
16 August 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Initial State-Dependent Implementation of Logic Gates with Memristive Neurons / Rajki, F; Horváth, A; Ascoli, A; Tetzlaff,
R. - In: ELECTRONICS LETTERS. - ISSN 0013-5194. - ELETTRONICO. - (2024).

Original

Initial State-Dependent Implementation of Logic Gates with Memristive Neurons

Wiley preprint/submitted version

Publisher:

Published
DOI:

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2988772 since: 2024-05-16T06:01:35Z

John Wiley & Sons Inc.

Initial State-Dependent Implementation of
Logic Gates with Memristive Neurons

Franciska Rajki,1 András Horváth,1 Alon Ascoli,2 and
Ronald Tetzlaff3

1Faculty of Information Technology and Bionics, Peter Pazmany
Catholic University, Budapest, Hungary
2Department of Electronics and Telecommunications, Politecnico di
Torino, Turin, Italy
3Institute of Circuits and Systems, TUD Dresden University of
Technology, Dresden, Germany
Email: horvath.andras@itk.ppke.hu

This study introduces a simple Memristor Cellular Neural Net-
work (M-CellNN) structure, a minimalist configuration with only two
cells, designed to concurrently address two logic problems. The unique
attribute of this system lies in its adaptability, where the nature of the
implemented logic gate, be it AND, OR, and XOR, is determined exclu-
sively by the initial states of the memristors.

The memristors’ state, alterable through current flow, allows for
dynamic manipulation, enabling the setting of initial conditions and
consequently, a change in the circuit’s functionality. To optimize the
parameters of this dynamic system, we employ contemporary machine
learning techniques, specifically gradient descent optimization.

Through a case study, we exemplify the potential of leveraging intri-
cate circuit dynamics to expand the spectrum of problems solvable with
a defined number of neurons. This work not only underscores the sig-
nificance of adaptability in logical circuits but also demonstrates the
efficacy of memristive elements in enhancing problem-solving capabil-
ities.

Introduction: Logical functions assume a pivotal role in contemporary
problem-solving, necessitating the integration of versatile and reusable
circuit elements within modern and emerging circuits.

Neural networks facilitate the resolution of diverse and intricate prob-
lems by constructing elaborate structures from fundamental building
blocks. While neural networks demonstrate proficiency in addressing
specific problems for which they are trained, contemporary artificial
intelligence tends to exhibit a narrow and singular purpose.

Over the preceding decade, an escalating introduction of increasingly
complex neural networks has yielded enhanced performance across
widely explored benchmark datasets. This discernible trend highlights
that augmenting network complexity commonly arises from the aug-
mentation of neurons and layers within their architectural framework.
However, elevated complexity can also be attained through the enhance-
ment of cellular dynamics.

The evolutionary trajectory of neural networks in recent years show-
cases the practical efficacy of complex architectures featuring millions
of processing elements and parameters. Notably, these parameters can be
finely tuned through the application of modern machine learning algo-
rithms, underscoring the adaptability of neural networks in addressing
practical problems.

A discernible trend in the past decade has been the escalating com-
plexity of neural networks. In 2012, computer vision predominantly uti-
lized neural networks with 8 layers, exemplified by Alexnet [1]. Subse-
quent advancements saw an increase to 19 layers in VGG in 2014 [2] and
a remarkable elevation to 152 layers in Residual Networks in 2016 [3],
indicating an ongoing trajectory of network complexity augmentation.

A parallel augmentation of complexity is observed in natural lan-
guage processing models. GPT-2, a transformer network, employed 48
layers and 1.5 billion parameters in 2019 [4]. In a remarkable stride,
GPT-3 in 2020 increased this complexity to 96 layers and a staggering
175 billion parameters [5] within a mere year.

An alternative avenue for enhancing neural network capabilities lies
in augmenting the complexity of individual building blocks. The incor-
poration of cells with memory and higher-dimension state-space repre-
sentations, embedding higher-order dynamics, holds promise for solv-
ing challenging non-linearly separable problems. Such problems often
necessitate the execution of numerous sequential operations through
a singular operation. Ideally, these extended dynamics should not be

implemented using multiple simple building blocks to maintain effi-
ciency. Instead, they should be realized through basic circuit elements.

The memristor emerges as a promising element for efficiently intro-
ducing both memory and non-linearity into circuits. Demonstrated in
previous works [6, 7], memristive dynamics offer energy- and time-
efficient solutions in circuit design. This study delves into a fundamental
problem from a similar perspective, exploring the potential of leveraging
memristive elements for efficient and effective circuit design.

The XOR problem, featuring linearly inseparable input-output pairs,
stands out as a renowned elementary problem. Logic gates, including
AND, OR, and XOR, serve as essential tools for describing complex and
arbitrary algorithmic problems. Enhancing the efficiency of logic gates
could prove advantageous in addressing a diverse array of challenging
problems.

Numerous neural network-based solutions for the XOR gate have
been proposed in the literature, encompassing single neural solutions
with complex values [8], spiking neural networks [9], and efficient solu-
tions with memristive systems [10, 11]. This problem gains particular
significance as it eludes resolution with two neurons in a simple fully-
connected network, employing either Hebbian or gradient-based opti-
mization [12], or within a standard CellNN consisting of two cells [13].

The human nervous system, with its inherently general architecture,
adeptly tackles various tasks relying on the input and the initial state to
determine a solution for a given problem. An ideal scenario in biomor-
phic chip design envisions a similar case, where memristive circuits
exhibiting programmability, enable the implementation of diverse logic
gates without necessitating changes to the system’s wiring, solely by
manipulating the initial state.

In this study, we demonstrate resolution of AND, OR, and XOR logic
gates by a basic CellNN comprising two memristive cells. The circuit’s
functionality is uniquely dictated by the initial state of the memristors.
To achieve this, we employ a gradient-based optimization technique to
train both the network weights and the memristor parameters, encom-
passing their initial states.

Our exploration demonstrates how the incorporation of complex cir-
cuit dynamics expands the range of problems that can be efficiently
solved, even with a limited number of neurons. By examining a well-
known problem, we aim to underscore the vast potential inherent in such
structures. The study emphasizes the adaptability and efficacy of lever-
aging complex circuitry to extend the problem-solving capabilities of
neural networks.

Cell Dynamics of a Memristive Cellular Neural Network: The subject of
our investigation is a Memristive Cellular Neural Network (M-CellNN)
[14] comprising two cells.

Prior studies have demonstrated that such networks exhibit emergent
behavior [15], [16], as well as complex and chaotic dynamics [17], [18],
even with just two conventional cell structures [19], [20], and [21]. How-
ever, these dynamics alone could not offer a solution to the XOR prob-
lem.

The solution we propose is based on continuous-time dynamics that
emerge in an M-CellNN, featuring two analog neurons, each with two
degrees of freedom. Specifically, the states of cell 𝑗 ∈ {1, 2} encompass
its capacitor voltage 𝑥 𝑗 and its memristor state 𝑚 𝑗 . The dynamics of the
capacitor 𝐶𝑥 𝑗

in cell 𝐶 (𝑗) can be succinctly expressed by the following
equation:

¤𝑥 𝑗 = −𝑥 𝑗 + 𝑎0𝑦 𝑗 + 𝑏0𝑢 𝑗 − 𝑖𝑚, 𝑗 + 𝑎𝜁𝑖 𝑦𝑖 + 𝑏𝜁𝑖𝑢𝑖 + 𝑧 (1)

with (𝑗 , 𝑖) ∈ { (1, 2) , (2, 1) }, and 𝜁𝑖 ∈ −(+)1 for 𝑖 = 1(2) . Here
𝑦 𝑗 is the output of the cell 𝐶 (𝑗) which is defined by the standard non-
linearity 𝑓 (𝑥 𝑗) via:

𝑦 𝑗 = 𝑓 (𝑥 𝑗) =
1
2
��𝑥 𝑗 + 1

�� − 1
2
��𝑥 𝑗 − 1

�� (2)

In (1) 𝑧 denotes the bias parameter, whereas 𝑎−1, 𝑎0 and 𝑎+1 (𝑏−1, 𝑏0
and 𝑏+1), known as feedback (feedforward) synaptic weights, are repre-
sented in compact form via the feedback (feedforward) template, defined
as A = [𝑎−1, 𝑎0, 𝑎+1] (B = [𝑏−1, 𝑏0, 𝑏+1]). In particular, 𝑎−1 and 𝑏−1
(𝑎+1 and 𝑏+1) respectively are the feedback and feedforward synaptic
weights by which cell C(1) (C(2)) acts on the dynamics of cell C(2)

ELECTRONICS LETTERS wileyonlinelibrary.com/iet-el 1

https://orcid.org/0000-0001-5855-4186

Fig 1 Schematic of the circuit of cell 𝐶 (𝑗) , including the dependent sources
controlled by the cell 𝐶 (𝑖) . Here (𝑗 , 𝑖) ∈ { (1, 2) , (2, 1) } and 𝜁𝑖 = −(+)1
for 𝑖 = 1(2) . Here 𝐶𝑥 𝑗

= 1𝐹 and 𝑅𝑥 𝑗
= 𝑅𝑦 𝑗

= 1Ω.

(C(1)). Finally 𝑎0 and 𝑏0 respectively are self feedback and self feedfor-
ward weights.

A, B and 𝑧 determine the dynamic behaviour, i.e., the mapping of
inputs and initial states of the network onto the respective outputs, and
are usually referred to as programming templates.

CellNNs have proven efficiency across diverse applications [22]. It
has been established, that a two-cell array can exhibit chaotic dynamics.
However, the utilization of a straightforward, M-CellNN for implement-
ing any logic gate from a number of options, including especially the
XOR function has not been explored previously.

The current 𝑖𝑚 𝑗
through the memristor 𝑀 𝑗 in cell 𝐶 (𝑗) is expressed

according to Ohm’s law as:

𝑖𝑚 𝑗
= 𝐺 (𝑚 𝑗 , 𝑥 𝑗) · 𝑥 𝑗 (3)

,
where the evolution of the state 𝑚 𝑗 of this voltage-controlled first-

order extended memristor is governed by the following dynamics:

¤𝑚 𝑗 = 𝑔 (𝑚 𝑗 , 𝑥 𝑗) (4)

Here 𝑥 𝑗 represents the voltage across the memristor and 𝑚 𝑗 denotes
the state of the memristor. The initial state and initial voltage of the mem-
ristor are denoted by 𝑚 𝑗 (0) and 𝑥 𝑗 (0) , respectively.

In accordance with Leon Chua’s latest memristor classification, 𝑔 and
𝐺 characterize an extended memristor [23], [24]. By employing Chua’s
Unfolding Principle [25], these functions are approximated through
third-order polynomials:

¤𝑚 𝑗 = 𝑔 (𝑚 𝑗 , 𝑥 𝑗) =𝛼0 + 𝛼1 · 𝑥 𝑗 + 𝛼2 · 𝑥2
𝑗 + 𝛼3 · 𝑥3

𝑗+

+ 𝛽1 · 𝑚 𝑗 + 𝛽2 · 𝑚2
𝑗 + 𝛽3 · 𝑚3

𝑗+

+ 𝛾1 · 𝑥 𝑗 · 𝑚 𝑗 + 𝛾2 · 𝑥 𝑗 · 𝑚2
𝑗 + 𝛾3 · 𝑥2

𝑗 · 𝑚 𝑗

(5)

𝐺 (𝑚 𝑗 , 𝑥 𝑗) =𝛿0 + 𝛿1 · 𝑥 𝑗 + 𝛿2 · 𝑥2
𝑗 + 𝛿3 · 𝑥3

𝑗+

+ 𝜖1 · 𝑚 𝑗 + 𝜖2 · 𝑚2
𝑗 + 𝜖3 · 𝑚3

𝑗+

+ 𝜙1 · 𝑥 𝑗 · 𝑚 𝑗 + 𝜙2 · 𝑥 𝑗 · 𝑚2
𝑗 + 𝜙3 · 𝑥2

𝑗 · 𝑚 𝑗

(6)

The circuit schematic of cell 𝐶 (𝑗) , incorporating the influence of the
neighboring cell 𝐶𝑖 on its dynamics, is depicted in Fig. 1. The mem-
ristive cell introduces only one additional circuit element compared to
a standard CellNN cell — a memristor in parallel to the capacitor. This
singular addition does not significantly amplify power consumption or
manufacturing complexity. Nevertheless, it substantially broadens the
spectrum of implementable functions, as elucidated in [26] and further
demonstrated in this study.

Within this two-cell array, both the feedback synaptic template A
and the feedforward synaptic template B incorporate three non-zero
coefficients each. Coupled with the bias parameter 𝑧, the total number
of tunable parameters reaches seven. Simultaneously, the properties of
each memristor are delineated by an additional set of 20 parameters.
While presuming perfectly matched memristive devices in the cells, we
introduce variability solely in their initial memristive states, represent-
ing the only parameter distinct in the implementation of different logic
gates. All other parameters remain consistent across all scenarios. Con-
sequently, this introduces two additional parameters for each logic gate,
and as we investigate three distinct logic gates (AND, OR, XOR), this
results in an additional six parameters. Thus, the overall system is char-
acterized by 33 parameters, encompassing three distinct problems and

functionalities. Each functionality involves the application of 29 param-
eters, with 27 of these shared among the three problems.

The extensive nature of this parameter set renders it impractical for
direct exploration using exhaustive or grid search methodologies. There-
fore, we have chosen to employ a machine learning algorithm for param-
eter optimization. This strategy proves particularly beneficial when deal-
ing with more intricate and practical problems that necessitate larger
CellNNs, resulting in a linear augmentation of the parameter count with
the number of cells.

Training of the network parameters: The implemented network utilized
PyTorch [27], where both the programming templates and the parame-
ters of the memristor model underwent the training process.

Training involved simulating the continuous-time differential equa-
tions on digital hardware, employing the Euler formula with the TorchD-
iffEq module [28]. The PyTorch code for training the network parame-
ters and a straightforward Python script for testing the optimized net-
work can be accessed in [29].

For the XOR gate, there are four possible input-output pairs, as
detailed in Table 1. In instances of a false input on cell 𝑖, 𝑢𝑖 was set
to zero; conversely, for true inputs, it was set to 1. The overall output of
the computation was determined as the sum of the cells’ outputs, which
could range from −2 (False) to 2 (True) due to the standard CellNN non-
linearity constraints. System dynamics were allowed to evolve for 100
iterations, with a timestep of 0.01𝑠, ensuring an accurate integration of
the continuous-time differential equation, evaluating the global output
and comparing it to the expected XOR operation output.

The training spanned 3000 iterations, utilizing the Adam optimizer
[30] with an initial step size of 0.01. Initial parameter values were ran-
domly generated from a standard normal distribution. The ℓ2 loss func-
tion guided the network training, assessing the disparity between actual
and expected outputs at the conclusion of each training iteration.

We conducted training on the network using all four possible input
pairs for the three problems. Theoretically, no stimulus pair other than
the twelve specified in Table 1 is permissible.

To enhance the robustness of the network outputs, we implemented a
data augmentation strategy by introducing uniform noise 𝜉 ∈ [0, 0.1]
into each input value. Consequently, the inputs were permitted to vary
within [−0.1, 0.1] for the false case and within [0.9, 1.1] for the true
case.

After the execution of the training, the programming templates were
found to assume the following form:

A =
[
−0.7379 1.1183 −0.8916

]
,

B =
[
−1.5312 0.6234 −1.2246]

]
,

𝑧 = − 1.9875
(7)

The differential equations governing the dynamics of the capacitor
voltages were found to be expressed by

¤𝑥1 = − 𝑥1 + 1.1183𝑦1 + −0.8916𝑦2

0.6234𝑢1 + −1.2246]0𝑢2 − 1.9875 − 𝑖𝑚1,
(8)

and

¤𝑥2 = − 𝑥2 + −0.7379𝑦1 + 1.1183𝑦2

+ 0.6098𝑢1 + −1.5312𝑢2 − 1.9875 − 𝑖𝑚2,
(9)

for cells 𝐶 (1) and 𝐶 (2) respectively.
The values of the optimized memristor model parameters turned out

to be as follows: 𝛼0 = −0.9602, 𝛼1 = −0.6280, 𝛼2 = −2.1831, 𝛼3 =

1.5359, 𝛽1 = 1.6686, 𝛽2 = 1.2363, 𝛽3 = −1.1509, 𝛾1 = 0.5227, 𝛾2 =

−1.8543, 𝛾3 = −0.0450, and 𝛿0 = −1.2040, 𝛿1 = −1.2903, 𝛿2 =

−1.5158, 𝛿3 = −0.2210, 𝜖1 = 0.6489, 𝜖2 = 0.8607, 𝜖3 = −0.8444,
𝜙1 = 0.2612, 𝜙2 = −0.4397, 𝜙3 = 1.0842.

The states of the memristors of the two neurons for the different
logic gates were initialized as follows: AND gate: 𝑚1 (0) = 0.4841,
𝑚2 (0) = −0.0494; OR gate: 𝑚1 (0) = −0.6606, 𝑚2 (0) = 0.3078,
XOR gate: 𝑚1 (0) = −0.4568, 𝑚2 (0) = −0.2965. The initial values
of the capacitor voltages 𝑥1 (0) and 𝑥2 (0) were set as the values of the
inputs 𝑢1 and 𝑢2 respectively.

2 ELECTRONICS LETTERS wileyonlinelibrary.com/iet-el

Input 1 Input 2 AND OR XOR M-AND M-OR M-XOR

0 0 -2 -2 -2 -2 -2 -2

0 1 -2 2 2 -2 2 2

1 0 -2 2 2 -2 2 2

1 1 2 2 -2 2 2 -2

Table 1. This table describes the representation of inputs and out-
puts for the investigated logic gates (AND, OR and XOR). The input
voltage 𝑢 𝑗 to cell 𝐶 (𝑗), 𝑗 ∈ {1, 2} is either 0 (false) or 1 (true) and
denotes one of the input operands. The sum of the cell’s output volt-
ages is either −2 (false) or 2 (true), and represents the result. The
output of the M-CellNN i.e. 𝑦1 + 𝑦2, where 𝑦 𝑗 is the output voltage
of Cell 𝐶 (𝑗), matches the expected output of the operations, if we
consider output cell values above zero as true and those below zero
as false.

We have repeated parameter training multiple times and different
optimized parameters were obtained in each training, thereby indicating
the existence of multiple potential solutions to this problem.

Results: We conducted training for both the programming templates
and the parameters of the memristor model. The average ℓ2 distance
decreased to 0.0093 after the final training iteration. While this value
indicates close proximity to the ideal solution, the fact that it is not zero
suggests that perfection has not been achieved. In practical terms, this
accuracy can be easily enhanced by applying thresholding to the actual
outputs of the cells and converting them to a digital format. This adjust-
ment would yield correct XOR outputs in all four cases.

As a point of reference, we implemented a classical CellNN featur-
ing two non-memristive cells. This reference model struggled to solve
the problem and could only handle either the OR or the AND problem
individually, as they are linearly separable. The lowest ℓ2 distance, aver-
aged over the four possible input-output pairs attainable during training,
was 0.724. This comparison demonstrates that the integration of two
memristors into such a simple circuit is adequate to expand its function-
alities. Furthermore, we aim to illustrate how memristors facilitate the
modulation of the decision boundary in the traditional CellNN, allowing
for the seamless execution of the XOR Boolean logic operation between
two operands and switching between logical operations by altering only
the initial state of the system.

Beyond merely extending the circuit’s functionality to solve the XOR
problem, which is unfeasible for the linear implementation, memristors
enable the creation of a dynamic network. This network maintains con-
stant connection weights, but the initial condition of the network can be
set to achieve any of the three desired functionalities.

Decision boundaries hold significance from two distinct perspec-
tives. In practical applications, merely deriving a theoretical solution
may prove inadequate. Real circuits are invariably affected by noise and
parasitic elements. Therefore, ensuring a solution for each theoretically
admissible input is not sufficient for a robust design. The system must
yield correct solutions even in scenarios where inputs deviate slightly
from their nominal values. Examination of decision boundaries unveils
the extent to which parameters can change without affecting the digi-
tized, thresholded outputs.

From another viewpoint, decision boundaries can unveil the complex-
ity of the system. Linear systems exhibit simple linear decision bound-
aries, limiting their utility for most practical applications. The incorpo-
ration of higher nonlinearities into a network results in a more intricate
and complex decision boundary, which is a crucial element for solving
complex problems. One can also notice how altering the initial condi-
tions has influenced the decision boundaries of the system.

Fig 2 (a), (b), and (c) illustrates the AND, OR and XOR outputs
accordingly 𝑦1 + 𝑦2 for every possible input pair (𝑢1, 𝑢2) with 𝑢 𝑗 ∈
[−0.4, 1.2], Δ𝑢 𝑗 = 0.05, 𝑗 ∈ {1, 2}, for our M-CellNN (for the mem-
ristive two-cell array).

In the case of the traditional CellNN, a linear boundary separates the
regions containing the red and white markers, hindering the two-cell
array from solving the XOR logical boolean problem.

As these illustrations demonstrate, our network adeptly computes the
correct output for each of the three investigated problems and all four
possible input pairs. Notably, the memristive system exhibits an intricate
decision boundary, enabling the two-cell array to accurately compute
the XOR solution for each of the four possible input combinations—a
feat unattainable with a linear system. Moreover, the design showcases
robustness as all of the outputs fall considerably far from the decision
boundaries except the input of 𝑢1 = 1 and 𝑢2 = 0 for the XOR gate,
which falls close to the decision boundary, but even this input case pro-
vides the expected output for the desired operation.

The intricate decision boundary map is shaped by the rich nonlinear
dynamics of the two memristors, playing a pivotal role in enabling the
two-cell array to solve the AND, OR, and XOR problems without modi-
fying the connection weights in the network, showcasing the significance
of altering only the initial conditions.

(a) Decision boundary for AND operation

(b) Decision boundary for OR operation

(c) Decision boundary for XOR operation

Fig 2 This diagram shows the output (𝑦1 + 𝑦2) of a M-CellNN for all possible
input combinations where 𝑢 𝑗 ∈ [−0.4, 1.2], Δ𝑢 𝑗 = 0.05, 𝑗 ∈ {1, 2}. The
colors visualize the output according to the legend. At the positions of white
(red) markers the system should emit low (high) output values.

Given that our network is a dynamic system, it is crucial to scrutinize
how its internal state evolves over time during computation. We have
explored the progression of the network states (𝑥1, 𝑥2) for all possible
input pairs across all three logical operations. The temporal evolution of

ELECTRONICS LETTERS wileyonlinelibrary.com/iet-el 3

the cells’ outputs 𝑦1 and 𝑦2 can be directly inferred from the time course
of the capacitors’ voltages 𝑥1 and 𝑥2, respectively. The dynamics of the
capacitors’ voltages are illustrated in Fig. 3. As it is depicted, the output
states align with the anticipated outputs of the logical operations. The
state evolution for the other two problems is not provided due to space
constraints, given that those problems are comparatively simpler than
the implementation of the XOR problem.

Fig 3 Evolution of the states 𝑥1 and 𝑥2 of the M-CellNN for the four possible
input pairs for the XOR operation. The state evolution for the two other logic
gates are not reported for the sake of space and simplicity but their simula-
tions resulted in similar figures.

Conclusions: In this paper, we have successfully showcased the capabil-
ity of a Memristive Cellular Neural Network (M-CellNN) with two ideal
memristive cells to execute the AND, OR, and XOR operations between
two inputs. The resulting output solutions for the respective problems
solely depend on the initial states of the memristors, which can ideally
be modified by the current flowing through them.

It is noteworthy that our implementation marks the first instance
where the functionalities of memristors are altered based on their ini-
tial conditions, enabling their application for various logical operations.
Importantly, the XOR task, unattainable for a traditional 2 × 1 CellNN,
underscores the potential of enriching the dynamical properties of neu-
rons to expand the range of functions implementable by a given neural
network. This expansion can lead to more efficient hardware solutions
for complex problems.

It is essential to clarify that our simulations involved the training of
parameters in an idealized M-CellNN setup, free from noise, with all
circuit elements and connections assumed to be ideal. Additionally, our
memristor is defined according to Chua’s unfolding principle, imple-
menting ideal and optimized memristor characteristics for this task.
Because of this the investigated scenarios might not completely be feasi-
ble with existing memristive devices. The translation of similar function-
alities to real devices necessitates further investigation and exploration.
Acknowledgments: The support of the Alfréd Rényi Institute of Mathe-
matics and the following grants: 2018-1.2.1-NKP00008: Exploring the
Mathematical Foundations of Artificial Intelligence and TKP2021_02-
NVA-27 – Thematic Excellence Program are gratefully acknowledged.

© 2024 The Authors. Electronics Letters published by John Wiley &
Sons Ltd on behalf of The Institution of Engineering and Technology
References

1. Krizhevsky, A., Nair, V., Hinton, G.: The cifar-10 dataset. online:
http://www. cs. toronto. edu/kriz/cifar. html 55 (2014)

2. Simonyan, K., Zisserman, A.: Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

3. He, K., et al.: Deep residual learning for image recognition. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recog-
nition, pp. 770–778. (2016)

4. Radford, A., et al.: Language models are unsupervised multitask learn-
ers. OpenAI blog 1(8), 9 (2019)

5. Brown, T., et al.: Language models are few-shot learners. Advances in
neural information processing systems 33, 1877–1901 (2020)

6. Bearden, S.R., Pei, Y.R., Di Ventra, M.: Efficient solution of boolean
satisfiability problems with digital memcomputing. Scientific reports
10(1), 1–8 (2020)

7. Ascoli, A., et al.: Graph coloring via locally-active memristor oscil-
latory networks. Journal of Low Power Electronics and Applications
12(2), 22 (2022)

8. Nitta, T.: Solving the xor problem and the detection of symmetry using
a single complex-valued neuron. Neural Networks 16(8), 1101–1105
(2003)

9. Reljan-Delaney, M., Wall, J.: Solving the linearly inseparable xor prob-
lem with spiking neural networks. In: 2017 Computing Conference,
pp. 701–705. IEEE (2017)

10. Vourkas, I., et al.: Memristor-based logic circuits. Memristor-Based
Nanoelectronic Computing Circuits and Architectures pp. 61–100.
(2016)

11. Horváth, A., Ascoli, A., Tetzlaff, R.: Implementation of the xor gate
with two memristive neurons. In: 2023 12th International Conference
on Modern Circuits and Systems Technologies (MOCAST), pp. 1–5.
IEEE (2023)

12. Hamey, L.G.: XOR has no local minima: A case study in neural net-
work error surface analysis. Neural Networks 11(4), 669–681 (1998)

13. Chua, L.O., Roska, T.: The cnn paradigm. IEEE Transactions on Cir-
cuits and Systems I: Fundamental Theory and Applications 40(3), 147–
156 (1993)

14. Ascoli, A., et al.: System-theoretic methods for designing bio-inspired
mem-computing memristor cellular nonlinear networks. Frontiers in
Nanotechnology 3, 633026 (2021)

15. Ascoli, A., et al.: Edge of Chaos Is Sine Qua Non for Turing Instability.
IEEE Transactions on Circuits and Systems I: Regular Papers 69(11),
4596–4609 (2022)

16. Ascoli, A., et al.: Edge of chaos theory resolves Smale paradox. IEEE
Transactions on Circuits and Systems I: Regular Papers 69(3), 1252–
1265 (2022)

17. Tetzlaff, R., et al.: Theoretical foundations of memristor cellular non-
linear networks: Memcomputing with bistable-like memristors. IEEE
Transactions on Circuits and Systems I: Regular Papers 67(2), 502–515
(2019)

18. Ascoli, A., et al.: Theoretical foundations of memristor cellular nonlin-
ear networks: Stability analysis with dynamic memristors. IEEE Trans-
actions on Circuits and Systems I: Regular Papers 67(4), 1389–1401
(2019)

19. Dellnitz, M., et al.: Cycling chaos. IEEE Transactions on Circuits
and Systems I: Fundamental Theory and Applications 42(10), 821–823
(1995)

20. : Solving the XOR problem and the detection of symmetry using two
memristive neruons. IEEE Transactions on Circuits and Systems I:
Regular Papers - (unpublished - under review) (2022)

21. Ascoli, A., et al.: Edge of chaos explains Prigogine’s insta-
bility of the homogeneous. IEEE Journal on Emerging and
Selected Topics in Circuits and Systems pp. 1–1. (2022).
doi:10.1109/JETCAS.2022.3221156

22. Horváth, A., et al.: Cellular neural network friendly convolutional neu-
ral networks—cnns with cnns. In: Design, Automation & Test in
Europe Conference & Exhibition (DATE), 2017, pp. 145–150. IEEE
(2017)

23. Corinto, F., Civalleri, P.P., Chua, L.O.: A theoretical approach to mem-
ristor devices. IEEE Journal on Emerging and Selected Topics in Cir-
cuits and Systems 5(2), 123–132 (2015)

24. Ascoli, A., Corinto, F., Tetzlaff, R.: Generalized boundary condition
memristor model. International Journal of Circuit Theory and Applica-
tions 44(1), 60–84 (2016)

25. Ascoli, A., et al.: Unfolding the local activity of a memristor. In: 2014
14th International Workshop on Cellular Nanoscale Networks and their
Applications (CNNA), pp. 1–2. IEEE (2014)

26. Ascoli, A., et al.: Theoretical foundations of memristor cellular non-
linear networks: a drm 2-based method to design memcomputers with
dynamic memristors. IEEE Transactions on Circuits and Systems I:
Regular Papers 67(8), 2753–2766 (2020)

27. Paszke, A., et al.: Automatic differentiation in pytorch (2017)
28. Chen, R.T., et al.: Neural ordinary differential equations. Advances in

neural information processing systems 31 (2018)
29. Horváth, A.: Memristive cellular neural networks in pytorch. available

online at: https://github.com/horan85/memristive_cnn, last accessed on
2023.02.21 (2023)

30. Zhang, Z.: Improved adam optimizer for deep neural networks. In:
2018 IEEE/ACM 26th International Symposium on Quality of Service
(IWQoS), pp. 1–2. Ieee (2018)

4 ELECTRONICS LETTERS wileyonlinelibrary.com/iet-el

https://github.com/horan85/memristive_cnn

