 3.8 for
the beams 1, 2, 3, and 4, respectively. The results reveal that the classical and TE
models of lower orders cannot present reliable displacements and axial stresses. For
example, in most of the tables, TE=1 and TE=2 show significant errors compared to
the most refined model of the corresponding table.

8L9 14L9 22L9

51 Lagrange points 87 Lagrange points 135 Lagrange points

Fig. 3.2 Different Cross-sectional discretization of the beam-1 based on the LE
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Table 3.5 The convergence analysis of vertical displacements and axial stresses for the beam
1- effect of structural theory

Model DOF Displacement (mm) Axial Stress (MPa) Displacement Error % Axial Stress Error %
20B4,TE=1 549 7.24 127.98 53.44 54.88
20B4,TE=2 1098 7.18 128.60 53.82 54.66
20B4,TE=5 3843 8.31 155.63 46.55 45.13

20B4,TE=10 12078 14.63 267.55 5.91 5.67
20B4,TE=15 24888 15.33 277.15 1.41 2.29

20B4-8L9 933 15.54 283.29 0.06 0.12
20B4-14L9 15921 15.55 283.48 0.00 0.05
20B4-22L9 24705 15.55 283.65 0.00 0.00

9L9 15L9 23L9

57 Lagrange points 93 Lagrange points 141 Lagrange points

Fig. 3.3 Different Cross-sectional discretization of the beam-2 based on the LE

Table 3.6 The convergence analysis of vertical displacements and axial stresses for the beam
2- effect of structural theory

Model DOF Displacement (mm) Axial Stress (MPa) Displacement Error % Axial Stress Error %
20B4,TE=1 549 25.18 488.11 0.35 0.90
20B4,TE=2 1098 25.09 489.93 0.71 0.53
20B4,TE=5 3843 25.25 491.95 0.07 0.12

20B4,TE=10 12078 25.27 492.54 0.07 0.00
20B4,TE=15 24888 25.27 492.58 0.00 0.00

20B4-9L9 10431 25.27 493.68 0.00 0.22
20B4-15L9 17019 25.27 492.96 0.00 0.08
20B4-23L9 25803 25.27 492.56 0.00 0.00
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12L9 16L9 25L9

75 Lagrange points 99 Lagrange points 153 Lagrange points

Fig. 3.4 Different Cross-sectional discretization of the beam-3 based on the LE

Table 3.7 The convergence analysis of vertical displacements and axial stresses for the beam
3- effect of structural theory

Model DOF Displacement (mm) Axial Stress (MPa) Displacement Error % Axial Stress Error %
20B4,TE=1 549 81.82 73.67 2.31 4.32
20B4,TE=2 1098 81.46 74.16 2.74 3.68
20B4,TE=5 3843 81.89 74.22 2.23 3.61

20B4,TE=10 12078 82.11 74.36 1.96 3.42
20B4,TE=15 24888 82.23 74.46 1.82 3.29
20B4-12L9 13725 83.66 76.93 0.11 0.09
20B4-16L9 18117 83.73 76.96 0.03 0.05
20B4-25L9 27999 83.76 77.00 0.00 0.00

13L9 17L9 26L9

81 Lagrange points 105 Lagrange points 159 Lagrange points

Fig. 3.5 Different Cross-sectional discretization of the beam-4 based on the LE
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Table 3.8 The convergence analysis of vertical displacements and axial stresses for the beam
4- effect of structural theory

Model DOF Displacement (mm) Axial Stress (MPa) Displacement Error % Axial Stress Error %
20B4,TE=1 549 104.94 173.54 10.25 9.33
20B4,TE=2 1098 104.30 173.89 10.80 9.15
20B4,TE=5 3843 105.52 174.07 9.75 9.05

20B4,TE=10 12078 111.47 184.58 4.66 3.56
20B4,TE=15 24888 116.03 190.21 0.76 0.62
20B4-13L9 14823 116.87 190.82 0.05 0.30
20B4-17L9 19215 116.90 190.98 0.02 0.22
20B4-26L9 29097 116.93 191.41 0.00 0.00

For the sake of completeness, based on the values of table 3.1, for the example
beam 1 with a C-shaped cross-section, in Figs. 3.6a and 3.6b the displacements
and axial stresses against the DOF of each model are plotted. In addition, the
corresponding error values are indicated in Figs. 3.6c and 3.6d. The findings reveal
that the convergence rate of B4 beam elements is much greater than that of B3 and
B2 beam elements for both vertical displacements and axial stresses. Additionally,
the calculated displacement values for B2 elements are not precise enough due to the
model’s requirement for shear refinements. This subject will be discussed in further
detail in Section 3.4.
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Fig. 3.6 The comparison of convergence analyses of vertical displacements and axial stresses
for the beam 1 based on the DOF of beam structure

3.4 Shear locking treatments

The findings of displacements and axial stresses by various approaches for the
elimination of shear locking are explored and compared in this section. As discussed
in Section 1.7, the methods of full, selective, reduced integration, and MITC are
considered here.

The C-shaped beam is used as the initial locking example. Fig. 3.7 illustrates
displacement values based on the DOF by utilizing the full, selective, reduced, in-
tegration, and MITC methods. As can be seen clearly in this figure, when the full
integration is used, the locking occurs for B2 linear beam elements. The displace-
ments and axial stresses of B2, B3, and B4 elements are presented in Table 3.9. It



44 Higher-order vibration modes of thin-walled beam structures

is worth noting that increasing the number of beam elements along the beam’s axis
lessens the impact of shear locking considerably.
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Fig. 3.7 Shear locking effects on the vertical displacements of the investigated beam 1
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Table 3.9 Shear locking effects on the values of vertical displacements in the investigated
beam 1

Displacement (mm) Axial Stress (MPa)

Models DOF Selective Reduced MITC Full Selective Reduced MITC Full
5B2-14L9 1566 14.37 15.51 14.37 3.29 283.35 281.55 283.35 64.36

10B2-14L9 2871 15.01 15.56 15.01 6.48 202.21 114.11 202.21 87.13
20B2-14L9 5481 15.32 15.59 15.32 10.72 299.06 490.46 299.06 213.14
30B2-14L9 8091 15.42 15.59 15.42 12.80 293.77 70.74 293.77 235.51
50B2-14L9 13311 15.49 15.59 15.49 14.38 291.40 38.77 291.40 263.54
5B3-14L9 2871 15.15 15.59 15.15 15.10 240.84 182.36 240.84 139.42

10B3-14L9 5481 15.39 15.60 15.39 15.37 338.22 469.27 338.22 220.11
20B3-14L9 10701 15.50 15.60 15.50 15.49 272.85 492.40 272.85 272.46
30B3-14L9 15921 15.54 15.60 15.54 15.53 268.20 512.63 268.20 281.03
5B4-14L9 4176 15.37 15.61 15.37 15.36 274.14 277.32 274.14 187.63

10B4-14L9 8091 15.49 15.60 15.49 15.49 256.18 100.80 256.18 237.92
20B4-14L9 15921 15.55 15.60 15.55 15.55 263.82 496.75 263.82 283.48

The T-shaped beam is considered to be the second example of shear locking
evaluation. The displacements and axial stresses of B2, B3, and B4 elements are
presented in Table 3.10. The same observations as in the preceding case might be
made concerning the results obtained using the full integration approach when the
shear locking phenomenon occurs for the case of linear elements. The findings
emphasize the importance of high order FE in order to resolve this problem. When
the CUF is used, shear locking has a negligible effect on the models. Moreover,
when utilizing the full integration approach, particularly for linear FE, the shear
locking effect should be carefully considered. It should be noted that the locking
behavior for the other investigated beams in this chapter are almost similar, and are
not presented here for the sake of brevity.
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Table 3.10 Shear locking effects on the values of vertical displacements in the investigated
beam 2

Displacement (mm) Axial Stress (MPa)

Models DOF Selective Reduced MITC Full Selective Reduced MITC Full
5B2-15L9 1674 23.94 25.14 57.10 10.84 496.93 493.63 496.93 228.88

10B2-15L9 3069 24.69 25.25 25.52 18.82 430.40 342.62 430.40 327.71
20B2-15L9 5859 25.04 25.30 8.19 23.20 494.21 671.25 494.21 474.24
30B2-15L9 8649 25.14 25.31 3.91 24.28 508.30 318.49 508.30 475.76
50B2-15L9 14229 25.22 25.31 1.46 24.90 495.95 331.88 495.95 486.85
5B3-15L9 3069 24.87 25.31 1.70 24.84 445.29 387.17 445.29 402.06

10B3-15L9 5859 25.11 25.32 0.67 25.10 509.26 629.58 509.26 441.04
20B3-15L9 11439 25.23 25.32 0.19 25.22 475.52 646.94 475.52 486.00
30B3-15L9 17019 25.26 25.32 0.03 25.26 485.29 644.23 485.29 489.21
5B4-15L9 4464 25.09 25.33 0.71 25.09 468.34 472.70 468.34 429.61

10B4-15L9 8649 25.22 25.32 0.19 25.22 507.72 377.02 507.72 467.26
20B4-15L9 17019 25.28 25.32 0.00 25.27 484.11 641.67 484.11 492.96

3.5 Higher-order modes detection via various models

The findings of free vibration analysis and higher mode detection with cross-sectional
deformation are reported in this section for the mentioned beam structures in this
chapter. To begin, the proposed method is validated by presenting the free vibra-
tion modes and natural frequencies of the beam with cruciform cross-section and
comparing the results to experiments, other available data from the literature, and
Abaqus (ABQ) shell models. Then, the mode shapes and natural frequencies of beam
structures with C-shaped, T-shaped, and arbitrary cross-sections are investigated.

3.5.1 Validation case-cruciform beam

To verify the suggested CUF-based approach, a 670 mm long doubly clamped
cruciform beam is considered [97]. The dimensions of the beam’s cross-section are
provided in schematic Fig. 3.8 (dimensions in mm). This beam model considers
the isotropic material properties of Young’s modulus (E=70 GPa), Poisson’s ratio
(ν=0.3), and density (ρ=2600 kg/m3).
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Fig. 3.8 Schematic view of the cruciform beam

The ABQ shell and CUF 1D models used to analyze this cruciform beam are
described in Table 3.11. Additionally, Table 3.12 compares the first ten natural
frequencies of this beam using the ABQ shell and CUF 1D models. The corre-
sponding mode shapes 5 and 10 are also compared using the CUF 1D and ABQ
shell models, as illustrated in Fig. 3.9. The contour plots of the mode shapes reveal
that the CUF 1D results, which require much less computational effort, match well
with costly ABQ shell models. Additionally, in Table 3.13, the natural frequencies
of the experimental approach in [97] and the other relevant literature in [101] are
compared to the suggested CUF 1D method. The findings demonstrate that the free
vibration mode shapes and natural frequencies obtained by the CUF 1D method
match well with experimental results. Note that small deviations of less than 6.5%
could be due to many factors influencing different steps of experimental approach
during the frequency extraction process, or the approximations introduced by the
kinematics assumption or FEM method. Accordingly, the ABQ and CUF models
employ different FEM formulations, and are based on different structural theories of
shells and beam structures.

Table 3.11 The details of ABQ shell and CUF 1D models employed for the cruciform beam

Model DOF
Number Element Section Time

of elements type discretization (Sec)
ABQ shell-coarse 6342 320 Quadratic S8R 8 25.16

ABQ shell-medium 24198 1280 Quadratic S8R 16 31.47
ABQ shell-fine 94470 5120 Quadratic S8R 32 53.89

CUF 1D-LE 2736 5B4 4-node beam 9L9 4.33
CUF 1D-LE 9765 10B4 4-node beam 17L9 11.48
CUF 1D-LE 27999 20B4 4-node beam 25L9 35.35
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Table 3.12 The first ten natural frequencies of cruciform beam with doubly clamped edge
conditions based on the used ABQ shell and CUF 1D models

Modes ABQ shell-coarse ABQ shell-medium ABQ shell-fine 5B4-9L9 10B4-17L9 20B4-25L9
Mode 1 168.13 167.71 167.70 173.58 171.66 170.84
Mode 2 261.21 261.07 261.02 267.03 265.04 264.12
Mode 3 267.48 267.34 267.28 273.41 271.38 270.43
Mode 4 336.98 336.15 336.13 347.87 344.04 342.42
Mode 5 507.15 505.90 505.87 523.39 517.72 515.30
Mode 6 679.10 677.45 677.40 700.96 693.12 689.91
Mode 7 703.74 703.29 703.11 737.32 714.46 711.94
Mode 8 720.35 719.88 719.70 720.48 731.20 728.65
Mode 9 853.92 851.83 851.77 887.21 871.44 867.42

Mode 10 1031.8 1029.3 1029.2 1079.08 1052.84 1047.93

Fig. 3.9 The comparison of free vibration mode shapes of ABQ shell and CUF 20B4-25L9
models

Table 3.13 The comparison of first ten natural frequencies of the cruciform beam with the
available literature

Modes Experimental Numerical B3Dw[101] ABQ-B31OS[101] ABQ shell-fine CUF 1D CUF 1D difference
results [97] results[97] 20B4-25L9 with experiments (%)

Mode 1 161.87 165.66 165.56 166.05 167.70 170.84 5.25
Mode 2 275.47 263.75 266.97 265.38 261.02 264.12 4.30
Mode 3 284.18 269.90 273.34 271.63 267.28 270.43 5.08
Mode 4 325.43 331.69 331.17 332.16 336.13 342.42 4.96
Mode 5 486.13 499.17 496.79 498.28 505.87 515.30 5.66
Mode 6 667.84 667.49 662.34 664.31 677.40 689.91 3.20
Mode 7 741.30 716.75 734.71 725.23 703.11 711.94 4.12
Mode 8 767.30 733.04 752.20 742.02 719.70 728.65 5.30
Mode 9 813.39 838.93 827.96 830.47 851.77 867.42 6.23

Mode 10 - - - - 1029.2 1047.93 -
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3.5.2 Beam 1- C-shaped cross-section

The initial assessment of higher vibration modes in the presence of cross-sectional
deformations is focused on the C-shaped beam with clamped-free edge conditions. In
Table 3.15, the natural frequencies based on the different models using the proposed
CUF 1D method and ABQ shell models are provided. In Figs. 3.16, 3.17, and 3.18,
the first forty mode shapes of this beam are shown using the TE=1, TE=10, and 22L9
models with 20B4 FE beams. The details of ABQ shell models employed for this
beam example are reported in Table 3.14. As seen in Fig. 3.10, the contour plots of
mode shapes and natural frequencies for the corresponding modes number 40 are
compared using the CUF 1D and ABQ shell models. The contour plots of the mode
shapes reveal that the CUF 1D findings, which require much less computational
effort, match well with the more costly ABQ shell model.

Table 3.14 The details of ABQ shell models employed for the beam 1

Model DOF Number of elements Element type Beam axis elements Cross-Section discretization
Shell 27102 1440 Quadratic S8R 80 18

(a) ABQ shell, Mode 40, 608.10 Hz (b) CUF 1D, Mode 40, 621.97 Hz

Fig. 3.10 The comparison of free vibration mode shapes of ABQ shell and CUF 20B4-22L9
models
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Table 3.15 Natural frequencies of beam 1 with clamped-free edge conditions based on
different structural theories

Modes 20B4-22L9 20B4,TE=1 20B4,TE=2 20B4,TE=5 20B4,TE=10 20B4-8L9 20B4-14L9 ABQ shell
Mode 1 25.10 33.59 33.84 33.63 26.39 25.12 25.11 25.00
Mode 2 33.57 73.00 73.33 53.09 33.57 33.58 33.57 33.51
Mode 3 96.19 208.23 209.15 110.72 96.56 96.32 96.22 96.07
Mode 4 135.58 435.55 436.06 203.13 141.18 137.72 136.05 134.61
Mode 5 151.31 573.27 480.15 206.62 160.67 152.83 151.63 150.51
Mode 6 156.40 624.08 573.55 419.71 169.17 158.10 156.72 155.20
Mode 7 166.95 650.22 1028.77 436.95 183.24 168.46 167.25 165.91
Mode 8 183.88 1097.31 1092.32 438.48 205.81 185.28 184.16 182.71
Mode 9 204.29 1139.50 1139.09 483.69 223.16 205.62 204.55 203.02

Mode 10 215.70 1762.99 1444.29 552.87 232.62 217.88 216.21 214.38
Mode 11 229.14 1872.25 1744.64 553.33 261.92 230.44 229.40 225.64
Mode 12 229.55 1950.34 2049.14 641.40 268.99 247.87 233.18 227.73
Mode 13 254.69 2055.96 2423.79 652.07 295.06 258.61 257.55 250.14
Mode 14 257.28 2549.61 2506.89 729.85 306.69 277.26 259.05 255.73
Mode 15 273.33 3249.50 3081.75 731.54 329.75 290.33 277.74 268.67
Mode 16 288.90 3115.53 3095.34 805.25 331.15 296.28 289.18 287.18
Mode 17 293.74 3120.41 3357.31 872.57 353.25 316.40 298.08 289.06
Mode 18 316.69 3437.52 3426.73 932.17 370.12 325.54 320.98 312.03
Mode 19 321.57 4266.07 4223.09 986.88 369.77 339.06 324.24 316.19
Mode 20 323.92 4409.07 4276.19 985.44 379.76 347.62 328.89 319.73
Mode 21 323.98 4368.58 4461.05 1027.46 383.12 352.11 327.49 322.03
Mode 22 344.40 4547.07 5119.94 1033.64 408.80 364.17 348.56 339.74
Mode 23 362.29 5449.09 5248.65 1076.31 411.87 366.25 362.66 360.20
Mode 24 374.97 5474.33 5390.34 1079.32 441.42 396.48 379.06 370.33
Mode 25 404.03 5616.75 5539.36 1121.52 456.46 406.26 404.47 401.74
Mode 26 409.21 5842.42 6258.72 1137.52 477.33 430.49 413.24 404.59
Mode 27 447.20 6544.88 6548.31 1164.09 503.81 451.81 449.66 442.62
Mode 28 449.12 6718.19 6690.49 1207.46 510.85 468.40 451.22 446.58
Mode 29 471.32 6864.92 7133.03 1216.18 516.69 500.86 484.71 464.38
Mode 30 488.90 7134.94 7299.74 1252.72 560.16 510.12 492.91 484.35
Mode 31 497.85 7686.00 7691.95 1265.32 554.52 524.70 498.53 495.07
Mode 32 534.25 7982.08 7904.82 1293.70 554.38 549.72 538.24 529.79
Mode 33 541.94 8113.12 8357.42 1304.41 585.74 553.70 544.43 539.89
Mode 34 549.83 8424.00 8849.89 1300.74 606.08 556.12 550.64 546.68
Mode 35 571.11 8864.03 9108.39 1338.04 608.12 581.46 578.92 558.61
Mode 36 578.16 9253.18 9141.08 1352.34 655.86 605.70 588.19 576.65
Mode 37 584.20 9361.35 9431.04 1372.11 660.99 610.00 601.73 580.09
Mode 38 600.87 9709.00 10025.34 1407.62 665.29 659.25 606.98 587.46
Mode 39 606.06 10072.19 10382.11 1408.09 705.34 670.05 636.62 602.08
Mode 40 621.98 10517.44 10509.69 1445.67 709.34 716.91 641.26 608.10
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Table 3.16 The first forty mode shapes of beam 1, 20B4,TE=1 model with clamped-free edge
conditions

Mode l Mode 2 Mode 3 Mode 4 Mode 5

Mode 6 Mode 7 Mode 8 Mode 9 Mode 10

Mode 1l Mode 12 Mode 13 Mode 14 Mode 15

Mode 16 Mode 17 Mode 18 Mode 19 Mode 20

Mode 2l Mode 22 Mode 23 Mode 24 Mode 25

Mode 26 Mode 27 Mode 28 Mode 29 Mode 30

Mode 3l Mode 32 Mode 33 Mode 34 Mode 35

Mode 36 Mode 37 Mode 38 Mode 39 Mode 40
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Table 3.17 The first forty mode shapes of beam 1, 20B4,TE=10 model with clamped-free
edge conditions

Mode l Mode 2 Mode 3 Mode 4 Mode 5

Mode 6 Mode 7 Mode 8 Mode 9 Mode 10

Mode 1l Mode 12 Mode 13 Mode 14 Mode 15

Mode 16 Mode 17 Mode 18 Mode 19 Mode 20

Mode 2l Mode 22 Mode 23 Mode 24 Mode 25

Mode 26 Mode 27 Mode 28 Mode 29 Mode 30

Mode 3l Mode 32 Mode 33 Mode 34 Mode 35

Mode 36 Mode 37 Mode 38 Mode 39 Mode 40
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Table 3.18 The first forty mode shapes of beam 1, 20B4-22L9 model with clamped-free edge
conditions

Mode l Mode 2 Mode 3 Mode 4 Mode 5

Mode 6 Mode 7 Mode 8 Mode 9 Mode 10

Mode 1l Mode 12 Mode 13 Mode 14 Mode 15

Mode 16 Mode 17 Mode 18 Mode 19 Mode 20

Mode 2l Mode 22 Mode 23 Mode 24 Mode 25

Mode 26 Mode 27 Mode 28 Mode 29 Mode 30

Mode 3l Mode 32 Mode 33 Mode 34 Mode 35

Mode 36 Mode 37 Mode 38 Mode 39 Mode 40
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Some comments could be made according to the results of Figs. 3.16, 3.17, 3.18,
and Table 3.15 of the natural frequencies.

1. Classical beam theories and the linear TE of order one are unable to capture
a large number of cross-sectional deformations associated with bending or
torsion; instead, they exhibit rigid-cross section modes that do not exist.

2. In contrast to the TE=1 model, the TE=10 and 22L9 structural models have
several corresponding mode shapes.

3. Natural frequency values determined using the CUF 1D (at a far lower com-
putational cost) match pretty well with those obtained using the more costly
ABQ shell models.

4. The contour plots of the mode shapes reveal that many of them do not cor-
respond to one another. As a result, MAC analysis is required to study the
corresponding modes associated with each theory.

The MAC is described as a scalar that measures the degree of consistency between
two separate modal vectors using values ranging from 0 to 1. A MAC value of 0
indicates that the models do not correlate with each other. The MAC is calculated
using the following equation [9, 111–113]:

MACi j =

∣∣∣{ϕAi}
T {

ϕB j

}∣∣∣2
{ϕAi}

T {ϕAi}
{

ϕB j

}{
ϕB j

}T (3.1)

where ϕAi is the i th eigenvector of model A, and ϕB j is the j th eigenvector of model
B. In the following, by employing the MAC analysis (see Fig. 3.11), a comparison of
the corresponding natural frequencies based on the different structural theories of the
proposed CUF 1D method is presented in Table 3.19, where the natural frequencies
of different CUF 1D models are compared to the ABQ shell results.
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Table 3.19 Natural frequencies of beam 1 with clamped-free edge conditions based on
different structural theories for the corresponding mode shapes by the MAC (see Table 3.15
for comparison)

Modes 20B4-22L9 20B4,TE=1 20B4,TE=2 20B4,TE=5 20B4,TE=10 20B4-8L9 20B4-14L9 ABQ shell
Mode 1 25.10 - - - 26.39 25.12 25.11 25.00
Mode 2 33.57 33.59 33.84 33.63 33.57 33.58 33.57 33.51
Mode 3 96.19 - - 110.72 96.56 96.32 96.22 96.07
Mode 4 135.58 - - 206.62 141.18 137.72 136.05 134.61
Mode 5 151.31 - - - 160.67 152.83 151.63 150.51
Mode 6 156.40 - - - 169.17 158.10 156.72 155.20
Mode 7 166.95 - - - 183.24 168.46 167.25 165.91
Mode 8 183.88 - - - 205.81 185.28 184.16 182.71
Mode 9 204.29 - - - - 205.62 204.55 203.02

Mode 10 215.70 - - - 223.16 217.88 216.21 214.38
Mode 11 229.14 - - 731.54 261.92 230.44 229.40 225.64
Mode 12 229.55 - - - 268.99 247.87 233.18 227.73
Mode 13 254.69 - - - 306.69 277.26 259.05 250.14
Mode 14 257.28 - - 805.25 295.06 258.61 257.55 255.73
Mode 15 273.33 - - - 329.75 296.28 277.74 268.67
Mode 16 288.90 - - 872.57 331.15 290.33 289.18 287.18
Mode 17 293.74 - - - 353.25 316.40 298.08 289.06
Mode 18 316.69 - - - - 339.06 320.98 312.03
Mode 19 321.57 - - - 383.12 352.11 327.49 316.19
Mode 20 323.92 - - 932.17 370.12 325.54 324.24 319.73
Mode 21 323.98 - - - - 347.62 328.89 322.03
Mode 22 344.40 - - 1265.32 408.80 366.25 348.56 339.74
Mode 23 362.29 - - 985.44 411.87 364.17 362.66 360.20
Mode 24 374.97 - - - 441.42 396.48 379.06 370.33
Mode 25 404.03 - - 1033.64 456.46 406.26 404.47 401.74
Mode 26 409.21 - - 1338.04 477.33 430.49 413.24 404.59
Mode 27 447.20 - - 1372.11 516.69 468.40 451.22 442.62
Mode 28 449.12 - - - 503.81 451.81 449.66 446.58
Mode 29 471.32 - - - 510.85 524.70 484.71 464.38
Mode 30 488.90 - - 1407.62 - 510.12 492.91 484.35
Mode 31 497.85 - - 1121.52 554.52 500.86 498.53 495.07
Mode 32 534.25 - - 1445.67 606.08 - 538.24 529.79
Mode 33 541.94 - - - 554.38 549.72 544.43 539.89
Mode 34 549.83 - - 1164.09 608.12 553.70 550.64 546.68
Mode 35 571.11 - - - 660.99 - 601.73 558.61
Mode 36 578.16 - - - 585.74 581.46 578.92 576.65
Mode 37 584.20 - - - 655.86 605.70 588.19 580.09
Mode 38 600.87 - - - 705.34 - 636.62 587.46
Mode 39 606.06 - - - - 610.00 - 602.08
Mode 40 621.98 - - - - - - 608.10
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(a) 20B4,TE=1 (b) 20B4,TE=2

(c) 20B4,TE=5 (d) 20B4,TE=10

(e) 20B4-8L9 (f) 20B4-14L9

Fig. 3.11 MAC analysis for the comparison of free vibration modes for the beam 1
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3.5.3 Beam 2- T-shaped cross-section

The second assessment of higher vibration modes with cross-sectional deformations
is focused on the T-shaped beam with clamped-free edge conditions. Fig. 3.22
illustrates the first forty modes of this beam based on the 20B4-23L9 model. The
ABQ shell model used to simulate the T-shaped beam is detailed in Table 3.20. The
MAC analysis is used to compare the corresponding modes of different models based
on the proposed CUF 1D method, and the corresponding natural frequencies are
reported in Table 3.21.

Table 3.20 The details of ABQ shell models employed for the beam 2

Model DOF Number of elements Element type Beam axis elements Cross-Section discretization
Shell 28554 1520 Quadratic S8R 80 19
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Table 3.21 Natural frequencies of beam 2 with clamped-free edge conditions based on
different structural theories for the corresponding mode shapes by the MAC

Modes 20B4-23L9 20B4,TE=1 20B4,TE=2 20B4,TE=5 20B4,TE=10 20B4-9L9 20B4-15L9 ABQ shell
Mode 1 12.54 - - - 12.93 12.57 12.55 12.43
Mode 2 27.50 - - 48.28 30.33 27.71 27.59 27.09
Mode 3 45.42 - - - 45.43 45.42 45.42 45.27
Mode 4 54.68 - - - 60.23 55.14 54.89 53.99
Mode 5 88.32 - - - 96.35 89.01 88.61 87.18
Mode 6 124.21 - - - 130.59 124.84 124.48 122.58
Mode 7 130.74 - - - 141.13 131.57 131.07 128.97
Mode 8 166.59 - - 240.45 179.65 167.87 167.07 164.26
Mode 9 205.85 - - 279.77 219.39 207.32 206.37 203.12

Mode 10 250.20 - - - 264.02 251.83 250.75 247.08
Mode 11 263.02 272.56 271.49 264.22 263.46 263.17 263.06 261.84
Mode 12 298.44 - - - - 300.11 298.98 295.04
Mode 13 315.93 - - - 319.22 316.37 316.05 312.55
Mode 14 354.59 - - 427.15 368.44 356.52 355.19 350.82
Mode 15 415.57 - - 486.95 429.36 417.65 416.19 411.51
Mode 16 459.32 - - - 478.93 462.10 460.11 453.70
Mode 17 482.26 - - - 496.67 484.66 482.98 477.57
Mode 18 487.54 - - - 511.15 490.55 488.48 482.23
Mode 19 525.06 - - - 541.66 528.18 526.05 520.31
Mode 20 553.70 - - - - 556.73 554.69 548.26
Mode 21 560.24 - - - - 563.11 561.13 555.21
Mode 22 628.34 - - - 662.19 632.78 629.89 622.36
Mode 23 639.20 - - 705.85 - 641.79 639.93 634.02
Mode 24 649.55 - - 649.66 649.58 649.57 649.55 649.13
Mode 25 662.35 715.18 769.26 670.59 665.68 663.84 662.69 658.32
Mode 26 677.64 - - - 717.97 682.37 679.44 669.76
Mode 27 725.15 - - - - 728.39 726.15 719.34
Mode 28 732.66 - - - 779.94 739.58 734.87 726.48
Mode 29 816.96 - - - - - 819.10 809.46
Mode 30 823.29 - - - - - 824.91 816.58
Mode 31 902.95 - - - 963.75 913.63 906.19 893.08
Mode 32 923.70 - - - 935.53 927.05 924.58 916.21
Mode 33 965.36 - - - 1006.02 972.81 967.76 945.81
Mode 34 994.64 - - 1363.44 1063.81 1007.73 998.38 982.57
Mode 35 1032.09 - - 1096.39 1044.03 1035.54 1033.00 1022.73
Mode 36 1084.75 - - - - 1099.84 1088.86 1060.54
Mode 37 1107.53 - - - 1263.43 1140.75 1115.41 1070.11
Mode 38 1120.25 - - - - - 1128.13 1073.57
Mode 39 1140.14 1294.36 1269.53 1171.98 1153.91 1147.42 1141.59 1097.15
Mode 40 1142.58 - - - - - 1147.82 1130.12
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Table 3.22 The first forty mode shapes of beam 2, 20B4-23L9 model with clamped-free edge
conditions

Mode l Mode 2 Mode 3 Mode 4 Mode 5

Mode 6 Mode 7 Mode 8 Mode 9 Mode 10

Mode 1l Mode 12 Mode 13 Mode 14 Mode 15

Mode 16 Mode 17 Mode 18 Mode 19 Mode 20

Mode 2l Mode 22 Mode 23 Mode 24 Mode 25

Mode 26 Mode 27 Mode 28 Mode 29 Mode 30

Mode 3l Mode 32 Mode 33 Mode 34 Mode 35

Mode 36 Mode 37 Mode 38 Mode 39 Mode 40
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3.5.4 Beam 3- Arbitrary cross-section

This numerical example of higher vibration modes corresponds to the beam 3
(arbitrary cross-section) with clamped-free edge conditions. The first forty mode
shapes of this beam are illustrated in Fig. 3.25 based on the 20B4-25L9 model. The
details of the ABQ shell model for the beam 3 are listed in Table 3.23. By using the
MAC analysis, a comparison of the corresponding natural frequencies based on the
different models by the proposed CUF 1D method is presented in Table 3.24.

Table 3.23 The details of ABQ shell models employed for the beam 3

Model DOF Number of elements Element type Beam axis elements Cross-section discretizations
Shell 64854 3520 Quadratic S8R 80 42
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Table 3.24 Natural frequencies of beam 3 with clamped-free edge conditions based on
different structural theories for the corresponding mode shapes by the MAC

Modes 20B4-25L9 20B4,TE=1 20B4,TE=2 20B4,TE=5 20B4,TE=10 20B4-12L9 20B4-16L9 ABQ shell
Mode 1 3.27 - - - - 3.27 3.27 3.26
Mode 2 4.80 - - - - 4.81 4.80 4.79
Mode 3 12.37 - - - - 12.38 12.38 12.35
Mode 4 18.44 - - - - 18.46 18.45 18.35
Mode 5 25.50 - - - - 25.58 25.53 25.35
Mode 6 37.73 - - - - 38.28 37.91 37.07
Mode 7 38.20 - - - - - 38.29 37.77
Mode 8 44.01 - - - - 44.49 44.17 43.43
Mode 9 55.53 - - - - 55.86 55.62 55.08

Mode 10 56.23 - - - - 56.92 56.43 55.66
Mode 11 67.58 - - - - 68.11 67.74 67.12
Mode 12 73.55 - - - - - 74.24 72.05
Mode 13 74.30 - - - - - 74.95 72.67
Mode 14 75.29 - - - - 78.52 76.18 73.46
Mode 15 78.71 - - - - 81.64 79.50 77.07
Mode 16 82.26 - - - - 85.03 83.04 80.44
Mode 17 85.97 - - - - 90.98 87.10 83.80
Mode 18 93.85 - - - - 96.38 94.59 92.02
Mode 19 95.43 - - - - 101.66 96.80 92.94
Mode 20 97.63 - - - - 99.26 97.99 96.88
Mode 21 103.70 - - - - 104.41 103.97 101.29
Mode 22 104.05 - - - - - 105.55 103.09
Mode 23 111.89 - - - - 114.79 112.73 109.69
Mode 24 112.91 - - - - - 114.48 110.31
Mode 25 122.04 - - - - 129.91 123.74 119.05
Mode 26 128.22 - - - - 128.23 128.22 128.15
Mode 27 131.93 - - - - 140.08 133.69 128.83
Mode 28 133.94 - - - - 142.57 - 130.61
Mode 29 135.02 - - - - 138.64 - 132.79
Mode 30 142.84 - - - - 151.09 144.64 139.66
Mode 31 148.90 - - - - 167.84 152.89 143.39
Mode 32 152.58 - - - - - 156.50 147.27
Mode 33 154.03 - - - - - - 150.53
Mode 34 155.96 - - - - - - 152.23
Mode 35 157.38 - - - - - - 155.05
Mode 36 161.28 - - - - 165.78 162.53 158.64
Mode 37 166.97 - - - - 175.53 168.84 163.60
Mode 38 169.74 - - - - - 170.33 168.55
Mode 39 180.35 - - - - 188.96 182.28 176.84
Mode 40 186.40 - - - - - 188.28 183.35



62 Higher-order vibration modes of thin-walled beam structures

Table 3.25 The first forty mode shapes of beam 3, 20B4-25L9 model with clamped-free edge
conditions

Mode l Mode 2 Mode 3 Mode 4 Mode 5

Mode 6 Mode 7 Mode 8 Mode 9 Mode 10

Mode 1l Mode 12 Mode 13 Mode 14 Mode 15

Mode 16 Mode 17 Mode 18 Mode 19 Mode 20

Mode 2l Mode 22 Mode 23 Mode 24 Mode 25

Mode 26 Mode 27 Mode 28 Mode 29 Mode 30

Mode 3l Mode 32 Mode 33 Mode 34 Mode 35

Mode 36 Mode 37 Mode 38 Mode 39 Mode 40
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3.5.5 Beam 4- Arbitrary cross-section

The last assessment of higher vibration modes with cross-sectional deformations is
focused on the beam 4 (arbitrary cross-section) with clamped-free edge conditions.
Fig. 3.27 illustrates the first forty modes of this beam based on the 20B4-26L9 model.
The ABQ shell model employed for this beam example is detailed in Table 3.26.
The MAC analysis is used to compare the corresponding modes of different models
based on the proposed CUF 1D method, and the corresponding natural frequencies
are reported in Table 3.28. Moreover, for the sake of completeness, the comparison
of ABQ shell and CUF 1D models employed for all the investigated beam structures
are provided in Table 3.29.

Table 3.26 The details of ABQ shell models employed for the beam 4

Model DOF Number of elements Element type Beam axis elements Cross-Section discretization
Shell 60498 3280 Quadratic S8R 80 41
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Table 3.27 The first forty mode shapes of beam 4, 20B4-26L9 model with clamped-free edge
conditions

Mode l Mode 2 Mode 3 Mode 4 Mode 5

Mode 6 Mode 7 Mode 8 Mode 9 Mode 10

Mode 1l Mode 12 Mode 13 Mode 14 Mode 15

Mode 16 Mode 17 Mode 18 Mode 19 Mode 20

Mode 2l Mode 22 Mode 23 Mode 24 Mode 25

Mode 26 Mode 27 Mode 28 Mode 29 Mode 30

Mode 3l Mode 32 Mode 33 Mode 34 Mode 35

Mode 36 Mode 37 Mode 38 Mode 39 Mode 40
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Table 3.28 Natural frequencies of beam 4 with clamped-free edge conditions based on
different structural theories for the corresponding mode shapes by the MAC

Modes 20B4-26L9 20B4,TE=1 20B4,TE=2 20B4,TE=5 20B4,TE=10 20B4-13L9 20B4-17L9 ABQ shell
Mode 1 3.15 - - - 3.93 3.15 3.15 3.13
Mode 2 5.71 - - - 5.80 5.71 5.71 5.71
Mode 3 12.27 - - - - 12.36 12.30 12.17
Mode 4 16.04 - - - - - 16.10 15.81
Mode 5 16.22 - - - - - 16.26 16.04
Mode 6 25.34 - - - 46.80 25.71 25.56 25.12
Mode 7 29.33 - - - - 29.95 29.73 29.03
Mode 8 38.76 - - - - - - 37.83
Mode 9 38.81 - - - - - - 38.38

Mode 10 42.80 - - - - 44.79 44.26 42.01
Mode 11 47.36 - - - - 49.36 48.94 46.61
Mode 12 56.71 - - - - 58.54 58.07 55.97
Mode 13 59.38 - - - - 60.17 59.86 59.03
Mode 14 69.87 - - - - 71.70 70.30 69.02
Mode 15 71.76 - - - - 74.07 72.44 70.68
Mode 16 76.22 - - - - 83.12 77.40 74.18
Mode 17 77.38 - - - 100.23 79.17 78.18 76.64
Mode 18 82.61 - - - - 88.14 83.64 80.97
Mode 19 85.58 - - - - 91.35 86.64 83.86
Mode 20 90.67 - - - - 96.93 92.11 88.82
Mode 21 94.83 - - - - - 96.45 92.97
Mode 22 97.56 - - - - - 98.92 95.86
Mode 23 98.57 - - - - - 99.99 97.49
Mode 24 107.55 - - - - - 109.74 105.04
Mode 25 114.04 - - - - - - 111.84
Mode 26 114.39 - - - - - - 112.19
Mode 27 116.88 - - - - - 119.98 113.58
Mode 28 125.30 - - - - - - 121.35
Mode 29 127.87 - - - - - - 125.11
Mode 30 128.05 - - - - - - 125.62
Mode 31 128.29 - - - - - - 126.20
Mode 32 128.50 - - - - - - 127.21
Mode 33 130.44 - - - - 144.37 133.16 128.19
Mode 34 133.23 - - - - - 137.62 129.01
Mode 35 136.60 - - - - - 139.24 133.35
Mode 36 137.99 - - - - - 140.94 134.54
Mode 37 138.58 - - - - - 141.37 135.37
Mode 38 140.75 - - - - - 146.12 135.61
Mode 39 147.01 - - - - 160.91 149.77 142.60
Mode 40 148.43 - - - - - 154.36 143.71
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Table 3.29 The comparison of ABQ shell and CUF 1D models employed for the investigated
beam structures

Model DOF
Number Element Section

of elements type discretization
ABQ shell-beam1 27102 1440 Quadratic S8R 18
ABQ shell-beam2 28554 1520 Quadratic S8R 19
ABQ shell-beam3 64854 3520 Quadratic S8R 42
ABQ shell-beam4 60498 3280 Quadratic S8R 41

CUF 1D-LE-beam1 15921 20B4 4-node beam 14L9
CUF 1D-LE-beam2 17019 20B4 4-node beam 15L9
CUF 1D-LE-beam3 18117 20B4 4-node beam 16L9
CUF 1D-LE-beam4 19215 20B4 4-node beam 17L9

The following comments could be made based on the mentioned results:

1. The influence of the structural theory that has been adopted is more apparent
in the higher-order modes. Fig. 3.19 demonstrates, for example, how the MAC
analysis reveals some discrepancies in the higher mode shapes (30-40) of the
20B4-8L9 and the 20B4-14L9 models.

2. The CUF-based method can predict the natural frequencies in good agreement
with the more costly shell-2D models.

3. The acquired findings from the CUF refined models demonstrate that the
suggested method accurately captures the structure’s mode shapes considering
the cross-sectional deformations.

4. As the complexity of the beam’s cross-section is increased, the MAC analysis
reveals that higher TE orders are required to accurately capture the mode
shapes associated with cross-sectional deformations. For example, in the beam
examples 3 and 4 with arbitrary sections, the majority of models with classical
and low order TE were incapable of determining the precise mode shapes (See
Tables 3.24 and 3.28)
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3.6 Conclusions

The purpose of this chapter has been to evaluate higher-order vibration modes in
a series of open-section thin-walled beams that had previously been offered as
benchmark problems. CUF FEs based on the power of cross-sectional deformation
coordinates (x, z) have been implemented, as well as those based on Lagrangian
polynomials. A detailed comparison has been made between the classical beam
theories, refined ones based on the CUF, shell models obtained using commercial FE
software, and data from the literature.

• The findings established the reliability and accuracy of the suggested CUF-
based approach for the study of higher-order free vibrations in thin-walled
beams with cross-sectional deformations. The natural frequencies and mode
shapes found using the suggested efficient framework correlate well with those
obtained using shell models, which require significantly more computational
efforts.

• The importance of developing models capable of detecting cross-sectional
deformations has been shown. Indeed, classical beam theories and the linear
TE of order one were unable to capture a large number of cross-sectional
deformations associated with bending or torsion; rather, they revealed rigid
cross-section modes that did not exist in reality.

• Global vibration modes associated with stiff cross-sectional deformations,
such as bending and torsion, have been determined using classical and shear
refined theories. However, cross-sectional deformations have been seen at
higher frequencies and have been mixed with the global modes.

• The MAC has been successfully used to compare the free vibration modes
obtained by various structural theories. Additionally, the MAC analysis sug-
gests that additional refinement is required for the TE when applied to the
complicated cross-section geometries.

• It has been shown that the selected structural theory has a greater influence in
higher-order modes.



Chapter 4

Virtual Vibration Correlation
Technique for thin-walled beam
structures

4.1 Introduction

Axial compression is frequently applied to thin-walled beam structures. Compre-
hensive prediction of these structures’ vibration and buckling under compression
is critical for secure and reliable structural engineering. The Vibration Correlation
Technique (VCT) [114] was established as a non-destructive method for evaluating
the buckling loads of structures subjected to progressive compressive loads. Accord-
ing to the VCT, compressive loads reduce the structure’s natural frequencies. By
assuming that the vibration modes are analogous to those associated with buckling,
the critical buckling load may be extrapolated as the load that results in zero nat-
ural frequency [115]. Abramovich [116] conducted a comprehensive study of the
literature on the applicability of the VCT for buckling load prediction in different
structures such as columns, beams, plates, panels, and cylindrical shells.

In the case of small displacements and linear buckling, the tangent stiffness can
be approximated as the sum of the linear stiffness (KKK0) and the geometric stiffness
(KKKσ ) contribution [115]:

KKKT ≃ KKK0 +KKKσ (4.1)
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Afterwards, by considering harmonic motion around quasi-static equilibrium states,
the eigenvalues problem can be solved as follows:

(−ω
2
k MMM+KKKT )uuuk = 0 (4.2)

where ωk are the natural frequencies, and uuuk is the k th eigenvector.

The vibration and buckling of beam structures under compression have been
assessed by many researchers [117–120]. By employing exact solutions, Prokic
and Lukić [121] studied the flexure-torsion coupled vibrations of axially loaded
thin-walled beams. Abramovich [122] investigated the natural frequencies in the
Timoshenko beams under axial loads. Carpinteri et al. [123] analyzed the evolution
of fundamental frequency in slender beams under axial displacements. Double-
beam systems under compressive axial loads were focused in some research pa-
pers [124, 125]. Considering the warping effects, Piana et al. [126] conducted a
study on the thin-walled beams with symmetric cross-sections. Zmuda [127] pro-
posed a numerical method for axially-loaded cold-formed lipped channel section
beams. Aquaro [128] investigated the torsional instabilities of thin-walled beams
with stiffeners. By employing the CUF, Pagani et al. [129] studied the use of VCT
for the geometrically nonlinear analysis of beam structures. A one-dimensional FE
model for the forced nonlinear vibrations of thin-walled beams with open variable
cross-sections was proposed by Elkaimbillah et al. [130].

Designers and researchers have always been concerned with accurately predicting
the mechanical behavior of composite materials [131, 132]. As a result, in order
to accurately model these structures, the use of refined FE models is necessary.
Free vibration response of composite beam structures has been analyzed by many
researchers [133–137]. Librescu [138] proposed a dynamic solution for composite
beams with arbitrary cross-sections. The review of the buckling and free vibration
of composite beams was presented in [139]. Karama et al. [140] employed discrete
layer theory for the buckling and free vibration of composite beams. Khdeir and
Reddy [141, 142] derived exact solutions for bending and buckling of laminated
beams. Piovan [143] presented exact analytical solutions for the free vibration
response of composite beams with shear flexibility. Cortínez and Piovan [144]
developed a theoretical model incorporating shear flexibility and state of initial
stresses for the vibration of thin-walled composite beams. The GBT was efficiently
used for the vibration analysis of thin-walled composite structures [145, 146]. Sheikh
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et al. [147] investigated the free vibration response of thin-walled composite beams
based on the modeling technique for the transverse shear deformation and out of plane
warping. Jun et al. [148–150] employed the dynamic stiffness method to analyze
the free vibration response of composite beams under axial loads. Banerjee [151]
developed the dynamic stiffness method for the free vibration analysis of composite
Timoshenko beams under axial loads. By using shear deformation theory, Vo and
Thai [152] analyzed the free vibration response of rectangular composite beams
subjected to axial loads.

Thin-walled composite beams subjected to axial loads have been further investi-
gated in [153, 154]. Vo and Lee [155] worked on 1D FE models to analyze the free
vibration response of thin-walled composite box beams under axial loads. In this
regard, they used the classical lamination theory accounting for structural couplings
from material anisotropy. The same authors also developed a seven DOF FE model
in order to evaluate the vibration and buckling of thin-walled composite beams
with I-shaped cross-section [156, 157]. Kim et al. [158] employed the dynamic
stiffness matrix for spatially coupled free vibration analysis of thin-walled composite
beams. Some analytical models have been developed to investigate the buckling and
vibration of thin-walled composite box beams considering the coupling of flexural
and torsional modes [159–162].

This chapter is focused on the thin-walled isotropic and composite beam struc-
tures subjected to axial loads. For thin-walled beams with various cross-sections,
an advanced refined FE based on the CUF is developed. The variations of natural
frequencies under axial loads are studied using the VCT. A thorough comparison of
the results with the implemented shell models and the available literature is presented
in order to assess the suggested method’s accuracy and efficiency. The necessity
of employing refined FE models capable of accurately detecting cross-sectional
deformations is highlighted. Additionally, the CUF 1D with LE is utilized to solve
a more complicated structural problem of a channel-shaped composite beam with
different number of transverse stiffeners that is subjected to compressive loads. It is
demonstrated that the presented method can be used efficiently, and match well with
the shell models, which are significantly more expensive in terms of computational
cost.
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4.2 Cruciform isotropic beam

Consider the first beam, which has a cruciform cross-section, and the length of
670 mm [97]. The beam is doubly clamped in such a way that except for the vertical
displacements of the top edge of the beam along the beam axis (y direction), all
translations and rotations of the beam cross-section are constrained. Refer to Fig. 4.1
for a schematic representation of this cruciform beam. It should be noted that all of
the measurements in this figure are in mm. As seen in this figure, the thickness of
the beam is 1.1 mm in thickness. When modeling this cruciform beam, the isotropic
material characteristics of Table 4.1 are taken into consideration.

x

z

1.1

Fig. 4.1 Schematic view of the cruciform beam with the length of 670 mm

Table 4.1 Isotropic material properties of the cruciform beam

Material property Value
Young’s modulus E = 70 GPa

Poisson’s ratio ν = 0.3
Density ρ = 2600 kg

m3

Table 4.2 shows the first ten cruciform beam vibration mode shapes according
to the model with 105 Lagrange points and 20B4 elements. There are four different
bending modes that may be observed in this table: the second, third, seventh, and
eighth mode shapes, which respectively occur in the frequencies of 264.15, 270.47,
712.20, and 728.88 Hz. In Table. 4.3, the middle cross-sectional view of the first ten
vibration mode shapes in the cruciform beam based on the model with 117 Lagrange
points and 20B4 elements is shown. Because of the importance of cross-sectional
deformations, it is necessary to employ structural theories that can correctly assess
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such deformations. Table. 4.4 illustrates the first ten buckling modes and their
associated critical axial displacements for the cruciform beam using a model with
105 Lagrange points and 20B4 elements. As the table indicates, the first buckling
and vibration modes are analogous.

The first ten natural frequencies of an unloaded cruciform beam are evaluated in
Tablere 4.5 using CUF 1D models and the available literature. The number of beam
elements, Lagrange points, and DOF for various CUF 1D models are listed in this
table using the TE and LE functions. The values of natural frequencies obtained from
the existing literature [97] by utilizing experimental methods and three numerical
approaches based on the thin shell, thick shell, and solid brick elements are provided
in Table 4.5. The results demonstrate that the natural frequencies acquired by the
CUF 1D with 20B4 and at least 57 Lagrange points are in good agreement with
the values reported by the literature. This indicates the ability of cost-effective
CUF 1D models to identify vibration modes and cross-sectional deformations in an
open cross-section thin-walled beam. Note that the PZT pickups are used for the
experimental natural frequencies of Ref. [97].

Table 4.2 The first ten vibration mode shapes of the cruciform beam based on the model with
105 Lagrange points and 20B4 elements
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Table 4.3 Middle cross-sectional view of the first ten vibration mode shapes in the cruciform
beam based on the model with 105 Lagrange points and 20B4 elements

mode l mode 2 mode 3 mode 4 mode 5
171.78 Hz 264.15 Hz 270.47 Hz 344.29 Hz 518.10 Hz

mode 6 mode 7 mode 8 mode 9 mode 10
693.63 Hz 712.20 Hz 728.88 Hz 872.11 Hz 1053.59 Hz
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Table 4.4 The first ten buckling modes and the corresponding critical axial displacements of
the cruciform beam based on the model with 105 Lagrange points and 20B4 elements

Table 4.5 The first nine natural frequencies of the unloaded cruciform beam based on the
CUF 1D models and the literature

Natural Frequency (Hz)

Model
Beam Lag.

DOF
Buck.

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 Mode 9
elements Points load

Lag.(25L9) 5B4 153 7344 5.07 175.77 267.19 273.56 352.38 531.41 714.84 721.24 737.90 915.89
Lag.(25L9) 10B4 153 14229 8.45 172.27 265.07 271.40 345.26 519.57 695.75 714.49 731.24 875.24
Tay. order 1 20B4 - 549 8.94 265.09 271.68 724.47 742.17 1437.72 1404.21 2288.81 2341.88 2401.44
Tay. order 2 20B4 - 1098 9.05 273.12 266.51 728.32 746.05 1411.60 1445.13 2300.75 2353.79 2400.70
Tay. order 10 20B4 - 12078 8.82 264.20 270.96 326.25 648.65 717.66 733.41 970.92 1288.23 1367.62
Lag.(5L9) 20B4 33 6039 8.81 176.13 264.35 270.66 353.01 531.17 730.94 715.03 710.24 893.86
Lag.(9L9) 20B4 57 10431 8.76 173.65 264.22 270.53 348.04 523.73 701.02 712.89 729.46 881.52
Lag.(17L9) 20B4 105 19215 8.68 171.78 264.16 270.47 344.30 518.11 693.63 712.20 728.89 872.11
Lag.(25L9) 20B4 153 27999 8.65 171.06 264.14 270.45 342.85 515.95 690.78 712.01 728.72 868.52
Thin shell [97] 165.54 278.43 284.99 331.75 499.22 668.52 749.31 766.7 840.35
Thick shell [97] 163.86 278.43 284.99 328.4 494.22 661.87 749.32 766.71 832.09
Solid brick [97] 160.91 270.75 281.59 329.69 484.58 676.69 749.29 765.76 816.26
Experiment [97] 161.87 275.47 284.18 325.43 486.13 667.84 741.30 767.53 813.39
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The given values in Table 4.5 should be interpreted in view of the fact that many
of the mode shapes derived from various structural theories do not correlate to one
another. As a result, the MAC analysis needs to be conducted in order to explore
the corresponding modes of each model. As explained in the previous chapter, the
MAC is defined as a scalar that indicates the degree of consistency between two
separate modal vectors in such a manner that the values change from 0 to 1. The
MAC value of zero indicates that there is no correspondence between the models. In
Fig. 4.2, the free vibration modes for cruciform beams with 20B4 elements based on
various structural theories are compared to the Lagrange model with 153 points using
the MAC analysis. As this figure indicates, the number of corresponding modes
for classical models such as Taylor order one is fewer than those of other Lagrange
models. Indeed, classical beam theories obliterate several modes in favor of rigid
cross-section modes that do not exist. The four black squares in Fig. 4.2a indicate
that the Taylor modes 2, 3, 4, and 9 correspond to the Lagrange modes 3, 7, 8, and 1,
respectively. Table 4.6 illustrates these mode shapes for the Taylor order 1 model and
the Lagrange model with 153 points. It is worth noting that, although some modes
may correspond to one another according to the MAC analysis, the values of natural
frequencies calculated using the two models may exhibit major differences. For
example, in Table 4.6, the two torsional modes of Taylor mode 9 and Lagrange mode
1 are corresponded, despite the fact that the natural frequencies derived by these
two models are different. The necessity of selecting a structural theory capable of
accurately identifying the structural problem’s eigenvalues and eigenvectors should
be emphasized.
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(a) Taylor model order 1 (b) Lagrange model with 57 points

Fig. 4.2 The MAC analysis for the comparison of free vibration mode shapes of the cruciform
beams with 20B4 elements

Table 4.6 The corresponding vibration mode shapes of the cruciform beam obtained by the
MAC for the Taylor model order 1 and Lagrange model with 153 points (See Fig 4.2a)

Fig. 4.3 compares the first five natural frequencies in the cruciform beam under
progressive compressive loads based on the CUF model with 153 Lagrange points
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and Ref. [97]. As can be seen in the graph, the natural frequencies of the beam
structure are decreased as a result of the compressive loads. This is due to the
reduction in the stiffness of the beam structure caused by the compressive loads.
Notably, the natural frequencies derived by the efficient CUF 1D models given
here are consistent with the experimental findings reported in Ref. [97]. Using
the CUF 1D model with 153 Lagrange points, the fundamental frequencies in the
cruciform beam under progressive compressive loads are reported in Table 4.7, where
the first two columns show the fundamental frequencies obtained by the Laser and
PZT sensors for the experimental method in [97].
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Fig. 4.3 The comparison of the first five natural frequencies in the cruciform beam under
progressive compressive loads based on the CUF model with 105 Lagrange points and the
available literature [97]
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Table 4.7 Evaluation of fundamental frequencies in the cruciform beam under progressive
compressive loads based on the CUF 1D model with 105 Lagrange points and the literature

Load (KN) Frequency (Hz)-Laser [97] Frequency (Hz)-PZT [97] Frequency (Hz)-CUF 1D
0.00 161.73 161.87 171.78
0.24 156.88 159.12 171.08
0.49 154.08 156.42 168.27
1.00 150.04 151.69 162.55
1.41 146.60 149.22 157.95
2.02 142.44 145.42 151.10
2.46 139.60 142.33 146.16
2.98 135.94 138.24 140.32
3.43 132.33 134.61 135.27
3.95 130.96 131.33 129.43

In Fig. 4.4, the first five natural frequencies in the cruciform beam under progres-
sive compressive loads are compared using the CUF model with 105 Lagrange points
and Taylor model order 1. As indicated in this figure, the influence of compressive
loads on the natural frequency variations is more apparent when refined theories
based on LE are used. Additionally, it should be emphasized that certain modes are
ignored by classical models; for example, the Taylor order 1 model does not identify
the first torsional mode.
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(a) Taylor model order 1

0 1000 2000 3000 4000
0

100

200

300

400

500

600

Fr
eq

ue
nc

y 
(H

z)

Load (N)

 Mode 1             Mode 3          Mode 5
 Mode 2             Mode 4     

(b) Lagrange model with 105 points

Fig. 4.4 The comparison of the first five natural frequencies in the cruciform beam under
progressive compressive loads based on the Taylor model order 1 and CUF model with 105
Lagrange points
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In Fig. 4.5, the effects of structural theory and FE discretization on the fundamen-
tal frequencies of the cruciform beam subjected to progressive compressive loads
are studied. In this figure, the values of the fundamental frequency are displayed
against the applied compressive stresses. As can be clearly seen, all of the provided
Lagrange models exhibit good convergence except for the model with just five B4
elements. The critical buckling loads and fundamental frequencies related to the
applied progressive compressive loads in the cruciform beam are shown in Fig. 4.6
using CUF 1D models. The CUF 1D results indicate that the critical buckling load
and natural frequency variations with progressive loads are in agreement with the
existing literature [97], and that the suggested approach can be utilized effectively to
explore the natural frequencies of loaded beams under compression.
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Fig. 4.5 The variations of fundamental frequencies in the cruciform beam under progressive
compressive loads based on the different CUF 1D models(a) effect of the structural theory
(b) effect of FE discretization
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Fig. 4.6 Critical buckling loads and the fundamental frequencies versus the applied progres-
sive compressive loads in the cruciform beam according to the Ref. [97] and the CUF 1D
model

4.3 Thin cruciform isotropic beam

A thinner cruciform beam with a thickness of 0.2 mm is assumed here. The length
of the beam is 670 mm, and the boundary conditions are doubly clamped except for
the vertical displacements of the top edge (similar to the previous beam example). In
Fig. 4.7, the schematic view of this thin cruciform beam is indicated (dimensions in
mm). Table 4.1 lists the isotropic material properties of this beam example.

Table 4.8 depicts the first ten vibration mode shapes of the thin cruciform beam
based on the model with 105 Lagrange points and 20B4 elements. A further illustra-
tion is provided in Table 4.9, which shows the middle cross-sectional view of the first
ten vibration mode shapes in the thin cruciform beam obtained by employing a model
with 105 Lagrange points and 20B4 elements. As can be seen in Table 4.8, the first
seven modes for the thin cruciform beam are torsional, and then two bending modes,
mode numbers 8 and 9, occur at frequencies of 250.00 and 256.39 Hz, respectively.
When comparing Tables 4.2 and 4.8, it can be seen that for this beam with a thinner
cross-section, the torsional modes with cross-sectional deformations occur before
the other bending modes.
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x

z

0.2

Fig. 4.7 Schematic view of the thin cruciform beam

Table 4.8 The first ten vibration mode shapes of thin cruciform beam based on the model
with 105 Lagrange points and 20B4 elements (See table 4.2 for comparison)
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Table 4.9 Middle cross-sectional view of the first ten vibration mode shapes in the thin
cruciform beam based on the model with 105 Lagrange points and 20B4 elements

mode l mode 2 mode 3 mode 4 mode 5
32.17 Hz 64.46 Hz 96.98 Hz 129.84 Hz 163.17 Hz

mode 6 mode 7 mode 8 mode 9 mode 10
197.06 Hz 231.64 Hz 250.00 Hz 256.39 Hz 267.02 Hz

The first nine natural frequencies of the unloaded thin cruciform beam are
compared in Table 4.10 using the CUF 1D Lagrange model and the thin ABQ shell
model. Additionally, Table 4.11 illustrates the corresponding free vibration mode
shapes. Not only the mode shapes, but also the natural frequencies obtained using
the CUF 1D Lagrange model agree well with those found using the thin ABQ shell
model. In comparison with costly shell models, the CUF has much fewer DOF and
uses significantly less processing power.

Table 4.10 The first nine natural frequencies of the unloaded thin cruciform beam based on
the CUF 1D Lagrange model and the thin ABQ shell model

Natural Frequency (Hz)

Model
Number of Lag.

DOF Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 Mode 9
elements Points

CUF 1D (Lag.) 20 B4 105 19215 32.17 64.46 96.98 129.84 163.17 197.06 231.64 250.00 256.39
Thin ABQ shell 1680 S8R - 52396 30.82 61.76 92.93 124.47 156.47 189.05 222.32 254.71 261.08
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Table 4.11 The comparison of free vibration mode shapes of the thin cruciform beam based
on the CUF 1D Lagrange model and the thin ABQ shell model

The MAC analysis is used to compare the free vibration modes of thin cruciform
beams with 20B4 elements based on various structural theories against the model
with 153 Lagrange points. As can be seen in Fig. 4.8, the number of comparable
modes for classical models such as Taylor order 1 is much fewer than that of other
Lagrange models. Additionally, it is noted that for the cruciform beam with a thinner
cross-section, the need to use refined theories is considerable. The first five natural
frequencies in a thin cruciform beam subjected to progressive compressive loads are
compared in Fig. 4.9 using the CUF model with 105 Lagrange points and Taylor
model order 1. As indicated in this figure, the influence of compressive loads on
natural frequency variations is more apparent when refined theories based on LE
are used. Additionally, one may see how the classical theories do not identify the
majority of the first seven torsional modes.
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(a) Taylor model order 1 (b) Lagrange model with 57 points

Fig. 4.8 The comparison of free vibration modes using the MAC analysis for the cruciform
beams with 20B4 elements based on different structural theories versus the Lagrange model
with 153 points

0 5 10 15 20 25 30
0

200

400

600

800

1000

1200

1400

1600

1800

Fr
eq

ue
nc

y 
(H

z)

Load (N)

 Mode 1             Mode 3          Mode 5
 Mode 2             Mode 4     

(a) Taylor model order 1
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(b) Lagrange model with 105 points

Fig. 4.9 The comparison of the first five natural frequencies in the thin cruciform beam under
progressive compressive loads based on the Taylor model order 1 and CUF model with 105
Lagrange points

4.4 Arbitrary cross-section isotropic beam (I)

The third beam problem of this chapter corresponds to an arbitrary cross-section
beam with a length of 950 mm [119]. For this doubly clamped beam, all the
translations and rotations are restrained for the bottom and top edges of the beam
cross-section except for the vertical displacements of the top edge along the beam
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axis. The schematic view of this beam is shown in Fig. 4.10 (dimensions in mm).
The isotropic material properties of Table 4.12 are assumed for this beam example.
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Fig. 4.10 Schematic view of the arbitrary cross-section beam (I)

Table 4.12 Isotropic material properties of the arbitrary cross-section beam (I)

Material property Value
Young’s modulus E = 69 GPa

Poisson’s ratio ν = 0.3
Density ρ = 2600 kg

m3

Table 4.13 shows the first ten vibration mode shapes of the arbitrary cross-section
beam (I) according to the model with 129 Lagrange points and 20B4 elements. The
middle cross-sectional views of the first ten vibration mode shapes in this beam
are provided in Table 4.14. Note that the obtained results are based on the model
with 129 Lagrange points and 20B4 elements. The first ten buckling modes and
associated critical axial displacements of the arbitrary cross-section beam (I) are
shown in Table 4.15 using the model with 129 Lagrange points and 20B4 elements.
As can be seen in this table, the first buckling and vibration modes are identical.

In Fig. 4.11, the first five natural frequencies in the arbitrary cross-section beam (I)
subjected to progressive compressive loads are compared using the CUF model with
129 Lagrange points and Ref. [119]. The exhibited values in this figure demonstrate
that compressive loads reduce natural frequencies, and their values agree well with
the experimental data reported in Ref.[119]. The first three frequencies in the
arbitrary cross-section beam (I) subjected to progressive compressive loads are
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presented in Table 4.16 using the CUF 1D model with 129 Lagrange points and
Ref. [119].

Table 4.13 The first ten vibration mode shapes of the arbitrary cross-section beam (I) based
on the model with 129 Lagrange points and 20B4 elements

Table 4.14 Middle cross-sectional view of the first ten vibration mode shapes in the arbitrary
cross-section beam (I) based on the model with 129 Lagrange points and 20B4 elements

mode l mode 2 mode 3 mode 4 mode 5
144.13 Hz 281.09 Hz 371.33 Hz 652.30 Hz 701.66 Hz

mode 6 mode 7 mode 8 mode 9 mode 10
727.47 Hz 808.81 Hz 900.01 Hz 970.97 Hz 1006.48 Hz
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Table 4.15 The first ten buckling modes and the corresponding critical axial displacements of
the arbitrary cross-section beam (I) based on the model with 129 Lagrange points and 20B4
elements
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Fig. 4.11 The comparison of the first five natural frequencies of the arbitrary cross-section
beam (I) under progressive compressive loads based on the CUF model with 129 Lagrange
points and the available literature [119]
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Table 4.16 The variations of frequencies versus the applied axial displacements in the
arbitrary cross-section beam (I) under progressive compressive loads based on the CUF 1D
models and Ref. [119]

Frequency (Hz)- CUF Frequency (Hz)-Ref. [119]

Axial Displacement (mm) Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3
0.25 134.91 275.74 359.76 113.61 233.14 302.96
0.50 125.44 272.19 346.75 108.88 233.14 295.86
0.75 115.98 267.46 332.54 102.96 231.95 288.76
1.00 104.14 262.72 318.34 97.04 231.95 281.66
1.25 92.31 259.17 304.14 91.12 231.95 273.37
1.50 76.92 253.25 288.76 85.21 231.95 268.64
1.75 60.36 249.70 272.19 79.29 231.95 265.09

4.5 Arbitrary cross-section isotropic beam (II)

For this assessment case, the beam has an arbitrary cross-section, as shown in
Fig. 4.12, and the length of 9 m [127]. Similar to the previous examples of this
chapter, the beam is doubly clamped. The isotropic material properties of Table 4.17
are assumed for this beam example.
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Fig. 4.12 Schematic view of the arbitrary cross-section beam (II)

Table 4.17 Isotropic material properties of the arbitrary cross-section beam (II)

Material property Value
Young’s modulus E = 210 GPa

Poisson’s ratio ν = 0.3
Density ρ = 7850 kg

m3
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The first ten vibration mode shapes of the arbitrary cross-section beam (II) are
provided in Table 4.18 according to the model with 117 Lagrange points and 20B4
elements. The middle cross-sectional view of the first ten vibration mode shapes
in this beam is given in Table 4.19. In Fig. 4.13, the first five natural frequencies
in the arbitrary cross-section beam (II) under progressive compressive loads are
compared using the CUF model with 117 Lagrange points and numerical data from
the literature. The figure demonstrates that the results obtained using the suggested
efficient CUF 1D models match well with those obtained using the costly shell
models in Ref. [127]. The values of the first three frequencies in the arbitrary cross-
section beam (II) under progressive compressive loads are provided in Table 4.20 by
employing the CUF 1D model with 117 Lagrange points and Ref. [127].

Table 4.18 The first ten vibration mode shapes of the arbitrary cross-section beam (II) based
on the model with 117 Lagrange points and 20B4 elements
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Table 4.19 Middle cross-sectional view of the first ten vibration mode shapes in the arbitrary
cross-section beam (II) based on the model with 117 Lagrange points and 20B4 elements

mode l mode 2 mode 3 mode 4 mode 5
5.36 Hz 5.77 Hz 13.54 Hz 14.77 Hz 16.68 Hz

mode 6 mode 7 mode 8 mode 9 mode 10
23.51 Hz 28.90 Hz 35.32 Hz 42.44 Hz 47.66 Hz
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Fig. 4.13 The comparison of the first five natural frequencies in the arbitrary cross-section
beam (II) under progressive compressive loads based on the CUF model with 117 Lagrange
points and the available literature [127]
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Table 4.20 The variations of frequencies versus the applied axial displacements in the
arbitrary cross-section beam (II) under progressive compressive loads based on the CUF 1D
models and Ref. [127]

Frequency (Hz)- CUF Frequency (Hz)-Ref. [127]

Axial Displacement (mm) Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3
0.25 5.10 5.53 13.09 4.57 5.40 12.89
0.50 4.80 5.27 12.68 4.24 5.17 12.48
0.75 4.50 5.02 12.28 3.92 4.87 12.08
1.00 4.14 4.72 11.88 3.54 4.62 11.68
1.25 3.77 4.42 11.43 3.09 4.35 11.23
1.50 3.37 4.09 10.98 2.66 4.02 10.78
1.75 2.86 3.74 10.50 2.06 3.64 10.32

4.6 Symmetric [90/0/0/90] square beam

An example of a [90/0/0/90] composite beam with a square cross-section is investi-
gated in this section. The beam measures l = 6.35 m and a = 27.94 cm in width and
length, and it is simply-supported at both ends. Table 4.21 displays the composite
beam’s material properties. Table 4.22 reports the values of natural frequencies of
the beam structure based on the CUF 1D beam models with LE functions (briefly
indicated as CUF-LE in the table) and classical beam theories (EBBT and TBT).
As can be seen in Table 4.23, the reported values are also compared to those found
in the literature for higher-order beam theories. In this regard, the terms FSDBT,
ESDBT, and TSDBT respectively correspond to first-order, exponential, and trigono-
metric shear deformation beam theories. It is noticed that the natural frequencies
and buckling loads derived by the CUF and all other higher-order beam theories in
the literature are very consistent. On the other hand, as a result of the kinematic
approximation provided by the EBBT, the natural frequencies and buckling loads
associated with this theory are greater than the ones obtained by the other beam
theories.
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Table 4.21 Material properties of the 4-layer [90/0/0/90] composite beam [140] with simply-
supported edge conditions

E1 (GPa) E2 = E3 (GPa) G12 = G13 (GPa) G23 (GPa) ν12 = ν13 ρ ( kg
m3 )

241.5 18.98 5.18 3.45 0.24 2015

Table 4.22 The first five natural frequencies of the square composite beam [90/0/0/90] with
simply-supported edge conditions based on the CUF 1D models and the literature

Mode number EBBT TBT CUF-LE FSDBT [148] ABQ[140] TSDBT [149]

Mode 1 15.13 15.00 14.87 14.9 14.95 14.97
Mode 2 60.36 58.41 56.49 58.1 57.6 57.83
Mode 3 135.23 126.10 117.97 124.5 122.8 123.40
Mode 4 238.89 212.78 192.35 208.6 204.2 205.54
Mode 5 370.15 314.06 295.81 304.8 296.6 298.80

Table 4.23 The first three buckling loads of the square composite beam [90/0/0/90] beam
with simply-supported edge conditions based on the CUF 1D models and the literature (∗106

N/m)

Mode number EBBT TBT CUF-LE FSDBT [148] ESDBT [149] TSDBT [149]

Mode 1 20.71 20.43 20.02 20.44 20.38 20.39
Mode 2 82.70 77.67 73.06 77.07 76.23 76.34
Mode 3 185.44 161.42 150.18 158.23 154.81 155.23

4.7 Unsymmetric [0/θ ] square beam

In this section, a [0/θ ] cantilever beam with a square cross-section is assumed. The
beam has the length of l = 1 m and width of b = t = 0.1 m, respectively. The following
material properties are considered for this composite beam structure [152]:

E1

E2
= 40,

G12

E2
= 0.6,

G23

E2
= 0.5, ν12 = 0.25 (4.3)

The values of natural frequencies for composite beams with [0/45] and [0/75]
laminations are given in Table 4.24. In this table, natural frequencies are obtained
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based on the EBBT, TBT, CUF 1D model with LE, ABQ-3D solid model, and other
higher-order beam theories from [152] that incorporate coupled solutions (axial,
bending, and shear components). As seen in this table, the natural frequencies based
on the CUF-LE model closely match the values found using the ABQ 3D solid model
and Ref. [152]. Nevertheless, those derived from classical theories exhibit certain
discrepancies.

Table 4.24 The first five natural frequencies of the square composite beam [0/θ ] with
clamped-free edge conditions based on the different structural models and the literature

[0/45]lamination [0/75]lamination

Mode EBBT TBT CUF- ABQ Ref. EBBT TBT CUF ABQ Ref.
number LE [152] LE [152]

Mode 1 4.66 4.59 4.29 4.30 4.32 4.71 4.62 4.18 4.19 4.26
Mode 2 15.57 13.90 12.13 12.96 - 15.76 13.96 11.19 11.27 -
Mode 3 28.83 27.50 20.18 21.57 20.02 42.88 33.65 18.77 20.02 19.73
Mode 4 36.01 34.29 36.62 37.98 - 70.78 35.33 33.64 33.85 -
Mode 5 67.45 45.12 42.89 44.92 44.05 77.96 46.40 42.33 43.66 43.22

The variations of natural frequencies with the axial loads for the prior compos-
ite beam with [0/45] and [0/75] laminations are further investigated in Figs. 4.14
and 4.15 to show the advantages of the proposed method based on the CUF. In these
figures, the non-dimensional axial forces and natural frequencies are considered as
follows [152]:

P =
P l2

b3 t E2
, w =

w l2

b

√
ρ

E2
(4.4)

Due to the existence of axial loads, the natural frequencies are reduced dramati-
cally. The critical buckling load may be defined as the load that causes the natural
frequency to be zero. The findings obtained using the CUF 1D method correlate
well with the coupled solution found using higher-order beam theories in [152].
As accurately stated in [152] and seen in the diagrams of Figs. 4.14 and 4.15, the
uncoupled reference solution is no longer applicable for unsymmetrically laminated
beams, and triply coupled vibration (axial, bending, and shear components) should
be regarded. This is taken into account automatically when the proposed CUF 1D
models with efficient LE are employed.
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Fig. 4.14 The variations of natural frequencies with the axial loads for the square composite
beam with [0/45] lamination based on the CUF 1D model with LE and the available litera-
ture [152]
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Fig. 4.15 The variations of natural frequencies with the axial loads for the square composite
beam with [0/75] lamination based on the CUF 1D model with LE and the available litera-
ture [152]
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4.8 Box composite beam

This section analyzes a thin-walled composite box beam with a length of l = 8 m and
geometries provided in Fig. 4.16. The edge conditions for this beam example are
simply-supported, and Eqs. (4.4) are employed to normalize axial loads and natural
frequencies. This composite beam’s material properties are as follows [155]:

E1

E2
= 25,

G12

E2
= 0.6, ν12 = 0.25 (4.5)

a=100

t=5

b
=
2
0
0

Fig. 4.16 Geometry of thin-walled box beam (dimensions in mm)

The values of natural frequencies based on the classical theories, CUF 1D, ABQ
shell, and Ref. [155] are reported in Table 4.25 for the composite box beams with [0]
and [30/-30] laminations. A good agreement is seen between the results obtained by
the CUF 1D, ABQ shell, and higher-order beam theories of Ref. [155]. Furthermore,
in Fig. 4.26, the vibration modes of this composite beam obtained by the CU-1D
models with LE are compared with the ABQ shell models. Although the CUF 1D
models require much less computational effort in comparison with expensive shell
ones, the natural frequencies and vibration modes obtained by the two methods
match well. Therefore, the present proposed method can be used efficiently for the
evaluation of the dynamic response of these structures. For the sake of completeness,
the first nine mode shapes of this composite box beam with [0] lamination based on
the CUF 1D model with LE are displayed in Table 4.27.



96 Virtual Vibration Correlation Technique for thin-walled beam structures

Natural frequencies for composite box beams with [0] and [30/-30] lamina-
tions are presented in Table4.25 using classical theories, CUF 1D, ABQ shell, and
Ref. [155]. There is strong agreement between the CUF 1D, ABQ shell, and higher-
order beam theories of Ref. [155]. Additionally, in Fig. 4.26, the vibration modes of
this composite beam are compared to those derived using CU-1D models with LE
and ABQ shell models. While the CUF 1D models demand far less computational
effort than the more costly shell models, the natural frequencies and vibration mode
shapes produced by the two methods are quite similar. As a result, the suggested
technique may be utilized effectively to assess the dynamic response of these struc-
tures. Table4.27 displays the first nine mode shapes of this composite box beam with
[0] lamination based on the CUF 1D model with LE.

Table 4.25 The first six natural frequencies of the composite box beam with simply-supported
edge conditions based on the different structural models and the literature

[0]lamination [30/-30] lamination in the webs

Mode EBBT TBT CUF- ABQ Ref. EBBT TBT CUF- ABQ Ref.
number LE shell [155] LE shell [155]

Mode 1 10.89 10.82 10.62 10.59 10.88 6.68 6.68 5.21 4.97 6.68
Mode 2 18.39 18.07 17.89 17.87 18.39 15.49 15.29 14.48 14.38 15.49
Mode 3 43.53 42.49 39.61 39.04 45.54 26.71 26.62 20.55 18.44 26.70
Mode 4 73.45 68.75 66.34 66.08 - 60.06 59.61 45.15 40.59 -
Mode 5 - - 76.11 69.68 - 61.86 58.97 55.00 56.28 -
Mode 6 97.86 92.81 80.76 77.11 - 106.67 105.26 77.71 71.82 -
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Table 4.26 The comparison of vibration mode shapes for the composite box beam with
simply-supported edge conditions based on the CUF 1D with LE and ABQ shell models

CUF 1D ABQ shell CUF 1D ABQ shell CUF 1D ABQ shell

To evaluate the effect of axial loads on the natural frequencies of thin-walled
composite box beams, the results calculated using CUF 1D models with LE, higher-
order beam theories, ABQ shell models, and Ref. [155] are compared in Fig. 4.17. It
is clear that the CUF 1D findings are consistent with those obtained using the ABQ
shell and the literature. In these graphs, for the third mode of Ref. [155], which
employs higher-order beam theories, some discrepancies with the CUF and ABQ
shell results can be seen. This could be explained by the fact that the difference
between different structural theories becomes more important in higher modes. In
fact, many structural models could miss some of the cross-sectional deformations
that results in the stiffer structure and higher approximation of natural frequency.
The suggested CUF 1D approach, on the other hand, is efficient in higher-order
modes and corresponds well with the ABQ shell findings.
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Table 4.27 The first nine mode shapes of the composite box beam with simply-supported
edge conditions based on the CUF 1D model with LE

Mode l Mode 2 Mode 3

Mode 4 Mode 5 Mode 6

Mode 7 Mode 8 Mode 9
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Fig. 4.17 The variations of natural frequencies with the axial loads for the composite box
beam based on the CUF 1D model with LE, ABQ shell, and the available literature [155]

4.9 I-shaped composite beam

This numerical example deals with a thin-walled cantilever beam with an I-shaped
cross-section. The beam edge conditions are clamped-free, and the beam length is
l = 1 m. Other cross-sectional dimensions of this beam example are schematically
provided in Fig. 4.18. Table 4.28 lists the material properties of this composite beam.
Natural frequencies for this composite beam with [0] and [60] laminations are given
in Table 4.29 utilizing a variety of structural beam models as well as ABQ shell
models. It is observed that the natural frequency values found using the CUF 1D and
higher-order beam theories from the literature [153] match well with those predicted
using ABQ shell models. However, the natural frequencies based on EBBT and
TBT are greater than the others due to the kinematic approximation offered by these
theories. Additionally, these classical beam theories do not account for some modes
with cross-sectional deformations. This indicates the critical necessity of using
precise refined FE models to analyze the dynamic behavior of thin-walled beam
structures. Table 4.30 shows the first nine mode shapes of this composite beam with
[30] lamination based on the CUF 1D model with LE.
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Fig. 4.18 Geometry of thin-walled I-shaped beam (dimensions in mm)

Table 4.28 Material properties of the thin-walled I-shaped composite beam [153] with
clamped-free edge conditions

E1 (GPa) E2 (GPa) G12 (GPa) ν12 ρ ( kg
m3 )

53.78 17.93 8.96 0.25 1968.9

Table 4.29 The first ten natural frequencies of the I-shaped composite beam with clamped-free
edge conditions based on the different structural models and the literature

[0]lamination [60] lamination

Mode EBBT TBT CUF- ABQ Ref. EBBT TBT CUF- ABQ Ref.
number LE shell [153] LE shell [153]

Mode 1 34.71 34.64 34.61 34.36 34.34 21.04 21.03 20.83 20.68 20.84
Mode 2 - - 48.45 47.78 - 38.99 38.55 38.30 38.41 -
Mode 3 64.32 63.89 62.98 63.03 - - - 40.91 41.21 -
Mode 4 217.11 214.21 211.38 209.75 - 131.61 130.94 129.38 128.52 -
Mode 5 - - 230.05 228.05 - - - 1 62.26 162.57 -
Mode 6 400.39 383.06 348.77 347.48 - 242.71 236.60 228.31 230.35 -
Mode 7 - - 512.89 505.47 - 367.35 363.03 353.61 353.79 -
Mode 8 - - 522.66 512.18 - - - 387.17 386.31 -
Mode 9 - - 547.02 536.28 - - - 538.53 600.26 -

Mode 10 - - 570.67 562.32 - - - 559.06 660.61 -
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Table 4.30 The first nine mode shapes of the I-shaped composite beam with [30] lamination
and clamped-free edge conditions based on the CUF 1D model with LE

Mode l Mode 2 Mode 3

Mode 4 Mode 5 Mode 6

Mode 7 Mode 8 Mode 9

Similar to the previous numerical examples, the variations of natural frequencies
with the axial loads are shown in the graphs of Fig. 4.19 for this thin-walled beam
based on the different structural models. Three different laminations of [0], [30],
and [60] are focused here. Due to the fact that for the case of [0] lamination, the
fibers are located in the axial direction of the beam, this case shows higher natural
frequencies and buckling strength compared to the other investigated laminations. As
can be obviously seen in Fig. 4.19, the results obtained by the proposed cost-effective
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CUF 1D method match well with the more expensive ABQ shell models for all the
cases. The graphs in Fig. 4.19 illustrate the variations in natural frequencies against
the axial loads for this thin-walled beam structure. Three laminations of [0], [30],
and [60] are evaluated in this section. In the case of [0] lamination, due to the fact
that the fibers are placed in the axial direction of the beam, higher natural frequencies
and buckling strength are observed.

0 1000 2000 3000 4000 5000 6000
0

5

10

15

20

25

30

35

40

Fr
eq

ue
nc

y 
(H

z)

Load (N)

 Ref. - [0] lamination
 Ref. - [30] lamination 
 Ref. - [60] lamination            
 CUF- [0] lamination           
 CUF- [30] lamination
 CUF- [60] lamination
 ABQ shell- [0] lamination
 ABQ shell- [30] lamination 
 ABQ shell- [60] lamination

Fig. 4.19 The variations of fundamental frequencies with the axial loads for the I-shaped
composite beam based on the CUF 1D model with LE, ABQ shell model, and the available
literature [153]

4.10 Channel-shaped composite beam

In this section, a thin-walled channel-shaped composite beam as shown in Fig. 4.20
with a length of 2 m and clamped-clamped edge conditions is investigated. Table 4.31
reports the material properties for this composite beam example. For the cases of
[0], [30], [60], and [90] laminations, in Tables 4.32 and 4.33, the values of natural
frequencies based on different models and higher-order beam theories from [147]
are compared. It is indicated that the results obtained by the different methods agree
well. In Table 4.34, the first nine mode shapes of this beam using the CUF 1D model
with LE are displayed.
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Fig. 4.20 Geometry of thin-walled channel-shaped composite beam (dimensions in mm)

Table 4.31 Material properties of the channel-shaped composite beam [147] with clamped-
clamped edge conditions

E1 (GPa) E2 (GPa) G12 = G13 (GPa) G23 (GPa) ν12 ρ ( kg
m3 )

141.9 9.78 6.13 4.8 0.42 1445

Table 4.32 The first ten natural frequencies of the channel-shaped composite beam with
clamped-clamped edge conditions based on the different models and the literature

[0]lamination [30] lamination

Mode CUF- ABQ Ansys HOBT CUF- ABQ Ansys HOBT
number LE shell shell [147] [147] LE shell shell [147] [147]

Mode 1 15.93 15.90 15.90 15.93 6.82 6.75 6.75 8.39
Mode 2 31.11 32.40 34.80 32.69 18.79 18.60 18.61 23.13
Mode 3 43.78 43.70 43.71 43.89 26.30 27.53 27.75 37.27
Mode 4 68.68 71.03 72.93 71.64 36.82 36.46 36.47 45.32
Mode 5 72.27 72.65 75.53 73.10 50.61 50.48 56.31 55.81
Mode 6 85.47 85.34 - - 60.85 60.30 - -
Mode 7 116.24 119.31 - - 63.61 71.72 - -
Mode 8 140.52 140.34 - - 90.86 89.95 - -
Mode 9 175.39 178.83 - - 93.22 107.39 - -
Mode 10 193.81 195.43 - - 103.72 125.12 - -
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Table 4.33 The first ten natural frequencies of the channel-shaped composite beam with
clamped-clamped edge conditions based on the different models and the literature

[60]lamination [90] lamination

Mode CUF- ABQ Ansys HOBT CUF- ABQ Ansys HOBT
number LE shell shell [147] [147] LE shell shell [147] [147]

Mode 1 4.57 4.53 4.54 4.65 4.20 4.18 4.19 4.18
Mode 2 12.60 12.49 12.50 12.81 11.59 11.53 11.54 11.53
Mode 3 18.47 18.59 18.77 19.37 17.12 17.03 17.12 17.06
Mode 4 24.69 24.48 24.51 25.12 22.71 22.60 22.62 22.62
Mode 5 33.24 36.21 40.48 36.93 31.43 30.99 32.48 31.38
Mode 6 40.81 40.46 - - 37.54 37.36 - -
Mode 7 47.86 49.01 - - 44.61 44.23 - -
Mode 8 60.97 60.42 - - 56.08 55.79 - -
Mode 9 71.06 76.01 - - 66.81 66.10 - -

Mode 10 82.84 84.39 - - 78.32 76.83 - -
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Table 4.34 The first nine mode shapes of the channel-shaped composite beam with clamped-
clamped edge conditions based on the CUF 1D model with LE

Mode l Mode 2 Mode 3

Mode 4 Mode 5 Mode 6

Mode 7 Mode 8 Mode 9

The influence of axial loads on the variations of natural frequencies in a channel-
shaped composite beam with [0] lamination is evaluated in Fig. 4.21 by comparing
the results obtained using the proposed CUF 1D approach with LE to those ob-
tained using ABQ shell models. In the presented graphs, the variations of natural
frequencies with axial loads are compared to ABQ shell models for the first five
modes of this channel-shaped beam. It can be clearly noticed that the mentioned
approaches get identical results for the first five modes, and based on the VCT, the
critical buckling load may be determined as the load that causes the natural frequency
to be zero. For the sake of completeness, The DOF and element types of ABQ shell
and CUF 1D models employed for the box, I-shaped, and channel-shaped beams are
compared in Table 4.35.
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Fig. 4.21 The variations of natural frequencies with the axial loads for the channel-shaped
composite beam based on the CUF 1D model with LE and ABQ shell model

Table 4.35 The comparison of ABQ shell and CUF 1D models employed for the investigated
beam structures

Model DOF
Number Element

of elements type
ABQ shell-box beam 32832 1800 Quadratic S8R

ABQ shell-I-shaped bam 26748 1400 Quadratic S8R
ABQ shell-Channel-shaped beam 28572 1500 Quadratic S8R

CUF 1D-LE-box beam 18117 20B4 4-node beam
CUF 1D-LE-I-shaped bam 17019 20B4 4-node beam

CUF 1D-LE-Channel-shaped beam 15921 20B4 4-node beam

4.11 Channel-shaped composite beam with transverse
stiffeners

The preceding sections demonstrated the reliability and correctness of the proposed
CUF-based approach by showing several numerical evaluations and comparisons to
the existing literature and shell models for various thin-walled beams. To completely
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illustrate the CUF 1D method’s capability with the efficient LE, the final numeri-
cal study is conducted on a channel-shaped beam with transverse stiffeners. The
dimensions of the web and flanges of this channel-shaped beam are all a = b = 0.6 m.
The edge conditions of the beam structure are simply-supported at both ends. This
beam example measures l = 6 m and t = 0.03 m in length and thickness, respectively
(see Fig. 4.22). Table 4.36 summarizes the material properties of the investigated
composite beam.
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Fig. 4.22 Geometry of thin-walled channel-shaped composite beam (dimensions in mm)

Table 4.36 Material properties of the channel-shaped composite beam [144] with transverse
stiffeners and simply-supported edge conditions

E1 (GPa) E2 (GPa) G12 = G13 (GPa) G23 (GPa) ν12 = ν13 ν23 ρ ( kg
m3 )

144 9.65 4.14 3.45 0.3 0.5 1389

The first ten natural frequencies of the channel-shaped composite beam with
different number of transverse stiffeners based on the CUF 1D model with LE are
reported in Table 4.37. Moreover, Table 4.38 shows the corresponding first nine
mode shapes of this beam. It should be noted that due to the presence of transverse
stiffeners, the complexity of this beam structure is increased remarkably. Therefore,
many analytical models based on the beam theories fail to predict the dynamic
response accurately. However, by employing the present CUF-based method with
efficient LE, the values of natural frequencies and vibration mode shapes can be
assessed carefully. The first ten natural frequencies of a channel-shaped composite
beam with different number of transverse stiffeners are presented in Table 4.37.
Additionally, Table 4.38 illustrates the beam’s first three mode shapes. As can be
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seen in the mode shapes of this figure, the localized deformation along the length
of the beam are decreased as the number of stiffeners are increased. In fact, the
presence of stiffeners imposes some limitations for the localized deformations along
the beam that leads to the increase of buckling strength and natural frequency. For
instance, as will be further discussed in the following, the second and third modes
of the case with five stiffeners show highest buckling loads and natural frequencies.
Note that the existence of transverse stiffeners increases the complexity of this
problem remarkably. As a result, many analytical models based on beam theories
fail to effectively determine the dynamic response. However, by utilizing the current
CUF-based approach with efficient LE, it is possible to thoroughly calculate the
values of natural frequencies and assess vibration mode shapes.

Table 4.37 The first ten natural frequencies of the channel-shaped composite beam with
different number of transverse stiffeners based on the CUF 1D model with LE

Mode number No stiffener One stiffener Three stiffeners Five stiffeners

Mode 1 22.42 29.43 28.58 35.52
Mode 2 24.01 30.68 55.00 81.94
Mode 3 30.06 33.01 67.57 96.92
Mode 4 35.63 35.86 69.36 101.67
Mode 5 46.42 58.13 71.29 122.28
Mode 6 50.70 68.67 72.02 143.92
Mode 7 66.19 71.03 78.83 185.75
Mode 8 68.25 72.67 89.01 156.66
Mode 9 71.54 86.66 101.83 166.02
Mode 10 74.57 60.79 129.55 166.51

The final evaluations of the effects of axial loads on the variations of the first three
natural frequencies are given in Figs. 4.23 and 4.24 for the channel-shaped beam
with transverse stiffeners and [0] lamination. Note that Eqs. (4.4) are used in these
figures in order to normalize axial loads and natural frequencies. The beam without
any stiffener is compared to the beam with one stiffener in Fig. 4.23. Analogously,
Fig. 4.24 compares beams with three and five stiffeners. These figures illustrate
how the number of transverse stiffeners affects the buckling behavior and natural
frequencies of this beam structure. The third mode of the case with five stiffeners has
the highest natural frequency. It is worth mentioning that adding stiffeners alters the
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mode shapes and natural frequencies of the beam structure remarkably. As a result,
a mode-by-mode comparison may not be possible for the models with different
number of stiffeners. As seen in Fig. 4.23, the third mode of the model with one
stiffener has the highest natural frequency in the unloaded condition. However, it has
a substantially lower buckling strength than the second mode of the beam without
stiffener. Also, other examples from Fig. 4.24 could be the second and third modes
of the beam with five stiffeners, with the former exhibiting the highest buckling
strength and the latter exhibiting the highest natural frequency in the unloaded state.
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Table 4.38 The first nine mode shapes of the channel-shaped composite beam with simply-
supported edge conditions based on the CUF 1D model with LE

No transverse
stiffener Mode l Mode 2 Mode 3

One transverse
stiffener Mode 1 Mode 2 Mode 3

Three transverse
stiffeners Mode 1 Mode 2 Mode 3

Five transverse
stiffeners Mode 1 Mode 2 Mode 3



4.11 Channel-shaped composite beam with transverse stiffeners 111

Fig. 4.23 The comparison of natural frequencies variations for the channel-shaped beam
without stiffener and with one stiffener

Fig. 4.24 The comparison of natural frequencies variations for the channel-shaped beam with
three and five stiffeners
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4.12 Conclusions

In this chapter, an efficient CUF-based method to evaluate the vibrations and buckling
of thin-walled isotropic and composite beams under compression with different open
cross-sections has been presented. The effects of axial loads on the variations of the
beam structure’s natural frequencies have been evaluated. In order to demonstrate
the capabilities of the presented method, numerous comparisons of the CUF 1D
results with higher-order beam theories in the available literature and shell FE models
have been presented, and the consistency of results for both isotropic and composite
beams have been demonstrated. The following comments could be made according
to the results:

• The MAC analysis revealed that the number of related modes for classical
models such as Taylor order 1 is much less than that for other Lagrange models.
Indeed, classical beam theories eliminate a large number of modes in favor of
never-existing rigid cross-section modes.

• Although certain modes may seem to be identical in the MAC analysis, the
natural frequencies determined by using the two models may display significant
deviations. Therefore, it is very important to consider a structural theory that
is capable of assessing the problem’s eigenvalues and eigenvectors precisely.

• Many cross-sectional deformations can be detected only by using higher-order
and refined beam theories. In addition, the influence of compressive loads on
the variations of natural frequencies could be more significant by employing
the refined theories.

• As long as the initial buckling and vibration modes are similar; the VCT
may be used to estimate buckling loads based on the decrease in the natural
frequencies of the beam under progressive compressive loads.

• The advantages of the CUF 1D method with efficient LE were shown for a
more complex structural problem involving a channel-shaped composite beam
subjected to compression with different number of transverse stiffeners.

• It was shown that adding transverse stiffeners alters the mode shapes and
natural frequencies of the beam structure significantly. It was indicated that
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some models with higher natural frequencies in the unloaded condition of the
VCT graph did not necessarily exhibit high buckling strength.



Chapter 5

Physically and geometrically
nonlinear analysis of thin-walled
beam structures

5.1 Introduction

This chapter discusses two types of nonlinearity that are frequently encountered:
geometrical and material. The former is related to nonlinear strain-displacement
relationships, whereas the latter is owing to the nonlinear constitutive equations of
the material of the system. Several examples of plates and shells with nonlinearities
may be found in [163–166]. Many studies have been focused on the elastoplastic
analyses of beam-like structures [167–169]. Saje et al. [170] worked on the kinemat-
ically exact FE model for elastoplastic arbitrarily curved beams. A three-dimensional
elastoplastic shear flexible beam element was presented by Park and Lee [171] in
order to analyze geometrically nonlinear problems. By using thermodynamically
consistent three-dimensional constitutive laws for describing the material behav-
ior, Mata et al. [172] conducted an analysis of the beam structures with nonlinear
geometric and constitutive behavior. Pajunen [173] employed kinematically exact
finite beam element according to Reissner’s stress resultant theory in order to solve
large-deflection of elastoplastic beams. Battini and Pacoste [174] evaluated the
plastic instabilities of the beams with arbitrary cross-sections. In this regard, they de-
veloped a formulation for the three-dimensional co-rotational elastic beam elements
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with warping effects. Challamel et al. [175] focused on the plasticity collapse of
hardening-softening beams. The GBT was successfully used to assess the nonlinear
behavior of thin-walled structures [176, 177]. Abambres et al. conducted a struc-
tural analysis of elastoplastic thin-walled members [178, 179]. The same authors
[180] developed a GBT-based formulation for the physically nonlinear response of
thin-walled structures with isotropic hardening. The large deflection of elastoplastic
frame structures was studied in [181–184].

This chapter combines geometrical and material nonlinearities. The results
are shown for the beam structures with different cross-sections such as square,
C-shaped, and T-shaped. Equilibrium curves for C-shaped and T-shaped beams
are compared with the available literature. Additionally, the stress distributions
obtained by various structural theories using TE and LE are compared with three-
dimensional FE models. The isotropically work-hardening von Mises constitutive
model is used for the implementation of elastoplasticity theory, and the assumed
material behavior is represented by employing the labels elastic and elastoplastic. It
is demonstrated that although the DOF and the computational costs of the problems
are reduced significantly using the current method, the equilibrium curves and the
stress distributions of the structure are predicted accurately and precisely.

5.2 The von Mises model for elastoplasticity

In his section, the von Mises model implemented for the nonlinear framework
of metallic elastoplastic materials is provided [42, 185]. Based on the isotropic
work-hardening von Mises constitutive model, the stress-strain relation is given by:

σσσ = Ccep
εεε

e (5.1)

where εεεe is the elastic component of the strain tensor, and the consistent tangent
elastoplastic operator Ccep is a fourth-order tensor that describes the elastoplastic
nature of the material and relates the current values of stress and strain such that:

Ccep =
∂σσσn+1

∂εεεn+1
(5.2)

In the current implementation of the model, a piece-wise linear hardening can be
prescribed by providing a set of stress-strain points past the initial yield point.
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If the elastic stress exceeds the yield limit σy , the following scalar nonlinear
equation could be solved:

f̄ (∆γ) = qtrial
n+1 −3G∆γ −σy(ε̄

p
n +∆γ) (5.3)

where qtrial
n+1 is the trial von Mises stress at the increment tn+1, G is the shear modulus,

∆γ is the unknown, σy is the yield stress, ε̄
p
n is the isotropic hardening parameter at

the increment tn and f is the von Mises yield locus, expressed as:

f = q(σσσ)−σy(ε̄p) (5.4)

where

q(σσσ) =
√

1
2 [(σxx −σyy)

2 +(σyy −σzz)
2 +(σzz −σxx)

2 +6(σ2
xy +σ2

xz +σ2
yz)] (5.5)

Eq. (5.3) is solved using Newton-Raphson method and, with solution ∆γ at hand,
the stress and strain are updated:

Sn+1 = Strial
n+1

[
1− ∆γ3G

qtrial
n+1

]

σσσn+1 = Sn+1 +Ptrial
n I

εεεe
n+1 = 1

2GSn+1 +
1
3εεεe trial

v I

ε̄
p
n+1 = ε̄

p
n +∆γ

(5.6)

where Ptrial
n I is the volumetric stress at increment tn, and 1

3εεεe trial
v I is the volumetric

component of the elastic trial strain. Interested readers are referred to [41, 185] for
more details on the method of implementation.
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5.3 Square beam

In this section, a square cantilever beam is considered with a length of 1000 mm.
The beam is clamped at one end and subjected to an upward tip force at the free end.
The schematic figure of the edge and loading conditions of the square beam is shown
in Fig. 5.1. Note that all the dimensions in this figure are in mm. Furthermore, the
properties of the material for this case are mentioned in Table 5.1, where σ0 and Et

refer to the yield stress and tangent modulus of the material with bilinear stress-strain
relations, respectively.
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Fig. 5.1 Schematic view of the square beam

Table 5.1 Material properties of the square beam

Material property Value
Young’s modulus E=75 GPa
Tangent modulus Et=E/10
Poisson’s ratio ν=0.33
Yield stress σy=500 MPa

In Fig. 5.2, the convergence analysis of equilibrium curves is provided. In this
figure, the applied force is plotted versus the vertical displacement of the tip end of
the square beam with the coordinate of (0,1000,-10). As illustrated in this figure, for
the first analysis case, 20B4 elements are used along the beam axis, while 2L4, 1L9,
and 4L9 Lagrange elements are used over the cross-section of the beam. For the
second analysis case, the expansion over the cross-section is 1L9, while the beam
axis discretization is changing from 2B4 to 20B4. Due to the fact that 20B4 ensures
convergence, the remaining study focuses on the influence of structural theories
on the equilibrium curves and stress distributions, while maintaining a constant FE
mesh.
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Fig. 5.2 Convergence analysis of equilibrium curves for the square beam with elastic behavior
(a) effect of the structural theory (b) effect of the FE discretization

For the evaluations of stress distributions and equilibrium curves in the square
beam, different 3D FE models with coarse, medium, and fine meshes of solid
quadratic elements and CUF 1D beam models are considered. The degrees of
freedom (DOF) and computational time corresponding to each model are shown
in Table 5.2. The equilibrium curves of the square beam based on the different
structural theories are compared in Fig. 5.3 for the elastic and elastoplastic cases. In
Fig. 5.4 the two cases are compared in order to show the effect of plasticity on the
curves. Furthermore, a detailed view of plasticity initiation is illustrated in Fig. 5.4
which shows the force-displacement curves based on the CUF 1D and ABQ-3D
models with different material behaviors.
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Table 5.2 Computational size of the investigated models for the square beam

Model DOF Computational time (s)
ABQ-3D Coarse 1869 83
ABQ-3D Medium 11001 194
ABQ-3D Refined 44085 546
CUF 1D (LE-4L9) 4575 56
CUF 1D (LE-9L9) 8967 101
CUF 1D (LE-16L9) 14823 171
CUF 1D (TE: N=1) 549 138
CUF 1D (TE: N=2) 1098 483
CUF 1D (TE: N=3) 1830 2125
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Fig. 5.3 Equilibrium curves for the square beam based on various structural theories (a)
elastic material (b) elastoplastic material
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Fig. 5.4 Effect of plasticity on equilibrium curves for the square beam (a) complete view (b)
detailed view of plasticity initiation

The axial stress at the load of 1100 N along the middle line of the cross-section
(x=0) near the clamped edge (y=75 mm) is plotted in Fig. 5.5 based on either elastic
or elastoplastic behavior of the material. Moreover, the 2D contour plots of axial
stress for the corresponding cross-section are shown in Fig. 5.7 for the elastoplastic
material. The transverse shear stress at the load of 1100 N along the middle line of a
cross-section (x=0) near the clamped edge (y=75 mm) is plotted in Fig. 5.6 based
on either elastic or elastoplastic behavior of the material. Moreover, the 2D contour
plots of transverse shear stress for the corresponding cross-section are illustrated in
Fig. 5.8 for the elastoplastic material. Table 5.3 shows the corresponding vertical
displacement uz at the tip point of the beam (0,1000,-10), the axial stress σyy at the
point of (0,75,10), and the transverse shear stress σyz at the point of (0,75,0), for
each model of Table 5.2 at the load of 1100 N.
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Fig. 5.5 The axial stress at F=1100 N, x=0, y=75 mm of the square beam considering (a)
elastic behavior of material (b) elastoplastic behavior of material
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Fig. 5.6 The transverse shear stress at F=1100 N, x=0, y=75 mm of the square beam
considering (a) elastic behavior of material (b) elastoplastic behavior of material



122 Physically and geometrically nonlinear analysis of thin-walled beam structures

(a) (b)

Fig. 5.7 2D contour plots of σyy (Pa) with F=1100 N and y=75 mm of the square beam for
the elastoplastic material based on (a) CUF 1D (LE-16L9) (b) ABQ-3D refined models

(a) (b)

Fig. 5.8 2D contour plots of σyz (Pa) with F=1100 N and y=75 mm of the square beam for
the elastoplastic material based on (a) CUF 1D (LE-16L9) (b) ABQ-3D refined models
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Table 5.3 The values of uz at the tip point of the square beam (0, 1000, -10), σyy at (0, 75,
10), and σyz at (0, 75, 0), with F=1100 N

Elastic Elastoplastic

Model uz (mm) σyy (MPa) σyz (MPa) uz (mm) σyy (MPa) σyz (MPa)
ABQ-3D Coarse 328.4 -717.3 4.6 366.0 -632.0 2.8
ABQ-3D Medium 325.5 -719.9 5.5 363.4 -548.9 5.1
ABQ-3D Refined 324.5 -723.1 4.0 361.2 -553.0 4.8
CUF 1D (LE-4L9) 321.6 -633.0 4.2 356.9 -552.1 6.5
CUF 1D (LE-9L9) 321.7 -660.1 3.6 357.5 -544.9 3.8
CUF 1D (LE-16L9) 321.7 -672.9 3.8 357.8 -541.0 5.2
CUF 1D (TE: N=1) 323.8 -404.5 2.7 331.1 -405.2 2.7
CUF 1D (TE: N=2) 322.5 -540.6 2.9 370.6 -524.9 3.3
CUF 1D (TE: N=3) 322.0 -599.5 3.6 359.8 -547.7 3.5

The following comments can be made according to the results of this section:

1. The convergence analysis for the equilibrium curves reveals that at least 10B4
and 1L9 are essential for the force-displacement curves.

2. Despite the fact that CUF needs less DOF than 3D solid models, the equi-
librium curves based on CUF 1D LE models are very consistent with the
results obtained using 3D FE models.

3. All of the LE and TE models are capable of predicting the large displacements
of the compact square beam in the elastic range. Lower-order TE models (N
= 1, 2), on the other hand, are not precise enough when the load reaches the
yield limit.

4. Between the axial stress distributions obtained from lower-order models or
coarse 3D meshes and those obtained from refined models, there is a signifi-
cant difference around the bottom and top surfaces of the beam cross-sections.
Furthermore, such discrepancies seem to be more considerable in the elasto-
plastic case, which could be owing to the existence of local plasticity, and that
necessitates the use of more refined kinematics models. In fact, the impor-
tance of employing refined structural theories for the elastoplastic material is
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higher in comparison with the elastic one. Such requirements are even more
significant for the transverse shear stress evaluation.

5.4 C-shaped beam

In this section, a channel-shaped cantilever beam is considered with a length of
900 cm [168]. The beam is clamped at one end and subjected to an upward tip
force at the free end. The schematic figure of the edge and loading conditions of
the channel-shaped beam is shown in Fig. 5.9 (dimensions in cm). Moreover, the
properties of the material for this case are mentioned in Table 5.4, where σ0 refers to
the yield stress of elastic-perfectly plastic material [174].

Table 5.4 Material properties of the C-shaped beam

Material property Value
Young’s modulus E=210 GPa
Poisson’s ratio ν=0.3
Yield stress σy=360 MPa
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Fig. 5.9 Schematic view of the C-shaped beam, all dimensions are in cm

In Table 5.5 different numerical models employed for this beam example are
presented. It should be noted that for thin-walled structures with local deformation,
the use of TE models requires very high orders [24]. Therefore, LE is preferred here
for the expansion function over the beam cross-section. The transverse displacement
was assessed at the point (0, 900, -15) in order to plot the equilibrium curves. The
equilibrium curves for elastic and elastoplastic cases are compared in Fig. 5.10. The
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results in this figure are obtained from the CUF 1D model and reference numerical
results from the available literature [174]. The 3D contour plots of displacement
magnitude predicted by CUF 1D and 3D FE models for the elastoplastic case are
illustrated in Fig. 5.11.

Table 5.5 Computational size of the investigated models for the C-shaped beam

Model DOF Computational time (s)
ABQ-3D Coarse 9867 419
ABQ-3D Medium 125814 1193
ABQ-3D Refined 245049 2911
CUF 1D (LE-5L9) 6039 322
CUF 1D (LE-8L9) 9333 421
CUF 1D (LE-13L9) 14823 730
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Fig. 5.10 The comparison of equilibrium curves of the C-shaped beam with different material
behaviors and the available literature [174]
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(a) (b)

Fig. 5.11 3D contour plots of the displacement for the elastoplastic material, C-shaped beam
based on (a) CUF 1D (LE-13L9) (b) ABQ-3D refined models

The axial and transverse shear stresses at the fixed tip displacement of 100 cm
(uz=100 cm) along the middle line of the beam web section (x=0) near the clamped
edge (y=75 cm) are plotted in Figs. 5.12 and 5.13, respectively. Furthermore, for
the elastoplastic material, the 2D contour plots of axial and transverse shear stresses
for the corresponding cross-section are shown in Figs. 5.14 and 5.15, respectively.
Table 5.6 reports the axial stress σyy at the point of (0,75,15), and the transverse
shear stress σyz at the point of (0,75,0), for each model of Table 5.5 at the fixed tip
displacement of 100 cm (uz=100 cm).
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Fig. 5.12 The axial stress at x=0, y=75 cm for uz=100 cm, C-shaped beam, considering (a)
elastic material (b) elastoplastic material
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Fig. 5.13 The transverse shear stress at x=0, y=75 cm for uz=100 cm, C-shaped beam,
considering (a) elastic material (b) elastoplastic material

(a) (b)

Fig. 5.14 2D contour plots of σyy for uz=100 cm, at y=75 cm, elastoplastic material, C-shaped
beam based on (a) CUF 1D (LE-13L9) (b) ABQ-3D refined models
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(a) (b)

Fig. 5.15 2D contour plots of σyz for uz=100 cm, at y=75 cm, elastoplastic material, C-shaped
beam based on (a) CUF 1D (LE-13L9) (b) ABQ-3D refined models

Table 5.6 The values of σyy at (0, 75, 15), and σyz at (0, 75, 0), for the C-shaped beam based
on various structural theories and 3D FE discretizations for uz=100 cm

Elastic Elastoplastic

Model σyy (MPa) σyz (MPa) σyy (MPa) σyz (MPa)
ABQ-3D Coarse -254.5 9.8 -249.2 6.6
ABQ-3D Medium -249.5 11.6 -235.1 7.6
ABQ-3D Refined -249.3 11.1 -236.9 7.1
CUF 1D (LE-5L9) -251.1 6.4 -247.1 4.0
CUF 1D (LE-8L9) -249.9 11.7 -242.0 7.6
CUF 1D (LE-13L9) -251.0 11.4 -238.0 7.2

5.5 T-shaped beam

For the last assessment in this section, a T-shaped cantilever beam is assumed with a
length of 1200 mm [174]. As can be seen in Fig. 5.16, a transverse force (P) and a
lateral load F=P/1000 are applied to the free tip. In Table 5.7, the material properties
for this beam example are reported, where σ0 and Et refer to the yield stress and
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tangent modulus of the material with a bilinear stress-strain relation, respectively
[174].

Table 5.7 Material properties of the T-shaped beam

Material property Value
Young’s modulus E=70 GPa
Tangent modulus Et=E/10
Poisson’s ratio ν=0.33
Yield stress σy=500 MPa
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Fig. 5.16 Schematic view of the T-shaped beam, all dimensions are in mm

In Table 5.8, the DOF and computational size of the models considered for this
beam example are listed. Three CUF models with 5L9, 7L9, and 9L9 over the
cross-section are considered, and the 20B4 discretization is selected along the beam
axis. In Fig. 5.17, the equilibrium curve obtained by the CUF model with 9L9
along with reference numerical results from [174] are plotted. A detailed view of
the equilibrium curve is provided in Fig. 5.18. It can be understood that the findings
for the T-shaped model show characteristics that are comparable to those for the
C-shaped beam. Also, the graphs in the figures show the fact that the transverse and
lateral displacements are accurately predicted for the very large displacements and
rotations.
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Table 5.8 Computational size of the investigated models for the T-shaped beam

Model DOF Computational time (s)
ABQ-3D Coarse 9393 241
ABQ-3D Medium 18453 477
ABQ-3D Refined 60549 1459
CUF 1D (LE-5L9) 6039 142
CUF 1D (LE-7L9) 8235 364
CUF 1D (LE-9L9) 10431 484
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Fig. 5.17 Equilibrium curves obtained from the CUF 1D (LE-9L9) model considering elastic
and elastoplastic material behavior. Reference numerical results from [174]
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Fig. 5.18 Detailed view of the plasticity initiation for the T-shaped beam (a) force-vertical
displacement (uz) curve (b) force-lateral displacement (ux) curve

For a load value of 3400 N, the 3D contour plots of the displacement are indicated
in Fig. 5.19. In addition, for the same load value, the 2D contour plots of axial
and shear stress components through the beam cross-section near the clamped edge
(y=100 mm) are shown in Figs. 5.20 and 5.21, respectively. Table 5.9 reports the
transverse displacement uz at the free tip of the beam (0, 1200, 30), the axial stress
σyy at (0, 100, 33), and the shear stress σyz at (0, 100, 0), for a load value of 3400 N.
It should be noted that as a result of the significant gradients in stress distributions
over the cross-section, proper modeling of shear stress, in particular, necessitates the
use of fine 3D meshes or refined CUF 1D LE models.
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(a) (b)

Fig. 5.19 3D contour plots of the displacement at the load of 3400 N for elastoplastic material
based on (a) CUF 1D (LE-9L9) (b) ABQ-3D refined models

(a) (b)

Fig. 5.20 2D contour plots of σyy (Pa) at the load of 3400 N near the clamped edge (y=100
mm) for the elastoplastic material based on (a) CUF 1D (LE-9L9) (b) ABQ-3D refined
models
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(a) (b)

Fig. 5.21 2D contour plots of σyz (Pa) at the load of 3400 N near the clamped edge (y=100
mm) for the elastoplastic material based on (a) CUF 1D (LE-9L9) (b) ABQ-3D refined
models

Table 5.9 The values of uz at (0, 1200, 30), σyy at (0, 100, 33), and σyz at (0, 100, 0), T-shaped
beam based at the load of 3400 N

Elastic Elastoplastic

Model uz (mm) σyy (MPa) σyz (MPa) uz (mm) σyy (MPa) σyz (MPa)
ABQ-3D Coarse 122.2 264.7 -9.8 131.9 279.7 -10.7
ABQ-3D Medium 123.9 270.3 -10.4 133.4 286.9 -11.0
ABQ-3D Refined 126.5 279.5 -10.9 135.4 298.8 -12.4
CUF 1D (LE-5L9) 121.7 259.9 -10.5 128.8 281.7 -10.8
CUF 1D (LE-7L9) 123.0 261.5 -10.9 129.3 282.9 -12.1
CUF 1D (LE-9L9) 124.1 267.9 -11.4 130.6 285.4 -12.5

5.6 Conclusions

In this chapter, the CUF 1D model in combination with a Newton–Raphson lineariza-
tion scheme based on the path-following method with arc-length constraint has been
used to solve physically and geometrically nonlinear beam problems. Numerical
results have been presented for square, channel-shaped, and T-shaped beam struc-
tures with elastic and elastoplastic materials subjected to large deformations and
rotations. Two types of TE and LE cross-section functions have been used to model
the structure. The von Mises constitutive model as described in Section 5.2 has been
used for the implementation of elastoplasticity theory.
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• It has been demonstrated that for the beams with different cross-sections, the
equilibrium curves obtained by CUF 1D elastic and elastoplastic LE models
match well with the results of available literature and 3D solid models.

• The stress distributions have been investigated based on the different LE
models, and the results have been compared with 3D FE models.

• For the elastoplastic material, the plastic zones have been initiated near the
top and bottom surfaces of the beam near the clamped edge, where the values
of equivalent plastic strain have been increased due to the larger load factor
values.

• Although the DOF and the computational costs of the problems have been
reduced significantly using the current method, it can predict the equilibrium
curves and the stress distributions of the structure accurately and precisely.



Chapter 6

Large-deflection and post-buckling
analysis of flexible plates

6.1 Introduction

Plate structures are widely employed in a variety of engineering fields; for example,
rectangular cantilever plates in nano-resonators, thin circular plates in computer
hard disk drives, thin circular nano-plates of graphene in nano-devices [186]. Many
studies have been conducted on the large deflection of plates [187–190]. Turvey and
Osman [191] investigated the large deflection of Mindlin plates using the Dynamic
Relaxation method. The large deflection of variable-thickness plates was analyzed
[192]. Theoretical analyses for the large deflection of plates were proposed by Levy
[193, 194]. In order to predict the correct thickness stretching, Alijani and Amabili
[195] developed a numerical framework for nonlinear bending and vibration of
plates. Amabili et al. [196] carried out a study by higher-order shell theory with
thickness deformation as an independent parameter. Alijani and Amabili analyzed
the effect of thickness deformation in functionally graded rectangular plates [197].
Comprehensive reports on the buckling and post-buckling response of composite
plates were presented in [198, 199]. Librescu and Chang [200] worked on the
imperfection sensitivity and post-buckling of composite doubly-curved shallow
panels.

As a result of the availability of new components and manufacturing methods,
the usage of composite laminated structures has grown significantly, and they are
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now routinely employed in the fields of aeronautics, aerospace, automotive, and
construction engineering [201]. When made thin enough, composite laminates
may be designed to sustain substantial elastic displacements and rotations[202]. In
this context, new research trends are emerged for characterizing the geometrically
nonlinear response of composite structures [203–207]. Carrera and Kröplin [208]
used higher-order shear deformation theories for the large-deflection of composite
plates. Considering transverse shear and large rotations, Dash and Singh [209]
developed a formulation for the nonlinear bending of laminated plates. Shukla and
Nath [210] derived analytical solutions for composite plates with geometrically
nonlinear boundary value problems. A review of recent developments in FE analysis
of laminated plate structures was presented by Zhang and Yang [211]. Zhang
and Kim [212] conducted a nonlinear analysis of different laminated structures by
employing FSDT and a displacement-based three-node triangular plate element. Han
et al. [213] developed a hierarchical FE method for geometrically nonlinear analysis
of composite plates. Zhang and Kim [214] presented a displacement-based four-node
quadrilateral element in order to analyze the geometrically nonlinear response of
laminated plates. Sridhar and Rao [215] used the four-node quadrilateral composite
shell FE in order to investigate circular composite plates in large displacements.
A numerical method based on isogeometric analysis and the higher-order shear
deformation theory was proposed by Tran et al. [216]. Alijani and Amabili [217]
assessed geometrically nonlinear parametric instability of functionally graded plates.
Liew et al. [218] used a kp-Ritz method for the nonlinear flexural analysis of
plates. Reddy et al. [219] evaluated the influence of various geometrical and
loading parameters on the bending analysis of laminated composite plates. Based
on a discrete singular convolution approach, nonlinear analysis of thick composite
plates resting on nonlinear elastic foundations was presented in [220]. Coda et al.
[221, 222] developed FE formulation in order to study nonlinear response and correct
stress fields of laminated plates and shells. Nonlinear vibrations and stability of
shell and plate structures were investigated thoroughly by Amabili [223]. Interested
readers are referred to [224–226] for more information on the nonlinear response of
composite plates with the large displacements and rotations.

The post-buckling response of composite plates, which is one of the concerns
characterized by the geometrically nonlinear response, merits particular considera-
tion. This is the issue that has been addressed by many researchers [227–230]. For
instance, Leissa [231] reviewed the two-dimensional methods for the buckling analy-
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sis of laminated composite plates. In addition, Turvey and Marshal [232] presented
comprehensive studies on buckling and post-buckling of composite plates. A geomet-
rically nonlinear theory of isotropic symmetrically laminated plates was formulated
[233]. By developing an eight-node isoparametric plate FE, Sundaresan et al. [234]
analyzed the buckling and post-buckling response of typically two-dimensional thick
laminated plates. The influence of material nonlinearity on the post-buckling of
composite plates and shells was evaluated[235]. Amabili and Tajahmadi [236] con-
ducted a post-buckling analysis of isotropic and composite plate structures subjected
to thermal variations. A Ritz method was presented by Liew et al. [237] in order
to study the post-buckling response of two-dimensional laminated structures. Dash
and Singh [238] presented buckling and post-buckling analyses of laminated plates
with random system properties. Employing the finite strip method, the post-buckling
analysis of two-dimensional composite plates subjected to combined compressive
and shear loadings was presented [239].

The geometrically nonlinear response of isotropic and composite plates is investi-
gated in this chapter by using the CUF and arc-length approach with path-following
constraint. The nonlinear response and post-buckling of plates with high displace-
ments/rotations are studied in this context. As a result of using nonlinear CUF,
we are able to take into account various Green-Lagrange strain tensor components.
The Newton-Raphson linearization scheme is used to solve the large-deflection
and post-buckling problems for various symmetric and antisymmetric composite
plates. To show the effectiveness of the present CUF-based method, comprehensive
comparisons with existing literature or traditional FE solutions are presented.

6.2 Large-deflection response of square isotropic plates

This section makes use of the nonlinear strain-displacement equations found in
Table2.3 of Chapter 2. In this context, the first case is the isotropic square plate.
The plate dimensions are a=b=1.2 m, with a thickness-to-width ratio of h/a=0.02
and h/a=0.1 (thin and moderately thick plates). The plate is subjected to the large
deflections by a transverse uniform pressure, and the edges are fully clamped (CCCC).
The material is isotropic, with Young’s modulus of E=75 GPa and Poisson’s ratio of
ν=0.3, respectively. Fig. 6.1 illustrates the loading status and support conditions in
this example.
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Fig. 6.1 Square plate subjected to uniform pressure

The convergence analysis in this paper takes into account different mesh sizes
and expansion functions along the thickness direction. To begin, the number of plate
elements is set to 12x12 Q9, and the analysis is conducted to determine the theory
order through the thickness direction. The second analysis maintains the fixed order
of theory approximation (LD2) while varying the number of FEs. The findings are
shown in Fig. 6.2, which illustrates the vertical displacement at the centroid of a
moderately thick plate under various pressure loading conditions. According to the
results presented in this figure, for the subsequent analyses, 12x12 Q9 elements with
the LD2 CUF plate model are employed.
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Fig. 6.2 Convergence analysis for the CCCC moderately thick plate

In Fig. 6.3, the large-deflection equilibrium curves of a square plate exposed
to uniform pressure are presented using the full nonlinear, von Kármán, and linear
CUF plate models. Additionally, the findings are compared to those found in the
literature [191]. Fig. 6.3 illustrates the equilibrium curves for both the thin plate
(h/a = 0.02) and the moderately thick plate (h/a = 0.1). The findings indicate that
the model provided in this work is capable of reliably predicting large-deflection
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equilibrium curves. Additionally, by comparing the two depicted graphs, it is clear
that the influence of any geometrically nonlinear strain-displacement relations other
than von Kármán theory is negligible for thin plates. As a result, using von Kármán
theory in the large-deflection analysis of thin plates could be reliable. However, for
moderately thick plates, the inconsistencies between von Kármán theory and the full
nonlinear model are more considerable.
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(a) Thin plate (h/a = 0.02)
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Fig. 6.3 Large-deflection equilibrium curves of CCCC square plates based on different
nonlinear strain-displacement assumptions and the available literature [191]

To examine the impact of various nonlinear strain-displacement relations on
the equilibrium curves in more detail, nonlinear analysis is conducted using the
Pi j parameters established in the Chapter 2. The findings are displayed in Fig. 6.4.
This figure demonstrates that the Linear theory (Lin) and the full nonlinear theory
(FNL−vK) have the most substantial discrepancies when compared to other studied
theories. Indeed, the distinction between the von Kármán theory (vK), the full
nonlinear theory (FNL), and the various modifications that contain the von Kármán
terms (vK+T, vK+S, vK+IN, and vK+ALL) is not significant for the case of a plate
under bending.
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Fig. 6.4 Effect of nonlinear strain-displacement relations on the equilibrium curves in the
case of CCCC moderately thick square plate under uniform pressure

Moreover, for the aforementioned problem of bending a moderately thick plate,
the stress distributions are examined using several nonlinear theories. This compari-
son is presented for two fixed load and fixed displacement states in order to have a
better understanding of the influence of nonlinear strain-displacement relationships
on the axial and shear stress distributions. To begin, we study the through-the-
thickness distributions of the dimensionless transverse shear stress σxza2/(Eh2) at
the location (x = a/6, y = b/2) of CCCC square plates using several full nonlinear
plate models under a fixed load of Pza4

Eh4 = 200. As seen in Fig. 6.5, the LD1 and LD2
models are less accurate than the investigated nonlinear theories. Indeed, the LD1
and LD2 full nonlinear CUF plate models are incapable of predicting a physically ac-
ceptable shear stress distribution; however, the other higher-order CUF plate models
can accurately describe the quadratic shear stress distribution. Note that the prefixes
before LD in this figure refer to the number of elements in the thickness direction of
plate structure.
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Fig. 6.5 The distributions of the dimensionless transverse shear stress through the thickness
of CCCC moderately thick square plate at the point (x = a/6, y = b/2) and fixed load of
Pza4

Eh4 = 200

The thickness distributions of the dimensionless in-plane normal stress σxxa2/(Eh2)

at the middle point (x = a/2, y = b/2) of CCCC square plates based on different
geometrically nonlinear plate models at a fixed load of Pza4

Eh4 = 200 are shown in Fig.
6.6 for LD2 and LD3 plate models. The findings indicate that the difference in axial
stress predictions between the analyzed nonlinear theories is not substantial in the
case of a plate subjected to bending. As a consequence, both the LD2 and LD3 plate
models may provide valid findings for any theories that use von Kármán terms.
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Fig. 6.6 The distributions of the dimensionless in-plane normal stress through the thickness
of CCCC moderately thick square plate at the middle point (x = a/2, y = b/2) and fixed load
of Pza4

Eh4 = 200
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Through-the-thickness distributions of the dimensionless transverse shear stress
σxza2/(Eh2) at the point (x= a/6, y= b/2) of CCCC square plates based on different
geometrically nonlinear plate models at a fixed load of Pza4

Eh4 = 200 are shown in Fig.
6.7 according to the LD2 and LD3 The findings demonstrate that the LD3 nonlinear
plate model satisfies the traction-free boundary condition (σxz = 0) for the shear
stress at the bottom surface (z =−h/2).
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Fig. 6.7 The distributions of the dimensionless transverse shear stress through the thickness
of moderately thick square plate at the point (x = a/6, y = b/2) and fixed load of Pza4

Eh4 = 200

Afterwards, the influence of various approximation orders and nonlinear ge-
ometric assumptions on the stress distributions is explored in the case of a fixed
displacement of uz

h = 1.5. The through-the-thickness distributions of the dimension-
less in-plane normal stress 10σxx

E at the middle point (x = a/2, y = b/2) of CCCC
square plates based on different geometrically nonlinear plate models at the fixed
displacement of uz

h = 1.5 are depicted in Fig. 6.8 according to the LD2 and LD3 plate
models. This figure illustrates the fact that the linear theory and the full nonlinear
theories without von Kármán terms have the most substantial discrepancies when
compared to the other analyzed theories. Moreover, it can be inferred from this
figure that, in this particular case of the plate subjected to bending, there would be
a few differences between the predictions of shear stress made by the von Kármán
theory, the full nonlinear theory, and also various modifications that contain the von
Kármán terms.
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Fig. 6.8 The distributions of the dimensionless in-plane normal stress through the thickness
of CCCC moderately thick square plate at the middle point (x = a/2, y = b/2) and fixed
displacement of uz

h = 1.5

Fig. 6.9 depicts the through-the-thickness distributions of the dimensionless
transverse shear stress 100σxz

E measured at the point (x = a/6, y = b/2) of CCCC
square plates based on different geometrically nonlinear plate models at the fixed
displacement of uz

h = 1.5. The findings demonstrate that the LD3 nonlinear plate
model satisfies the traction-free boundary condition (σxz = 0) of the shear stress at
the bottom surface (z =−h/2). Furthermore, with the exception of the full nonlinear
theory, the differences between the shear stress predictions of the other studied
nonlinear theories are not substantial.

-0.4 -0.2 0.0 0.2 0.4
-4

-3

-2

-1

0
 Lin      vK      vK+S

 vK+IN  vK+T   vK+All   
 FNL    FNL-vK

(a)

10
0 
s x

z /
E

z/h

(a) LD2 plate model

-0.4 -0.2 0.0 0.2 0.4
-4

-3

-2

-1

0
 Lin      vK      vK+S

 vK+IN  vK+T   vK+All   
 FNL    FNL-vK

(b)

10
0 
s x

z /
E

z/h

(b) LD3 plate model

Fig. 6.9 The distributions of the dimensionless transverse shear stress through the thickness of
CCCC moderately thick square plate at the point (x = a/6, y = b/2) and fixed displacement
of uz

h = 1.5
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6.3 Post-buckling analysis of slender isotropic plates

Post-buckling analysis of slender plates is discussed in this section, which takes into
consideration a variety of edge and loading conditions for different nonlinear strain-
displacement relationships. When considering the first example, the dimensions of
the slender plates are a = 30 cm, b = 6 cm, and h = 0.6 cm, and the clamped edge
condition is in such a way that u = v = w = 0 at x = 0. The immovable simply-
supported edge condition satisfies u = v = w = 0 at z = 0 and x = 0, and movable
simply-supported edge condition ‘S1’ satisfies v = w = 0 at z = 0 and x = a. The
compression load is applied at the point (x = a, y = b/2, z = 0), and a small defection
load is utilized to provide a stable post-buckling nonlinear response. The material is
isotropic, with a Young’s modulus of E = 75 GPa and a Poisson’s ratio of ν = 0.316.

6.3.1 Validation

The comparison of post-buckling equilibrium curves is presented here for the LD2
full nonlinear and von Kármán models with the validated CUF beam models in
[43, 44, 70]. The first plate case has one clamped edge and three free edges (CFFF),
while the second one has two immovable simply-supported and movable simply-
supported edges in the opposite direction and two other free edges (SFS1F). As
depicted in Fig. 6.10, the equilibrium curves for both beams and slender plates are
seen to be accurate and highly correlated. Additionally, the figure shows that the von
Kármán theory is incapable of accurately predicting equilibrium curves in the beam
or plate LD2 models.
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(a) One clamped edge and three free edges
(CFFF)

(b) (Immovable simply-supported)-free-(movable
simply-supported)-free (SFS1F)

Fig. 6.10 Post-buckling equilibrium curves for slender plates subjected to an in-plane com-
pressive point load P based on plate and beam models

6.3.2 Post-buckling of slender plates with the (movable simply-
supported)-free-(movable simply-supported)-free (S1FS1F)
edge conditions

In this section, the post-buckling equilibrium curves and stress distributions of the
slender plate under the in-plane compressive point loads are investigated. The slender
plate has the length, width and thickness of a = 20 cm, b = 5 cm, and h = 0.4 cm,
respectively. The edge conditions for this case are (movable simply-supported)-free-
(movable simply-supported)-free (S1FS1F). The post-buckling equilibrium curves of
this case are shown in Fig. 6.11 based on different geometrically nonlinear CUF plate
models. The post-buckling equilibrium curves and stress distributions of the slender
plate under in-plane compressive loads are studied in this section. The slender plate
dimensions are a = 20cm (length), b = 5cm (width), and h = 0.4cm (thickness) with
the edge conditions (movable simply-supported)-free-(movable simply-supported)-
free (S1FS1F). Fig. 6.11 illustrates the post-buckling equilibrium curves for this
example using several geometrically nonlinear CUF plate models. The findings
demonstrate that only the full nonlinear model is capable of providing dependable
and accurate results for this example. In fact, the von Kármán theory and all other
modifications are unable to accurately estimate the post-buckling equilibrium curves.
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Fig. 6.11 Post-buckling equilibrium curves of S1FS1F slender plates under the in-plane
compressive point loads based on the different geometrically nonlinear CUF plate models

A comparison of the stress distributions for this case based on the various
nonlinear theories is carried out in order to get a better understanding of the influence
of different nonlinear strain-displacement relations on the axial and shear stresses.
Fig. 6.12 depicts the through-the-thickness distribution of the dimensionless in-
plane normal stress σxxbh2/(Pa) at the point (x = a/4, y = b/4) of S1FS1F slender
plates based on various geometrically nonlinear plate models at the fixed load of

Pa2

π2Elb
= 1.1. This study’s findings demonstrate that only the full nonlinear model can

provide dependable and precise results in this particular example of post-buckling.
As a matter of fact, based on the von Kármán theory and its modifications, the axial
stress distributions cannot be predicted precisely in this case. According to the
graphs, it is also clear that the choice of LD2 or LD3 has a negligible impact on the
outcomes of the axial stress evaluations.
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Fig. 6.12 The distributions of the dimensionless in-plane normal stress through the thickness
of S1FS1F slender plate at the point (x = a/4, y = b/4) and fixed load of Pa2

π2Elb
= 1.1

Fig. 6.13 depicts the through-the-thickness distributions of the dimensionless
transverse shear stress σxzh2/P at the point (x = a/4, y = b/4) of S1FS1F slender
plates based on different geometrically nonlinear plate models at a fixed load of

Pa2

π2Elb
= 1.1 for the LD2 plate model. The findings demonstrate that there is a signifi-

cant difference between the shear stress results estimated by the full nonlinear theory
and those obtained by other nonlinear plate theories such as the von Kármán and its
modifications. Furthermore, neither the linear theory nor the full nonlinear theory
without von Kármán terms can accurately assess the shear stress distributions for the
LD2 or LD3 plate models, regardless of the plate model.
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Fig. 6.13 The distributions of the dimensionless transverse shear stress through the thickness
of S1FS1F slender plate at the point (x = a/4, y = b/4) and fixed load of Pa2

π2Elb
= 1.1
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6.3.3 Post-buckling of slender plates with all edges simply-supported
(S1S2S1S2)

For this example, a line compression load is applied to the plate edges in order
to evaluate the influence of the edge and loading conditions on the post-buckling
analysis of plates. All the plate edges are simply-supported, and a line compression
load as shown in Fig. 6.14 is applied. The resultant force of P is applied to the
middle line of the cross-section. It should be noted that the edge conditions along
the length fulfill w = 0 at z = 0 and y = 0,b. Refer to Fig. 6.14 for a representation
of the post-buckling nonlinear response of the thin plate based on several nonlinear
strain-displacement relationships for this example.

Fig. 6.14 Post-buckling equilibrium curves of slender plates with all edges simply-supported
(S1S2S1S2) under the in-plane compressive line loads based on the different geometrically
nonlinear CUF plate models

As a consequence of these findings, it is clear that only the full nonlinear model
provides dependable and correct results for this case. Nevertheless, the difference
between the von Kármán theory and other modifications is not as substantial as the
difference between the two nonlinear theories discussed in Section 6.3.2 (see Fig.
6.11). The von Kármán theory and all other modifications are unable to estimate
the post-buckling equilibrium curves as correctly and precisely as the full nonlinear
theory in this particular plate example. According to mentioned points, the proper
assumption of nonlinear geometric relations based on the edge and loading conditions
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of the plate structure should be taken into account carefully in order to assess the
accurate and precise post-buckling curves of the structure.

6.4 Large-deflection of composite plates subjected to
transverse pressure

In this section, the large-deflection of composite plates under uniform transverse
pressure is evaluated. In this regard, cross-ply laminate [0/90]s with different edge
conditions, angle-ply laminate [45/-45/0/0/45/-45/90/90]s with clamped edge condi-
tions, and cross-ply laminates [0/90] with clamped edge conditions are investigated.

6.4.1 Cross-ply [0/90]s laminate with different edge conditions

For this plate example, a 4-layer [0/90]s square composite plate is considered. The
plate has a width of a = b = 30.48 cm and the thickness of h = 7.62 mm. The plate
is under the large-deflection due to a transverse uniform pressure. Two kinds of
edge conditions are taken for this case: (a) all edges fully clamped that satisfies
u = v = w = 0 at x = 0,a and y = 0,b, (b) all edges simply-supported that fulfills
u = v = w = 0 at x = 0,a, z = 0 and y = 0,b, z = 0. The material properties for this
composite plate are reported in Table 6.1.

Table 6.1 Material properties of the investigated 4-layer [0/90]s composite plate [224]

E1 (GPa) E2=E3 (GPa) G12=G13 (GPa) ν12=ν13

12.60 12.62 2.15 0.2395

Convergence studies, as seen in Fig. 6.15, are used to assess the impacts of
mesh approximation and kinematic expansion in this study. To begin, the finite
plate elements are 4×4Q9, 8×8Q9, and 12×12Q9, respectively, with each layer
having a fixed LD1 theory approximation order. Then, using the 12×12Q9 in-plane
mesh approximation, the order of kinematic expansion along the thickness direction
is altered from LD1 to LD3. Additionally, the transverse displacement values for
different models and loads are presented in Table 6.2, along with the total degrees of
freedom (DOF).
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As seen in Fig. 6.15 and Table 6.2, convergence is obtained for nonlinear response
curves based on the 12×12Q9-LD1 model, which will be utilized to analyze the
equilibrium curves of the aforementioned composite plate. Additionally, the findings
indicate that the difference between the equilibrium curves for the analyzed CUF
plate models with different expansion orders along the thickness is negligible.
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Fig. 6.15 Convergence analysis for a 4-layer [0/90]s composite plate under uniform transverse
pressure with clamped edge conditions at the center of the composite plate

Table 6.2 Equilibrium points of nonlinear response curves of a 4-layer [0/90]s composite
plate under transverse pressure with clamped edge conditions

CUF plate model DOF
uz/h

pza4/E2h4 = 4000 pza4/E2h4 = 16000

4 × 4Q9-LD1 1215 4.44 7.16
8 × 8Q9-LD1 4335 4.42 7.03

12 × 12Q9-LD1 9375 4.41 6.98

Fig. 6.16 depicts the equilibrium curves for this composite plate with boundary
conditions of clamped or simply-supported. The figure shows the normalized values
of the displacement at the central point of the plate versus the normalized values
of the applied transverse pressure. The figure shows that the equilibrium curves
predicted by the CUF linear and full nonlinear plate models are consistent with those
found in the published literature utilizing the first-order shear deformation theory
(FSDT) [224]. Furthermore, the difference between linear and nonlinear models
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becomes more substantial when the magnitude of the transverse pressure is increased.
It should be noted that the load-carrying capability of the composite plate under
the clamped edge conditions is greater than that of the composite plate under the
simply-supported edge conditions.

The displacement values based on different CUF 2D models and solutions in the
available literature [224] are reported in Table 6.3 at a fixed load of Pza4

E2h4 = 100 for the

clamped edge conditions, and at a fixed load of Pza4

E2h4 = 25 for the simply-supported
edge conditions. As shown in this table, the displacement values of the CUF 2D full
nonlinear and linear models match well with the corresponding values of the FSDT
nonlinear and linear models, respectively.
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(a) Clamped edge conditions
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Fig. 6.16 The equilibrium curves for a 4-layer [0/90]s composite plate under uniform trans-
verse pressure with different edge conditions based on the CUF 2D and Ref. [224]

Table 6.3 The comparison of displacement values for the 4-layer [0/90]s composite plates
under transverse pressure at the fixed load of Pza4

E2h4 = 100 with clamped edge conditions, and

at the fixed load of Pza4

E2h4 = 25 with simply-supported edge conditions

Model
Clamped Simply-supported

uz (mm) uz (mm)

Full NL 12×12Q9-LD1 7.57 5.62
Ref. [224] - FSDT NL 7.71 5.67
Linear 12×12Q9-LD1 11.81 10.86

Ref. [224] - FSDT Linear 12.19 11.21
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6.4.2 [45/-45/0/0/45/-45/90/90]s laminate with clamped edge con-
ditions

A square composite plate with 16 layers [45/-45/0/0/45/-45/90/90]s is considered
for this analysis case. The plate has a width of a = b = 25.4 cm and the thickness of
h = 2.11 mm. A schematic view of this composite plate is shown in Fig. 6.17. The
plate is subjected to large-deflection due to a transverse uniform pressure, and the
edges are fully clamped that u = v = w = 0 at x = 0,a and y = 0,b. In Table 6.4, the
material properties for this composite plate are reported.
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Fig. 6.17 Schematic view of a 16-layer [45/-45/0/0/45/-45/90/90]s composite plate

Table 6.4 Material properties of the 16-layer [45/-45/0/0/45/-45/90/90]s composite plate [240]

E1 (GPa) E2=E3 (GPa) G12=G13 (GPa) G23 (GPa) ν12=ν13

131 13.03 6.41 4.72 0.38

Fig. 6.18 shows the convergence analysis for this case. First, the plate FEs are
4×4Q9, 8×8Q9, and 12×12Q9 with the fixed LD1 theory approximation order.
Then, the theory order along the thickness direction is changed from LD1 to LD3,
while the plate FEs are fixed at 12x12Q9. As can be seen in this figure, the conver-
gence is achieved for the 12x12Q9-LD1 model. Furthermore, the results show that
the difference between the equilibrium curves for the investigated theory approxi-
mations is not significant for the case of the plate under bending. Furthermore, the
transverse displacement values for different CUF plate models and the related DOF
are listed in Table 6.5.
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Fig. 6.18 Convergence analysis for a 16-layer [45/-45/0/0/45/-45/90/90]s composite plate
under uniform transverse pressure with clamped edge conditions

Table 6.5 Equilibrium points of nonlinear response curves of a 16-layer [45/-45/0/0/45/-
45/90/90]s composite plate under uniform transverse pressure with clamped edge conditions

CUF plate model DOF
uz/h

pza4/E2h4 = 400 pza4/E2h4 = 1600

4 × 4Q9-LD1 4131 0.81 1.71
8 × 8Q9-LD1 14739 0.89 1.80

12 × 12Q9-LD1 31875 0.90 1.82

For this composite plate, the equilibrium curves are shown in Fig. 6.19, which
plots the normalized values of the displacement in the middle point of the plate
versus the normalized values of the applied transverse pressure. As shown in this
figure, the equilibrium curves obtained by the CUF linear and full nonlinear models
match well with the corresponding values from the available literature [240–242].
As can be seen in the figure, the difference between linear and nonlinear models is
more significant as the transverse pressure value is increased.
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Fig. 6.19 The equilibrium curves for the 16-layer [45/-45/0/0/45/-45/90/90]s composite plate
based on the CUF 2D and the available literature[240, 242]

6.4.3 Cross-ply [0/90] and [0/90]3 laminates with clamped edge
conditions

The last large-deflection cases are 2-layer [0/90], and 6-layer [0/90]3 square com-
posite plates with the width of a = b = 30.48 cm and the thickness of h = 2.44 mm.
The plates are subjected to the large-deflection due to a uniform transverse pressure,
and the edges are fully clamped such that u = v = w = 0 at x = 0,a and y = 0,b. The
material properties for the two composite plates are shown in Table 6.6.

The large-deflection examples in this section correspond to 2-layer [0/90] and
6-layer [0/90]3 square composite plates with a width of a = b = 30.48 cm and a
thickness of h = 2.44 mm. A uniform transverse pressure causes the large-deflection
in the plates, and the edges are fully clamped such that u = v = w = 0 at x = 0,a and
y = 0,b and u = v = w = 0. The material properties of the two composite plates are
listed in Table 6.6.

Table 6.6 Material properties of a 2-layer [0/90] composite plate [224]

E1 (GPa) E2=E3 (GPa) G12=G13 (GPa) G23 (GPa) ν12=ν13

275.79 6.89 4.13 3.44 0.25
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The convergence study seen in Fig 6.20 is used to assess the impact of in-
plane mesh and kinematic expansion approximations. To begin, the finite plate
elements are 2×2Q9, 4×4Q9, and 8×8Q9 in size, with each layer having a fixed
LD1 kinematic approximation order. The theoretical expansion order is then altered
from LD1 to LD3, but the finite plate elements remain fixed at 8×8Q9. Additionally,
the transverse displacement values for several CUF plate models are included in
Table 6.7, along with the DOF associated with each model. As seen in Fig. 6.20,
convergence is obtained at least for the 4×4Q9 plate model with LD1 kinematic
approximations.
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Fig. 6.20 Convergence analysis for a 2-layer [0/90] composite plate under uniform transverse
pressure with clamped edge conditions

Table 6.7 Equilibrium points of nonlinear response curves of a 2-layer [0/90] composite plate
under uniform transverse pressure with clamped edge conditions

CUF plate model DOF
uz/h

pza4/E2h4 = 50000 pza4/E2h4 = 250000

2 × 2Q9-LD1 225 4.61 7.80
4 × 4Q9-LD1 729 4.18 7.07
8 × 8Q9-LD1 2601 4.17 7.05

The equilibrium curves for 2-layer [0/90] and 6-layer [0/90]3 composite plates
subjected to clamped edge conditions are shown in Fig. 6.21, which plots the normal-
ized values of the displacement at the center of the plate versus the normalized values
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of the applied transverse pressure. It is evident in this figure that the equilibrium
curves obtained by the CUF linear and full nonlinear plate models provide excellent
predictions compared with the solutions in the available literature using the FSDT
theory [224]. In addition, the load-carrying capacity of the composite plate with 6
layers is higher than that of the composite plate with 2 layers.

Fig. 6.21 depicts the equilibrium curves for the 2-layer [0/90] and 6-layer [0/90]3

composite plates subjected to clamped edge conditions. The equilibrium curve
for the 2-layer [0/90] and 6-layer [0/90]3 composite plates subjected to clamped
edge conditions. This figure clearly illustrates that the equilibrium curves provided
by the CUF linear and full nonlinear plate models give good predictions when
compared to the solutions in the available literature obtained by the FSDT theory
[224]. Furthermore, the load-carrying capacity of the composite plate with 6 layers is
greater than that of the composite plate with 2 layers. In Table 6.3 the displacement
values based on the different CUF 2D plate models are compared with the results
in the available literature [224] for the 2-layer [0/90] composite plate at the fixed
load of Pza4

E2h4 = 500, and for the 6-layer [0/90/0/90/0/90] composite plate at the fixed

load of Pza4

E2h4 = 1500. Based on Table 6.3, the displacement values of the CUF linear
and Full nonlinear plate models correlate reasonably well with those obtained by the
FSDT nonlinear and linear models, respectively.
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Fig. 6.21 The equilibrium curves for 2-layer [0/90] and 6-layer [0/90]3 composite plates
under uniform transverse pressure with clamped edge conditions based on the CUF 2D and
Ref. [224]
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Table 6.8 The displacement values based on different methods at the fixed load of Pza4

E2h4 = 500

for the 2-layer [0/90] composite plate, and at the fixed load of Pza4

E2h4 = 1500 for the 6-layer
[0/90]3 composite plate

Model
2-layer [0/90] 6-layer [0/90/0/90/0/90]

uz (mm) uz (mm)

Full NL 8×8Q9-LD1 1.79 2.45
Ref. [224] - FSDT NL 1.78 2.43
Linear 8×8Q9-LD1 3.57 4.12

Ref. [224] - FSDT Linear 3.52 4.11

6.5 Post-buckling of composite plates under in-plane
compressive loads

In this section, the post-buckling behavior of composite plates under in-plane com-
pressive loads is investigated. In this regard, the cross-ply rectangular laminate
[0/90/0/90], cross-ply laminates [0/90...], angle-ply laminate [45/-45/-45/45], and
cross-ply laminate [0/90] with different edge and loading conditions are evaluated,
and the post-buckling responses of composite plates are compared in different states.

6.5.1 Cross-ply [0/90]2 rectangular laminate with simply-supported
edge conditions

This post-buckling example corresponds to a 4-layer [0/90]2 rectangular composite
plate. The structure dimensions are a = 20 cm (length), b = 5 cm (width), and
h = 2 mm (thickness). The plate is compressed along the x-axis, Nx (force per unit
width), as shown in Fig. 6.23. The edges are simply-supported in such a manner that
one set of opposite edges along width x = 0,a satisfies v = w = 0 (S1 in Fig. 6.23),
while the other set of opposite edges along the length y = 0,b satisfies w = 0 at z = 0
(S2 in Fig. 6.23). Additionally, a constraint condition fulfilling u = v = 0 at the
plate’s center point is employed to prevent the plate’s rigid-body motion. Table 6.9
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and Fig. 6.23 show the material properties, loading, and edge conditions for this
composite plate example.

Table 6.9 Material properties of a 4-layer [0/90]2 composite plate

E1 (GPa) E2=E3 (GPa) G12=G13 (GPa) G23 (GPa) ν12=ν13

220 5.5 3.3 2.75 0.25

The convergence analysis of the equilibrium curves for this composite plate is
shown in Fig. 6.22. To assess the influence of in-plane mesh and kinematic expansion
approximations, the finite plate elements are first assumed to be 10×2Q9, 20×5Q9,
and 40×10Q9 with a fixed LD1 kinematic expansion for each layer. The expansion
order is then altered from LD1 to LD3, with the finite plate element set at 20×5Q9.
Additionally, Table 6.10 presents transverse displacement data for several CUF plate
models and loads. It can be understood from the figure that the convergence is
obtained at least for the 20×5Q9-LD1 plate model. Thus, as seen in Fig. 6.22 and
Table 6.10, the nonlinear response curves are converged when the 20×5Q9-LD1
plate model is employed.
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Fig. 6.22 Convergence analysis for a cross-ply [0/90]2 laminate under in-plane compressive
line loads in the x-axis direction with simply-supported edge conditions
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Table 6.10 Equilibrium points of nonlinear response curves of a cross-ply [0/90]2 laminate
under in-plane compressive line loads in the x-axis direction with simply-supported edge
conditions

CUF plate model DOF
uz/h

Nxba/E2h3 = 200 Nxba/E2h3 = 400

10 × 2Q9-LD1 1575 0.731 1.618
20 × 5Q9-LD1 6765 0.859 1.865

40 × 10Q9-LD1 25515 0.859 1.865

For a cross-ply [0/90]2 composite plate, the equilibrium curves derived using
the CUF 2D full nonlinear model, the ABQ 2D shell model, and the ABQ 3D
solid model are shown in Fig. 6.23. As seen in this figure, the equilibrium curves
calculated using the CUF 2D full nonlinear model match well with those obtained
using the ABQ 3D solid model. On the contrary, the ABQ 2D shell model predicts
accurate results only for small or moderate displacements, whereas the discrepancy
becomes more evident for high displacements. It should be noted that a fine mesh
utilizing C3D20R elements is employed in the nonlinear analysis using the ABQ 3D
solid model.
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Fig. 6.23 The comparison of equilibrium curves for the cross-ply [0/90]2 laminate based on
the CUF 2D full nonlinear model (20×5Q9-LD1), ABQ 2D NL model (60×15 S8R) and
ABQ 3D NL model (60×15×4 C3D20R)
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The deformed configurations for the mentioned rectangular composite plate
at the fixed load of Nxba

E2h3 = 300 are shown in Fig. 6.24. The results are obtained
based on the CUF 2D full nonlinear model (20×5Q9-LD1), the ABQ 2D shell
model (60×15 S8R), and the ABQ 3D solid model (60×15×4 C3D20R). This figure
demonstrates that the buckling pattern and displacement values indicated by the
CUF 2D model are consistent with those predicted by the ABQ models. Table 6.11
reports the displacement values at the mentioned load and the corresponding linear
buckling loads evaluated by each one of the three models. It can be comprehended
that although the DOF and the computational costs of the problem are reduced
significantly using the current CUF 2D model, it offers reliable and accurate results
that match well with the ABQ models.
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Fig. 6.24 The comparison of displacement contours at the fixed load of Nxba
E2h3 = 300 for a

cross-ply [0/90]2 laminate based on (a) CUF 2D full nonlinear 20×5Q9-LD1 model, (b)
ABQ 2D NL 60×15 S8R model and (c) ABQ 3D NL 60×15×4 C3D20R model
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Table 6.11 The comparison of displacement values at the fixed load of Nxba
E2h3 = 300 and the

normalized linear buckling loads for a cross-ply [0/90]2 laminate

Model DOF uz (mm) Linear Buckling Load (N/m)

CUF 2D Full NL 20×5Q9-LD1 6765 1.422 503360
ABQ 2D NL 60×15 S8R 17106 1.134 497658

ABQ 3D NL 60×15×4 C3D20R 24993 1.428 498976

6.5.2 Cross-ply [0/90]n square laminates with simply-supported
edge conditions

In this section, the cross-ply [0/90]n composite square plates are evaluated [224].
Note that the number of [0/90] layers are denoted by subscript n. This structure
has the dimensions of a = b = 1 m and h = 2 mm. The plate is under a uniformly
distributed in-plane compressive line load Ny (force per unit length). As can be seen
in Fig. 6.26, the edge conditions are simply-supported in such a way that one set of
opposite edges x = 0,a satisfy v = w = 0, and the other set of opposite edges y = 0,b
fulfill u = w = 0. The material properties of this composite plate are reported in
Table 6.12.

Table 6.12 Material properties of a [0/90]n composite plate [224]

E1 (GPa) E2=E3 (GPa) G12=G13 (GPa) G23 (GPa) ν12=ν13 ν23

250 6.25 5.125 3.25 0.24 0.49

The convergence analysis of the equilibrium curves for this composite plate
structure is provided in Fig. 6.25. In addition, the transverse displacement values
for different CUF plate models and loads are listed in Table 6.13. It can be noted
from Fig. 6.25 and Table 6.13 that the convergence is obtained at least for the
12×12Q9-LD1 model.



162 Large-deflection and post-buckling analysis of flexible plates

0.0 0.5 1.0 1.5 2.0 2.5
0

5

10

15

20

25

30

35

40

N
ya

2 /(
E
2h

3 )

uz /h

 6x6Q9-LD1
 9x9Q9-LD1
 12x12Q9-LD1
 18x18Q9-LD1

Fig. 6.25 Convergence analysis of the in-plane mesh approximation for a cross-ply [0/90]
laminate under in-plane compressive line loads in the y-axis direction with simply-supported
edge conditions

Table 6.13 Equilibrium points of nonlinear response curves of a cross-ply [0/90] laminate
under in-plane compressive line loads in the y-axis direction with simply-supported edge
conditions

CUF plate model DOF
uz/h

Nya2/E2h3 = 15 Nya2/E2h3 = 35

6 × 6Q9-LD1 1521 0.90 1.97
9 × 9Q9-LD1 3249 0.97 2.11

12 × 12Q9-LD1 5625 1.01 2.19
18 × 18Q9-LD1 12321 1.03 2.20

In Fig. 6.26, the equilibrium curves found using the CUF 2D full nonlinear
model and solutions from the existing literature are compared. The horizontal lines
in this figure represent the relevant linear buckling load calculated using the CUF. It
can be noticed from Fig. 6.26 that the equilibrium curves obtained by the CUF 2D
full nonlinear model correlate well with those available in the literature [224]. The
findings demonstrate that when the plate thickness is kept constant, increasing the
layers number of the composite plate structure increases the structural stiffness and
the load-carrying capability of the plate structure. Additionally, the linear buckling
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strength of the [0/90]4 plate with 8 layers is dramatically higher than the one for
[0/90]1 plate with 2 layers.

It is noted from Fig. 6.26 that no exact buckling load exists for the [0/90]n

composite plate structure based on the CUF full nonlinear plate model. This is
because the antisymmetric composite laminate is under in-plane compressive loads.
The buckling load predicted by the linear buckling analysis is much higher than
that based on the full nonlinear plate model. Therefore, the linear buckling analysis
cannot be utilized to calculate the buckling load of the antisymmetric plate structure
due to the curvature introduced by the in-plane compressive loads. Additionally, it
is clear that the linear buckling strength of the [0/90] composite plate is much less
than that of all other composite plates studied. As seen in Fig. 6.26, there is no exact
buckling load for the [0/90]n composite plate structure. As a result of the curvature
introduced by the in-plane compressive loads for this antisymmetric composite
laminate, the linear buckling analysis predicts a substantially larger buckling load
than the full nonlinear plate model.

Fig. 6.26 The equilibrium curves for different cross-ply [0/90]n laminated plates based on
the CUF 2D full nonlinear 12×12Q9-LD1 model and Ref. [224]
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6.5.3 Angle-ply [45/-45]s laminate with simply-supported edge
conditions

In this section, a composite square plate [45/-45]s subjected to the combined load-
ing [240] is investigated. The plate width and thickness are a = b = 0.25 m and
h = 2.5 mm, respectively. The composite plate is assumed to have different loading
conditions including the combination of uniformly distributed in-plane compressive
biaxial line loads of Nx and Ny (Nx = Ny), the in-plane shear load of Nxy = Nx, and
the uniform transverse pressure of Pz = 0.1Nx. For this plate example, the edge
conditions are assumed to restrain all the transverse deflections at the edges. A
schematic view of the loading conditions and the material properties of the investi-
gated composite plate are shown in Fig. 6.27 and Table 6.14, respectively.

Table 6.14 Material properties of a 4-layer [45/-45]s composite plate [240]

E1 (GPa) E2=E3 (GPa) G12=G13 (GPa) ν12=ν13

206.9 5.2 2.6 0.25

x

y
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Nxy

Ny

Pz

Transverse Pressure

Fig. 6.27 Combined loading of a laminated composite plate: negative in-plane shear, in-plane
compression, and the uniform transverse pressure [240]

In Fig. 6.28, the convergence analysis of the equilibrium curves is given, which
plots the normalized values of the displacement in the middle point of the plate
against the values of the loading factor (λ ). Fig. 6.28 shows that the convergence is
achieved at least for the 12×12Q9-LD1 plate model. As can be seen in Fig. 6.29, the
deflection in the center of the laminate is increased with the load after the bifurcation
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point. The findings demonstrate that the direction of the applied shear loading
has a significant impact on the post-buckling behavior of the angle-ply composite
plate; for instance, the plate with negative shear loading shows higher stiffness and
load-carrying capability.
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Fig. 6.28 Convergence analysis for an angle-ply [45/-45]s laminate under the combined
loading with simply-supported edge conditions

Fig. 6.29 The equilibrium curves based on the values of loading factor λ for an angle-ply
[45/-45]s laminate under different combined loadings with simply-supported edge conditions

Fig. 6.30 depicts the equilibrium curves for this angle-ply composite plate under
various combined loadings. This graph plots the normalized values of the displace-
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ment in the middle point of the plate versus the normalized values of the applied
compressive line load in the x-axis direction. The associated linear buckling loads
calculated by the CUF are shown by the horizontal lines in this figure. Based on the
results of the linear buckling analysis shown in Fig. 6.30, it can be concluded that,
for this symmetric composite structure, the buckling loads predicted by the linear
buckling analysis are nearly identical to those predicted by the CUF full nonlinear
plate model. Hence the linear buckling analysis can be used to predict the buckling
load of the symmetric composite structure, which can then be used to design the
composite plate structure. The linear buckling load of the angle-ply plate with
negative shear is also greater than the load of the other examples, demonstrating the
previously indicated fact that the angle-ply plate with negative shear loading has
more stiffness and load-carrying capacity. Finally, it should be underlined that while
the transverse pressure is relatively small in comparison with the in-plane loads,
the equilibrium curves with transverse pressure eventually approach those without
transverse pressure when the loading is increased continuously.
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Fig. 6.30 The equilibrium curves for an angle-ply [45/-45]s laminate under different combined
loadings with simply-supported edge conditions
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6.5.4 Cross-ply [0/90] square laminate with different edge condi-
tions

For the last post-buckling example, the influence of different edge conditions on
the post-buckling nonlinear response of the cross-ply composite plate under in-
plane compressive loads is shown. This problem corresponds to a cross-ply [0/90]
square plate with different edge conditions [237]. This dimensions of the plate
structure are a = b = 1 m and h = 1 cm. Firstly, a uniformly distributed in-plane
compressive line load in the x-axis direction Nx is applied to the plate. Then, for the
other analysis case, a uniformly distributed in-plane compressive line load in the
y-axis direction Ny is applied to the plate structure. The assumed edge conditions
include SSSS, SSCC, SSSC, SSFC, and SSFS. Note that the letters "S", "C", and
"F" for the edge conditions represent simply-supported, clamped, and free edge
conditions, respectively. In addition, the third and fourth letters of the mentioned
boundary condition refer to y = b and y = 0, respectively. Also, it is worth noting
that the clamped edge conditions fulfill u = v = w = 0 at the associated edge and
the simply-supported edge conditions fulfill v = w = 0 at x = 0,a, or u = w = 0 at
y = 0,b. In Table 6.15, the material properties of this composite plate are provided.

Table 6.15 Material properties of a 2-layer [0/90] composite plate [237]

E1 (GPa) E2=E3 (GPa) G12=G13 (GPa) G23 (GPa) ν12=ν13

220 5.5 3.3 2.75 0.25

The convergence analysis of the equilibrium curves for the in-plane compressive
loads in the x-axis direction is shown in Fig. 6.31 for this cross-ply composite plate
with simply-supported edge conditions. This figure demonstrates that convergence
is achieved at least for the 12×12Q9-LD1. In Figs. 6.32 and 6.33, the equilibrium
curves based on this plate model are studied for SSSS, SSCC, SSSC, SSFC, and
SSFS edge conditions to determine the influence of various edge conditions on the
cross-ply composite plate’s nonlinear response. The horizontal lines in the magnified
views of these two figures depict the associated linear buckling loads calculated using
the CUF. The findings indicate that the load-carrying capability of the composite
plate under clamped edge conditions is greater than other studied edge conditions.
Additionally, it is understandable that the presence of a free edge considerably affects
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the buckling strength, and results in the reduction of that. It can be concluded that the
present method can be used efficiently to investigate the composite plate’s nonlinear
behavior beyond the limit load and snap-through instability.
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Fig. 6.31 Convergence analysis of the in-plane mesh approximation for a cross-ply [0/90]
laminate under in-plane compressive loads in the x axis direction with simply-supported
edge conditions

Fig. 6.32 The equilibrium curves for a cross-ply [0/90] laminate under in-plane compressive
line loads in the x-axis direction with different edge conditions based on CUF 2D full
nonlinear 12×12Q9-LD1 model
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Fig. 6.33 The equilibrium curves for a cross-ply [0/90] laminate under in-plane compressive
line loads in the y-axis direction with different edge conditions based on CUF 2D full
nonlinear 12×12Q9-LD1 model
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6.6 Conclusions

It has been shown in this chapter that the CUF and layer-wise approaches may be
used to investigate the large-deflection and post-buckling of rectangular isotropic and
composite plates. Because of this approach, we have been able to explore a variety
of geometric nonlinear relationships. Hence, the well-known von Kármán theory
for nonlinear deformations of plates has been evaluated with several modifications,
including thickness stretching and shear deformations owing to transverse deflection.
In this context, equilibrium curves and stress distributions for each of the cases
have been provided and analyzed in detail. Moreover, the linear buckling load of
the composite plates has been estimated for the post-buckling examples. Different
factors influencing the nonlinear response of plates, including the stacking sequence,
number of layers, loading and edge conditions, have been thoroughly studied. The
results have demonstrated that:

• Inaccuracies in the nonlinear response of plate structures by von Kármán
displacement-strain relations are more evident in the case of moderately thick
and thick plates, and this effect could be more significant in the very large
displacements/rotations fields. Hence, the full nonlinear Green-Lagrange
relations are preferred for these cases.

• A reasonable estimation for the in-plane normal stresses of plates under the uni-
form pressure is provided by the von Kármán theory; however, when transverse
shear stress assessments in the nonlinear range are required, on the other hand,
the von Kármán theory it is not exact enough to be useful.

• The selection of proper geometrically nonlinear assumption is dependent on
the structure and loading conditions. Among all the investigated theories,
the full nonlinear model is more reliable in order to investigate the correct
equilibrium curves and stress distributions in the very large displacements
and far post-buckling regime. Nevertheless, the von Kármán approximation
overestimates the effect of post-buckling stresses.

• The results of nonlinear analysis of plates obtained by the CUF linear and
full nonlinear models match well with those found in the available literature
as well as the ABQ 3D solid models
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• The buckling strength and load-carrying capacity of composite plate structures
are increased when the number of layers in the composite plates is increased.

• Angle-ply laminate subjected to combined loading (in-plane shear and biaxial
compression) exhibits post-buckling behavior that is dependent on the direction
of the applied shear. The angle-ply laminate subjected to negative shear loading
exhibits higher rigidity and load-carrying capacity than the other loading
conditions.

• The buckling strength of the composite plates with clamped edge conditions is
greater than those of the composite plates with other studied edge conditions.
Moreover, the presence of a free edge, considerably reduces the buckling
strength of the composite plates.



Chapter 7

Stiffeners and boundary conditions
effects on the compressed flexible
plates

7.1 Introduction

Due to the availability of novel components and production technologies, composite
laminated structures are rapidly being employed in various fields of aeronautics, auto-
motive, and construction engineering. Composite materials are becoming ever more
important to designers and academic researchers. Attachments or stiffeners around
the borders of a plate or panel structure impose load or displacement boundary
conditions according to the stiffness of these stiffeners in their practical applications.
According to this, designers and engineers need to pay more attention to this effect
because stiffeners enforce a uniform displacement to the edges based on their stiff-
ness. A panel enclosed by longerons in aerospace applications or a wing structure,
as schematically shown in Fig. 7.1, might be seen as examples of these surrounding
effects. The fact that BC1 to BC4 in this figure enforce constant load or displacement
boundary conditions, or a combination of both, is highly dependent on the stiffness
of the attached components.
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B

C2

BC3

Fig. 7.1 The effects of attachments on the boundary conditions of a panel in the sample wing
structure

Wang et al. [243] proposed a theoretical solution for the post-buckling response
of orthotropic plates under combined in-plane biaxial compression and shear. Carrera
and Villani [244] analyzed the post-buckling of compressed symmetrically laminated
thick plates with different boundary conditions by employing a shear deformable
plate FE of Reissner-Mindlin type. Fan and Wang studied [245] the post-buckling of
hybrid laminated plates in thermal environments. The compressive post-buckling of
sandwich plates with temperature-dependent properties was investigated by Shen
et al. [246]. The same authors analyzed the post-buckling response of graphene-
reinforced composite plates in thermal conditions [247, 248].

As previously noted, engineers and designers need to precisely determine the
effect of boundary conditions on the mechanical response of plate structures. Addi-
tionally, adopting proper strain-displacement assumptions is critical for evaluating
plate structures’ geometrically nonlinear behavior. For example, under certain
loading and edge conditions, the well-known von Kármán theory may exhibit con-
siderable inconsistencies when compared to the full nonlinear analysis. Numerous
theoretical analyses have neglected these facets. The post-buckling behavior of
rectangular laminated composite plates is investigated in this chapter by employing
the CUF. The Newton-Raphson linearization method is used in conjunction with the
arc-length method. A stiffener model is provided to illustrate the geometrically non-
linear behavior of composite plates under various load and displacement boundary
conditions. On the basis of various strain-displacement assumptions, the nonlinear
equilibrium curves and stress distributions of post-buckled laminated composite
plates corresponding to many stiffener models are evaluated. The von Kármán
theory and certain modified strain-displacement relationships incorporating various
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nonlinear components are compared to the full Green-Lagrange nonlinear model
based on the CUF plate model.

7.2 Square composite plate with SFSF edge conditions

Different numerical evaluations are provided in this section in order to evaluate
the effect of stiffeners in the post-buckling of composite plate structures under
compressive loads. SFSF edge conditions are studied for the first analysis case,
which is a cross-ply square composite plate with a [0/90/0/90] lamination. This
composite plate has a width of a = b = 1 m and a thickness of h = 2 mm. Fig. 7.2
shows a composite plate that is subjected to in-plane compressive line load in
the y-axis direction Ny (force per unit length). Simply-supported edge conditions
fulfill u = w = 0 at y = 0,b. The material properties of the composite plate under
investigation are shown in table 7.1.

Table 7.1 Material properties of the investigated composite plate [224]

E1 (GPa) E2 = E3 (GPa) G12 = G13 (GPa) G23 (GPa) ν12 = ν13 ν23

250 6.25 5.125 3.25 0.24 0.49

7.2.1 Evaluation of different stiffeners

In this chapter, stiffeners with a variety of material properties are utilized to describe
the load and displacement boundary conditions. In particular, one row of Q9 plate
elements is added to every loaded edge of the plate structure. It is assumed that
the stiffeners are isotropic with Young’s modulus of Es. Changing the values of the
ratio Es

E1
allows us to enforce the loaded edges to have a consistent distribution of

displacements or loads. Fig. 7.2 depicts nonlinear equilibrium curves for a variety of
Es
E1

ratios ranging from 0.0001 to 100. These graphs illustrate the normalized values
of the displacement in the middle point of the laminate against the normalized values
of the applied compressive load. It should be noted that for the purpose of simplicity,
the stiffeners are not displayed in the deformed configurations of this chapter. To
be more specific, the principal deformations of interest in this chapter are those that
occur in the main composite plate rather than those related to the stiffeners.
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Fig. 7.2 The comparison of equilibrium curves for the composite plate [0/90/0/90] with
different load and displacement boundary conditions based on the full nonlinear CUF plate
model 12×12Q9-LD1

As seen in Fig. 7.2, the material properties of the stiffeners have a significant
effect on both prebuckling and post-buckling behaviors. As seen in the figure, the
case of Es

E1
= 0.0001 exhibits a post-buckling behavior that is identical to that of

an SFSF plate without any stiffener. However, increasing this ratio leads to an
increase in the buckling load of the composite plate structure until the ratio Es

E1
= 0.1

or more is attained, at which point the graphs almost coincide and the maximum
load-carrying capacity of the plate structure. Indeed, raising the Es

E1
ratio enforces the

loaded edges a more uniform displacement distributions along the y axis (uy) until the
constant displacement boundary condition is achieved. Additionally, the stiffeners
impose restrictions on the rotations of loaded edges (see the detailed contour plots
of Fig. 7.2). As a result, when stiffeners with high stiffness are used, the boundary
conditions at the loaded edges tend to be more clamped. As a consequence, the
boundary conditions for the loaded edges become more constrained. Additionally,
for the remainder of this section’s analyses, the case with stiffener Es

E1
= 1 will be

referred to as BC displacement, and the case without stiffener will be referred to as
BC load.



176 Stiffeners and boundary conditions effects on the compressed flexible plates

7.2.2 Convergence analysis

The convergence analysis of the equilibrium curves for the cross-ply laminated
composite plate [0/90/0/90] is displayed in Fig. 7.3. This figure illustrates the
normalized displacement in the laminate’s central point against the normalized
compressive load. The influence of in-plane mesh size on the equilibrium curves for
the load and displacement boundary conditions is investigated in this figure. 6×6Q9,
8×8Q9, 12×12Q9, and 15×15Q9 finite plate elements are analyzed using the LD1
theory approximation order for each layer. Additionally, the DOF for each model
is presented in Table 7.2 with the normalized values of the applied compressive load
corresponding to the transverse displacements at the middle point. One can note that
the convergence is reached for the nonlinear response curve of the 12×12Q9-LD1
model. As a result, this model will be utilized to explore the equilibrium curves and
stress distributions of this composite plate in the following assessments.
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Fig. 7.3 Convergence analysis of the in-plane mesh size for SFSF composite plate based on
the full nonlinear CUF plate model
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Table 7.2 Equilibrium points for different in-plane mesh size in SFSF composite plate based
on the full nonlinear CUF plate model

BC Load BC displacement
(without stiffener) (with stiffener Es

E1
= 1)

Nya2

E2h3
Nya2

E2h3

CUF plate model DOF uz
h = 1 uz

h = 4 uz
h = 1 uz

h = 4

6 × 6Q9-LD1 2535 23.08 54.45 60.85 65.37
8 × 8Q9-LD1 5415 21.96 46.16 58.39 60.08

12 × 12Q9-LD1 9375 21.28 43.62 57.38 57.94
15 × 15Q9-LD1 14415 21.07 42.88 56.93 57.15

7.2.3 Lamination angles and equilibrium curves

The effects of various lamination angles on the equilibrium curves for the composite
plate with SFSF edge conditions are studied in this section. In this context, Fig. 7.4
compares the nonlinear equilibrium curves for the various lamination angles. As
seen in Fig. 7.4, the lamination angles and stacking sequence have a significant
effect on the buckling and post-buckling behaviors of the composite plate structure
under load and displacement boundary conditions. As a consequence, lamination
angles [0,45,45,0] and [0,90,90,0] exhibit increased buckling strength and load-
carrying capacity, while [45,90,90,45] exhibits lower stiffness and buckling strength.
Additionally, comparing nonlinear equilibrium curves for the load and displacement
boundary conditions indicates that stiffeners greatly enhance buckling strength and
load-bearing capacity. In fact, the clamped edge condition is more likely to occur in
the presence of stiffeners because the plate structure becomes more constrained.
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(a) BC Load (without stiffener)
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(b) BC displacement (with stiffener Es
E1

= 1)

Fig. 7.4 The comparison of equilibrium curves for SFSF composite plates with different
lamination angles based on the full nonlinear CUF plate model

7.2.4 Geometrically nonlinear assumptions and equilibrium curves

As shown in Fig. 7.5, for the previously discussed composite plate with SFSF edge
conditions, the nonlinear equilibrium curves corresponding to the various nonlinear
strain-displacement assumptions of Table 2.3 are shown side by side and evaluated.
The normalized values of the applied compressive load related to the transverse
displacements at the middle point are also presented in Table 7.3, which is a reference
to the previous table. The findings of Fig. 7.5 reveal that the linear and FNL−vK

models are unable to accurately estimate the equilibrium curves for both load and
displacement boundary conditions. Additionally, only the full nonlinear model can
provide trustworthy and correct results for the load boundary conditions seen in
Fig. 7.5a. On the contrary, the von Kármán nonlinear theory and its modifications are
incapable of accurately predicting deflections and equilibrium paths. On the other
hand, for the displacement boundary conditions (see Fig. 7.5b), the full nonlinear
model, the von Kármán model, and its modifications are almost identical and may
provide satisfactory results. Thus, under load boundary conditions for this composite
plate, it is critical to analyze the full nonlinear model in order to correctly study the
geometrically nonlinear response.
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(a) BC Load (without stiffener)
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Fig. 7.5 The comparison of equilibrium curves for the composite plate [0/90/0/90] with SFSF
edge conditions with different geometrically nonlinear assumptions of Table 2.3 based on
the 12×12Q9-LD1 model

Table 7.3 Equilibrium points for SFSF composite plate based on the different geometrically
nonlinear assumptions of Table 2.3

BC Load BC displacement
(without stiffener) (with stiffener Es

E1
= 1)

Strain-displacement Nya2

E2h3
Nya2

E2h3

assumption uz
h = 5 uz

h = 40 uz
h = 5 uz

h = 40

vK 13.70 17.07 58.28 104.16
vK+T 13.85 17.21 58.49 104.39
vK+S 13.78 17.16 58.37 104.28
FNL 18.87 59.32 58.51 105.54

7.2.5 Geometrically nonlinear assumptions and stress distribu-
tions

The impact of utilizing various strain-displacement assumptions on the assessments
of stress distributions is provided for this composite plate with SFSF edge conditions.
The Fig. 7.6 illustrates the through-the-thickness distributions of dimensionless in-
plane normal stresses at different points (x = 0.5a, y = 0.7b) through the laminate’s
thickness. It is worth noting that the stress assessments are based on the post-buckling
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equilibrium curves with a fixed displacement of uz
h = 20. The findings of Fig. 7.6

demonstrate that only the full nonlinear model can provide valid distributions of
normal stresses for the load boundary conditions. Indeed, neither the von Kármán
theory nor any of its modifications can reliably predict the normal stress distributions
in this example. For the displacement boundary conditions, on the other hand (see
Figs. 7.6b and 7.6d), the full nonlinear model, the von Kármán, and its modifications
are almost identical and provide correct stress distributions. Additionally, Fig. 7.6
reveals the fact that the choice of LD1 or LD3 CUF plate models seems to have no
significant effect on the normal stress distributions.
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(a) BC Load - LD1 CUF plate model
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(b) BC displacement - LD1 CUF plate model
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(c) BC Load - LD3 CUF plate model
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(d) BC displacement - LD3 CUF plate model

Fig. 7.6 The distributions of dimensionless in-plane normal stress through the thickness of
plate at the point (x = 0.5a, y = 0.7b) of SFSF [0/90/0/90] square composite plate at the
fixed displacement of uz

h = 20

The impacts of various strain-displacement assumptions on the shear stress
assessments in the aforementioned composite plate with SFSF edge conditions are
examined in Fig. 7.7. This figure depicts the through-the-thickness distributions
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of the dimensionless transverse shear stress at the composite plate’s points located
at x = 0.5a and y = 0.7b. The findings reveal that the LD1 CUF plate models are
incapable of maintaining shear stress continuity throughout the thickness of the
laminated composite plate, which is physically unsatisfactory. However, the cubic
LD3 CUF plate model with four nodes per layer can accurately predict quadratic
shear stress distributions. It can be concluded that, while using LD1 or LD3 models
has almost no effect on the normal stress distributions in Fig 7.6, they are critical in
evaluating shear stresses in Fig. 7.7 by establishing the correct physical conditions
for the problem.
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Fig. 7.7 The distributions of dimensionless transverse shear stress through the thickness of
plate at the point (x = 0.5a, y = 0.7b) of SFSF [0/90/0/90] square composite plate at the
fixed displacement of uz

h = 20

7.3 Square composite plate with SSSS edge conditions

This numerical assessment deals with the composite plate discussed in Section 7.2.
For this plate example, the loading conditions and material properties are similar to
the previous composite plate, except for the boundary conditions of SSSS, which
include an extra set of opposite edge conditions along the x-axis direction satisfying
v = w = 0 at x = 0,a . The edge conditions in this case are SSSS, such that one set
of opposite edges along the x-axis direction x = 0,a fulfill v = w = 0, while another
set of simply-supported opposite edges along the y-axis direction y = 0,b satisfy
u = w = 0.
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7.3.1 Evaluations of different stiffeners

The nonlinear equilibrium curves for various Es
E1

ratios ranging from 0.0001 to 100 are
compared in Fig. 7.8, as well as for the case of a plate without stiffeners. Additionally,
data from the existing literature [224] for the case of the plate without a stiffener
are included to demonstrate the suggested CUF plate models’ consistency. The
deformation contour plots of the composite plate are shown in Table 7.4 at selected
positions on the post-buckling equilibrium curves.
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Fig. 7.8 The comparison of equilibrium curves for the composite plate [0/90/0/90] with SSSS
edge conditions with different load and displacement boundary conditions based on the full
nonlinear CUF plate model 12×12Q9-LD1
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Table 7.4 The deformation contour plots of composite plate [0/90/0/90] with SSSS edge
conditions with different load and displacement boundary conditions based on the full
nonlinear CUF plate model 12×12Q9-LD1

(I) (II) (III)

(IV) (V) (VI)

As seen in Fig. 7.8, the results obtained by the present CUF-based method match
well with findings derived from the literature. As seen in Fig. 7.8, increasing the ratio
of Es

E1
has a considerable effect on both prebuckling and post-buckling behaviors. It

is observed that when Es
E1

= 0.0001, the post-buckling behavior of the SSSS plate
is identical to that of the plate without any stiffener. Nonetheless, raising this ratio
leads to an increase in the composite plate structure’s buckling strength and load-
carrying capability. While this behavior in the composite plate with SSSS edge
conditions is similar to that in the first numerical example of this chapter with SFSF
edge conditions, it is quite different in this case because there is no ultimate curve
where the constant displacement boundary condition is reached (for comparison,
see Figs. 7.2 and 7.8). Indeed, since the previously free edge conditions are simply-
supported here, additional rotations are restricted in the loaded edges. This results in
a greater influence of ratio Es

E1
on the buckling strength and load-carrying capacity

of the plate structure. Furthermore, by comparing the graphs in 7.2 and 7.8, it is
apparent that the composite plate with SSSS edge conditions exhibits much greater
rigidity and buckling strength than the plate with SFSF edge conditions.
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7.3.2 Convergence analysis

The convergence analysis of the equilibrium curves for a composite plate with SSSS
edge conditions is shown in Fig. 7.9. The influence of in-plane mesh size on the load
and displacement boundary conditions is explored in this figure. It is noted that the
convergence is reached at least for the nonlinear response curve of the 12×12Q9-LD1
model. As a result, this model will be utilized to analyze the equilibrium curves
and stress distributions of this composite plate in the following evaluations. The
normalized values of the applied compressive load related to some specific transverse
displacements at the middle point of the plate structure, along with the DOF for each
model, are presented in Table 7.5. Additionally, as seen in Fig. 7.9a for the load
boundary conditions, no precise buckling load exists for this composite plate with
SSSS edge conditions [224].
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(a) BC Load (without stiffener)
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Fig. 7.9 Convergence analysis of the in-plane mesh size for SSSS composite plate based on
the full nonlinear CUF plate model
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Table 7.5 Equilibrium points for different in-plane mesh size in SSSS composite plate based
on the full nonlinear CUF plate model

BC Load BC displacement
(without stiffener) (with stiffener Es

E1
= 1)

Nya2

E2h3
Nya2

E2h3

CUF plate model DOF uz
h = 1 uz

h = 4 uz
h = 1 uz

h = 4

6 × 6Q9-LD1 2535 35.39 127.92 137.95 533.70
8 × 8Q9-LD1 5415 33.62 115.02 128.83 494.43

12 × 12Q9-LD1 9375 33.11 109.22 124.33 481.80
15 × 15Q9-LD1 14415 32.87 107.14 122.72 477.59

7.3.3 Lamination angles and equilibrium curves

In Fig. 7.10, various lamination angles and their related nonlinear equilibrium
curves are analyzed for the given composite plate with SSSS edge conditions. As
seen in Fig. 7.10, the lamination angles and stacking sequence have a significant
effect on the buckling and post-buckling responses of the composite plate structure
for both load and displacement boundary conditions. As a result, the lamination
angles [0/90/0/90] and [0/90/90/0] exhibit decreased stiffness and load-bearing
capability. On the other hand, for this composite plate with SSSS edge conditions,
snap-through instability is found for certain lamination angles, which shows complete
contradiction to the behavior previously reported for the SFSF composite plate in
Fig. 7.4. The findings of Fig. 7.10 reveal that the proposed CUF plate model is
capable of evaluating the composite plate’s nonlinear behavior beyond the limit load
and snap-through instability.
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(a) BC Load (without stiffener)
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(b) BC displacement (with stiffener Es
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= 1)

Fig. 7.10 The comparison of equilibrium curves for the composite plate [0/90/0/90] with
SSSS edge conditions with different geometrically nonlinear assumptions of Table 2.3 based
on the 12×12Q9-LD1 model

7.3.4 Geometrically nonlinear assumptions and equilibrium curves

For the case of composite plate with SSSS edge conditions, the nonlinear equilibrium
curves related to the various nonlinear strain-displacement assumptions in Table 2.3
are assessed in Fig. 7.11. Additionally, Table 7.6 contains the normalized values
of the applied compressive load relevant to the specific transverse displacements
at the middle point of the plate structure. The findings of Fig. 7.11 reveal that the
linear and FNL−vK models cannot accurately estimate the equilibrium curves for
both load and displacement boundary conditions. There are some inconsistencies
between the full nonlinear model, the von Kármán theory and its modifications for
load boundary conditions. Take note that these nonlinear assumptions deviate less
from the full nonlinear model than the SFSF plate in Fig. 7.5a. For the displacement
boundary conditions in Fig. 7.11b, on the other hand, the full nonlinear model, the
von Kármán, and its modifications are almost identical and provide reliable results.
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Fig. 7.11 The comparison of equilibrium curves for the composite plate [0/90/0/90] with
SSSS edge conditions with different geometrically nonlinear assumptions of Table 2.3 based
on the 12×12Q9-LD1 model

Table 7.6 Equilibrium points for SSSS composite plate based on the different geometrically
nonlinear assumptions of Table 2.3

BC Load BC displacement
(without stiffener) (with stiffener Es

E1
= 1)

Strain-displacement Nya2

E2h3
Nya2

E2h3

assumption uz
h = 1 uz

h = 5 uz
h = 1 uz

h = 5

vK 31.41 130.15 122.47 674.35
vK+T 31.62 130.44 122.80 677.91
vK+S 31.54 130.27 122.64 676.12
FNL 32.04 149.35 123.11 385.39

7.3.5 Geometrically nonlinear assumptions and stress distribu-
tions

Fig. 7.12 shows through-the-thickness distributions of the dimensionless in-plane
normal stresses for the point located in (x = 0.5a, y = 0.7b) of the SSSS composite
plate. It should be noted that the stress evaluations are on the post-buckling equi-
librium curves at the fixed load of Nya2

E2h3 = 400. The results of Fig. 7.12 confirm
the fact that for both load and displacement boundary conditions, the linear and



188 Stiffeners and boundary conditions effects on the compressed flexible plates

FNL−vK models cannot have an accurate prediction of the stress distributions. In
fact, For the load boundary conditions, only the full nonlinear model can present
reliable distributions of normal stresses. Similar to the previous SFSF plate example,
for the load boundary conditions, the nonlinear theories of von Kármán and other
modifications cannot accurately predict the normal stress distributions. On the other
hand, for the displacement boundary conditions (see Fig. 7.12b), the full nonlinear
model, the von Kármán, and its modifications are almost similar, and predict accurate
stress distributions. Note that the graphs of normal stresses based on the LD3 CUF
plate model are not presented here for the sake of brevity. In fact, for the mentioned
SSSS composite plate, similar to the previous SFSF plate example, the selection
of LD1 or LD3 CUF plate models does not affect the normal stress distributions
considerably.

Fig. 7.12 illustrates the through-the-thickness distributions of dimensionless
in-plane normal stresses for the points of SSSS composite plate located in x = 0.5a,
y = 0.7b coordinates at a fixed load of Nya2

E2h3 = 400. The findings of this figure
demonstrate that the linear and FNL−vK models cannot precisely estimate the stress
distributions for both load and displacement boundary conditions. In addition, one
can note that for the case of load boundary conditions, only the full nonlinear
model can provide valid distributions of normal stresses. On the other hand, with
displacement boundary conditions (see Fig. 7.12b), the full nonlinear model, the
von Kármán, and its modifications are almost identical and present reliable stress
distributions. For the sake of brevity, the normal stress graphs based on the LD3
CUF plate model are not provided in this figure because, as with the preceding SFSF
plate example, selecting LD1 or LD3 CUF plate models had no effect on the normal
stress distributions.
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Fig. 7.12 The distributions of dimensionless in-plane normal stress through the thickness
of plate at the point (x = 0.5a, y = 0.7b) of SSSS [0/90/0/90] square composite plate at the
fixed load of Nya2

E2h3 = 400

In Fig. 7.13, the impacts of various strain-displacement assumptions on the
assessments of shear stresses in the aforementioned composite plate with SSSS edge
conditions are studied. This figure depicts the through-the-thickness distributions
of the dimensionless transverse shear stress at the composite plate’s points located
in x = 0.5a, y = 0.7b coordinates. The findings of Fig. 7.13 demonstrate that the
linear and FNL−vK models cannot provide a credible estimation of shear stress
distributions for both load and displacement boundary conditions. Additionally, as
seen in Fig. 7.13a, only the full nonlinear model can properly estimate the shear
stresses for the case of load boundary conditions. Moreover, the findings reveal that
the LD1 CUF plate models are incapable of maintaining shear stress continuity across
the thickness of the laminated composite plate, which is physically unsatisfactory.
The cubic LD3 CUF plate model with four nodes in each layer, on the other hand,
can properly predict quadratic shear stress distributions.
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Fig. 7.13 The distributions of dimensionless transverse shear stress through the thickness
of plate at the point (x = 0.5a, y = 0.7b) of SSSS [0/90/0/90] square composite plate at the
fixed load of Nya2

E2h3 = 400

7.4 Angle-ply lamintaed composite plate with SSSS
edge conditions

Finally, for the sake of completeness, this numerical evaluation deals with the
identical composite plate indicated in Section 7.3 with a different [45/-45/-45/-45]
layup. It is discussed in detail in the following sections how different stiffeners affect
the nonlinear response of this angle-ply laminated composite plate, as well as how
alternative geometrically nonlinear assumptions can be used for that.

7.4.1 Evaluation of different stiffeners

Fig. 7.14 illustrates the nonlinear equilibrium curves for various Es
E1

ratios and the
case of the plate without stiffeners for the angle-ply laminated composite plate
with SSSS edge conditions. In comparison with earlier numerical evaluations, this
figure illustrates a significantly different geometrically nonlinear behavior with snap-
through instabilities for many Es

E1
ratios. As previously stated, raising the value of

this ratio results in an increase in the composite plate structure’s buckling strength
and load-bearing capacity. Due to the fact that all boundary conditions are simply
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supported in the absence of any free edge conditions, the rotations are more limited
than the plate with SFSF edge conditions.

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0
0

100

200

300

400

500

600

700

800

900
N

ya
2 /(
E
2h

3 )

uz /h

 Without stiffener
 Es/E1=0.0001
 Es/E1=0.001
 Es/E1=0.01 
 Es/E1=0.1
 Es/E1=1 
 Es/E1=10   
 Es/E1=100

  

Fig. 7.14 The comparison of equilibrium curves for the composite plate [45/-45/45/-45] with
SSSS edge conditions with different load and displacement boundary conditions based on
the full nonlinear CUF plate model 12×12Q9-LD1

7.4.2 Geometrically nonlinear assumptions and equilibrium curves

In Fig. 7.15, the nonlinear equilibrium curves related to the various nonlinear strain-
displacement assumptions of Table 2.3 are compared for the angle-ply laminated
composite plate with SSSS edge conditions. The findings of Fig. 7.15 reveal that
the linear and FNL−vK models cannot accurately estimate the equilibrium curves
for both load and displacement boundary conditions. Additionally, only the full
nonlinear model can properly determine the post-buckling equilibrium curves for the
load boundary conditions shown in Fig. 7.15a. Moreover, Fig. 7.15 reveals that the
provided CUF plate model is capable of detecting the nonlinear equilibrium paths of
composite plate structures beyond the snap-through instability.
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Fig. 7.15 The comparison of equilibrium curves for the composite plate [45/-45/45/-45] with
SSSS edge conditions with different geometrically nonlinear assumptions of Table 2.3 based
on the 12×12Q9-LD1 model

7.5 Conclusions

This chapter investigates the influence of load and displacement boundary conditions
on the geometrically nonlinear response of laminated composite plates under various
strain-displacement assumptions. The CUF and layer-wise methods based on LE
have been used to determine the post-buckling equilibrium curves and stress distribu-
tions of laminated composite plates. To evaluate nonlinear equilibrium curves for the
cases, different stiffeners have been modeled, and the effect of boundary conditions
imposed by them has been investigated. Different nonlinear strain-displacement
assumptions have been compared to the full Green-Lagrange nonlinear model based
on the CUF. Various numerical analyses of post-buckling in laminated composite
plates have been carried out to determine the effect of load and displacement bound-
ary conditions on the equilibrium curves and stress distributions of post-buckled
laminated composite plates. The following observations may be made in light of the
findings:

• The stiffeners’ material properties have a significant impact on the nonlinear
post-buckling behaviors. The presence of stiffeners limits the rotations at the
loaded edges of the plate structure by enforcing uniform edge displacement.
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• Lower values of the stiffener’s material properties result in a post-buckling
behavior that is similar to the response of the plate in the absence of the stiffener.
Higher values of material properties for the stiffener, on the other hand, result
in rotational limitations in the loaded edges that are more comparable to the
clamped edge conditions, resulting in the boundary conditions being more
similar to the clamped edge conditions.

• Lamination angles and stacking sequence have a major effect on the composite
plate structure’s buckling and post-buckling behaviors. When the edge condi-
tions of a composite plate are varied, the post-buckling equilibrium curve may
exhibit a dramatic change.

• The CUF plate models LD1 and LD3 might provide accurate and promising
findings when evaluating nonlinear equilibrium curves and normal stress distri-
butions. The LD1 models, on the other hand, cannot guarantee the continuation
of the shear stress across the laminated composite plate’s thickness, which
is unsatisfactory physically. The quadratic shear stress distributions may be
predicted with high accuracy using the cubic LD3 CUF plate model, which
has four nodes at each layer.

• The nonlinear response of the composite plate above the limit load and snap-
through instability may be predicted using the CUF plate model that has been
provided.

• The von Kármán theory and its modifications proved to be capable of providing
correct nonlinear equilibrium curves and stress distributions for the analyzed
structural problems with displacement boundary conditions. However, for
many examples, given the load boundary conditions, these theories do not
offer a reasonable assessment of the displacements and stresses.

• For many geometrically nonlinear investigations, the full nonlinear Green-
Lagrange relations should be used since they provide a foundation for com-
paring the efficiency of various structural theory approximation orders and
geometrically nonlinear assumptions.



Chapter 8

Modeling in-plane shear and
combined loadings in flexible plates

8.1 Introduction

Highly flexible plate and panel structures are subjected to in-plane shear and com-
bined loadings in many engineering applications such as aerospace and civil in-
dustries. The accurate investigation of buckling and post-buckling behavior of
these structures is vital for engineers and designers. Shear buckling of plate and
panel structures has been studied by many researchers [249–253]. Hui [254] and
Kosteletos [255] worked on the shear buckling of rectangular laminated plates us-
ing theoretical methods. Loughlan [256, 257] investigated the effect of bend-twist
coupling on the shear buckling behavior of thin composite plates by employing the
finite strip method. Three-dimensional cubic B-spline FE for the shear buckling of
orthotropic heterogeneous plates with functionally graded materials was developed
by Shariyat and Asemi [258]. Employing the assumed natural strain method, Jung
and Han [259] proposed a modified eight-node shell element to study the initial shear
buckling of laminated composite plates and shells. Chen and Qiao [260] analyzed
the shear buckling of rotationally-restrained laminated plates semi-analytically based
on the Galerkin method. Atashipour and Girhammar [261] proposed a closed-form
method in order to predict the critical buckling load of clamped narrow rectangular
orthotropic plates under uniformly distributed shear load around the edges. The
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research on shear buckling of bending-twisting coupled finite length plates with
simply-supported edge conditions was conducted by Lee and York [262].

In some research studies of the plate and panel structures, the combination of
axial and shear loadings has been focused [263–267]. Zhang and Matthews [268]
worked on the initial buckling of cylindrically curved composite panels subjected to
axial compressive and shear forces. The buckling behaviors of stiffened composite
panels under combined in-plane compression and shear loadings were investigated by
Loughlan [269]. Nemteh [270, 271] presented parametric analytical analysis on the
buckling of long anisotropic Plates subjected to combined loads. Featherston [272]
investigated the effect of imperfection on the initial buckling load of curved panels
subjected to combined compression and shear. Utilizing the assumed strain method,
Kim et al. [273] developed a co-rotational eight-node shell element for post-buckling
analysis of composite plates and shells under different loadings. Featherston and
Watson [274] conducted a series of experiments in order to analyze the buckling and
post-buckling of flat composite plates under shear and in-plane bending.

In the research studies focused on shear buckling and combined loadings of plate
structures, the effects of boundary conditions imposed by stiffeners and surrounding
components are ignored in many cases. This is more important when considering the
plate in real conditions with surroundings. In addition, in the large displacements
and rotations, modeling real shear loading and edge conditions could be challenging
by FE methods. This is in fact because all plate edges should be free to have in-plane
displacements. In this chapter, an artificial surrounding area is modeled in order to
address this issue. Accordingly, the effects of stiffeners and this surrounding area
on the post-buckling equilibrium curves of laminated plates are evaluated. Then
numerous problems of shear and combined loadings are investigated accurately using
the efficient CUF framework. The layer-wise refined plate models are implemented
by employing the LE functions through the laminate thickness. Different equilibrium
curves are assessed by using the Newton-Raphson linearization scheme with the
path-following method based on the arc-length constraint.

8.2 Modeling technique

The boundary conditions play a pivotal role in the geometrically nonlinear analysis
of plates subjected to shear and combined loadings. In this chapter, the effects of
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boundary conditions imposed by the plate surroundings are investigated precisely.
In this regard, a modeling technique based on the surrounding area and stiffeners is
employed, which will be further discussed and validated in the following sections.

8.2.1 The surrounding area

According to the displacements of exact equilibrium point, one can note that when
the plate is subjected to pure shear, all the edges need to be able to move in any
in-plane direction. This free-body moving could cause issues in the convergence of
nonlinear solution in the large displacements and rotations. Here, in order to address
this issue, the artificial surrounding area, as shown in Fig. 8.1 is modeled. As can
be seen in this figure, the outside boundary conditions of this area are completely
fixed. The surrounding area is assumed to be isotropic with Young’s modulus of
Esurrounding which is significantly lower than the main plate E1. The effect of material
properties of the surrounding area on the equilibrium curves for [45/-45]s composite
plates without stiffeners subjected to negative pure shear loading conditions based
on the 12x12Q9-LD1 model is depicted in the graph of Fig. 8.1. This plot shows the
normalized values of displacement in the middle point of plate versus the normalized
values of applied in-plane shear load. It can be noticed from Fig. 8.1 that the
convergence of nonlinear equilibrium curves is achieved at least for Esurrounding/E1

ratio 0.0001. Therefore, in the following sections, this ratio Esurrounding/E1 will be
assumed for the surrounding area. Moreover, for the sake of brevity and due to
the fact that equilibrium curves and deformed configurations of the main plate are
of interest, the surrounding area deformations will not be shown in the following
sections. The material properties of the investigated composite plates are provided
in Table 8.1.

Table 8.1 Material properties of the investigated composite plates [240]

Material E1 (GPa) E2 = E3 (GPa) G12=G13=G23 (GPa) ν12=ν13=ν23

Carbon Epoxy 206.9 5.2 2.6 0.25
Baron Epoxy 206.9 20.7 5.2 0.3



8.2 Modeling technique 197

0 2 4 6 8 10 12 14
0

200

400

600

800

1000

1200

1400

1600

1800

2000

N
xy
a2
/(E

2h
3 )

uz /h

 (Esurrounding/E1)=0.01
 (Esurrounding/E1=0.001
 (Esurrounding/E1)=0.0001
 (Esurrounding/E1)=0.00001

surrounding area 

main panel

Fig. 8.1 The effect of material properties of surrounding area on the equilibrium curves
for [45/-45]s composite plates without stiffeners subjected to negative pure shear loading
conditions based on the 12x12Q9-LD1 model

8.2.2 The stiffeners

In practical applications such as the wing or longeron aerospace structures, plates and
panels are bounded by some attachments or stiffeners along their edges (See Fig. 8.2).
In fact, these stiffeners impose the load or displacement boundary conditions on the
main plate because they can enforce the edges a uniform displacement according to
their stiffness. In this chapter, the stiffeners are modeled using one row of Q9 plate
elements, and are assumed to be isotropic with Young’s modulus of Esti f f ener. The
equilibrium curves corresponding to the models with different material properties of
stiffeners are illustrated in the graph of Fig. 8.2. This graph shows different nonlinear
responses of [45/-45]s plate structures subjected to negative pure shear loading with
the values of Esti f f ener/E1 ratio changing from 0.1 to 100. Fig. 8.2 shows that the
post-buckling response of the main plate is influenced remarkably as the material
properties of the stiffeners are changed. Increasing the values of Esti f f ener/E1 ratio
results in higher rigidity and load-carrying capacity of the main plate structure. In
fact, the stiffeners impose constraints on the rotations of edges, and enforce more
uniform distributions of displacements on them. It should be noted that for the
subsequent analysis of this chapter, the case with stiffener Es

E1
= 10 will be employed,

and will be referred to as with stiffener plates.
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Fig. 8.2 The effect of material properties of the stiffeners on the equilibrium curves for
[45/-45]s composite plates with stiffeners subjected to negative pure shear loading conditions
based on the 12x12Q9-LD1 model

8.2.3 Validation of models

In order to demonstrate the consistency of the proposed method, in this section,
the nonlinear equilibrium curves obtained by the CUF and the presented modeling
technique are compared with the available literature [226, 240]. Fig. 8.3 illustrates
the comparison of equilibrium curves for Baron Epoxy composite plates subjected
to pure shear loading based on the 12x12Q9-LD1 CUF model and the available
literature. It is shown that for different lamination angles and loading conditions, the
results obtained by the CUF correlate well with the ones reported in the references.
For the sake of completeness, some of the equilibrium points for Baron Epoxy
composite plates subjected to pure shear loading based on the 12x12Q9-LD1 CUF
model and the available literature are also compared in Table 8.2 .
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Fig. 8.3 The comparison of equilibrium curves for Baron Epoxy composite plates subjected to
pure shear loading based on the 12x12Q9-LD1 CUF model and the available literature [226,
240]

Table 8.2 Equilibrium points for Baron Epoxy composite plates subjected to pure shear
loading based on the 12x12Q9-LD1 CUF model and the available literature

Negative shear Positive shear

Lamination angles Nxya2

E2h3
Nxya2

E2h3

uz
h = 1 uz

h = 2.5 uz
h = 1 uz

h = 2.5

[30/−30]s-CUF 51.87 62.59 20.23 28.87
[30/−30]s-Ref. [226] 53.49 62.30 20.98 29.31
[30/−30]s-Ref. [240] 52.05 61.20 20.70 28.98

[15/−15]s-CUF 37.34 47.11 19.71 28.35
[15/−15]s-Ref. [226] 38.02 47.01 20.03 28.74
[15/−15]s-Ref. [240] 37.63 46.48 19.87 27.96

A similar comparison is presented in Fig. 8.4 for Carbon Epoxy composite plates
with various lamination angles. In Table 8.3, some of the equilibrium points are
reported for Carbon Epoxy composite plates subjected to pure negative shear loading
based on the 12x12Q9-LD1 CUF model and the available literature. It is observed
that the results obtained by the CUF are in good agreement with the available
literature. Furthermore, the results are consistent with the fact that the load-carrying
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capacity and rigidity of the composite plate with four layers [45/-45]2 are increased
in comparison with the plate with only two layers [45/-45]. Also, it should be noted
that the proposed method can predict larger displacement and rotations compared to
the available literature. Note that the equilibrium curves of composite plates with
larger deflections will be completely reported in the following sections.
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Fig. 8.4 The comparison of equilibrium curves for Carbon Epoxy composite plates subjected
to pure negative shear loading based on the 12x12Q9-LD1 CUF model and the available
literature [226, 240]

Table 8.3 Equilibrium points for Carbon Epoxy composite plates subjected to pure negative
shear loading based on the 12x12Q9-LD1 CUF model and the available literature

CUF 2D Ref. [226] Ref. [240]

Lamination angles Nxya2

E2h3
Nxya2

E2h3
Nxya2

E2h3

uz
h = 1 uz

h = 3 uz
h = 1 uz

h = 3 uz
h = 1 uz

h = 3

[45/−45]2 92.11 139.02 98.48 145.31 94.06 139.71
[45/−45] 28.35 68.47 28.70 66.46 27.66 64.33
[30/−30]2 76.08 119.30 - - 77.81 118.92
[15/−15]2 45.99 81.26 - - 45.64 8.14
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8.3 Pure shear loading

In this section, numerical assessments are provided in order to investigate the geo-
metrically nonlinear response of composite plate structures subjected to pure shear
loading. Then, the effects of stiffeners and surroundings on the equilibrium curves
of composite plates are evaluated meticulously according to Section 8.2. For the first
analysis cases, four-layer composite plates with different lamination angles [30/-30]s,
[45/-45]s, and [0/90]s are studied. The height and width of the plate structures are
a = b = 25 cm, and the thickness is assumed to be h = 2.5 mm. The plate struc-
tures are subjected to negative and positive in-plane shear loadings Nxy. The edge
conditions are simply-supported that only the transverse deflections are restrained
at the edges. The material properties for the Carbon Epoxy composite plates are
reported in Table 8.1 [240]. In Fig. 8.5, the normalized values of displacements in
the middle point of plate versus the normalized values of applied in-plane shear loads
are plotted. In this figure, the equilibrium curves are compared for the composite
plates without stiffeners subjected to pure shear loading based on the 12x12Q9-LD1
model.

The deformed composite plates without stiffeners subjected to pure shear loading
in correspondence with Fig. 8.5b are shown in Table 8.4. Moreover, in Table 8.5,
some of the equilibrium points are compared for composite plates without stiffeners
subjected to pure shear loading based on the 12x12Q9-LD1 model. Note that,
according to the results, the direction of the applied shear loading plays an important
role in the geometrically nonlinear response of composite plates. Here, the plate
with lamination angles [45/-45]s under negative shear shows higher rigidity and
load-carrying capacity compared to the other investigated cases.
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Fig. 8.5 The comparison of equilibrium curves for composite plates without stiffeners
subjected to pure shear loading based on the 12x12Q9-LD1 model (a) prebuckling and
buckling (b) post-buckling in large deflections

Table 8.4 The deformation contour plots based on Fig. 8.5(b) for composite plates without
stiffeners subjected to pure shear loading

point (I) point (II) point (III) point (IV)

Table 8.5 Equilibrium points for composite plates without stiffeners subjected to pure shear
loading based on the 12x12Q9-LD1 model

Negative shear Positive shear

Lamination angles Nxya2

E2h3
Nxya2

E2h3

uz
h = 3 uz

h = 10 uz
h = 3 uz

h = 10

[30/−30]s 215.22 447.31 76.79 319.70
[45/−45]s 246.56 539.87 84.10 421.79
[0/90]s 111.79 416.41 111.79 416.41
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In Fig. 8.6, similar assessments are carried out for the composite plates with
stiffeners under pure shear loading. The deformed composite plates with stiffeners
subjected to pure shear loading in correspondence with Fig. 8.6b are shown in Ta-
ble 8.6. Furthermore, in Table 8.7, some of the equilibrium points are compared
for composite plates with stiffeners subjected to pure shear loading based on the
12x12Q9-LD1 model. Comparing the geometrically nonlinear response of com-
posite plates without stiffeners and the ones with stiffeners (see Figs. 8.5 and 8.6)
demonstrates that the plates with stiffeners show significantly higher load-carrying
capacity in comparison with the plates without stiffeners. This could be due to the
fact that in the presence of stiffeners, the plate structure becomes more constrained
and more likely tends towards clamped edge conditions. Also, it should be noted that
for the prebuckling and buckling states, the composite plates with lamination angles
[45/-45]s under negative shear show higher load-carrying capacity. However, in the
large deflections (uz

h > 4), the plate with similar lamination angles under positive
shear shows higher rigidity.
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Fig. 8.6 The comparison of equilibrium curves for composite plates with stiffeners subjected
to pure shear loading based on the 12x12Q9-LD1 model (a) prebuckling and buckling (b)
post-buckling in large deflections
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Table 8.6 The deformation contour plots based on Fig. 8.6(b) for composite plates with
stiffeners subjected to pure shear loading

point (I) point (II) point (III) point (IV)

Table 8.7 Equilibrium points for composite plates with stiffeners subjected to pure shear
loading based on the 12x12Q9-LD1 model

Negative shear Positive shear

Lamination angles Nxya2

E2h3
Nxya2

E2h3

uz
h = 1 uz

h = 4 uz
h = 1 uz

h = 4

[30/−30]s 343.33 711.46 128.33 490.91
[45/−45]s 400.85 1344.66 155.04 1351.78
[0/90]s 191.66 419.76 191.66 419.76

8.4 Shear and biaxial compressive loading

Fig. 8.7 shows the comparison of equilibrium curves for the same four-layer compos-
ite plates with different lamination angles [30/-30]s, [45/-45]s, and [0/90]s subjected
to in-plane shear and biaxial compressive loading. This figure plots the normalized
values of displacements in the middle point of plate versus the normalized values of
applied in-plane shear loads. Here, the applied compressive load is assumed to be
equal to the in-plane shear load (Nx = Ny = Nxy). The deformed composite plates
without stiffeners subjected to pure shear and biaxial compressive loading in corre-
spondence with Fig. 8.7b are depicted in Table 8.8. It is evident that the deformed
configurations of composite plates are strongly dependent on the loading conditions.
For instance, here, the presence of biaxial compressive loading results in the different
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nonlinear responses of plates (see Figs. 8.8 and 8.4 for comparison). Moreover, in
Table 8.9, some of the equilibrium points are compared for the mentioned composite
plates. Similar to the previous section, the direction of the applied shear loading
influences the geometrically nonlinear response of composite plates significantly.
In addition, the plate with lamination angles [45/-45]s under negative shear shows
higher buckling strength.
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Fig. 8.7 The comparison of equilibrium curves for composite plates without stiffeners
subjected to pure shear and biaxial compressive loading based on the 12x12Q9-LD1 model
(a) prebuckling and buckling (b) post-buckling in large deflections

Table 8.8 The deformation contour plots based on Fig. 8.7(b) for composite plates without
stiffeners subjected to pure shear and biaxial compressive loading

point (I) point (II) point (III)
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Table 8.9 Equilibrium points for composite plates without stiffeners subjected to pure shear
and biaxial compressive loading based on the 12x12Q9-LD1 model

Negative shear Positive shear

Lamination angles Nxya2

E2h3
Nxya2

E2h3

uz
h = 2 uz

h = 8 uz
h = 2 uz

h = 8

[30/−30]s 29.98 87.74 20.25 101.41
[45/−45]s 33.25 89.94 21.85 108.02
[0/90]s 22.17 74.95 22.17 74.95

Fig. 8.8 shows how the deflection at the middle point of laminate varies by
increasing the loading after the bifurcation point for composite plates with stiffeners
subjected to in-plane shear and biaxial compressive loading. The deformation contour
plots of these composite plates based on the 12x12Q9-LD1 model are provided in
Table 8.10. For some specific displacement values, the normalized loads are reported
in Table 8.11. Similar to the previous cases, the [45/-45]s plate subjected to negative
shear loading shows higher buckling loads. It can also be noticed that in the large
deflections, the same composite plate under negative shear loading exhibits somehow
a similar nonlinear response to the one subjected to the positive shear (see Fig. 8.8b.
The comparison of equilibrium curves for the composite plates without stiffeners and
the ones with stiffeners (see Figs. 8.7 and 8.8) confirms the fact that the plates with
stiffeners show significantly higher load-carrying capacity compared to the plates
without stiffeners. Actually, in the presence of stiffeners, the plate structure becomes
more constrained and more likely tends towards clamped edge conditions which
results in higher load-carrying capacity.
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Fig. 8.8 The comparison of equilibrium curves for composite plates with stiffeners subjected
to pure shear and biaxial compressive loading based on the 12x12Q9-LD1 model (a) pre-
buckling and buckling (b) post-buckling in large deflections

Table 8.10 The deformation contour plots based on Fig. 8.8(b) for composite plates with
stiffeners subjected to pure shear and biaxial compressive loading

point (I) point (II) point (III)

Table 8.11 Equilibrium points for composite plates with stiffeners subjected to pure shear
and biaxial compressive loading based on the 12x12Q9-LD1 model

Negative shear Positive shear

Lamination angles Nxya2

E2h3
Nxya2

E2h3

uz
h = 1 uz

h = 4 uz
h = 1 uz

h = 4

[45/−45]s 189.59 938.54 86.41 956.42
[0/90]s 63.49 236.87 63.49 236.87
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8.5 Shear and biaxial tensile loading

The final loading assessment corresponds to the same composite plates subjected
to in-plane shear and biaxial tensile loading. Two different states of Nx = Ny = Nxy

and Nx = Ny = 0.5 Nxy for the values of the applied tensile loading are assumed. The
comparison of equilibrium curves for composite plates [45/-45]s with stiffeners are
provided in Fig. 8.9. It is observed that the loading condition with lower tensile
load (Nx = Ny = 0.5 Nxy) shows lower rigidity and buckling strength compared to the
loading condition Nx = Ny = Nxy. This is due to the fact that tensile loading could
somehow decrease the effects of deflections induced by the shear loading. Thus, the
more tensile loads are applied, the more load-carrying capacity of the structure is
increased. Additionally, the deformation contour plots of the mentioned composite
plates corresponding to Fig. 8.9b are displayed in Table 8.12. It is indicated that
in the large deflections, the case with positive shear and biaxial tensile loading
Nx = Ny = Nxy exhibits higher rigidity and load-carrying capacity, which is because
of the formation of wrinkles on the deformed plate (see first deformed configuration
(I) of Table 8.12).
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Fig. 8.9 The comparison of equilibrium curves for composite plates [45/-45]s with stiffeners
subjected to pure shear and biaxial tensile loading based on the 12x12Q9-LD1 model (a)
prebuckling and buckling (b) post-buckling in large deflections
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Table 8.12 The deformation contour plots based on Fig. 8.9(b) for composite plates [45/-45]s

with stiffeners subjected to pure shear and biaxial tensile loading

point (I) point (II) point (III) point (IV)

8.6 Comparison of loading conditions

In this section, the geometrically nonlinear response of the previously-mentioned
composite plates under different loading conditions is presented. The comparison of
equilibrium curves for composite plates without stiffeners and the ones with stiff-
eners subjected to different loading conditions are compared in Figs. 8.10 and 8.11,
respectively. The results demonstrate the fact that the biaxial compressive loading
decreases the buckling strength and the rigidity of structure because of the intensifi-
cation effects on the induced deflections by the shear loading. On the other hand,
biaxial tensile loading lowers the induced deflections by the shear loading, resulting
in the higher load-carrying capacity and rigidity of the plate structure.
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Fig. 8.10 The comparison of equilibrium curves for composite plates without stiffeners
subjected to different loading conditions based on the 12x12Q9-LD1 model (a) prebuckling
and buckling (b) post-buckling in large deflections
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Fig. 8.11 The comparison of equilibrium curves for composite plates with stiffeners subjected
to different loading conditions based on the 12x12Q9-LD1 model (a) prebuckling and
buckling (b) post-buckling in large deflections

8.7 Conclusions

In this chapter, a modeling technique based on the CUF, layer-wise theory, and
full Green–Lagrange nonlinear relations has been proposed in order to model the
real shear conditions, and investigate the nonlinear response of composite plates
subjected to shear and combined loadings. In this regard, the effects of boundary
conditions imposed by the stiffeners and surrounding components have been con-
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sidered and evaluated precisely. The layer-wise refined plate models have been
implemented, employing the efficient LE functions through the laminate thickness.
Various geometrically nonlinear assessments have been successfully carried out
using the Newton-Raphson linearization scheme with the path-following method
based on the arc-length constraint. The following points can be made according to
the results:

• The use of layer-wise kinematics with Lagrange polynomial expansions pro-
vides the possibility of easily imposing interface compatibility conditions
between different layers, and results in accurate evaluation of equilibrium
curves and nonlinear response of the plates.

• Compared to some other strain-displacement assumptions such as von Kármán,
the CUF-based full Green-Lagrange nonlinear model presented here can be
efficiently used in very large displacements/rotations fields.

• For both Baron Epoxy and Carbon Epoxy composite plates with different
lamination angles and shear loading conditions, the results obtained by the
presented CUF-based method match well with the results reported in the avail-
able literature. In addition, the proposed method can be efficiently employed
for the nonlinear analysis of plates under very large deflections.

• The lamination angles of the composite plates influence the post-buckling
equilibrium curves remarkably. Among the investigated lamination angles,
composite plate [45/-45]s showed higher buckling strength.

• The direction of applied shear plays an important role in the geometrically
nonlinear response of angle-ply composite plates. As a result, the plates under
negative shear show higher buckling strength. On the other hand, in the large
deflections, this effect might be changed according to the loading conditions
and deformed configurations

• The plates with stiffeners show significantly higher load-carrying capacity
compared to the plates without stiffeners. Actually, in the presence of stiffeners,
the plate structure becomes more constrained and more likely tends towards
clamped edge conditions.

• The deformed configurations of composite plates are strongly dependent on
the loading conditions. For instance, in many cases, the plates subjected to
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in-plane shear and biaxial compressive loading exhibit different nonlinear
responses compared to the plates subjected to in-plane shear and biaxial tensile
loading.

• Biaxial compressive loading decreases the buckling strength and the rigidity
of structure because of the intensification effects on the induced deflections
by the shear loading. On the other hand, biaxial tensile loading decreases
the effects of induced deflections by the shear loading, resulting in the higher
load-carrying capacity and rigidity of plate structure.



Chapter 9

Conclusions and perspectives

9.1 Summary

The dissertation has been focused on the refined structural and nonlinear theories in
order to investigate the free vibration and post-buckling response of thin-walled beam
and flexible plate structures. In this regard, the CUF has been employed to obtain
nonlinear governing equations of the finite beam and plate elements. Then, various
assessments have been conducted related to the thin-walled beam and flexible plate
structures. The free vibration response of thin-walled isotropic and composite beams
has been accurately evaluated, and the Vibration Correlation Technique has been
used in order to investigate the variations of natural frequencies in thin-walled lami-
nated isotropic and composite beam structures under compression. The physically
and geometrically nonlinear analysis of thin-walled beams has been investigated
using Newton–Raphson linearization scheme with the path-following method based
on the arc-length constraint. The large-deflection and post-buckling of isotropic and
composite plates under axial, in-plane shear and combined loadings considering
different strain-displacement assumptions has been analyzed, and the corresponding
equilibrium curves and stress distributions have been presented. Furthermore, the
effects of stiffeners and displacement boundary conditions in the post-buckled lami-
nated composite plates have been studied. The results have shown that the present
method based on the CUF can be efficiently used for accurate structural analysis,
including the free vibration and post-buckling of the thin-walled beam and flexible
plate structures.
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9.2 Concluding remarks

In Chapters 1 and 2, the details of implementation of the CUF framework, and
the nonlinear governing equations have been provided. In Chapter 3, higher-order
vibration modes in a series of open-section thin-walled beams have been investigated
as benchmark problems. Detailed comparisons have been made between the clas-
sical beam theories, refined ones based on the CUF, shell models obtained using
commercial FE software, and data from the literature. It has been shown that the
natural frequencies and mode shapes found using the suggested efficient framework
correlate well with those obtained using shell models, which require significantly
more computational efforts. The importance of developing models capable of de-
tecting cross-sectional deformations has been demonstrated. The MAC has been
successfully used to compare the free vibration modes obtained by various structural
theories, and it has been suggested that additional refinement is required for the TE
when applied to the complicated cross-section geometries. It has been shown that
the selected structural theory has a greater influence in higher-order modes.

In Chapter 4, the vibrations and buckling of thin-walled isotropic and composite
beams under compression with different open cross-sections has been evaluated. The
effects of axial loads on the variations of the beam structure’s natural frequencies
have been assessed. The MAC analysis has revealed that the number of related modes
for classical models such as Taylor order 1 is much less than that for other Lagrange
models. Indeed, classical beam theories eliminate a large number of modes in favor
of never-existing rigid cross-section modes. As long as the initial buckling and
vibration modes are similar; the VCT may be used to estimate buckling loads based
on the decrease in the natural frequencies of the beam under progressive compressive
loads. The advantages of the CUF 1D method with efficient LE have been shown
for a more complex structural problem involving a channel-shaped composite beam
subjected to compression with different number of transverse stiffeners. It been
demonstrated that adding transverse stiffeners alters the mode shapes and natural
frequencies of the beam structure significantly.

In Chapter 5, the CUF 1D model in combination with a Newton–Raphson lin-
earization scheme based on the path-following method with arc-length constraint
has been used to solve physically and geometrically nonlinear beam problems. Nu-
merical results have been presented for square, channel-shaped, and T-shaped beam
structures with elastic and elastoplastic materials subjected to large deformations and
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rotations. It has been demonstrated that for the beams with different cross-sections,
the equilibrium curves obtained by CUF 1D elastic and elastoplastic LE models
match well with the results of available literature and 3D solid models. The stress
distributions have been investigated based on the different LE models, and the results
have been compared with 3D FE models. For the elastoplastic material, the plastic
zones have been initiated near the top and bottom surfaces of the beam near the
clamped edge, where the values of equivalent plastic strain have been increased due
to the larger load factor values. Although the DOF and the computational costs of
the problems have been reduced significantly using the current method, it can predict
the equilibrium curves and the stress distributions of the structure accurately and
precisely.

In Chapter 6, it has been shown that the CUF and layer-wise approaches may be
used to investigate the large-deflection and post-buckling of rectangular isotropic and
composite plates.The well-known von Kármán theory for nonlinear deformations of
plates has been evaluated with several modifications. The equilibrium curves and
stress distributions for different isotropic and composite plates have been provided
and analyzed in detail. Different factors influencing the nonlinear response of plates,
including the stacking sequence, number of layers, loading and edge conditions,
have been thoroughly studied. In comparison with the von Kármán theory and its
modifications, the full nonlinear model has been proved to be more reliable in order
to investigate the correct equilibrium curves and stress distributions in the very large
displacements and far post-buckling regime. It has been indicated that the buckling
strength of the composite plates with clamped edge conditions is greater than those
of the composite plates with other studied edge conditions, and the presence of a
free edge, considerably reduces the buckling strength of the plate structures.

In Chapter 7, the stiffeners and boundary conditions effects on the geometrically
nonlinear response of laminated composite plates under various strain-displacement
assumptions have been studied. It has been demonstrated that the stiffeners’ material
properties have a significant impact on the nonlinear post-buckling behaviors, and
the presence of stiffeners limits the rotations at the loaded edges of the plate structure
by enforcing uniform edge displacement. Lower values of the stiffener’s material
properties have resulted in a post-buckling behavior that is similar to the response
of the plate in the absence of the stiffener. On the other hand, higher values of
material properties for the stiffener have resulted in rotational limitations in the
loaded edges. Lamination angles and stacking sequence have shown to be important
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in the composite plate structure’s buckling and post-buckling behaviors. It has
been shown that the quadratic shear stress distributions can be predicted with high
accuracy using the cubic LD3 CUF plate models. The nonlinear response of the
composite plate above the limit load and snap-through instability has been predicted
using the presented CUF plate model.

In Chapter 8, a modeling technique based on the CUF, layer-wise theory, and
full Green–Lagrange nonlinear relations has been proposed in order to model the
real shear conditions, and investigate the nonlinear response of composite plates
subjected to shear and combined loadings. It has been indicated that for both
Baron Epoxy and Carbon Epoxy composite plates with different lamination angles
and shear loading conditions, the results obtained by the presented CUF-based
method match well with the results reported in the available literature. It has been
demonstrated that the direction of applied shear plays an important role in the
geometrically nonlinear response of angle-ply composite plates. As a result, the
plates under negative shear show higher buckling strength. Biaxial compressive
loading has resulted in the decrease of buckling strength and the rigidity of structure
because of the intensification effects on the induced deflections by the shear loading.
Nonetheless, biaxial tensile loading has resulted higher load-carrying capacity of the
plate structure.

9.3 Future directions

Due to the reliable and accurate results of the CUF in solving geometrically and
physically nonlinear problems of structures, further developments of the proposed
methodology could be focused on a nonlinear local analysis and a localized buckling
with the advantage of coupling the global/local approach with optimization tools to
reduce computation time. Furthermore, the same nonlinear methodology will also be
adopted to perform dynamic analyses. Other important topics that could be further
developed could be the extension of CUF-based nonlinear finite elements for the
analysis of deployable space structures, elastomers and mechanical meta-materials.
Furthermore, Hyperelastic models could be implemented in the CUF 1D or CUF
2D frameworks in order to be used in the complex materials such as biological soft
tissues and organs. For instance, the soft materials are susceptible to the occurrence
of instability and failure that needs to be accurately predicted; therefore, using the
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CUF, the constitutive relations of soft tissues or complex structures using continuum
approaches could be investigated, and in-depth study on the material behavior of
soft matters could be presented. In addition, future extensions could be focused
on high-velocity impact problems and progressive failure of composite structures.
Also, the effects of transverse stiffeners nonlinearities on the dynamic response of
the beam and plate structures under compression deserve special attention.
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