
26 December 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Dynamic Management of Constrained Computing Resources for Serverless Services / Adeppady, Madhura; Conte,
Alberto; Giaccone, Paolo; Karl, Holger; Chiasserini, Carla Fabiana. - In: IEEE TRANSACTIONS ON NETWORK AND
SERVICE MANAGEMENT. - ISSN 1932-4537. - STAMPA. - (2025). [10.1109/TNSM.2024.3497155]

Original

Dynamic Management of Constrained Computing Resources for Serverless Services

Publisher:

Published
DOI:10.1109/TNSM.2024.3497155

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2994279 since: 2024-11-15T08:12:16Z

IEEE

1

Dynamic Management of Constrained Computing
Resources for Serverless Services

Madhura Adeppady, Student Member, IEEE, Alberto Conte, Member, IEEE,
Paolo Giaccone, Senior Member, IEEE, Holger Karl, Member, IEEE, Carla Fabiana Chiasserini, Fellow, IEEE

Abstract—In resource-constrained cloud systems, e.g., at the
network edge or in private clouds, serverless computing is
increasingly adopted to deploy microservices-based applications,
leveraging its promised high resource efficiency. Provisioning
resources to serverless services, however, poses several challenges,
due to the high cold-start latency of containers and stringent Ser-
vice Level Agreement (SLA) requirements of the microservices.
In response, we investigate the behavior of containers in different
states (i.e., running, warm, or cold) and exploit our experimental
observations to formulate an optimization problem that mini-
mizes the energy consumption of the active servers while reducing
SLA violations. In light of the problem complexity, we propose
a low-complexity algorithm, named AiW, which utilizes a multi-
queueing approach to balance energy consumption and system
performance by reusing containers effectively and invoking cold-
starts only when necessary. To further minimize the energy con-
sumption of data centers, we introduce the two-timescale COm-
puting resource Management at the Edge (COME) framework,
comprising an orchestrator running our proposed AiW algorithm
for container provisioning and Dynamic Server Provisioner (DSP)
for dynamically activating/deactivating servers in response to
AiW’s decisions on request scheduling. COME addresses the
mismatch in timescales for resource provisioning decisions at
the container and server levels. Extensive performance evaluation
through simulation shows AiW’s close match to the optimum and
COME’s significant reduction in power consumption by 22–64%
compared state-of-the-art alternatives.

Index Terms—Microservices, Serverless Edge Computing,
Container Retention, Energy consumption

I. INTRODUCTION

Edge computing serves many real-time computational tasks,
reducing the consumption of bandwidth towards the cloud
as well as end-to-end latency [2]. Nonetheless, widespread
deployment of edge computing is still challenging [3]. From
the system perspective, provisioning computing resources at
the granularity of virtual machines, as done in conventional
cloud computing, brings in long provisional delays and wastes
resources, which is unacceptable for resource-constrained edge
servers and time-critical services. Serverless edge computing,
with its Function-as-a-Service (FaaS) offer, redefines the way
of deploying services [4], as it enables the decomposition of
their logic into microservices (MS) and efficiently uses under-
lying resources [5], [6]. These resource constraints and latency

M. Adeppady, P. Giaccone, and C. F. Chiasserini are with the Electronics
and Telecommunications Dept., Politecnico di Torino, Italy, and with CNIT,
Parma, Italy. Email: {firstname.lastname@polito.it}. C. F. Chiasserini is also
with Chalmers University of Technology, Sweden. A. Conte is with the Nokia
bell labs, Nozay, France. Email: alberto.conte@nokia-bell-labs.com. H. Karl
is with the Hasso Plattner Institute, University of Potsdam, Germany. Email:
holger.karl@hpi.de.
This is an extended version of our IEEE GLOBECOM 2023 paper [1].

requirements are particularly relevant in edge computing, but
they can also apply to other environments, such as private
clouds and small-scale data centers.

A key point is that, in serverless edge computing, MSs run
inside containers only when requested. Thus, serving a request
involves creating a new container with appropriate runtime,
which may involve downloading the necessary image from a
remote repository, and fetching and loading essential libraries
and dependencies before executing the actual function. This
process is known as cold-start and the long delay involved in
the initialization setup is referred to as startup latency, which
is one of the main performance issues faced by serverless
computing platforms [7]–[9]. A warm container, instead, keeps
the MS instance alive in the memory, with a negligible startup
latency when the warm container is reused for serving a later
request for the same MS. Due to the limited memory at the
edge nodes, serving all the requests with warm containers
is practically impossible. Further, keeping too many warm
containers in memory reduces resource utilization.

Existing issues and research gaps. Many research efforts
have focused on minimizing cold-starts by optimizing the
keep-alive time of warm containers [7]–[9]. An ideal keep-
alive time must tradeoff the resource overhead of warm
containers with their reusability in the near future. Since
MSs have widely varying resource needs, invocation frequen-
cies, and startup overhead, it is challenging to determine
an ideal keep-alive time. Other recent approaches focus on
utilizing specialized sandbox mechanisms like unikernels [10],
MicroVMs [11], and other virtualization techniques [12] to
reduce the cold-start latency. Although these sandbox mech-
anisms use fewer resources than warm containers, they still
suffer from resource overheads. Further, they either allocate
resources to the containers by largely overlooking MS-specific
Quality of Service (QoS) requirements, e.g., a given target
delay, or CPU allocations are adjusted proportionally to the
memory demands of the MSs [13]. This QoS-agnostic resource
allocation might result in severe Service Level Agreement
(SLA) violations, particularly for edge services that have
stringent QoS requirements.

Scientific challenges. Given the above issues and research
gaps, it is critical to face the cold-start problem in serverless
edge computing with the twofold aim of (i) ensuring the level
of QoS required by the MSs offered to users, and (ii) reducing
edge data centers’ energy footprint. To do so, we draw on the
following key observations.

Observation 1. As shown later by our experiments, cold-
start latency can contribute up to 81% of the total service

2

time for MS requests. Thus, for MSs with stringent delay
constraints, serving the requests using a cold container may be
impossible, necessitating warm containers. Serving however
all requests at the edge with warm containers may also be
impractical due to the limited memory available at the edge
servers.

Observation 2. It is well known that edge data centers con-
sume a significant amount of energy, and, since their energy
consumption mainly depends on their CPU load, the containers
executing on these servers, in turn, determine their energy con-
sumption. Notice that, even if feasible, using cold containers
to serve MS requests while meeting their target latency may
require a high CPU speed (hence energy consumption), as the
long startup latency must be compensated for by a reduced
execution time. In contrast, using warm containers may be
more energy-efficient because their negligible startup latency
allows a lower CPU speed allocation.

Observation 3. It is well known that, even when servers
are idle but still turned on, they consume a non-trivial amount
of energy [14]. Therefore, it is important to turn them off
whenever possible, without compromising QoS requirements
of MSs.

Observation 4. MSs have short lifespans, leading to the
need for dynamic toggling of containers between warm/cold
and running states based on real-time service demands. Conse-
quently, this may result in idle servers or necessitate additional
servers at short timescales. On the other hand, decisions
on activating/deactivating the servers act on a comparatively
longer timescale.

Our contribution. Motivated by the above observations,
we introduce Always in Warm (AiW), which utilizes a multi-
queueing system for efficient container provisioning, while
minimizing SLA violations. Leveraging one queue per MS
type allows a higher reusability of MSs containers and enables
prompt cold-starts only if necessary. Additionally, the multi-
queueing system is motivated by the fact that warm containers
of one MS cannot be reused to serve the requests for other
MSs, as code and data of the former MS continues to exist
in a warm container [15]. In more detail, AiW increases the
container reusability by queueing the requests based on the
residual processing time of the running containers and effi-
ciently deciding the number of warm containers based on the
current system load. Further, AiW’s ability to effectively reuse
containers leads to lower CPU allocations, and eventually to
reduced energy consumption.

Finally, we propose COmputing resource Management at
the Edge (COME), a two-timescale framework for deploying
serverless MSs. COME reduces the energy footprint of edge
data centers by optimizing energy consumption at both the
server and edge data center levels, while minimizing the poten-
tial SLA violations. The framework consists of two modules,
(i) an orchestrator running AiW algorithm for deploying and
managing containers in active servers promptly and efficiently
at a short timescale, and (ii) the Dynamic Server Provisioner
(DSP) that further minimizes the energy consumption by dy-
namically activating/deactivating the servers in response to the
orchestrator’s decisions at comparatively a longer timescale.
Specifically, the DSP module turns on a new server when the

average load of the servers that are currently active exceeds a
predefined threshold. An idle server is instead turned off only
if this action keeps the average load across the active servers
below threshold. To the best of our knowledge, COME is the
first framework that allows reducing the energy usage at both
server and edge data center levels for serverless services.

To summarize, our main contributions are as follows.
• We first present experimental evidence, conducted on

the OpenWhisk [16] testbed, highlighting the crucial need to
minimize the cold-start latency of MSs in resource-constrained
edge environments. As mentioned, our findings indicate that
cold-start latency can contribute very substantially to the
total service time for requests, significantly impairing the
responsiveness of the MSs.
• Since decisions made on container and server activa-

tions/deactivations occur at distinct timescales, we propose
COME, a novel two-timescale approach to minimize the
energy footprint of the edge data centers.
• Through a detailed, yet tractable, model of the system,

we formulate an optimization problem for short timescale
decisions that, looking at a finite time horizon, minimizes the
servers’ energy consumption by leveraging cold, warm, and
running containers.
• Since the problem turns out to be NP-hard, we investigate

AiW, a low-complexity, yet highly effective, multi-queueing
solution that closely matches the optimum.
• For long timescale operations, we introduce DSP, a

mechanism that activates/deactivates servers according to the
average CPU load at the edge data center.
• Finally, through an extensive performance analysis based

on simulations, we demonstrate that COME minimizes the
power consumption of the edge data center by 22–64% com-
pared to state-of-the-art schemes.

Paper organization. Sec. II provides experimental evi-
dences on how cold-start latency impacts the responsiveness of
MSs. Sec. III gives an overview of the proposed COME frame-
work, while Sec. IV introduces the system model. Sec. V de-
scribes the problem formulation for short timescale decisions;
owing to the problem complexity, Sec. VI and Sec. VII present,
respectively, our low-complexity AiW orchestration solution
and DSP algorithm for handling the data center servers. We
highlight the improvements of COME against state-of-the-art
alternatives in Sec. VIII. Finally, Sec. IX summarizes related
work and highlights our novel contributions, while Sec. X
concludes the paper.

II. EXPERIMENTAL EVIDENCE AND WORK MOTIVATION

To characterize the startup latency and resource overhead
of cold and warm containers, we consider a few MSs from
the faas-profiler [17] and serverless-faas-workbench [18]. The
description of these MSs, along with their input parameters,
is given in Table I. We conducted experiments on an Apache
OpenWhisk setup running on a Single Intel Xeon server, which
hosts both the framework and the MS instances in Docker
containers.

3

TABLE I
LIST OF MSS: DESCRIPTION AND INPUT PARAMETERS

MSs Description

float operation finds sin, cos, and sqrt of numbers up to 107

xml renders an HTML table of dimension 1000×
1000

matmul multiplies two 1000-dimensional square matri-
ces

img-resize resizes given image to several icons
img-ocr finds text in the given image using Tesseract

OCR
encry performs private key encryption and decryp-

tion on a string of length 2,500 using 100
iterations

float
 operation

xml mat
 mul

img
 resize

img
 ocr

encry0

2000

4000

6000

8000

10000

To
ta

l s
er

vi
ce

 ti
m

e
[m

s]

Cold start
Processing

float
 operation

xml mat
 mul

img
 resize

img
 ocr

encry0

2000

4000

6000

8000

10000

To
ta

l s
er

vi
ce

 ti
m

e
[m

s]

Warm start
Processing

Fig. 1. Breakdown of total service time for cold-start (left) and warm-start
(right).

A. Service time

The total service time of a MS request consists of i)
cold/warm-startup latency and ii) processing time. Cold-start
latency is measured for the initial MS request when no warm
container exists. After the execution, OpenWhisk keeps the
container in the warm state to serve future requests faster.
Thus, warm-start latency is measured by sending another re-
quest for the same MS. Finally, we also measure the processing
time, which is the actual time taken to execute the request;
note that the processing time depends on the input parameters
in the MS request. All latency and execution time data are
extracted from OpenWhisk logs; average cold and warm-start
latencies are computed with a 95% confidence interval.

Fig. 1(left) shows the obtained results, highlighting that the
cold-start latency of the MSs is indeed significant, ranging be-
tween 2.5 and 5 seconds. For some MSs, the cold-start latency
is even higher than the request processing time, accounting
for up to 81% of the total service time. On the contrary,
Fig. 1(right) reveals that warm-start latency for the considered
MSs is always below 100 ms, making them negligible.

B. Resource overhead

In our experiments, after executing a request and before the
arrival of the next one for the same MS, the container remains
in the warm state. During this time, we measured the mem-
ory occupied by the warm container using docker stats
command. The memory occupied by the warm containers of
the various MSs is non-negligible, as shown in Table II: it
varies from 9 MB for float operation up to 68 MB for
img-ocr.

Note that uncontrolled swapping occurs when the memory
used by the containers exceeds the server’s capacity, harming
performance. We avoid this by adding a constraint on the

TABLE II
MEMORY OCCUPIED BY WARM CONTAINERS FOR VARIOUS MSS

MSs Warm container memory [MB]

float operation 8.4
xml 25.8
matmul 31.3
img-resize 23.3
img-ocr 68.9
encry 18.7

available memory at the server such that we never saturate
the memory.

In summary, our experiments indicate that cold-start latency
negatively impacts the responsiveness of the MSs. Thus, meet-
ing strict latency requirements of MSs with cold containers de-
mands shorter processing times, requiring high CPU speed and
consequently increasing overall energy consumption. On the
contrary, warm containers play a crucial role in significantly
reducing the energy footprint of edge servers by efficiently
handling requests with low CPU allocations.

III. THE COME FRAMEWORK

This section introduces COME, a framework for serverless
services that minimizes the energy consumption at the server
and edge data center levels while reducing SLA violations.

A. Architecture

To cope with the time mismatch between server activa-
tion/deactivation and MS lifespan, COME is designed to
operate with a two-timescale approach. Accordingly, it com-
prises an orchestrator and a DSP module (see Fig. 2). The
orchestrator handles individual queues of MSs by scheduling
pending requests on containers that run on servers, while a
DSP module at the edge data center level decides on the server
activation/deactivation.

The orchestrator (bottom of Fig. 2) handles two events
in the system: i) the arrival of a new request for an MS;
ii) the completion of a request execution on a container. To
effectively process these two events, the orchestrator maintains
a dedicated queue for each MS, as containers dedicated to
an MS cannot handle the requests for other MSs. Incoming
requests wait in their respective MS queues, enabling the reuse
of already running containers to process them within target
delay. Thus, while processing an MS events, it is sufficient to
focus on the queue and containers of that specific MS.

Note that, since the workload requirement (in terms of total
CPU cycles) of MSs is already known and the orchestrator
allocates CPU cycles/s for the containers to serve the requests,
the request execution time is deterministic. Thus, the orches-
trator knows residual processing times of those containers
to which requests were assigned. On the other hand, new
request arrivals occur randomly, and the orchestrator lacks
prior knowledge of these arrivals.

DSP module (top of Fig. 2) monitors the average load
across active servers after the orchestrator handles arrival and
execution end events. It keeps track of active, inactive, and
active-but-idle servers in the system and takes activation or
deactivation actions on these servers whenever necessary.

4

B. High-level workflow

Upon the arrival of a new request for an MS, the orchestrator
makes a scheduling decision on it. An overview of the actions
that the orchestrator can take for handling a new request
is given in Fig. 2. Using a warm container to start serving
the request right away is the best-case scenario, since no
queueing delay or cold-start latency is experienced (top actions
of request arrival event on Fig. 2). If warm container is
unavailable, the orchestrator decides between enqueuing this
request (middle action of request arrival event on Fig. 2)
or initiating a cold start for the newly arrived request (top
actions of request arrival event on Fig. 2) based on the queued
requests and existing containers of the MS. Intuitively, the idea
of enqueueing a request is to foster the reuse of containers
and reduce resource consumption. Nevertheless, cold start is
preferred if enqueuing results in a very high queueing delay,
eventually necessitating a very high CPU speed allocation. If
none of these decisions is possible, the target delay cannot
be met and the newly arrived request is dropped as described
in bottom action of request arrival event on Fig. 2. A CPU
speed is allocated to the container running a request, hereby
impacting the overall energy consumption of the servers.

Similarly, when a container completes serving a request
for an MS (request execution end event), the orchestrator
determines whether to reuse the container for serving the Head
of Line (HoL) request from that MS’s queue. It is possible that
container reuse is not feasible due to insufficient computing or
memory resources on the server. In such cases, the orchestrator
checks for a warm start on other active servers, provided they
have warm containers available. If no warm start is feasible on
any active server, the orchestrator then explores the possibility
of a cold start. If neither warm nor cold starts are possible,
the HoL request is dropped. All these actions are highlighted
in top actions of request execution end event in Fig. 2.

As before, decisions on request scheduling impact CPU
speed allocations to the containers and, consequently, energy
consumption. Finally, keeping too many warm containers in
memory causes resource overhead and unpredictable perfor-
mance in case of paging out. The orchestrator evaluates the
required number of warm containers by considering the current
system load and arrivals observed in the past. It then decides to
transit the warm containers to the cold state if there are more
warm containers than necessary (bottom actions of request
execution end event on Fig. 2).

DSP monitors the CPU load across the active servers
whenever the orchestrator deals with (i) a new request arrival
or (ii) an existing container finishing its execution events. As
described in Fig. 2, the DSP module monitors the system
(bottom action of DSP on Fig. 2) only during the arrival of
new requests or the completion of execution events for existing
containers because CPU load changes during these events.
DSP activates a new server if the average load on the currently
active servers exceeds the pre-defined threshold, and it deac-
tivates an active idle server if there are enough resources to
serve the requests (top actions of DSP on Fig. 2). Conversely,
if the average load on the active servers drops below threshold,
the DSP goes through the set of servers searching for an idle

Long timescale operations

Dynamic server
provisioner (DSP)

Edge data
center

Inactive
servers

Active
servers

Short timescale operations

Orchestrator

New request arrival
for service k

Event: request arrival

Queues

Which server
CPU speed

Orchestrator

Container for service
k finishes execution

Event: request execution end
Queues

Monitor average
 CPU load

Server activation/
deactivation

Idle server
Enqueue

Warm/cold
start

Drop

Reuse/
Cold start

Drop

Keep container
in warm/cold

Fig. 2. Structure of COME framework.

server and deactivates it, only if deactivation maintains the
average load below the threshold.

IV. SYSTEM MODEL

A service orchestrator may receive requests for any MS
k ∈ K, and serves them using the serverless computing
paradigm. Any request for MS k demands certain amount of
memory and workload (in CPU cycles), denoted by τk and wk,
respectively, and has a target maximum delay Dk in terms
of time lapse from when the request arrives till the service
execution is completed. We focus on a single data center and
let S be the set of servers available therein, with s∈S having τ̂s
bytes of memory and µ̂s CPU capacity (expressed in cycles/s).

A container can be in any of the three states: running
(R), warm (W), cold (C), or in any of these two transition
states: from C to R (TC→R), or from R to C (TR→C).
Notice that we consider only TC→R and TR→C , since the
transition to/from W involves negligible startup latency. For
a container destined to implement service k, let δk,TC→R

and
δk,TR→C

denote the startup latency of cold-start and transition
time from R to C, respectively. We remark that, as shown
by our experiments on float operation MS, δk,TC→R

and δk,TR→C
are not equal. Specifically, for such an MS,

we observed that δk,TR→C
=1.5 s while δk,TC→R

=4.5 s; recent
studies [9], [19] corroborate this observation.

Let ck,i,R(t) be the container in state R serving the i-th
request for MS k, rk,i, at time t. When starting to serve rk,i,
the orchestrator assigns to container ck,i,R a CPU speed (in
cycles/s), denoted by µck,i,R

, such that (i) the overall CPU
capacity at the server is not exceeded, and (ii) rk,i is served
within Dk. Additionally, the memory assigned to any container
implementing MS k in state R is equal to the memory demand
of an instance of MS k. We stress that a container in warm
state at time t that implements MS k, ck,W (t), consumes
only memory τk,W . Instead, when in cold state, a container
consumes neither CPU nor memory. Further, let ck,i,TC→R

(t)
(or, ck,i,TR→C

(t)) be the container in transition from C to R
to serve rk,i at t (or, from R to C as it just finished serving
rk,i). A container of MS k in any of the above mentioned

5

transition states consumes both memory and CPU cycles/s.
Let the CPU cycles/s and memory consumed by a container of
MS k in the transition state TC→R be µk,TC→R

and τk,TC→R
,

respectively. Similarly, for TR→C , the CPU cycles/s and
memory consumption are denoted by µk,TR→C

and τk,TR→C
,

respectively. Since the container cleanup is much simpler than
its startup [9], the CPU and memory consumption of the two
transition states are not the same. To verify this, we performed
some experiments on float operation and quantified the
CPU cycles/s and memory consumption using perf [20] and
vmstat [21] tools, respectively. Our measurements confirmed
the above intuition: we found that total CPU cycles used by
TR→C is 0.9 G clock cycles < 7 G clock cycles of TC→R, and
τk,TR→C

= 30MB < τk,TC→R
=55MB.

Incoming requests for MS k∈K are enqueued on the cor-
responding dedicated queue, denoted by Qk. When a request
is assigned to a cold container, it must wait for the cold-to-
running transition to complete before being served. To handle
such cases, each MS has an (additional) auxiliary queue where
the request assigned to a transiting container waits for the
transition to finish.

Serverless computing typically use three operation modes:
scale-per-request, concurrency-value-scaling, and metric-
based-scaling [22]. In scale-per-request approach, each new
request is served in a warm or cold container and after the
request is served, the container is either kept in warm or tran-
sitioned back to cold state. Concurrency-value-scaling allows
a single container to handle multiple requests simultaneously,
based on the defined concurrency level. Metric-based-scaling
maintains CPU or memory usage within defined ranges. Our
system model uses the scale-per-request pattern, due to its
widespread adoption in popular serverless platforms like AWS
Lambda, Azure Functions, OpenWhisk, and their edge variants
such as Lambda@Edge and Lean OpenWhisk.

The orchestrator makes a decision regarding MS k only
when either of these two events occur: (i) a new request for
MS k arrives; (ii) container ck,i,R(t) finishes serving request
rk,i (at any point in time, there could be multiple containers
of service k in state R). Another possible event is a container
finishing its transition, upon which the orchestrator does not
make any decision. If a container finishes a transition to the
cold state, it is destroyed. Otherwise, if ck,i,TC→R

(t) finishes
its transition to become ck,i,R(t), the request rk,i is removed
from the MS’s auxiliary queue to get executed on it.

Also, the orchestrator acts upon each queue Qk according
to a FIFO policy, by serving the requests on containers
implementing that specific MS. For serving HoL request in the
queue, we have two cases. In the first one, we consider that no
warm container is available. Hence, the orchestrator creates a
new container and, once the container reaches state R, HoL
request is served on it. In the second case, we consider that a
warm container implementing the requested MS is available.
In such a situation, the orchestrator can serve the request
in a warm or cold container. For the former, the request is
immediately removed from the queue and executed on the
warm container. For the latter, the request is removed from the
queue of waiting requests and assigned to the MS’s auxiliary
queue, where it waits for the container to finish the transition.

Let t be the time at which any of the previously mentioned
events (arrival of a new request, container finishes serving
a request, or container completes the transition) occurs. We
denote by Ωs

k,W (t), Ωs
k,R(t), Ω

s
k,TC→R

(t), and Ωs
k,TR→C

(t) the
set of all containers of MS k on server s that at time t are in
state W , R, and TC→R, and TR→C , respectively. We define
Ωk,R(t)= ∪s∈S Ωs

k,R(t), and Ωk,T (t)= ∪s∈S Ωs
k,T (t) as the

set of running and transiting containers across all the servers,
respectively.

Processing time Tk,i of request rk,i running on container
ck,i,R is given by Tk,i=wk/µck,i,R

where µck,i,R
is the CPU

speed allocated to ck,i,R to process rk,i (note that the expres-
sion holds independently from the concurrent requests). The
total service time of rk,i is the sum of the queueing delay
before being served, eventually including the startup latency
of the container on which the request is scheduled to run, and
the processing time.

The power consumption of a server is composed of (i) a
constant, idle power consumption when a server is active, Pidle,
and (ii) a function P (·) of the server’s actual CPU load, which,
according to experimental results [14], is often assumed to be
linear. Thus, the power consumption of server s at t with CPU
load λs,t is given by Ps=γs,t ·Pidle+P (λs,t), where γs,t=1 if
the server is in active state at t.

The key parameters and decision variables used in the
problem formulation are summerized in Table III.

V. PROBLEM FORMULATION FOR SHORT TIMESCALE
OPERATIONS

We now describe the event-driven problem formulation
that aims to reduce the data center’s power consumption
as well as the possible SLA violations. We emphasize that
the orchestrator operates without knowledge of future request
arrivals. Therefore, its design focuses on optimizing energy
consumption based solely on the currently known events in
the system (e.g., request execution ends event).

Below, we denote the case of queue Qk not including any
unhandled request by setting ϵk=1; otherwise, ϵk=0. Also, at
time t, the CPU load λs,t of a server s is the sum of the CPU
load of all the running and transiting containers on s, i.e.,

λs,t=
∑
k∈K

(∑
ck,i,R∈Ωs

k,R(t)

µck,i,R
+

∑
ck,TC→R

∈Ωs
k,TC→R

(t)

µk,TC→R
+

∑
ck,TR→C

∈Ωs
k,TR→C

(t)

µk,TR→C

)
.

(1)

Similarly, at t, the amount of consumed memory, νs,t, on
server s is the sum of that consumed by all the running,
transiting, and warm containers on s, i.e.,

νs,t=
∑
k∈K

(∑
ck,i,R∈Ωs

k,R(t)

τk+
∑

ck,W∈Ωs
k,W (t)

τk,W+

∑
ck,TC→R

∈Ωs
k,TC→R

(t)

τk,TC→R
+

∑
ck,TR→C

∈Ωs
k,TR→C

(t)

τk,TR→C

)
. (2)

6

TABLE III
LIST OF KEY SYMBOLS USED IN THE PROBLEM FORMULATION

Symbol Description

Parameters for Servers

S Set of available servers
τ̂s Memory capacity of server s (Bytes)
µ̂s CPU capacity of server s (cycles/s)
Ωs

k,X(t) Sets of containers of MS k on server s at time t, where
X can be W,R, TC→R or TR→C

Ps Power consumption of server s
λs,t CPU load of server s at time t
νs,t Memory load of server s at time t
γs,t State of the server t at time t

Parameters for MSs

K Set of available service types
τk Required memory of MS k (Bytes)
wk Required computation of MS k (CPU cycles)
Dk Target maximum delay of MS k (Seconds)
Qk Queue for pending requests of MS k

Parameters for Containers

C,W,R States of a container: cold, warm, and running
TC→R Transition state of a container from C to R
TR→C Transition state of a container from R to C
ck,i,R(t) Container in state R serving rk,i at time t
ck,i,TC→R

(t) Container in transition from C to R to serve rk,i at
time t

ck,W (t) Container in state W at time t
δk,TX→Y

Transition time of a container of MS k from state X
to state Y , where X,Y can be C or R (seconds)

τk,X Memory consumed by a container of MS k in state
X , where X can be W,TC→R or TR→C (Bytes)

µk,X CPU consumed by a container of MS k in state X ,
where X can be TC→R or TR→C (Bytes)

Ωk,X(t) Sets of containers of MS k at time t, where X can be
W,R, TC→R or TR→C

Parameters for Requests

rk,i i-th request for MS k
Tk,i Processing time of request rk,i (seconds)
trk,i Queue admission time of request rk,i

Decision variables for new request arrival event

xrk,j ,ck,W Binary decision variable indicating whether HoL re-
quest to handle in the queue rk,j is scheduled on the
warm container ck,W

qrk,i Binary decision variable indicating whether the newly
arrived request rk,i is queued

zrk,j ,ck,C Binary decision variable denoting whether HoL re-
quest rk,j is assigned to a cold container ck,C

yrk,j ,s Binary decision variable denoting whether the con-
tainer ĉk,j,R is scheduled to run on server s

µrk,j Discrete decision variable indicating the CPU speed
allocated to the container ĉk,j,R serving request rk,j

µrk,j+n Discrete decision variable indicating the CPU speed
allocated to n-th queued request rk,j+n in Qk

µrk,i Discrete decision variable indicating the CPU speed
allocated the newly arrived request rk,i if qrk,i=1

Decision variables for request execution end event

x̂rk,j ,ck,i,R Binary decision variable indicating whether HoL re-
quest in the queue rk,j runs on the running container
that had just finished its current execution

eck,i,r Integer decision variable indicating whether the con-
tainer ck,i,R is kept in R, W , or C state

µrk,j Discrete decision variable indicating the CPU speed
allocated to the container ĉk,j,R serving HoL request
rk,j

µrk,j+n Discrete decision variable indicating the CPU speed
allocated to the n-th queued request rk,j+n in Qk

A. Problem formulation of new request arrival event

At t, upon the arrival of a new request, rk,i, the orchestrator
makes one of the following decisions on MS k:
1) To queue rk,i into the queue Qk. In this case, let trk,i

be the queue admission time of rk,i, which is set to t. The
decision of enqueueing rk,i is expressed by setting qrk,i

=1.
While enqueueing rk,i, the orchestrator decides the CPU speed
to allocate to it, µrk,i

. Notice that the newly arrived request
is queued only if existing containers (including the newly
started container for the HoL request) can serve it within
the target delay. To ensure this, one must estimate the worst-
case queueing delay for the new request by considering when
currently running/transiting containers become available to
serve it. This estimation relies on the processing times, and
thus, CPU speeds allocated to the already-queued requests. It
follows that deciding the CPU speed for the queued requests is
a crucial step. Importantly, if later on the number of containers
serving that queue increases or decreases, the CPU speed
chosen for the queued requests can be revised.

(1a) To schedule HoL request in the queue rk,j on an
existing warm container ck,W (t) in server s ∈ S. We denote
this decision by setting xrk,j ,ck,W

=1 (Case 1.1 of Fig. 3). The
decision variable yrk,j ,s=1 indicates that the request is served
in server s. The container ck,W (t) moves to state R (denoted
by ck,j,R(t)) with negligible startup latency, and serves rk,j .
The CPU and the memory allocated to ck,j,R are set equal
to, respectively, the CPU allocated to rk,j and to MS k’s
memory requirements. Also, the orchestrator revises the CPU
speed allocated to all the requests in the queue. For the n-th
request rk,j+n in Qk, with j corresponding to the first request,
let µrk,j+n

be the revised CPU speed allocated to it, where
n∈{0, 1, ..., |Qk| − 1}.

(1b) To schedule HoL request in the queue rk,j on a cold
container in server s (yrk,j ,s=1), denoted by zrk,j ,ck,C

=1
(Case 1.2 of Fig. 3). That is, at t, a new container is created
and starts the transition to R (ck,j,TC→R

(t)). Additionally,
rk,j is removed from the queue of waiting requests and it
waits in the MS’s auxiliary queue to finish the transition of
ck,j,TC→R

(t). After the startup latency of δk,TC→R
, rk,j is

run on ck,j,R(t + δk,TC→R
). At t, the orchestrator sets the

CPU speed of ck,j,R(t+δk,TC→R
) to µrk,j

, while the memory
allocated to ck,j,R(t+ δk,TC→R

) is that required by MS k. As
before, the orchestrator revises the CPU speed allocated to all
the queued requests.

(1c) Not to start a cold or warm container to serve the
first request in the queue, denoted by setting zrk,j ,ck,C

=0 and
xrk,j ,ck,W

=0, i.e., the first request in Qk, rk,j , remains in the
queue for the time being (Case 1.3 of Fig. 3), and the CPU
speed assigned to queued requests is not revised.
2) The orchestrator drops the new request rk,i (Case 2 of
Fig. 3). This decision is denoted by setting qrk,i

=0.

B. Queueing delay

We now present a recursive procedure to obtain the worst-
case queueing delay of the newly arrived request rk,i and the
residual queueing delays of the queued requests in Qk. In
such calculations, we do not make any prediction on whether

7

Queues for different
services

Request for
service1

Data center

R

C C->R R

(1.1) Serve in
warm container

(1.2) Serve in
cold container

(1.3) Stay in the
Queue

(1) Enqueue
request

(2) Drop
request

server1

server2

Fig. 3. Decisions that the orchestrator can make upon a new request arrival.

queued requests are served in cold or warm containers, except
for the first request to handle in the queue; instead, the or-
chestrator reuses the currently running, transiting (in transition
state TC→R) containers whenever they finish their assigned
requests. Also, we do not predict new request arrivals, in order
not to further increase the problem complexity.

Let mk(t) ∈ Mk(t) denote the time at which currently
running, transiting, or warm containers are available to serve
the first request to handle in the queue, relative to current time
t. For the first request to handle, rk,j , let µrk,j

and ∆tj be
its revised CPU speed allocation and the time at which an
existing container will start the execution of rk,j , relative to
t. The orchestrator will run the first request rk,j waiting in
the queue on the container that can start serving such request
at the earliest, i.e., at ∆tj=min(Mk(t)). The queueing delay
experienced by rk,j so far is t−trk,j

, where we recall that trk,j

is the request queue admission time. Additionally, rk,j will
stay for ∆tj amount of time in the queue before being served.
To get served within the target delay, the revised CPU speed of
rk,j is calculated as: µrk,j

=wk/[Dk−(t−trk,j
+∆tj)]. When

this container starts serving rk,j , the container’s residual time
to finish the execution will be equal to rk,j’s processing time.
Let Mk(∆tj) be the set of updated residual times of the
running and transiting containers at ∆tj , which is given by

Mk(∆t1)=
{
mk(t)−∆t1,

∀mk(t) ∈ Mk(t)\min(Mk(t))
}
∪
{ wk

µrk,1

}
(3)

where mk(t) is the generic element of set Mk(t).
Similarly, with respect to the current time t, the

second request to handle, rk,j+1, will be served at
∆tj+1=∆tj+min(Mk(∆tj)). The revised CPU speed of
rk,j+1 is then: µrk,j+1

=wk/[Dk−(t−trk,j+1
+∆tj+1)]. The

set, Mk(∆tj+1), containing the time relative to ∆tj+1 at
which running and transiting containers can handle the third
request in Qk is,

Mk(∆tj+1)=
{
mk(∆tj)−(∆tj+1−∆tj),

∀mk(∆tj) ∈ Mk(∆tj)\min(Mk(∆tj))
}
∪
{ wk

µrk,j+1

}
.

Generalizing the above equation, the n-th request
to handle in the queue, rk,j+n, will be served at
∆tj+n=∆tj+n−1+min(Mk(∆tj+n−1)). By revising the

Queue

Running Containers

Container Container

Queue

Running Containers

Container Container

Fig. 4. An example of queueing delay calculations for queued requests.

CPU speeds, the time at which running and transiting con-
tainers can handle such request relative to ∆tj+n is:

Mk(∆tj+n)=
{
mk(∆tj+n−1)−(∆tj+n−∆tj+n−1),

∀mk(∆tj+n−1)∈Mk(∆tj+n−1)\min(Mk(∆tj+n−1))
}

∪
{ wk

µrk,j+n

}
. (4)

Thus, the residual queueing delay of the n-th queued request
rk,j+n is given by ∆tj+n, where n ∈ {0, 1, ..., |Qk| − 1}.

The queueing delay of the newly arrived request rk,i will
be the sum of the time at which the last request in the queue
will start being executed, and the updated remaining time of
the running and transiting containers at ∆tj+|Qk|−1, i.e.,

drk,i
(Mk(t))=∆tj+|Qk|−1+min(Mk(∆tj+|Qk|−1)) . (5)

To clarify the queueing delay calculations, we provide an
example below.

Example 1 (Queueing delay of the newly arrived request rk).
As depicted in Fig. 4, consider a new request, rk,3, arriving at
the orchestrator when two requests, rk,1 and rk,2, are already
queued Qk. Assume the workload requirement wk of service
k is 6 CPU cycles, and let the CPU speed allocated to rk,1
and rk,2 be µrk,1

=2CPU cycles/s, and µrk,2
=3CPU cycles/s

(resp.). Also, we have two containers for MS k, A and B,
currently running the requests rk,x and rk,y (resp.). The
time (relative to t) at which these containers can run the
first request waiting in the queue is Mk(t)={4, 2}. Let us
assume that the orchestrator does not create a new container
from cold/warm state to serve the queued requests. Then rk,1
will be served at ∆t1 on a container which can serve rk,1
at the earliest, i.e., on B. Hence, ∆t1=min(Mk(t))=2 s.
Now, the container B requires a processing time of wk

µrk,1
,

which is 3 s. Thus, the time at which the two containers
can handle the next requests relative to ∆t1 is given by
Mk(∆t1)={2, 3}. At ∆t2=∆t1+min{Mk(∆t1)}=4 s, the
container A will serve the request rk,2, hence the queueing
delay that rk,2 will experience is 4 s, and Mk(∆t2)={2, 1}.
The worst-case queueing delay of the newly arrived request,
rk,3, is then ∆t2+min{Mk(∆t2)}=5 s.

8

We use the above estimated worst-case queueing delays in
Sec. V-D for making decisions on starting a new container
from cold/warm state, and in Secs. V-D and V-E to revise the
allocated CPU speeds.

C. Pre-computation of power consumption

Upon the arrival of a new request, rk,i, the orchestrator
has to make a decision that minimizes the power consumption
of the servers in the data center. The optimal policy for this
problem is non-trivial. On one hand, keeping the requests
longer in the queue may reduce the total number of running
and transiting containers in the system, but it may lead to a
higher CPU speed allocation to such running containers and,
hence, higher overall power consumption. On the other hand,
if we keep the requests for a shorter duration in the queue, we
may have a higher number of transiting and running containers
with lower CPU speed allocated, again resulting in a higher
power consumption. Moreover, this latter policy may reduce
the reusability of the same container to serve other requests.
Thus, to minimize power consumption, considering just the
CPU cycles assigned to currently running and transiting con-
tainers is not enough. Instead, it is critical to also account
for the impact of queued requests on the power consumption.
To this end, during every request arrival, we pre-compute the
possible power consumption according to the various decisions
the orchestrator can make for the first request in the queue and
the newly arrived request.

Given the time t1 of the current arrival, the orchestrator
knows the request execution end and transition complete
events for the existing transiting and running containers. Let
L = {t1, t2, ...} be the set of the time instants at which these
known events will occur. Based on the decisions made for the
new request and the first request in the queue, the orchestrator
updates L to include the occurrence time of execution end for
the newly arrived request and the queued requests as well.

Let Lq be the auxiliary set containing the time at which
each of the known events will occur if the orchestrator decides
to queue the newly arrived request and not to serve the
first request in the queue (i.e., qrk,i

=1). Then, the power
consumption Pq across all the servers in the data center is
Pq=

∑
ŝ∈S

∑|Lq|−1
i=1

∫ ti+1

ti
(Pidle+P (λŝ,ti,q))dt where λŝ,ti,q

is the load of server ŝ at ti. Similarly, the orchestrator pre-
computes the power consumption for the other decisions. If the
orchestrator decides to queue the new request and start a warm
container on server s to serve the first request in the queue,
the power consumption Px,s across all the servers in the data
center is Px,s=

∑
ŝ∈S

∑|Lx,s|−1
i=1

∫ ti+1

ti
(Pidle+P (λŝ,ti,x,s))dt,

where λŝ,ti,x,s is the load of server ŝ at ti and Lx,s

is the auxilliary set containing the time of occurrence of
known events. If the decision is to use a cold container
on server s to serve the first request in the queue, then
the pre-computed power consumption is represented by
Pz,s=

∑
ŝ∈S

∑|Lz,s|−1
i=1

∫ ti+1

ti
(Pidle+P (λŝ,ti,z,s))dt. Finally, if

the new request is not queued, the pre-computed power
consumption is P=

∑
ŝ∈S

∑|L|−1
i=1

∫ ti+1

ti
(Pidle+P (λŝ,ti))dt.

D. Objective function for arrival event

Consider the arrival at the orchestrator of a new request for
MS k, rk,i. The objective is to minimize power consumption
across all the servers as well as minimize the expected power
consumption in the future, based on the currently known events
(i.e., request execution end and transition complete), while
maximizing the number of served requests. To avoid further
increasing the complexity of the problem formulation, we do
not assume to know the future arrival events. We maximize
the number of requests served by adding a high penalty, F ,
if the orchestrator decides to drop the newly arrived request
(i.e., qrk,i

=0).
Recall that Mk(t) represents the residual times of the

currently running and transiting containers in state TC→R, to
finish their assigned requests relative to current time t. Let
Mk,x(t) be an auxilliary set representing the updated version
of Mk(t), if the orchestrator decides to use an existing warm
container to serve HoL request in the queue (i.e., xr′k,ck,W

=1).
Since the latency associated with a warm container transiting
to the running state is negligible, we have: Mk,x(t)=Mk(t)∪
{0}. Similarly, let Mk,z(t) be another auxilliary set denoting
the updated version of Mk(t), if the orchestrator decides to
start a new container (cold-start) to serve HoL request (i.e.,
zr′k,ck,C

=1). Given the startup latency for a cold container
(δk,TC→R

), we have: Mk,z(t)=Mk(t) ∪ {δk,TC→R
}.

Next, based on the sets Mk(t), Mk,x(t), and Mk,z(t), the
orchestrator can estimate the possible residual queueing delays
of the currently queued requests and that of the new request
as described in Sec. V-B.

Thus, upon the arrival of rk,i, the orchestrator should solve
the following problem:

min
{y,x,q,z,{µ}}

[
qrk,i

·(1−xrk,j ,ck,W
)·(1−zrk,j ,ck,C

)·Pq

+ qrk,i
·xrk,j ,ck,W

·(1−zrk,j ,ck,C
)·
∑
s∈S

yrk,j ,s·Px,s

+ qrk,i
·(1− xrk,j ,ck,W

)·zrk,j ,ck,C

∑
s∈S

yrk,j ,s·Pz,s

+ (1− qrk,i
)·P

]
+ (1− qrk,i

) · F (6)

subject to the constraints below:

λs,t+yrk,j ,s·(xrk,j ,ck,W
·µrk,j

+zrk,j ,ck,C
·µk,TC→R

)≤γs,tµ̂s ∀s
(7)

νs,t+yrk,j ,s·(xrk,j ,ck,W
·τk+zrk,j ,ck,C

·τk,TC→R
)≤γs,tτ̂s ∀s

(8)

xrk,j ,ck,W
·
(
t− trk,j

+
wk

µrk,j

)
≤ Dk (9)

zrk,j ,ck,C
·
(
t− trk,j

+ δk,C +
wk

µrk,j

)
≤ Dk (10)

qrk,i
·
[
(1− xrk,j ,ck,W

) · (1− zrk,j ,ck,C
) · drk,i

(Mk(t))+

(1− xr′k,ck,W
) · zr′k,ck,C

· drk,i
(Mk,z(t))+

(1− zr′k,ck,C
) · xr′k,ck,W

· drk,i
(Mk,x(t)) +

wk

µrk,i

]
≤ Dk

(11)

9

t− trk,j+n
+ (1− xrk,j ,ck,W

)(1− zrk,j ,ck,C
)drk,j+n

(Mk(t))

+(1−xrk,j ,ck,W
)zrk,j ,ck,C

· drk,j+n
(Mk,z(t))+(1−zrk,j ,ck,C

)

· xrk,j ,ck,W
· drk,j+n

(Mk,x(t))+
wk

µrk,j+n

≤Dk

∀n∈{0, 1...|Qk| − 1}
(12)∑

s∈S
yrk,j ,s=xrk,j ,ck,W

+ zrk,j ,ck,C
(13)

xrk,j ,ck,W
· yrk,j ,s≤|Ωs

k,W (t)| ∀s∈S (14)

xrk,j ,ck,W
+ zrk,j ,ck,C

≤1 (15)
xrk,j ,ck,W

, qrk,i
, yrk,j ,s, zrk,j ,ck,C

∈{0, 1} . (16)

Constraint (7) ensures that, at any t, the CPU cycles used
by the pre-existing running and transiting containers as well
as by the newly scheduled container do not exceed the server
capability. Constraint (8) guarantees that the memory allocated
to pre-existing containers in warm, running, and transiting
states, and the newly scheduled container cannot exceed the
server capability. If the decision is to run the HoL request, rk,j ,
on a warm container, the total delay experienced by rk,j cannot
exceed MS k’s target delay (see (9)). If the decision is instead
to run rk,j on a cold container, the total delay experienced
by rk,j cannot exceed MS k’s target delay (see (10)). If the
decision is to queue the new request, the total delay the request
experiences in the worst case cannot exceed Dk (see (11)).
Note that the queueing delay the new request is going to
experience depends on the decisions made on the HoL request,
and the CPU speed allocated to all queued requests must be
revised accordingly ((12) ensures that the MS target delay
is met). If xrk,j ,ck,W

=1 or zrk,j ,ck,C
=1, we must specify

on which server the warm or cold container has started its
transition, as ensured by (13). Further, when xrk,j ,ck,W

=1,
yrk,j ,s can be set only for that server which has a warm
container constraint in (14). Constraint (15) ensures that rk,j
is scheduled in a warm container, or in a cold container, or
later. Finally, (16) specifies that xrk,j

, ck,W , qrk,i
, yrk,j ,s, and

zrk,j ,ck,C
are binary decision variables.

E. Problem formulation for request execution end

Consider now that at time t a container on server ŝ∈S
running MS k, ck,i,R, finishes its current execution; then, the
orchestrator makes one of the following decisions:
1) To schedule HoL request in the queue, rk,j , on the container
ck,i,R(t) (Case 1 in Fig. 5) . Note that this decision, denoted
by setting x̂rk,j ,ck,i,R

=1 and eck,i,R
=2, is possible since we

assume that the transition time of a container from the state R
to the state W is negligible. At this stage, ck,i,R(t) is referred
to as ck,j,R(t), and the CPU speed allocated to ck,j,R(t) is
updated to µrk,j

.
2) Not to schedule HoL request in the queue rk,j on the
container ck,i,R(t) denoted by setting x̂rk,j ,ck,i,R

=0. Further,
to set x̂rk,j ,ck,i,R

=0, the orchestrator needs to revise the CPU
speed allocated to the queued requests such that they are
served within the target delay of the service k. For the n-th
queued request, let µrk,j+n

be its revised CPU speed, where
n∈{0, 1, ..., |Qk| − 1}. Additionally, the orchestrator makes
one of the following decisions regarding ck,i,R(t):

Data center

R

server

server

server1

Orchestrator

(2) Keep in warm state

(3) Transit to cold state

Service end
event

(1) Serve first request in queue

server1

R

server1

W

server1

R->CR C

Fig. 5. Decisions the orchestrator can make upon a request execution end.

(2a) To keep ck,i,R(t) in state W , denoted by eck,i,R
=1

(Case 2 in Fig. 5). This is useful to reduce the startup latency
of future requests and serve them with low CPU speed.

(2b) To delete the container ck,i,R(t), denoted by eck,i,R
=0.

The container ck,i,R(t) then enters state TR→C , and it will
be removed from the system once it reaches state C (Case
3 in Fig. 5). Without knowing the future arrival pattern,
deciding whether to keep the container in the state W or C
is challenging. To make this decision, we consider probability
p0 of no arrivals within t and t+ δk,TC→R

, and added this as
a penalty in the objective function. The orchestrator decides
to set x̂rk,j ,ck,i,R

=0, only if the target delay of the queued
requests can be met with the existing running and transiting
containers of MS k excluding ck,i,R(t). To represent the set of
residual time to complete the execution for existing running
and transiting container, except for ck,i,R(t), we define an
auxiliary set Mk,x̂(t)=Mk(t) \ {0}.

For the request execution end event, through the same
procedure as in Sec. V-C, we pre-compute: Px̂ i.e., the power
consumption if the decision is to set x̂rk,j ,ck,i,R

=1, and Pe1

and Pe0 , i.e., the power consumption if the orchestrator decides
to keep ck,i,R(t) in warm and cold states (resp.). Then, the
objective function is given by

min
{x,e,{µ}}

x̂rk,j ,ck,i,R
·Px̂+(1− x̂rk,j ,ck,i,R

)eck,i,R
·Pe1+

(1− x̂rk,j ,ck,i,R
)(1− eck,i,R

)Pe0−

(1−x̂rk,j ,ck,i,R
)
[
eck,i,R

(1−p0)+(1−eck,i,R
)p0

]
(17)

subject to the following constraints:

λŝ,t+x̂rk,j ,ck,i,R
·µrk,j

+(1−x̂rk,j ,ck,i,R
)(1−eck,i,R

)µk,TR→C
≤

γs,tµ̂ŝ

(18)
νŝ,t+x̂rk,j ,ck,i,R

·τk,T+(1−x̂rk,j ,ck,i,R
)(1−eck,i,R

)τk,TR→C
≤

γs,tτ̂ŝ
(19)

(1−x̂rk,j ,ck,i,R
)drk,j+n

(Mk,x̂(t))

+
wk

µrk,j+n

≤ Dk ∀n∈{0, 1, ..., |Qk|}
(20)

eck,i,R
≥2x̂rk,j ,ck,i,R

(21)
x̂rk,j ,ck,i,R

,∈{0, 1}, eck,i,R
∈ {0, 1, 2} . (22)

Constraint (18) imposes that the CPU cycles used by
currently running, transiting, and the newly scheduled con-

10

tainer does not exceed the server CPU capacity. Likewise,
(19) guarantees that the memory allocated to pre-existing
containers in warm, running, and transiting states, and newly
scheduled container cannot exceed the server memory. Con-
straint (20) ensures that the revised CPU speeds allow for
meeting the deadline of queued requests, if the orchestrator
sets x̂rk,j ,ck,i,R

=0. If x̂rk,j ,ck,i,R
=0, either the container is

kept in W state (eck,i,R
=1) or it is destroyed (eck,i,R

=0). If
x̂rk,j ,ck,i,R

=1, the container starts serving request rk,j once
it enters state R, i.e., eck,i,R

=2 (as per (21)). Finally, (22)
specifies that the decision variables x̂rk,j ,ck,i,R

and eck,i,R
are

binary and integer variables (resp.).

F. Problem complexity

Theorem 1. The optimization problem for new request arrival
and request execution end events is in the form of a Mixed
Integer Non-Linear Problem (MINLP) and is NP-hard.

Proof. Consider the optimization problem for new request
arrival. The non-linearity therein stems from the ratios in the
constraints (e.g., wk/µ in (9)). Let us first linearize these ratios
by introducing the new decision variable l=1/µ, and replacing
the ratios with wk·l; this linearization transforms our problem
into an instance of a Mixed Integer Linear Problem (MILP).
We prove the NP-hardness by showing that the multi-choice
vector bin packing (MVBP) problem [23], which is NP-hard,
can be reduced to an instance of our MILP in polynomial time.
Let us assume that, when a new request arrives, we always
queue it, and serve the HoL request in a warm container.
This reduced form is an instance of MVBP whose statement
is the following: Given a set of items (requests), each with
multiple choices (possible CPU speed allocations), for each
choice of an item, there exists a vector representing its size or
characteristics (resource demand and experienced delay). The
goal is to pack the items in the bins (servers) to minimize the
total volume (energy minimization) such that the capacity of
the bins (available resources and target delay) is not exceeded.
Similarly, the optimization problem for the request execution
end event can be proved to be NP-hard.

G. Model scope and extensions

Application complexity. This work considers serverless
applications consisting of single MS executions to simplify
the presentation of the system model and optimization problem
and to focus on container provisioning decisions. Extending
our model to real-world serverless applications involving linear
chains of MSs or more complex structures such as Directed
Acyclic Graphs (DAGs) introduces additional challenges.
Serverless applications often have end-to-end SLA require-
ments, necessitating consideration of each MS’s contribution
to overall application latency. To address this, we can de-
compose the end-to-end SLA into per-MS SLA requirements
using techniques [24], [25] based on the mean and covariance
of MS response times. Once determined, we can apply the
existing model to minimize energy consumption and cold-start
occurrences while meeting these end-to-end SLAs. Another
challenge arises when a single MS is shared across multiple

applications, each with diverse workloads and different end-to-
end SLA requirements. We can extend our model to account
for various SLA requirements that the shared MS must satisfy
simultaneously. While our current model provides a foundation
for these extensions, implementing them is beyond the scope
of this paper.

Deterministic execution times of MSs. We assume that
the workload requirement of each MS, in terms of total
CPU cycles, is known and the orchestrator allocates CPU
cycles/s to containers, resulting in deterministic execution
times. The assumption on the deterministic execution time
allows us to simplify the initial model and focus on the
core aspects of the energy-efficient container provisioning.
However, this simplification has limitations. In real-world
scenarios, processing time of the requests can vary due to
factors like workload fluctuations, resource contention, and
performance interference, even if a suitable number of CPU
cycles is allocated to the containers.

Non-deterministic processing time presents significant chal-
lenges in resource allocation and in meeting SLA requirements
for requests. One primary implication is the potential for
SLA violations. When processing times are unpredictable,
it becomes increasingly difficult to ensure that requests are
served within their target delays. This uncertainty can also
lead to suboptimal resource provisioning; if the predicted
processing time diverges significantly from the actual time, it
may result in either under-provisioning or over-provisioning of
resources. Additionally, suboptimal CPU speed allocations can
negatively impact overall energy consumption. Thus, although
non-deterministic processing time is an important aspect, a
detailed analysis of these issues is beyond the scope of this
work.

VI. AIW ORCHESTRATION ALGORITHM

In light of the complexity of the above problems, the
orchestrator processes the requests in an event-driven manner
using the AiW algorithm of COME framework, which consists
of RequestArrival() and RequestExecutionEnd()
procedures. When a new request for MS k, rk,i, arrives,
the orchestrator uses the RequestArrival() procedure
to determine the possible actions for rk,i. Instead, when an
existing container of MS k, ck,i,R, finishes its execution, the
orchestrator uses the RequestExecutionEnd() proce-
dure to determine the possible actions for HoL request of Qk.
After scheduling HoL request, RequestExecutionEnd()
also assesses whether any warm container(s) needs to be
transited back to cold state based on the current system load
and estimated average arrival rate.

Recall that containers (in W , T , or R states) of one MS
cannot be used to serve the requests of other MSs. To take
actions on the newly arrived request or the reuse of the
container of a specific MS, it is sufficient to consider the
waiting requests and containers associated with that particular
MS. Thus, AiW opts for one queue per MS, instead of a single
global queue operated with scheduling policies like Earliest
Deadline First (EDF) or FIFO.

We now describe RequestArrival(), outlined in Algo-
rithm 1, in further detail; the related flowchart is depicted in

11

Fig. 6. The algorithm adopts a “lazy scheduling” policy, i.e.,
it calculates just the right CPU speed for a warm container
to serve rk,i within its target delay (Lines 2–7). Since in
this scenario, startup latency and queueing delay of rk,i is
0, the entire service time is dedicated to its processing. The
algorithm then identifies a set of eligible servers, Ŝ, with
warm containers of MS k and enough computing and memory
resources to serve rk,i. If Ŝ≠∅, then we select the server with
minimum remaining computing capacity (best fit) to execute
rk,i in a warm container. If Ŝ is empty, the algorithm advances
to stage 2 and decides whether to enqueue rk,i or cold-start a
container to serve it.

Algorithm 1 AiW orchestration: New request arrival
1: procedure RequestArrival(t, rk,i)
2: µrk,i ← wk/Dk ▷ Decide CPU speed for warm-start
3: Ŝ ← {s ∈ S|µrk,i ≤ γs,t · (µ̂s − λs,t) ∧ τk̂ ≤ γs,t · (τ̂s −
νs,t) ∧ Ωs

k,W (t)} ▷ Set of all servers with warm container of
service k with sufficient computing and memory resources

4: if Ŝ ≠ ∅ then
5: sort Ŝ in increasing order of remaining cpu
6: ŝ← Ŝ.pop() ▷ get the server with least remaining CPU

speed to serve rk̂,j
7: start a warm container on ŝ to serve rk,i
8: else ▷ If warm-start is not possible
9: estimate drk,i as described in Sec. V.B

10: µrk,i ← wk/(Dk − drk,i) ▷ required cpu speed if
request is enqueued

11: if 0 < µrk,i ≤ µ̂ then ▷ If enqueueing is possible
12: Qk ← Qk.append(rk,i) ▷ Enqueue rk,i
13: else ▷ Check for cold-start
14: µrk,i ← wk/(Dk − δk,TC→R) ▷ cpu required for

cold-start
15: S ′ ← {s ∈ S|µrk,i ≤ γs,t · (µ̂s − λs,t) ∧ τk ≤

γs,t · (τ̂s − νs,t)} ▷ Set of all servers with sufficient computing
and memory resources for cold-start

16: if S ′ ̸= ∅ then
17: sort S ′ in increasing order of remaining cpu
18: s′ ← S ′.pop() ▷ get the server with least

remaining CPU speed to serve rk̂,j
19: start a cold container on s′ to serve rk,i
20: else ▷ Neither queueing nor cold-start is possible
21: drop rk,i
22: end procedure

We remark that enqueueing a newly arrived request avoids
container overprovisioning and promotes the reusability of the
those running, transiting, or in warm state. Cold-starting a
new container promptly is however necessary to ensure that
requests are served within their target delay, possibly at a lower
CPU speed than if they were enqueued. In stage 2 (Lines 8–
12), the orchestrator makes this decision by estimating the
queueing delay for rk,i, drk,i

, based on the residual processing
time of the currently running and transiting containers, and
queueing delays of already queued requests (see Sec. V-B). If
the decision is to enqueue it, it then calculates the CPU speed
needed for rk,i, µrk,i

, based on drk,i
.

Ideally, a currently running container will start serving rk,i
with a CPU speed of µrk,i

at t+drk,i
. Nonetheless, if µrk,i

is very large, the server might not have enough computing
resources to serve rk,i at t + drk,i

. To get an upper limit on
µrk,i

, let us define state variable µ̂=µ̂max−µalloc where µalloc is

Start

request arrival for
service k

Find , set of servers
with enough resources
and warm container(s)

of service k

Schedule the request
in warm container on

best fit server

Estimate the
queueing delay

Find , set of servers with
enough computing & memory

Schedule the request
in cold container on

best fit server

Yes

No

Enqueue newly
arrived request

Yes

End

No Drop
request

Yes

No

Stage 1 Stage 2 Stage 3

Fig. 6. Flowchart of RequestArrival() procedure.

the maximum of CPU speeds decided for the waiting requests
across all the queues and µ̂max is the maximum possible CPU
speed allocation in the system. If 0<µrk,i

≤µ̂, then enqueueing
rk,i is a feasible decision; otherwise, the algorithm proceeds
to stage 3.

In stage 3 (Lines 13–21), it is better to cold-start a new
container rather than prolonged waiting in the queue. The
algorithm then identifies the set of servers, S ′ having enough
computing and memory resources to cold-start a container.
If S ′ ̸=∅, we cold-start a container on the best fit server and
associate rk,i with it. In this case, the processing time available
for rk,i is Dk − δk,TC→R

; otherwise, neither cold/warm-start
nor enqueueing is possible for rk,i, hence we drop it.

The RequestExecutionEnd() of AiW is described
in Algorithm 2 and the flowchart is presented in Fig. 7.
The procedure begins with keeping the container that has
completed its execution, ck,i,R, in warm state and subsequently
enters stage 1 (Lines 4–11), where it evaluates the possibility
of warm-start for HoL request of Qk. Like before, this decision
involves calculating the CPU speed for warm-start. Since in
this case startup latency is 0 and queueing delay is t − trk,j

,
available processing time for rk,j is Dk − (t − trk,j

). Next,
the procedure identifies the set of eligible servers for warm-
start and serves rk,j on the best fit server. If a warm-start
is not feasible for rk,j , the procedure transitions to stage 2
(Lines 12–19) where it assesses the possibility of a cold-start
for rk,j . In this stage, the available processing time for rk,j is
determined by Dk−(t− trk,j

+δk,TC→R
), accounting for both

cold-start latency and queueing delay. The algorithm serves
rk,j on the best-fit server if it exists. Finally, if neither warm
nor cold-start is possible for rk,j , the procedure drops rk,j and
proceeds to handle the next request in Qk.

We reach stage 3 (Lines 23–24) of
RequestExecutionEnd() if Qk is empty or HoL
request of Qk is served on cold or warm container. To turn
off unused warm containers whenever possible and reduce the
unnecessary memory occupancy, it is important to assess the
computing ability available for processing incoming requests.
Let πk(t) be the weighted average of the arrival rates

12

Algorithm 2 AiW orchestration: End of request execution
1: procedure RequestExecutionEnd(t,ck,i,R,s)
2: keep ck,i,R in warm state on s
3: while |Qk| > 0 do ▷ keep iterating over Qk until we serve

a request or Qk becomes empty
4: rk,j ← Qk[0] ▷ HoL request of Qk

5: µrk,j ← wk/(Dk − (t− trk,j)) ▷ Calculate cpu speed
for warm-start

6: Ŝ ← {s ∈ S|µrk,j ≤ γs,t · (µ̂s−λs,t)∧τk̂ ≤ γs,t · (τ̂s−
νs,t) ∧ Ωs

k,W (t)} ▷ Set of all servers with warm container of
MS k with sufficient computing and memory resources

7: if Ŝ ≠ ∅ then
8: sort Ŝ in increasing order of remaining cpu
9: ŝ← Ŝ.pop() ▷ get the server with least remaining

CPU speed to serve rk,j
10: start a warm container on ŝ to serve rk,j
11: break
12: else ▷ If warm-start is not possible
13: µrk,j ← wk/(Dk − (t− trk,j + δk,TC→R)) ▷ cpu

required for cold-start
14: S ′ ← {s ∈ S|µrk,j ≤ γs,t · (µ̂s − λs,t) ∧ τk ≤

γs,t · (τ̂s − νs,t)} ▷ Set of all servers with sufficient computing
and memory resources for cold-start

15: if S ′ ̸= ∅ then ▷ If cold-start is possible
16: sort S ′ in increasing order of remaining cpu
17: s′ ← S ′.pop() ▷ get the server with least

remaining CPU speed to serve rk,j
18: start a cold container on s′ to serve rk,j
19: break
20: else ▷ If cold-start is not possible
21: drop rk,j
22: continue ▷ Continue to process next request in

Qk

23: if |Ωk,W (t)| > ψk then
24: select |Ωk,W (t)|−ψk warm containers at random and

transit them to cold state
25: end procedure

observed in the past, and ωk(t) be the average processing
time of the currently running and transiting containers of MS
k. Thus, the estimated number of required warm containers
at time t is given by πk(t)·ωk(t). Acknowledging potential
variations in the actual arrival rate compared to πk(t), we
slightly overprovision the warm containers by including an

overprovisioning factor given by
δk,TC→R

Dk−αk(t)
, where αk(t) is

the average waiting time of the requests that are currently
being processed. Finally, estimated number of required warm

containers at t is given by Ψk=λk·ωk(t)·
δk,TC→R

Dk−αk(t)
. If

Ωk,W (t)>Ψk, we randomly select Ωk,W (t)−Ψk number of
warm containers, and transit them back to cold state.

It is worth underlining that the orchestrator may start serving
the newly arrived request in a cold container before serving an
already queued request. This may occur when a queued request
is waiting for one of the running or transiting containers, while
it might be impossible to serve a newly arrived request on
existing running or transiting containers within its target delay.
Nevertheless, our “lazy” CPU allocation policy guarantees that
the request arrived first will finish the execution first.

Start

Keep container in
warm state

Schedule request in warm
container on best fit server

Yes

Find , set of servers
with enough computing &

memory

Schedule the request in cold
container on best fit server

Drop
𝑟𝑘,𝑗

Yes

No

Stage 2

No

Yes

No

End

Yes

No

Stage 1
`

Stage 3

Find , set of servers with
enough resources & warm
container(s) of service k

Transit

warm containers to
cold state

Fig. 7. Flowchart of RequestExecutionEnd() procedure.

VII. DYNAMIC SERVER PROVISIONER (DSP)

In this section, we describe DSP module of the COME
framework. DSP is an enhanced version of OpenStack energy
saving strategy [26]. DSP reduces the power consumption of
the edge data center by keeping just the right number of
servers in running state. Conversely, OpenStack keeps the right
number of servers active, but some of them may be in idle
state. DSP achieves this through two simple strategies: (i)
turning on/off servers in response to the current CPU load
of the active servers, and (ii) using hysteresis.

Algorithm 3 Dynamic Server Provisioner (DSP)
1: procedure ServerProvisioner(S)
2: η ← 0, ζ ← 0 ▷ Initialize used/available CPU cycles
3: for every s in S do
4: η ← η + λs,t ▷ Update used CPU cycles
5: ζ ← ζ + γs,t · µ̂s ▷ Update available CPU cycles
6: if η

ζ
≥ θ +A then ▷ If average load is high

7: for every s in S do ▷ Find an inactive server
8: if γs,t = 0 then ▷ Found
9: ŝ← s ▷ ŝ is the server for activation

10: break
11: Activate ŝ ▷ Activation of server ŝ has started
12: else ▷ If average load is low
13: for every s in S do ▷ Find an idle server to deactivate
14: if γs,t=1 ∧ λs,t=0 then ▷ Found an idle server
15: s′ ← s ▷ s′ server can be deactivated
16: break
17: η ← 0, ζ ← 0 ▷ Initialize used/available CPU cycles
18: for every s in S \ s′ do ▷ Find the average CPU load

excluding idle server s′

19: η ← η + λs,t

20: ζ ← ζ + γs,t · µ̂s

21: if η
ζ
< θ −A then ▷ Deactivate s′ only if average

CPU load excluding s′ is still less than threshold
22: Deactivate s′ ▷ Deactivation of s′ has started
23: γs′,t ← 0 ▷ Update the status of s′

24: end procedure

DSP decides on server activation/deactivation after the or-
chestrator handles a new request arrival or the end of a request
execution. To make these decisions, it proceeds as described in
Algorithm 3. It first calculates the overall CPU cycles used by

13

currently running and transiting containers on active servers,
which is given by η=

∑
s∈S λs,t, where λs,t is the used CPU

cycles of server s at time t. Similarly, the total number of CPU
cycles across the active servers is given by ζ=

∑
s∈S γs,tµ̂s,

where γs,t indicates whether server s is currently switched on
or off (Lines 2–5). The average CPU load across the active
servers is the ratio η/ζ.

If η/ζ is greater than the pre-defined threshold θ (Line 6),
DSP goes through the set of servers till it finds one in inactive
state (γs,t=0) and switches it on. Since the server activation
involves a delay, the requests can only be scheduled on such
a server after its activation (Lines 7–9). Conversely, if DSP
detects that the average load of the active servers falls below
θ, it goes through the set of servers searching for an idle one,
i.e., s.t. γs,t=1 and λs,t=0 (Lines 13–15). Let s′ denote such
a server; DSP decides to deactivate s′ only if doing so still
maintains the average load below the threshold (Lines 17–22).
If the decision is to deactivate s′, γs′,t is changed to 0.

During activation or deactivation, a server consumes maxi-
mum energy because its CPU usage reaches 100%. To avoid
energy and delay overheads due to frequent server activa-
tion/deactivation, DSP works conservatively implementing an
hysteresis scheme with by following two simple strategies.
Firstly, DSP cannot activate or deactivate any server while one
is currently being activated/deactivated. Secondly, it introduces
two different thresholds to prevent frequent switching between
the active and inactive states of the server. Specifically, in-
stead of using just one threshold θ for both server activa-
tion/deactivation, DSP activates a new server when the average
CPU utilization of the data center exceeds θ+A (Line 6), and
it deactivates an idle server when the average utilization falls
below θ−A (Line 21). The value of A is a design parameter
that we optimize experimentally.

VIII. PERFORMANCE EVALUATION

To evaluate the performance of COME, we initially compare
AiW against the optimum, in a small-scale scenario without
DSP. We then extend our analysis to a larger-scale scenario
consisting of MSs with diverse resource requirements and
experimentally measured cold-start latency, and we compare
COME against state-of-the-art alternatives. In both scenarios,
we employ a power model adapted from [14], which assumes
an idle power consumption of Pidle=0.121 kW when the
server’s CPU load is 0. The power consumption varies linearly
as the CPU load increases, reaching 0.750 kW at peak load.

A. Small-scale scenario

To compare AiW against the optimum, and owing to the
complexity of the optimization problem at hand, we consider
a small-scale scenario including only one type of MS, namely,
img_ocr, with target delay equal to 5 s. The MS requests
arrive according to a Poisson process with varying rate. We
set the startup latency of the container running img_ocr to
be equal to δk,C=4.5 s, and the MS workload requirement is
fixed to wk=8G clock cycles. Also, we set the number of
active servers in the data center to 2, and we pre-create 3
warm containers per server. The optimal solution is derived

using Gurobi. Since the scale of this experiment is small, we
also compare AiW and the optimal approach against a trivial
algorithm, No-Queue-Always-Warm (NQ-AW). The NQ-AW
approach schedules requests immediately in a warm or cold
container without queuing and always keeps the container
warm after request departure.

Fig. 8(left most) presents the measured average memory
consumption across all the servers in the data center for various
arrival rates. Notice that all warm, running, and transiting
containers contribute to the server’s memory utilization. NQ-
AW has significantly higher memory consumption due to a
large number of active and warm containers, as illustrated
in Fig. 8(left). In contrast, memory utilization of AiW is
only slightly higher than that of the optimal solution. This
is because, in the optimal solution, a large number of requests
are queued and a few containers operate at a high CPU speed
to serve them. In AiW, thanks to the prompt cold-starts, there
are fewer requests in the queue and a slightly higher number
of containers operating at a lower CPU speed.

Moving to the power consumption, Fig. 8 (right) shows that
the power consumption of AiW and NQ-AW algorithms is the
same as that of the optimal solution. Additionally, the energy
consumption per request for all three approaches is identical,
as illustrated in Fig. 8(right most). It is important to note that,
while all three approaches have identical power consumptions,
the significantly higher memory utilization by the NQ-AW
approach indicates its lack of scalability when dealing with
multiple service types in resource-constrained servers. This
difference in memory utilization clearly highlights AiW as a
more scalable and efficient solution.

B. Simulator design
We develop an event-driven simulator in Python

that takes actions when one of the following
events occurs: (i) new_request_arrival, (ii)
request_execution_completion, (iii) container_
transition_completion, (iv) server_activation,
and (v) server_deactivation. The simulator maintains
an event queue to track these events.

Initially, we add a new_request_arrival event to
the queue. Upon the arrival of a new request, the sim-
ulator first invokes the RequestArrival() procedure
of the AiW algorithm, which determines how to handle
the request. Based on the decisions of the AiW algo-
rithm, the simulator may add new events to the event
queue, such as container_transition_completion
or request_execution_completion. At this point, we
also generate a new_request_arrival event based on the
Poisson arrival rate.

When a request_execution_completion event
occurs, the simulator calls the RequestExecutionEnd()
procedure of the AiW algorithm. Depending on the
algorithm’s output, this may generate further events,
such as request_execution_completion or
container_transition_completion. Upon the
occurrence of a container_transition_completion
event, the simulator updates the state of the transitioning
container.

14

2 4 6 8 10
Number of service requests/s

0

2000

4000

6000

8000
Av

e.
 m

em
or

y
ut

iliz
at

io
n

[M
B] Optimal

AiW
NQ-AW

2 4 6 8 10
Number of service requests/s

0

7

14

21

28

35

Av
e.

 n
o.

 o
f r

un
ni

ng

 &
 tr

an
sit

in
g

co
nt

ai
ne

rs Optimal
AiW

NQ-AW

2 4 6 8 10
Number of service requests/s

0.0

0.2

0.4

0.6

0.8

Av
e.

 p
ow

er

 c
on

su
m

pt
io

n
[k

W
]

Optimal
AiW

NQ-AW

2 4 6 8 10
Number of service requests/s

0.00

0.04

0.08

0.12

0.16

0.20

En
er

gy
 c

on
su

m
pt

io
n

 p
er

 re
qu

es
t [

kJ
]

Optimal
AiW

NQ-AW

Fig. 8. Performance of AiW vs. optimal, as the arrival rate of service requests varies: average memory utilization (left most); average number of running and
transiting containers (left); average power consumption (right); energy consumption per request (right most).

2 4 6 8 10
Number of service requests/s

0.0
0.5
1.0
1.5
2.0
2.5
3.0

Av
e.

 p
ow

er

 c
on

su
m

pt
io

n
[k

W
] AiW

AiW100
Histogram
Warmqueue

DSP
OpenStack

2 4 6 8 10
Number of service requests/s

0.0
0.1
0.2
0.3
0.4
0.5
0.6

En
er

gy
 c

on
su

m
pt

io
n

 p
er

 re
qu

es
t [

kJ
]

AiW
AiW100
Histogram
Warmqueue

DSP
OpenStack

2 4 6 8 10
Number of service requests/s

0
1
2
3
4
5
6

Av
e.

 n
o.

 o
f a

ct
iv

e
se

rv
er

s

AiW
AiW100
Histogram
Warmqueue

DSP
OpenStack

2 4 6 8 10
Number of service requests/s

0.00
0.05
0.10
0.15
0.20
0.25
0.30

Dr
op

 p
ro

ba
bi

lit
y

AiW
AiW100
Histogram
Warmqueue

DSP
OpenStack

Fig. 9. COME vs. benchmarks: average power consumption (left most); average energy consumption per request (left); average active servers (right); drop
probability (right most).

After handling these events, the simulator also
invokes the DSP algorithm to check whether a new
server needs to be activated or an existing active
server should be deactivated. This call may generate
additional events, such as server_activation,
or server_deactivation. Finally, when a
server_activation, or server_deactivation
event occurs, the simulator marks the state of the server
accordingly.

C. Large-scale scenario

We consider now four MSs with different startup latency,
workload requirements, and target delays. We begin with
setting one server activated all the time and DSP is responsible
for activating/deactivating servers in response to the short-
timescale decision made by AiW. For comparing performance,
we exploit the following alternative methodologies for short-
timescale decisions.

• AiW100: This scheme uses a threshold on the number
of waiting requests in the queue. When queue size exceeds
the threshold, it selects HoL request that has the earliest
deadline for execution. AiW100 allocates to a container 100%
of servers CPU cycles; as a result, only one request at a time
per server can be executed.

• Histogram [8]: As soon as a request arrives, it is either
served or dropped, i.e., there is no queue to hold the waiting
requests. Based on the arrival rate, this technique specifies
pre-warming and keep-alive periods for warm containers. The
CPU is allocated to the container in the same way as in AiW.

• Warmqueue [27]: again, requests are served or dropped as
soon as they arrive, but, for each MS, it implements a queue
for warm containers. Assuming that there can be a maximum
number of requests per MS arriving at the system in a given
time period (in our simulation, set to 1 s), it sets the size of
the warm queue equal to this maximum number of requests.

For larger timescale decisions, we consider the well-known
OpenStack energy-saving strategy [26] as the state-of-the-art

alternative. This strategy, driven by two input parameters,
standby_nodes_int and standby_used_percent,
computes the required number of idle servers as
max(standby_nodes_int, standby_used_percent
× number_of_servers_with_containers), where
number_of_servers_with_containers refers to the
number of active servers with running or transiting containers.
If the current number of idle servers is less than the required
one, new servers are activated; otherwise, existing idle servers
are deactivated to match the required number of idle servers.

In summary, we compare the performance of COME frame-
work, consisting of AiW for short timescale decisions and DSP
for longer scale decisions, against seven different frameworks
obtained by pairing each short timescale approach with DSP
and the OpenStack energy-saving strategy. Notice that the set
of alternatives also includes the scheme obtained by combining
AiW and the OpenStack energy-saving strategy. Further, in the
following simulations, the time taken to activate/deactivate a
server is set to 30 s [28].

1) Fixed arrival pattern: We start by modelling the service
request arrivals according to a Poisson process and vary the
request arrival rate from 2 to 10 arrivals/s. The results, pre-
sented in Fig. 9, reveal that COME exhibits the lowest average
power consumption (left most) and energy consumption per
request (left) among the considered solutions. When compared
to its alternatives, COME minimizes the power and energy
consumption per request by 22-64% and 11-66%, respectively.

Further, our findings emphasize that the frameworks em-
ploying AiW as the short timescale algorithm (both AiW
along with OpenStack and COME), perform better than the
considered benchmarks. Despite AiW100’s effort to allocate
maximum CPU cycles per container, resulting in lowest pro-
cessing times, its power consumption is higher than that of
AiW. This behavior can be attributed to two key observa-
tions: (i) AiW100 incurs higher number of active servers
than AiW, as shown in Fig. 9(right), and (ii) servers in
AiW100 remain idle while waiting for new request arrivals,

15

2 4 6 8 10
Number of service requests/s

0

50

100

150

200

250
Av

e.
 m

em
or

y
ut

iliz
at

io
n

 p
er

 c
on

ta
in

er
 [M

B] AiW
AiW100
Histogram
Warmqueue

DSP
OpenStack

2 4 6 8 10
Number of service requests/s

0.0

0.2

0.4

0.6

0.8

1.0

W
ar

m
 st

ar
t p

ro
ba

bi
lit

y

AiW
AiW100
Histogram
Warmqueue

DSP
OpenStack

Fig. 10. COME vs. benchmarks: average memory utilization per container
(left); warm-start probability (right).

after serving the existing requests. In contrast, AiW leverages
“lazy scheduling”, allocating the minimum necessary CPU
cycles to the containers to meet their target delays. This
approach is enacted by AiW, as it can process multiple requests
simultaneously with lower power consumption. Similarly, the
higher number of active servers contributes to increased power
consumption under the histogram and warmqueue frameworks.
Additionally, this behavior is influenced by a decrease in the
warm-start probability, as shown in Fig. 10(right).

Fig. 9 also demonstrates that DSP-based frameworks incur
lower power consumption than the ones based on OpenStack,
owing to the smaller number of activated servers. Notice
that, we optimized the input parameters of the OpenStack
approach for our scenario, which requires at least one active
server in idle state. For this reason, OpenStack requires,
in general, a higher number of active servers. Interestingly,
despite the advantages in lower power consumption, DSP-
based frameworks indicate that there exists a tradeoff with
drop probability, which tends to increase (right most in Fig. 9)
relatively to the OpenStack approaches.

Fig. 10(left) presents the memory utilization per container,
for COME and its alternatives. Recall that memory utilization
stems from running, transiting, and warm containers. Notably,
AiW100 exhibits the lowest memory utilization per container,
attributed to its approach of running a single container per
server at any given time. Although AiW requires more mem-
ory than AiW100, it still outperforms other state-of-the-art
frameworks in terms of memory efficiency. As depicted in
Fig. 10(right), both AiW and AiW100 reduce the need for
cold-start occurrences, thanks to their queueing approach.
Conversely, frameworks employing warmqueue and histogram
exhibit lower warm-start probabilities. This behavior under-
lines the effectiveness of AiW and AiW100 in optimizing
memory utilization and in minimizing cold-start occurrences.

2) Variable arrival pattern: Next, we are interested in
assessing the robustness of COME under dynamic and fluctu-
ating service request arrival pattern. To this end, we consider a
modulated Poisson arrival process, wherein the arrival rate fol-
lows a sinusoidal function. Specifically, the average arrival rate
is set at 3 arrivals/s per MS, oscillating between a minimum
of 1 arrival/s and 5 arrivals/s per MS. The results, depicted
in Fig. 11, demonstrate that there are not much variations
in the performance of the considered frameworks, thereby
emphasizing their robustness. Notably, COME maintains its
superior performance across both fixed and variable arrival
patterns, again outperforming its state-of-the-art alternatives.

Fig. 12 shows how DSP and OpenStack (combined
with AiW as short timescale approach) dynamically acti-

AiW AiW100 Histogram Warmqueue
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Av
e.

 p
ow

er

 c
on

su
m

pt
io

n
[k

W
] DSP

OpenStack
Fixed arrivals
Variable arrivals

AiW AiW100 HistogramWarmqueue
0.00

0.05

0.10

0.15

0.20

0.25

0.30

En
er

gy
 c

on
su

m
pt

io
n

pe
r

 re
qu

es
t [

kJ
]

DSP
OpenStack

Fixed arrivals
Variable arrivals

AiW AiW100 Histogram Warmqueue
0

1

2

3

4

5

6

7

Av
e.

 n
o.

 a
ct

iv
e

se
rv

er
s

Hysteresis
OpenStack

Fixed arrivals
Variable arrivals

AiW AiW100 Histogram Warmqueue
0.00

0.04

0.08

0.12

0.16

Dr
op

 p
ro

ba
bi

lit
y

DSP
OpenStack

Fixed arrivals
Variable arrivals

Fig. 11. COME vs. benchmarks with fixed and variable arrival pattern:
average power consumption (top left); average energy consumption per request
(top right); average number of active servers (bottom left); drop probability
(bottom right).

T+10 T+20 T+30 T+40 T+50 T+60 T+70
Time [minutes]

1

2

3

4

5

6

Ac
tiv

e
se

rv
er

s

DSP OpenStack

1

2

3

4

5

6

Nu
m

be
r o

f s
er

vi
ce

 re
qu

es
t/s

 [p

er
 M

S]

arrivals

Fig. 12. Dynamic server activations/deactivations as number of service
requests varies over time.

2 4 6 8 10
Number of service requests/s

0.0

0.3

0.6

0.9

1.2

1.5

Av
e.

 p
ow

er

 c
on

su
m

pt
io

n
[k

W
] AiW

EDF

2 4 6 8 10
Number of service requests/s

0.00

0.04

0.08

0.12

0.16

0.20

En
er

gy
 c

on
su

m
pt

io
n

 p
er

 re
qu

es
t [

kJ
]

AiW
EDF

Fig. 13. AiW vs. single-queue EDF: average power consumption (left); energy
consumption per request (right).

vate/deactivate the servers as the request arrival rate varies
over the time. Consistently with our intuition, as the arrival
rate increases, more servers are activated and, as the rate
decreases, servers get deactivated. More interestingly, the
number of servers used by OpenStack is higher than DSP,
since OpenStack determines an idle number of active servers
and maintains them even though unused.

3) Single vs. multi-queue approach: To highlight the ad-
vantages of a multi-queue approach over a single queue,
we compared the performance of AiW with a single-queue
approach operated under the EDF policy. In the EDF policy,
when a new request for MS k arrives, it is enqueued. After
enqueuing the request, the EDF approach identifies the request
with the earliest deadline in the queue, denoted with rk,i. If
rk,i has an expired deadline, EDF drops it and continues to
find next request with earliest deadline. Otherwise, if there are
warm containers of MS k available, rk,i is processed in the

16

2 4 6 8 10
Number of service requests/s

0.00
0.07
0.14
0.21
0.28
0.35
0.42

Dr
op

 p
ro

ba
bi

lit
y AiW

EDF

Fig. 14. Drop probability of AiW and single-queue EDF.

warm container. If no warm container is available, similar to
AiW, the EDF approach decides between initiating a cold-start
or keeping the request waiting in the queue. Upon an execution
completion event, we first keep the container that finished its
execution in warm state and then try to process the request
with the earliest deadline in the warm container. If serving
the EDF request in the warm container is not possible due
to unavailability of resources on the server where the warm
container is, then the orchestrator serves the request in a cold
container in the bestfit server.

The results demonstrate that EDF has higher power con-
sumption and energy consumption per request than AiW
(Fig. 13), and EDF has a high request drop probability
(Fig. 14). This is because EDF prioritizes requests with the
earliest deadlines, regardless of which MS the request belongs
to. As long as the request with the earliest deadline remains
in the queue, requests from other MSs are delayed, waiting
for their turn. Since multiple requests with different deadlines
are queued, some requests may wait too long in the queue,
eventually missing their deadlines, which increases the drop
probability. In contrast, AiW employs a multi-queue approach,
making independent decisions for each MS. This reduces
the probability that queueing delays exceed deadlines and,
consequently, the probability of requests being dropped. In
summary, these findings further emphasize the importance of
employing a multi-queue approach, such as AiW.

D. Discussions on deployment

In this work, we rely on the dynamic allocation of CPU cy-
cles to containers to meet target delay constraints. Our system
model and the AiW algorithm assume that CPU allocations
can be updated at runtime without restarting containers. In
Docker, a popular containerized environment, updating the
CPU and/or memory allocation of a running container can be
done relatively easily using the docker update command
without requiring a restart. Additionally, starting from Kuber-
netes v1.27, the InPlacePodVerticalScaling feature
enables CPU and/or memory resizing for containers within a
running pod without restarting the containers.

We conducted experiments in a Minikube environment
(a single-node Kubernetes deployment) using a Python Ku-
bernetes API script, which showed that it takes 30 ms to
update the CPU allocation for the running container, which
is negligible in our scenarios.

IX. RELATED WORK

The most relevant and recent approaches to ours can be
broadly classified into two categories: (i) those exclusively
dedicated to reducing the cold-start latency of the containers
by redesigning the containers sandboxes and maintaining the
warm containers for faster startup by exploiting keep-alive
time; ii) approaches that optimize request scheduling for
serverless services with multiple scopes and objectives. In this
section, we provide a brief summary of these research efforts.

Reducing cold-starts. Major serverless platforms like AWS
Lambda [29] and Azure Functions [30], along with open-
source platforms like OpenWhisk, minimize cold-starts by
employing a fixed keep-alive time for warm containers. How-
ever, this simple policy is vulnerable to abuse, as tenants
can breach it by sending frequent dummy requests. The
histogram approach [8] addresses this issue by defining pre-
warm and keep-alive times for warm containers based on
the historical data. Additionally, PCPM [9] identifies the
creation and initialization of the container network as the most
latency-consuming process in container creation. To mitigate
this, PCPM pre-creates networking stacks and dynamically
binds them to containers, thus reducing cold-start latency. A
checkpoint and restore based strategy is proposed in [31].
Instead of starting the containers from scratch, this strategy
restores the snapshots of previously running containers. Within
the same context, Catalyzer [32] proposes a sandbox design for
serverless prioritizing isolation and fast startup by leveraging
well formed checkpoint images, bypassing the initialization
steps of container startup. All the above approaches have
been originally proposed for the cloud, and hence do not
take into account the QoS requirements of the edge services.
Further, they do not discuss the CPU allocation policies to the
containers, which has an impact on the energy footprint of the
edge servers.

Request scheduling for serverless services. Many existing
frameworks use one-to-one request-to-container mapping [33],
which results in an excessive number of containers being
provisioned than required to achieve SLAs, increasing the CPU
load (hence energy consumption) of the servers. Some existing
techniques set a fixed number of container instances and queue
requests for this static pool of containers [30], [34]. However,
determining the optimal number of container instances is
challenging, and doing so in a MS-agnostic manner can result
in SLA violations.

The work in [5] investigates retention-aware container
caching problem in serverless edge computing. It formulates
an optimization problem with the goal of enhancing system
efficiency by leveraging container caching jointly with request
distribution. This approach takes advantage of the distributed
and heterogeneous nature of edge nodes, acknowledging that
the cold-start latency and retention cost of a container can vary
across nodes based on their computing capacity. The problem
is then mapped to the classic ski-rental problem and the study
proposes an online algorithm to solve it by incorporating
resource constraints and network latency. Although our work
shares initial motivations with this study, we diverge in terms
of objectives. Specifically, our focus is on improving energy

17

efficiency in the context of serverless edge computing by
exploiting container and server provisioning decisions at two
different timescales.

The study in [35] presents a novel approach to enhancing
the efficiency of serverless services by introducing dynamic
CPU resource management to containers. The primary goal
of [35] is to optimize resource utilization while ensuring that
the deadline requirements of the services are met. To achieve
this objective, it proposes the Dynamic Resource Alteration
(DRA) algorithm, which dynamically adjusts CPU allocations
to container instances as they approach their deadlines during
runtime. Also, DRA considers resource contentions within
VMs. In cases where such contentions are detected, DRA
takes action by evicting recently initiated requests from con-
strained VMs and reallocating them to VMs with sufficient
free resources. Unlike our work, [35] does not consider the
advantages of warm containers for reducing response time.
An adaptive resource management framework for serverless
platforms is introduced in [36], which optimizes service
chains by efficiently bin-packing requests into fewer containers
through service-aware container scaling and request batching.
To meet SLA requirements, the approach proactively creates
containers to prevent cold-starts. Both [36] and AiW aim at
reducing cold-starts and avoiding container overprovisioning
while meeting SLA requirements. However, they differ in
the adopted CPU allocation strategy. AiW employs “lazy
scheduling”, allocating CPU speed only as needed to meet
deadlines, thereby minimizing server energy consumption –
an aspect not discussed in [36].

Finally, in our conference paper [1], we proposed a more
naive version of AiW. Building upon this foundation, in this
work we propose COME, which includes a more effective
version of AiW and combines it with DSP to work at two
different timescales. Further, we substantially extended our
performance evaluation considering a large scale-dynamic
scenario and a much richer set of state-of-the-art alternatives.

X. CONCLUSIONS

We proposed COME, a framework for dynamically allocat-
ing resources to short-lived MSs with strict SLA requirements,
in a serverless computing scenario. We specifically designed
COME to work in resource-constrained environments, like
edge data centers and private clouds. COME minimizes the
energy footprint of edge data centers by working at multiple
timescales, so that it can act upon both containers and servers
provisioning. First, COME minimizes the energy consumption
of active servers in a data center by utilizing cold, warm, and
running containers over a finite time horizon. It does so by
using a low-complexity, yet effective, solution, named AiW,
which closely matches the optimum in terms of overall energy
and memory consumption of the data center. Then, to reduce
power consumption due to idle servers, COME incorporates
DSP scheme for dynamically activating/deactivating servers
in response to the container provisioning decisions made by
AiW. Our results show that COME can reduce the energy
consumption by 22-64% when compared to state-of-the-art
benchmarks. Furthermore, we demonstrated the robustness of
COME under variable arrival patterns of MSs requests.

ACKNOWLEDGMENT

This work was supported by the EC through the SEMAN-
TIC project (Grant No. 861165) and by the DFG through the
SWAVES project.

REFERENCES

[1] M. Adeppady, A. Conte, H. Karl, P. Giaccone, and C. F. Chiasserini,
“Energy-aware provisioning of microservices for serverless edge com-
puting,” in IEEE GLOBECOM, December 2023.

[2] Y. C. Hu et al., “Mobile edge computing a key technology towards 5G,”
tech. rep., ETSI, 2015.

[3] Z. Tao et al., “A survey of virtual machine management in edge
computing,” Proc. of the IEEE, vol. 107, no. 8, pp. 1482–1499, 2019.

[4] E. Jonas et al., “Cloud programming simplified: A Berkeley view on
serverless computing,” arXiv:1902.03383, 2019.

[5] L. Pan et al., “Retention-aware container caching for serverless edge
computing,” in IEEE INFOCOM, 2022.

[6] R. Xie et al., “Workflow scheduling in serverless edge computing for
the industrial internet of things: A learning approach,” IEEE Trans. on
Ind. Informatics, pp. 1–10, 2022.

[7] I. E. Akkus et al., “SAND: Towards high-performance serverless com-
puting,” in USENIX ATC, 2018.

[8] M. Shahrad et al., “Serverless in the wild: Characterizing and optimizing
the serverless workload at a large cloud provider,” in USENIX ATC,
2020.

[9] A. Mohan et al., “Agile cold starts for scalable serverless,” in HotCloud,
2019.

[10] J. Cadden et al., “SEUSS: skip redundant paths to make serverless fast,”
in ACM EuroSys, 2020.

[11] A. Agache et al., “Firecracker: Lightweight virtualization for serverless
applications,” in USENIX NSDI, 2020.

[12] D. Saxena et al., “Navigating performance-efficiency tradeoffs in server-
less computing: Deduplication to the rescue!,” ACM SIGOPS Oper. Syst.
Rev., 2023.

[13] “Memory and computing power at Amazon Lambda.” https://docs.aws.
amazon.com/lambda/latest/operatorguide/computing-power.html. Ac-
cessed on Mar. 6, 2024.

[14] P. Ruiu et al., “On the energy-proportionality of data center networks,”
IEEE Trans. on Sustainable Comp., vol. 2, no. 2, pp. 197–210, 2017.

[15] Z. Li et al., “Help rather than recycle: Alleviating cold startup in server-
less computing through Inter-Function container sharing,” in USENIX
ATC, 2022.

[16] “Apache OpenWhisk.” https://openwhisk.apache.org/. Accessed on
Mar. 6, 2024.

[17] M. Shahrad, J. Balkind, and D. Wentzlaff, “Architectural implications of
function-as-a-service computing,” in IEEE/ACM MICRO, ACM, 2019.

[18] J. Kim and K. Lee, “Functionbench: A suite of workloads for serverless
cloud function service,” in 2019 IEEE 12th International Conference on
Cloud Computing (CLOUD), pp. 502–504, 2019.

[19] E. Oakes et al., “SOCK: Rapid task provisioning with Serverless-
Optimized containers,” in USENIX ATC, 2018.

[20] “perf: Linux profiling with performance counters.” https://perf.wiki.
kernel.org/index.php/Main Page. Accessed on Mar. 6, 2024.

[21] “vmstat – report virtual memory statistics.” https://linux.die.net/man/8/
vmstat. Accessed on Mar. 6, 2024.

[22] N. Mahmoudi and H. Khazaei, “Performance modeling of serverless
computing platforms,” IEEE Trans. on Cloud Computing, pp. 2834–
2847, 2022.

[23] B. Patt-Shamir and D. Rawitz, “Vector bin packing with multiple-
choice,” Discrete Applied Mathematics, vol. 160, no. 10, pp. 1591–1600,
2012.

[24] R. S. Kannan, L. Subramanian, A. Raju, J. Ahn, J. Mars, and L. Tang,
“Grandslam: Guaranteeing slas for jobs in microservices execution
frameworks,” in ACM EuroSys, 2019.

[25] L. Zhao, Y. Yang, K. Zhang, X. Zhou, T. Qiu, K. Li, and Y. Bao,
“Rhythm: component-distinguishable workload deployment in datacen-
ters,” in ACM EuroSys, 2020.

[26] “Energy saving strategy.” https://specs.openstack.org/openstack/
watcher-specs/specs/pike/implemented/energy-saving-strategy.html.
Accessed on Mar. 6, 2024.

[27] G. McGrath et al., “Serverless computing: Design, implementation, and
performance,” in IEEE ICDCSW, 2017.

18

[28] C. Liu et al., “Minimal cost server configuration for meeting time-
varying resource demands in cloud centers,” IEEE Trans. on Parallel
and Distributed Systems, pp. 2503–2513, 2018.

[29] “Amazon Lambda.” https://aws.amazon.com/lambda/. Accessed on
Mar. 6, 2024.

[30] “Azure functions.” https://azure.microsoft.com/en-us/products/functions.
Accessed on Mar. 6, 2024.

[31] P. Silva et al., “Prebaking functions to warm the serverless cold start,”
in ACM Middleware, 2020.

[32] D. Du et al., “Catalyzer: Sub-millisecond startup for serverless comput-
ing with initialization-less booting,” in ACM ASPLOS, 2020.

[33] L. Wang et al., “Peeking behind the curtains of serverless platforms,”
in USENIX ATC, 2018.

[34] “Cloud functions.” https://cloud.google.com/functions. Accessed on
Mar. 6, 2024.

[35] A. Mampage et al., “Deadline-aware dynamic resource management in
serverless computing environments,” in ACM CCGrid, 2021.

[36] J. R. Gunasekaran et al., “Fifer: Tackling resource underutilization in
the serverless era,” in ACM Middleware, 2020.

Madhura Adeppady received her Ph.D. in 2024 from
Politecnico di Torino, Italy, where she now is a researcher.

Alberto Conte is a senior researcher and project manager
at Nokia Bell Labs, in the NSSR lab.

Paolo Giaccone (SM’16) is a Professor at Politecnico di
Torino.

Holger Karl is a Professor at the Hasso Plattner Institute,
University Potsdam, Germany.

Carla Fabiana Chiasserini (F’18) is a Professor at Politec-
nico di Torino, Italy, and a WASP Guest Professor at Chalmers
University, Sweden.

