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Abstract: Single-photon sources are important for integrated photonics and quantum technologies,
and can be used in quantum key distribution, quantum computing, and sensing. Color centers in the
solid state are a promising candidate for the development of the next generation of single-photon
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sources integrated in quantum photonics devices. They are point defects in a crystal lattice that
absorb and emit light at given wavelengths and can emit single photons with high efficiency. The
landscape of color centers has changed abruptly in recent years, with the identification of a wider set
of color centers and the emergence of new solid-state platforms for room-temperature single-photon
generation. This review discusses the emerging material platforms hosting single-photon-emitting
color centers, with an emphasis on their potential for the development of integrated optical circuits
for quantum photonics.

Keywords: color centers; solid state; diamond; silicon carbide; hBN; nitrides; silicon semiconductor;
single-photon source; integrated photonics

1. Introduction

Single-photon sources, i.e., physical systems offering the on-demand emission of indi-
vidual photons with desired properties, are key ingredients for current and prospective
applications in integrated photonics and quantum technologies [1]. In particular, the rel-
evant properties that a single-photon source must have to enable the realization of these
technologies generally include the photostable and on-demand delivery of fully polarized
single indistinguishable photons. In addition, the ideal single-photon source is a scalable
physical system operating at room temperature and characterized by a high emission
count rate and quantum efficiency. The concept of single-photon sources originated in the
late 20th century, with a significant subsequent body of work leading to their practical
implementation. In the field of quantum communication, single-photon sources serve as
building blocks for secure quantum key distribution (QKD) systems [2–4]. They also have
the potential to play a pivotal role in quantum computing as optically addressable qubits for
quantum information processing and sensing [5–7]. In the context of integrated photonics,
these sources are also at the core of the development of quantum photonic circuits that
integrate quantum components with existing optical technologies [8]. Although proba-
bilistic sources based on approximating a quantum light emitter with attenuated lasers [9]
or on nonlinear photon conversion processes [10,11] have gained immediate interest for
high-level experiments in laboratory environments [12–14] and for selected commercial
systems, the quest for deterministic sources exhibiting a truly on-demand behavior, with
negligible multi-photon generation probability, has steadily led to the development of
several alternative approaches, spanning cold atoms and ions [15], quantum dots [16,17],
and isolated molecules [18]. Among the possible platforms, color centers in the solid state
represent a viable candidate for the development of the next generation of single-photon
sources integrated in quantum photonics devices. Color centers are point defects in a
crystal lattice that absorb and emit light at given wavelengths, thus effectively acting as
artificial atoms embedded in a solid-state material.

These unique quantum systems have immense potential as single-photon sources due
to their ability to emit single photons with high efficiency, purity, and indistinguishabil-
ity [19]. Furthermore, their occurrence as point defects at the solid state offers a viable path
towards their native embedment in photonic circuits by micro- and nanofabrication of the
host material. For several years, the interest in color centers has been limited to a few phys-
ical systems, among which, notably, is the nitrogen-vacancy center in diamond [20]. Due to
sub-optimal emission properties for integrated photonics, scientific research has pursued
specific applications such as the optically addressable spin properties for quantum sensing
and computing. Since 2013, the landscape has changed abruptly with the subsequent iden-
tification of a wider set of color centers and the emergence of new, previously unexplored
solid-state platforms for room-temperature-single-photon generation. In this review the
most promising materials hosting single-photon-emitting color centers are discussed, with
an emphasis on the perspective of their uptake for the development of integrated optical
circuits for quantum photonics.
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2. Single-Photon-Emitting Color Centers

Color centers are optically active defects that occur in the crystalline lattice structure
of semiconductors and insulators. Both intrinsic, (i.e., related only to the occurrence of
vacancies, interstitials, or their combination) and extrinsic (i.e., involving the presence of
atomic impurities in the material) can result in optical transitions, depending on their spe-
cific electronic configuration. A color center presents an atom-like nature that is embedded
in the solid-state matrix of the host material (Figure 1a). The structure can be described by
a finite number of energy levels introduced in the forbidden gap, among which electron
transitions are allowed (Figure 1b).

Photonics 2024, 11, x FOR PEER REVIEW 3 of 25 
 

 

photon-emitting color centers are discussed, with an emphasis on the perspective of their 
uptake for the development of integrated optical circuits for quantum photonics. 

2. Single-Photon-Emitting Color Centers 
Color centers are optically active defects that occur in the crystalline lattice structure 

of semiconductors and insulators. Both intrinsic, (i.e., related only to the occurrence of 
vacancies, interstitials, or their combination) and extrinsic (i.e., involving the presence of 
atomic impurities in the material) can result in optical transitions, depending on their 
specific electronic configuration. A color center presents an atom-like nature that is 
embedded in the solid-state matrix of the host material (Figure 1a). The structure can be 
described by a finite number of energy levels introduced in the forbidden gap, among 
which electron transitions are allowed (Figure 1b). 

 
Figure 1. Color centers and experimental characterization. (a) Crystallographic structure and (b) 
fine-level structure of group IV color centers in diamond [21]. (c) Single-photon-sensitive confocal 
microscope connected to a Hanbury-Brown and Twiss interferometer [26]. (d) Example of a second-
order autocorrelation function g2(τ) measurement for a single MgV color center in diamond [27]. (e) 
Typical background-subtracted-emission–rate curves as a function of the optical excitation power 
for the saturation-intensity estimation according to the saturation model [27]. 

The electronic structure and related photon emission of a color center are typically 
discussed using a simplified model involving an excited state, a ground state, and 
generally a shelving state taking into account non-radiative transition paths, e.g., weakly 

Figure 1. Color centers and experimental characterization. (a) Crystallographic structure and
(b) fine-level structure of group IV color centers in diamond [21]. (c) Single-photon-sensitive confocal
microscope connected to a Hanbury-Brown and Twiss interferometer [22]. (d) Example of a second-
order autocorrelation function g2(τ) measurement for a single MgV color center in diamond [23].
(e) Typical background-subtracted-emission–rate curves as a function of the optical excitation power
for the saturation-intensity estimation according to the saturation model [23].

The electronic structure and related photon emission of a color center are typically
discussed using a simplified model involving an excited state, a ground state, and gen-
erally a shelving state taking into account non-radiative transition paths, e.g., weakly
allowed spin-flipping transitions from the excited state to the ground state [24] or resonant-
energy-transfer processes involving neighboring lattice defects [25]. Therefore, the emission
dynamics can be generally described using a two- or three-level system. The energy is
delivered to the defect complex through the optical pumping of a laser pulse, while some
color centers may also emit luminescence under electrical excitation [26]. The so-called



Photonics 2024, 11, 188 4 of 23

Zero Phonon Line (ZPL) indicates the emission wavelength of the emitted photons when
the radiative transition occurs between ground-state vibrational levels. Conversely, the
embedment of a point defect in a crystal lattice naturally involves the occurrence of phonon-
assisted transitions. In this case, less energetic photons are emitted, populating the region
of the emission spectrum commonly indicated as the phonon sideband. The fraction of
light emitted in the ZPL with respect to the overall emission of the color center defines the
Debye–Waller factor, a reference parameter to classify the eligibility of the source for the
implementation of quantum computation schemes with matter qubits and linear optics [27].
Additionally, the linewidth of the ZPL provides a piece of benchmark information on the
indistinguishability of the emitted photons. Figure 1c displays the single-photon-sensitive
confocal microscope that is commonly adopted to study the optical properties of color cen-
ters [22]. Particularly, to discriminate the single-photon emission from thermal or coherent
light, an analysis of the emission statistics is needed. A standard characterization technique
is provided by the Hanbury-Brown and Twiss interferometer. This experimental method
is implemented by feeding the light source onto a beam splitter separating the emission
into two paths, each coupled to a single-photon-sensitive detector. Therefore, a time inter-
ferogram is obtained by acquiring a histogram of the differences between detection event
pairs at the two detectors. In fact, under proper assumptions, the histogram of the time
differences directly represents the so-called second-order autocorrelation function, g2(τ),
whose value at a zero-time delay is the main criterion used to measure the non-classicality
of a source. Indeed, the emission collected from an ideal single-photon source will result
in the lack of event pairs recorded at τ = 0, producing an anti-bunching signature in the
g2(τ) histogram. The occurrence of nonclassical emission from an individual emitter is
indeed verified when g2(0) < 0.5 (Figure 1d). The g2(τ) model for a three-level system is
represented by a double-exponential function, in which the decay parameters are directly
connected to the characteristic times associated with the de-excitation of the excited state
and the shelving state [23]. As a result, the study of the second-order autocorrelation
function is also a well-established procedure for evaluating the characteristic features of
the transitions involved in the optical activity of the single emitter under study.

Moreover, since high-throughput information transmission and processing are needed
in the practical implementation of quantum information processing devices such as QKD
systems, the emission count rate is a key element for evaluating the suitability of the single-
photon source for a given application. The emission intensity at saturation, meaning the
maximum photon count rate when complete saturation of the emitter occurs, provides a
reliable estimate of the source’s brightness and, together with the corresponding optical
power required for excitation, represents a useful quantitative parameter for the assess-
ment of single-photon sources’ performance. For instance, Figure 1e shows the emission
count rate values for bright Mg-based single-photon sources in artificial diamond. Finally,
the higher the emission probability after the defect’s excitation, the higher the quantum
efficiency of the single-photon emitter.

3. Material Platforms
3.1. Diamond

Artificial diamond has been a pioneering platform for single-photon generation in the
solid state. The availability of point defects with optical transitions, known as color centers
(Figure 2), is an established feature of the material due to intense room-temperature emission
from a vast variety of defective complexes [28] (Table 1). The first demonstration of single-
photon emission from a diamond color center was given in 2000 [29], based on an emitter
consisting of the nitrogen-vacancy complex (NV center), namely a substitutional N atom
coupled to a lattice vacancy. The NV center has gained increasing importance for the devel-
opment of quantum-enhanced sensing and computing schemes due to its peculiar emission
properties, enabling the optical initialization and readout of its spin state and its addressability
by means of microwave fields [30–34]. Nevertheless, the large emission spectrum (575–800 nm
range) due to a large interaction with the lattice phonons and its relatively low luminescence
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intensity (<105 photons/s) pose significant limitations for the generation and manipulation
of identical photons in integrated photonics circuits. These challenges shifted the interest of
the scientific community towards alternative classes of diamond emitters with promising
features, such as point defects based on group IV impurities [35]. Color centers based on Si
(ZPL, at 738 nm) [36], Ge (602 nm) [37], Sn (620 nm) [38], and Pb (552 nm) [39] atoms share
the same split-vacancy configuration and similar properties, such as a narrow emission line
(Figure 2a), ~ns excited state lifetimes, Fourier-transform-limited emission, and an addressable
ground-state splitting for quantum information processing [40–43]. Several additional emerg-
ing classes of interest are currently being explored in an attempt to map the optical activity
of impurities incorporated in the diamond lattice, including the Mg-related-split-vacancy
defects [23,44], the oxygen-related ST1 center [45], and noble gas impurities [46,47]. The main
strength of these classes of color centers lies in their room-temperature operation, although
there are unavoidable limitations in the degree of indistinguishability, and in their high pho-
ton emission rates (above 106 photons/s for several classes of defects [23,39,48]). Moreover,
diamond color centers can be straightforwardly fabricated by means of the incorporation
of selected impurities by ion implantation due to the relative simplicity of their defective
structure, although their formation efficiency heavily depends on post-implantation activation
processes [41,49–52]. Furthermore, laser writing has recently disclosed a novel approach in
diamond-defect engineering for device fabrication, unlocking in-plane-high-spatial accuracy
in the controlled placement of single emitters [51] and new perspectives for their integration
in diamond chips [53].
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Figure 2. Color centers in diamond. (a) Photoluminescence emission spectra at room temperature
from group IV impurities in diamond [35]. (b) Patterned nanoscale fabrication of SiV centers in
diamond by means of focused-ion-beam implantation [54]. (c) Fabrication of hybrid photonic devices
with integrated GeV color centers registered to diamond waveguides [55].
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With respect to the doping of a diamond substrate with the desired atomic species dur-
ing the chemical-vapor deposition or high-pressure–high-temperature synthesis of the mate-
rial [56–58], ion implantation, possibly combined with high-power laser processing [59,60]
has the advantage of delivering a controlled number of impurities at specific locations in
the target crystal, with spatial accuracies below 100 nm (Figure 2b) [54,61]. This feature
has enabled the demonstration of individual photon emitters coupled to waveguides and
optical fibers [61–64], photonic crystals [65–68], and hybrid photonic circuits (Figure 2c) [55].
Conversely, the emission wavelength of the color centers explored so far in the scientific
literature lie mostly in the visible range. The occurrence of emitters at telecom wavelengths
will be crucial for the uptake of diamond-color-center technologies in integrated quantum
photonics. Furthermore, despite some noteworthy achievements [26,69–71], the electrically
insulating properties of diamond challenges the electrical excitation of single-photon emis-
sion from individual color centers, which would boost the integration of these systems
in high-density-opto-electronic devices. To date, an external, optical excitation source is
needed to trigger single-photon emission from individual point defects. Strategies for an
efficient electrical excitation, paired with the future availability of a market-driven cost
reduction for commercially available high-purity material, could pave the way towards
diamond-based quantum photonics.

Table 1. Photophysical properties of SPs in diamond.

ZPL (nm) T (K)

Excited
State

Lifetime
(ns)

FWHM at
Operational
Temperature

(nm)

Single
Emitter

Saturation
Count Rate

(kcps)

Spin
Manipulation

Integration
of SPs with

Photonic
Structures

References

D
ia

m
on

d

NV 575, 638 RT 12–22 Broad emission 1 k Yes Yes [19,30–
34,61,65]

SiV 738 RT 1.0–2.4 0.7–5 ~4.8k Yes Yes [35,54,55,
62–64,66]

GeV 602 RT 1.4–5.5 5 170–1.2 k Yes Yes [35,37,52,
55]

SnV 620 RT 6 6 530 Yes Yes [35,38,67,
68]

PbV 520, 552 RT >3 7 1.04 k [35,39]

MgV 558 RT 2.4 3 0.44–1.46 k [23]

ST1 557 RT 9 ~5 Yes [45]

He 536,
560 RT 29, 106 <2 (ensemble) [46]

Xe 794,
812 RT ~0.77 Broad emission [47]

3.2. Silicon Carbide

Silicon carbide (SiC) has recently gained relevance as a platform for room-temperature-
solid-state-single-photon generation (Figure 3). As a diatomic compound containing silicon
and carbon, SiC is a wide-bandgap semiconductor material offering similar optical proper-
ties and integrability in native photonic structures to diamond. Furthermore, it benefits
from mature industrial-scale wafer growth and processing technology descending from
the recent boost in commercial demand for power electronics [72]. Among the different
available polytypes of the material, 4H- and 6H-SiC are those most adopted for point
defect engineering.

The most studied defect class for single-photon generation in SiC is the Silicon-vacancy
center (VSi), a lattice defect characterized by the absence of a Si atom in its intended
lattice site. Depending on the symmetry of the lattice site, the VSi center can be found in
two configurations corresponding to the occupation of the hexagonal or cubic lattice site of
the polytype-packing layout [73]. For the 4H-SiC polytype, these two configurations are
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associated with three different zero-phonon emission lines lying in the near-infrared region
at 858.2 nm, 862 nm and 917 nm wavelengths [74–76], with optical transition lifetimes
of the order of ~5 ns and emission intensity of ~104 photons/s [77]. The VSi center also
presents an electron spin number of 3/2 and 3 different ZPL in the NIR range, and it has
been recently proposed as a novel sensor for quantum thermometry and magnetometry
applications [77–82]. Also among the most appealing perspectives for the utilization of
the VSi center lies its addressability in the electroluminescence regime (Figure 3a) [83].
The manufacturability of SiC diodes by electrical doping of the material could enable,
in perspective, the integration of single-photon sources in integrated photonic circuits
without the need for external optical excitation sources and with a minimal amount of
background-pump photons [84].

Another promising single-photon emitting defect is the Carbon anti-site–vacancy pair
(CSiVC center), consisting of a C atom occupying a Si lattice site (anti-site defect) coupled
with a C vacancy [85]. This defect in its positive charge-state configuration [84] was the
first isolated at the single-photon-emitter level in 4H-SiC in 2014, offering a single-photon
emission at rates up to 2 × 106 photons/s [86]. Due to the lattice structure of SiC, this defect
can be found in four non-equivalent configurations depending on the lattice sites occupied
by the anti-site–vacancy pair, each corresponding to two different zero-phonon emission
wavelengths in the 650–675 nm spectral range [74].

Both the VSi and the CSiVC centers are intrinsic defects, i.e., they do not require the in-
troduction of external impurities in the SiC crystal lattice. Therefore, they can be fabricated
simply by introducing radiation damage in the host crystal via the interaction with ener-
getic ion [87–89], electron [90,91], or photon [92] beams. A subsequent high-temperature
annealing is responsible for the formation of stable defective configuration in the crystal
lattice. The occurrence of extrinsic color centers generated by the incorporation of external
chemical species has been demonstrated so far only for a limited set of impurities [74], and
the systematic investigation of the optical activity of impurity elements in SiC is still in
progress. Noteworthy color centers fabricated upon ion implantation at the single-photon
emitter level are the nitrogen-vacancy center (NCVSi), exhibiting single-photon emission
in the telecom band (emission lines in the 1150–1350 nm range in 4H-SiC, depending
on the configuration of the lattice site) with a 2 ns excited state lifetime [93,94], and the
substitutional vanadium-related V4+ center (1279–1387 nm ZPLs, emission lifetime above
70 ns) [95]. These color centers, although displaying intriguing spin properties for quantum
information processing at telecom wavelengths, are reported to offer emission rates of
~103 photons/s and ~102 photons/s, respectively. The low values of these rates constitute a
potential limitation with respect to competing classes of color centers for high-throughput
applications. As in the case of intrinsic defects, the emission wavelength of these defects
depends on the considered lattice-stacking configuration of the point defect, which cannot
be controlled a priori during the ion implantation process, ruled by the stochastic ion–lattice
interaction [84]. Furthermore, the fabrication of desired defect classes is also challenged by
the binary nature of the SiC compound. The formation of a specific point defect requires
the location of specific atoms and vacancies at precise sites and anti-sites of the lattice,
thus hindering a highly efficient formation yield and leaving room for the formation of
undesired, optically active emitters.

Despite the material still having to reach full maturity for applications in quantum tech-
nologies, SiC has also been extensively explored as a potential host material for integrated
photonics [96]. The efforts in the integration of color centers in monolithic SiC platforms
have also recently resulted in the coupling of individual VSi centers to solid-immersion
lenses and nanopillars (Figure 3b) for photon-extraction-efficiency enhancement [90,97], res-
onant crystal cavities with Purcell enhancements up to a factor of 80 [98,99], and resonators
for optical frequency conversion [100]. Table 2 summarize the photophysical properties of
the discussed defects with single photon emission.
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NV 1150–1350 RT 2 1–3 17.4 Yes [93,94]
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3.3. Silicon

Color centers in silicon offer an intriguing silicon-native alternative with respect
to the aforementioned more consolidated classes of quantum emitters (Figure 4). Over
the last few decades, despite its indirect band gap, silicon has shown the potential to
integrate photon-emitting components with CMOS technology due to the occurrence of
photoluminescence [101–103] and electroluminescence [104,105] from several optically
active defects. However, the first demonstration of single-photon emission at cryogenic
temperatures from a silicon point defect (the G center) was given only in 2020, kicking off a
renewed interest in luminescent centers in silicon to develop next-generation technologies
of the second quantum revolution [106].

The so-called G center consists of a bi-stable-dicarbon defective complex, whose
neutral charge state is responsible for individual optical transitions at 1279 nm (0.97 eV) with
emission intensity in the 104–105 photons/s range [106,107]. Theoretical calculations have
revealed a fine structure of the ZPL with a splitting of ~2.5 µeV associated with the rotational
levels of the interstitial silicon atom in the singlet excited state [108]. This rotational degree
of freedom can be optically addressed in spinless, highly enriched 28Si [109], thus removing
the inhomogeneous broadening related to the heavier Si isotopes. In addition to the
linewidth improvement, the G center possesses a metastable triplet state active under
optically detected magnetic resonance [110], enabling appealing spin-selective singlet-
triplet transitions for the implementation of a native qubit in silicon.
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The demonstration of single-photon emission from the G center was rapidly followed
by the study of additional classes of extrinsic and intrinsic defects emitting in the same
spectral region (Table 3) [111–113], thus hinting at the availability of untapped resources
for single-photon generation at telecom wavelengths. In particular, the T center, a defective
complex consisting of two carbon atoms occupying a single silicon site, one of which
is coupled to a hydrogen atom [114], was isolated at the single-photon emitter level in
2022 [115]. The latter provides another promising photon–spin interface with a ZPL
emission at 1326 nm (0.94 eV), and long-lived electron and nuclear spin lifetimes (2 ms
and 1.1 s, respectively [116]), offering spin-selective optical transitions at the telecom O
band and a saturation intensity of 2 kcps [115]. On the other hand, it is characterized
by a long radiative lifetime of the order of microseconds, and it is readily susceptible to
dehydrogenation, requiring exact fabrication conditions [114].

An additional single-photon source of comparable brightness (2–6 kcps emission
intensity at saturation) is the intrinsic complex known as W center, a tri-interstitial com-
plex [117] that occurs as a typical radiation-induced defect in silicon [118–121]. As in
the case of the G center [106], the photoluminescence emission from single W emitters
is strongly polarized [117]. Finally, recent theoretical studies have uncovered the poten-
tial occurrence of already-studied carbon- and oxygen-related-radiation-damage defects
called C centers [122,123] in implementing optically readable quantum memories [112]. Al-
though their demonstration as single-photon sources is still unreported, the ZPL at 1570 nm
(0.79 eV) experimentally observed at the ensemble level in irradiated Czochralski silicon
samples [109,124,125] could pave the way for the implementation of telecom quantum
networks, benefiting from minimal losses in commercial optical fibers.

The most apparent advantage of color centers compared to alternative strategies lies in
their manufacturability by means of consolidated, industry-compatible fabrication and pro-
cessing techniques, including ion implantation [107,111,126,127]. The same considerations
made in the case of diamond hold for the controlled fabrication of quantum emitters with
high spatial resolution and their registration to nanoscale photonic structures with minimal
post-processing requirements. Progress in manufacturing strategies towards a controlled
fabrication and placement of single-photon sources was shown for the G and W centers in
focus ion beam technology with a spatial resolution below 100 nm (Figure 4a) [128].

Conversely, the viability of silicon color centers for integrated photonics might be
challenged by the lack of tunability in the emission wavelengths of specific classes of color
centers, combined with the current lack of emitters in the C-band range. Furthermore,
single-photon emission in silicon has only been demonstrated at cryogenic temperatures
so far, with a maximum temperature of 50 K [117]). The development of reliable methods
for the manufacturing of individual color centers will also be crucial to their technological
uptake. The available studies on the fabrication of the G center have pointed out how
post-implantation thermal treatment can represent a limiting factor in realizing large-scale
arrays of emitters, since it causes a broadening of the ZPL emission, which is a benchmark in
the quality evaluation of the quantum source [129]. The emission broadening also exhibits
a dependence on the ion implantation process itself, since broader emissions have been
reported for carbon implantation [129] with respect to proton-irradiated samples [130].

The density of the fabricated G centers and the signal-to-noise ratios of individual
emitters presented a direct connection with the annealing conditions as well [129], indi-
cating a progressive dissociation of the defects alongside a decrease in the background
signal for a longer annealing duration. Therefore, off-equilibrium fabrication strategies that
involve dynamic annealing have been explored as a more valid alternative [130]. Particular
care must be taken in how different thermal treatment durations used to supply the thermal
budget can affect the evolution and stabilization of the G center with respect to competing
defective complexes. Proof of this lies in the lower temperature reported for the annealing
out of the W (~400 ◦C [111,131,132] and G center (~250 ◦C [101]) following conventional
rapid thermal annealing and compared to the peak temperature estimated in ns-pulsed ion
implantation [133]. Non-equilibrium processes with µs-long high-power laser exposure
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combined with surface functionalization based on organic molecules have also promoted
the incorporation of carbon atoms above the solubility limit, thus creating a highly dense
ensemble of G centers [105].

On the other hand, in the direction of single-defect engineering, more responsive
thermal processing has been explored in C-implanted float zone silicon, investigating
localized heating effects upon non-invasive ns-pulsed laser annealing [134]. In addition to
this, ensemble G and W emission signal has been reported upon femtosecond laser-induced
melting and recrystallisation of silicon [135], with results in agreement with earlier studies
on the solid-phase annealing of carbon-implanted silicon in proximity to the laser-melted
region [136,137].

When integrating single-photon emitters into photonic structures, considering how
different fabrication processes affect the inhomogeneous broadening and other quality
parameters of the source becomes highly relevant to realizing the required experimental
conditions, such as the spatial and spectral overlapping between the single defect and the
nanocavity. For instance, strain engineering has provided a useful method to tune the
splitting of the G center ZPL in doublets or quadlets up to 18 meV [138], and particular
attention has been paid to avoiding the introduction of unwanted radiation-related de-
fects while developing nanopatterning processes to integrate these sources in photonic
platforms [139]. In addition, a 30-fold enhancement of the photoluminescence coming from
single G emitters and an 8-fold Purcell enhancement of their emission rate has been recently
achieved in an all-silicon cavity [133]. Cryogenic temperatures do not necessarily represent
a practical limitation in the photonic circuit integration, where low-temperature conditions
are already required; for instance, for the integration of superconducting nanowire single-
photon detectors. Waveguide-coupled emission coming from ensembles of W centers
fabricated in the intrinsic region of an electrically injected LED has indeed been reported in
an all-silicon-integrated chip [140]. On the other hand, free space optical pumping of W
defects whose PL signal has been coupled to an SOI waveguide and microring resonators
has been more recently achieved, with the advantage with of more relaxed fabrication
and operational requirements [141]. Despite the need for the controlled fabrication and
positioning of individual color centers, which are still crucial challenges in building large-
scale integrated quantum photonics silicon platforms, significant advances, such as the
monolithic integration of a single G center into a single-mode waveguide operating at its
ZPL (Figure 4b) [142], have once more stressed the potentiality in utilizing these systems
for quantum information processing.
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Table 3. Photophysical properties of SPs in Silicon.

ZPL
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Count Rate

(kcps)

Spin
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SPs with
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li
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n

G 1279 4–110 K 35.8 0.28 8 Yes Yes [103,106,110,
131,142]

W 1218 4–60 K 3–34.5 0.1 2–6 Yes [111,117,140,
141]

T 1326 <5 K 940 0.04 2 Yes [115,116]

3.4. Nitrides

Among emerging platforms for solid-state-single-photon generation, nitride materi-
als [143,144] stand out because of their already mature fabrication process, as in the case of
GaN or SiN [145,146], and their consolidated utilization in integrated photonics, especially
for waveguides and other photonic structures in SiN [147] (Figure 5). Table 4 summarize
the photophysical properties of the defects with single photon emission in nitride materials.

Gallium Nitride (GaN) was the first bulk nitride platform to be reported to host
single-photon sources. GaN is a direct-wide-bandgap (3.45 eV) semiconductor employed
in the past few decades mainly as a platform for LEDs operating across the whole visible
spectrum [148] and in high-power electronics. The material also received attention for the
development of photonics structures and optoelectronics at the nanoscale [143,149–151],
indicating a high degree of maturity for the uptake of single-photon sources in integrated
devices. The first report on single-photon sources in GaN dates back to 2017 [152,153]
with the discovery of a class of native single-photon emitters. The emission was denoted
by a sharp ZPL with a large emitter-dependent variability in the 600–700 nm spectral
range [152,153], exhibiting an ~ns excited state lifetime and high room-temperature emis-
sion intensity at saturation (1–5 × 105 photons/s). The integration of these emitters in
photonic structures [154,155] and GaN substrates’ layered growth [156] has followed. An
additional class of bright color centers emitting single photons at telecom wavelengths
(1100–1300 nm) was also identified in 2018 [157]. These emitters operate at room tempera-
ture with rates up to 5 × 105 photons/s and have been integrated into photonic structures
for further emission enhancement [157,158]. Conversely, the reported classes of emitters
were found natively in GaN and their unambiguous attribution to a specific defective
complex is still missing, thus currently limiting the perspective of a controlled fabrication
process for integration in quantum photonic circuits.

Aluminum Nitride (AlN) is a wide-bandgap semiconductor (Eg = 6.03 eV) that is
widely employed as a piezoelectric material and in high-power electronics. It is also ex-
ploited in photonics as a substrate layer for the growth of GaN [159]. The first experimental
demonstration of single-photon emission in AlN was reported in 2020 [160–162] from
native defects. Individual defects were identified in thin AlN films grown on a sapphire
substrate, and they exhibited room-temperature-linear-polarized emission from the visible
to the infrared (550–1000 nm) range, with count rates up to 5 × 105 photons/s and a 2–3 ns
excited state lifetime. The nature of these emitters has not been attributed in a conclusive
manner as yet. The observed emission lines could be related to different classes of color
centers or different site symmetries of the same point defect. Conversely, the large spectral
variability observed in the literature could originate from the interaction with the crystal
lattice environment in a piezoelectric material. Recent work has shown the role of Al-ion
implantation and subsequent thermal annealing up to 600 ◦C in the formation of individual
color centers in the 550–650 nm range, indicating that their structural configuration can
be achieved by the controlled introduction of radiation-induced lattice damage and thus
offering a convenient pathway for their manufacturing [163]. Such findings are in line with
the demonstration of the deterministic fabrication of single color centers by fs laser-induced
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damage in AlN on sapphire films [164]. These results, along with the theoretical prediction
of point defects with optically addressable spin properties, similar to those of the NV
center in diamond [165], highlight the potentially seamless integration of AlN emitters into
integrated platforms for quantum photonics [166,167]. The efficient registration of single-
photon sources into integrated circuits has already been proved in 2020 with the integration
of a quantum emitter into a waveguide by means of grating couplers (Figure 5a) [168].
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Hexagonal boron nitride (hBN) possesses the outstanding feature of being a
2-dimensional wide-bandgap semiconductor (~6 eV). The first demonstration of single-
photon emitters at 623 nm in hBN dates back to 2016 [171] and was tentatively assigned
to the VNNB anti-site-nitrogen-vacancy center [171–173]. The material has since attracted
increasing attention with the identification of several classes of optically active defects
filling the whole visible spectrum up to 850 nm [174,175]. Among the emitting defects, the
ZPL at 630 nm has been attributed to the carbon–nitrogen-vacancy complex VBCN [176].
Conversely, the negatively charged boron vacancy VB

− is responsible for the broad light
emission at 850 nm. This latter defect has demonstrated optical-spin properties similar to
those of the NV center in diamond, making it one of the few spin defects optically address-
able at room temperature [175,177,178]. The main strengths of hBN-based single-photon
sources lie in their reliable emission from cryogenic temperatures up to 800 K, emission rates
above 4 × 106 photons/s, strongly polarized emission, strain-tunable emission wavelength
(Figure 5b), and Fourier-transform-limited emission at room temperature [169,171,179–181].
The localized fabrication of emitters in hBN has been achieved so far with a variety of
experimental methods [182], including thermal annealing [169], plasma treatment [183],
femtosecond-pulsed laser [184,185], electron [169,186] and particle irradiations [187,188],
and strain field engineering [180,189]. These results, in parallel with significant efforts to
shed light on the structural nature of the discussed classes of emitters [190], indicate the
readiness of the material for the scalable fabrication of arrays of quantum emitters. Fur-
thermore, the coupling of hBN single-photon emitters in a wide variety of hybrid photonic
structures has been explored extensively in the last years to both connect the generated
photons with external circuits and to provide a higher collection efficiency. The integrability
of the material is eased by its 2-dimensional structures, which enable in situ growth or
deterministic placing of hBN flakes [191]. Preliminary demonstrations include the coupling
to waveguides [192,193], microresonators [144], crystal cavities [194–196], antennas [197]
and integrated photonic chips [198,199].

Silicon Nitride (SiN) is among the most used materials for the fabrication of integrated
photonic circuits [200,201], both because of its low optical losses and its suitability for
nonlinear photonics and microwave photonics [202–204]. Although hybrid single-photon
generation systems have been developed by interfacing quantum dots [146] and hBN
emitters [144] with SiN waveguides, the occurrence of quantum emitters related to native
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defects has been demonstrated in 2021 [205] in SiN produced by chemical-vapor-deposition
growth on SiO2-coated silicon substrate and subsequent thermal annealing. These color
centers are denoted by a linearly polarized emission distributed at four wavelengths in
the 567–670 nm spectral range. Room-temperature-single-photon-emission intensity can
achieve 5 × 105 photons/s at saturation. This demonstration was immediately followed by
the integration of native SiN emitters in all-SiN waveguides (Figure 5c) [170]. The research
on these systems is at its infancy and a clear attribution of the defective structure of the
reported color centers has yet to be obtained, as in the case of GaN and AlN emitters.
Nonetheless, they are indicative of appealing perspectives towards the implementation of
integrated, monolithic photonic chips with integrated, native single-photon sources.

Table 4. Photophysical properties of SPs in Nitrides.
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550–1000 RT ~2 <12 500 Yes [161,162,
168]

hBN

VNNB 623 RT ~3 >4 k
Yes

(without
attribution
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[171–
173,179–

181]

VBCN 630 RT ~2–6 ~5–35 >4 k

[171,176,
179–

181,191–
197]

VB
− 850 RT 1.2 Broad

emission >4 k Yes [169,175,
177–181]

SiN Intrinsic
defects 567–670 RT 3.8 Broad

emission 500 Yes [170]

4. Perspectives

The quest for optimal classes of solid-state color centers and their integration in inte-
grated quantum photonics platforms is a buzzing research field that has achieved impres-
sive developments in the last decade. Several quantum systems have been demonstrated
in different materials, each offering peculiar properties and advantages combined with
specific limitations. From the point of view of the maturity of each considered material as a
platform for integrated quantum photonics, different challenges are still to be addressed.
However, depending on the specific quantum protocol to be implemented, the availability
of color centers with different emission properties allow one to identify a suitable trade-off
between the manufacturing opportunities and the accompanying drawbacks. For instance,
quantum-enhanced sensing protocols require the optical addressability of the spin system
and its coherent manipulation, without the strict need for high-indistinguishability or
NIR/IR emission wavelengths. Conversely, the development of quantum-integrated pho-
tonic circuits requires a hyperfine coupling with nearby nuclear spins as a key parameter
for transferring quantum information between the electron spin of the quantum emitters
and the proximate nuclear spins of the crystal environment. Furthermore, the realization of
solid-state quantum memories does not necessarily find its limitation in the VIS emission
wavelengths when long-distance communication is not demanded. If the realization of
larger programmable photonic processors is targeted [206], i.e., characterized by a large
number of qubits and thus capable of processing higher complexity algorithms, industry-
scale-compatible manufacturing processes could be beneficial together with a consolidated



Photonics 2024, 11, 188 14 of 23

maturity of the material platform synthesis (e.g., silicon CMOS technology). Moreover, if
the emitted single photons are intended to be used in quantum processing systems based
on commercial optical fibers, the emission in the telecom band represents an important
prerequisite to minimize the losses. On the other hand, indistinguishable photons constitute
the prerequisite for quantum interference effects underpinning the linear quantum optics
paradigm [19,207]; consequently, the availability of solid-state single-photon emitters with
Fourier-transform-limited emission lines is crucial for this range of applications.

Artificial diamond has been the pioneering material for the development of color
centers, partly due to its defectivity. Significant progress in the material synthesis field has
been achieved since the discovery of the first quantum emitter in 2000, and high-purity
crystals are routinely available on the market, although in sizes not exceeding a few mil-
limeters. The relative scarcity of competing manufacturers is still limiting the development
of this research field due to the large costs of bulk samples with respect to the alterna-
tive solid-state platforms. Conversely, an ample commercial availability of nanodiamond
powders derived from industrial usage [208] is boosting the research in quantum sensing
at the nanoscale [209,210]. This approach could be exploited to develop hybrid photonic
platforms integrating single-photon sources embedded in nanodiamonds [211,212]. The
fabrication by means of ion implantation has been amply demonstrated for several classes
of diamond color centers. Diamond is currently the only material for which an exten-
sive scientific literature is available on the optimization of the formation yield of color
centers by several approaches, spanning from surface chemical functionalization [213] to
co-doping [49] and post-implantation processes [52].

Silicon carbide is among the most mature platforms from the point of view of the
material’s synthesis, with commercially available wafer-scale-high-purity substrates and
consolidated utilization for electronics and optoelectronics industrial applications [72]. On
the other hand, the controlled fabrication of desired classes of color centers is hindered
by the binary nature of the compound and the different stacking configurations available
for each structural defect, and only few works have explored the integration of SiC color
centers in photonic structures.

Silicon is certainly the most mature material in terms of synthesis and device manufac-
turing, as it relies on decades of expertise in research and industry. Conversely, the classes
of color centers identified so far exhibit a molecular lattice structure substantially different
from the simpler impurity–vacancy configurations found in diamond and SiC [108,114].
This peculiar feature challenges the consistent and repeatable fabrication of individual color
centers by means of standard fabrication techniques such as ion implantation. Identifying
suitable pathways for the high-yield production of single-photon sources is among the
most compelling of needs.

The discovery of single-photon sources in bulk nitrides is very recent. Consequently, a
clear understanding of the structural nature of the currently known classes of color centers
is still missing and it will be crucial to open the path towards their controlled fabrication.
Significant progress in the understanding of color centers in hBN has been recently made in
terms of the control and engineering of emitters. This versatility, partly relying on a general
understanding of the properties of 2-dimensional materials derived from the extensive
investigation of graphene in the last two decades [214], make the hBN a compelling
candidate for the development of integrated, although hybrid, quantum photonics.

Concerning the emergence of optimal classes of color centers for quantum information
processing in integrated photonics circuits, the large availability of systems available
at the solid state comes with its own set of promises to be developed and challenges
to be overcome. The vast majority of the single-photon sources identified is associated
with emission in the visible range. This is arguably a consequence of technological and
instrumental contingencies, such as the commercial availability of single-photon detectors
with high efficiency and affordable costs in this sole spectral range. It is, however, worth
mentioning that new-generation-single-photon detectors with high efficiency at telecom
wavelengths started to hit the market in recent years, based on superconducting systems
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such as the SNSPD (superconducting nanowire single-photon detectors) [215]. These
systems are still significantly more expensive than their solid-state-based counterparts due
to the need for cryogenic operation, and their integration in confocal photoluminescence
microscopes is marginal. Nonetheless, the technological leap will enable an extended
investigation of the most promising solid-state platforms for the identification of telecom
emitters tailored to specific applications.

As a last challenge for the uptake of solid-state color centers in integrated quantum
photonics, the indistinguishability of the emitted photons will enable the implementation of
quantum information processing operations based on entangled pairs [12,19,207] generated
from a deterministic source. The achievement of a high degree of photon indistinguisha-
bility is among the biggest challenges for solid-state color centers, due to their coupling
with the host lattice, external fields, and local inhomogeneities. For these reasons, this
goal, or at least the occurrence of Fourier-transform limited photon emission [216] has been
demonstrated for few classes of emitters so far, and it was typically achieved at cryogenic
temperatures [40,78,217], with the notable exception of the VNNB center in hBN [181].
Different sources of spectral line broadening must be carefully identified, prevented, or
counteracted in the fabrication of the emitters and in the design of the integrated quantum
photonic circuits.
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