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A Belief Propagation Solution for Beam
Coordination in MmWave Vehicular Networks

Zana Limani Fazliu, Member, IEEE, Francesco Malandrino, Senior Member, IEEE,
Carla Fabiana Chiasserini, Fellow, IEEE, Alessandro Nordio, Member, IEEE

Abstract—Millimeter-wave communication is widely seen as a
promising option to increase the capacity of vehicular networks,
where it is expected that connected cars will soon need to
transmit and receive large amounts of data. Due to harsh
propagation conditions, mmWave systems resort to narrow beams
to serve their users, and such beams need to be configured
according to traffic demand and its spatial distribution, as well
as interference. In this work, we address the beam management
problem, considering an urban vehicular network composed of
gNBs. We first build an accurate, yet tractable, system model
and formulate an optimization problem aiming at maximizing the
total network data rate while accounting for the stochastic nature
of the network scenario. Then we develop a graph-based model
capturing the main system characteristics and use it to develop a
belief propagation algorithmic framework, called CRAB, that has
low complexity and, hence, can effectively cope with large-scale
scenarios. We assess the performance of our approach under
real-world settings and show that, in comparison to state-of-the-
art alternatives, CRAB provides on average a 50% improvement
in the amount of data transferred by the single gNBs and up to
30% better user coverage.

Index Terms—Vehicular networks, mmwave communications,
message passing.

I. INTRODUCTION

Vehicular networks and their users have long been iden-
tified as great consumers of data, for applications including
safety [1], [2], map updates [3], content downloading [4],
and onboard entertainment [5]. The issue has been further
exacerbated by the emergence of connected and autonomous
vehicles: such vehicles need frequently-updated and detailed
information on the topology and conditions of the road [6], in
addition to providing their users with even richer multimedia
content, especially for automated and autonomous vehicles [6].
The effect of such trends is a further increase of the require-
ment posed on the infrastructure serving the vehicles.

Whenever more network capacity for wireless networks is
needed, moving towards higher frequencies is an appealing
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option. Indeed, millimeter-wave (mmWave) networks, which
operate at frequencies of tens of gigahertz and were originally
envisioned for quasi-static, indoor scenarios, are becoming an
appealing option also for vehicular networks. However, al-
though mmWave technology allows for very large bandwidths
and high data rate, it is also characterized by harsh propagation
conditions, with high path loss and virtually no connectivity
in non-line-of-sight conditions.

To address these shortcomings, directional antennas capable
of beamforming are employed. Unlike antennas used at lower
frequencies, mmWave base stations (gNBs) serve their users
through beams, each concentrating the available power along
a given direction in order to achieve higher values of received
power as well as lower interference [7]. This also means that
swift, high-quality beamforming decisions are critical to the
performance, and indeed the very usefulness, of mmWave
networks. The task of beamforming is especially challenging
in vehicular networks, owing to the fast mobility of the users;
on the positive side, such mobility is constrained by the road
topology and can be forecast with good accuracy [8].

In this work, we formulate the problem of beamforming
in vehicular networks as an optimization problem, where the
decisions to make concern the beam configuration at each
gNB, and the objective is to maximize the total network
data rate. Owing to the multiple sources of variability in our
scenario and the stochastic nature of the wireless medium, we
then introduce a randomized solution strategy. Under such an
approach, we do not choose directly a beam configuration,
but rather (i) we set the probabilities of each configuration to
be selected, and (ii) we enact the beam configurations over
time according to those probabilities. Similar randomized ap-
proaches have been successfully used in many fields, including
routing [9], resource provision in cloud computing [10], and
network orchestration [11]. The intuition behind the success
of randomized approaches is that, in very complex scenarios,
different sources of randomness tend to cancel one another, in
a manner similar to errors in Fermi approximation. Therefore,
randomly choosing the beam configuration to enact can actu-
ally reduce the negative effects of the variability in vehicular
traffic or wireless channel conditions.

We further introduce a distributed heuristic algorithm, called
coverage-rate aware belief propagation (CRAB), to make
effective and efficient decisions about the beam configuration
probabilities. CRAB is based upon the belief propagation
approach [12], and leverages scenario-specific information and
insights. In CRAB, gNBs exchange messages about their local
beam configurations, until converging to a situation where the
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global data rate is maximized. We compare CRAB against
state-of-the art approaches based upon clustering or graph
matching, and find it to provide remarkably better solutions
with a very low complexity.

In summary, our main contributions are as follows:
• We provide a detailed, yet mathematically tractable,

model of a mmWave network infrastructure for the sup-
port of vehicular communications, which is based upon
established standards and cutting-edge research studies.
Using this model, we formulate both a centralized and
distributed optimization problem making beamforming
decisions that maximize the overall network data rate.
Unlike previous work and motivated by the highly dy-
namic scenario under study, we leverage a randomized
approach whereby decisions concern the probability with
which a given configuration is used at each gNB.

• We then focus on the distributed formulation, so as
to make high-quality decisions while exploiting solely
local information. In so doing, we develop a graph-
based representation of the network infrastructure, which
accounts for the inter-gNB conflicts, i.e., interference and
overlapping user coverage. Through such a model, we
define a novel belief propagation-based approach, named
CRAB, that efficiently yields beamforming configurations
at the gNBs that effectively avoid inter-gNB conflicts.

• We assess the performance of the CRAB scheme and
compare it against state-of-the art alternatives, under real-
world settings. Our results show that under CRAB over
30% of the gNBs experience a rate increase of over 100%,
and 55% experience a gain of at least 50%, while serving
up to 30% more vehicular users and exhibiting higher
fairness.

The remainder of this paper is organized as follows. We
begin by discussing some relevant related work in Sec. II,
highlighting the novelty of our approach, and, then, we intro-
duce our system model in Sec. III. In Sec. IV, we formulate
a centralized and distributed beamforming optimization prob-
lem. Sec. V presents the CRAB algorithm, highlighting how it
combines the mechanics of message-passing algorithms with
scenario-specific knowledge and insights. The performance of
CRAB is compared against that of state-of-the-art alternatives
in Sec. VI, while Sec. VII concludes the paper.

II. RELATED WORK

Beam management in mmWave networks, and in particular
initial access, beam alignment and configuration have been
active areas of research in the last few years. While earlier
works focused on exhaustive and iterative search techniques
to identify and configure mmWave beam directions [13],
[14], later works turned to more intricate approaches which
were often driven by data and based on advanced learning
techniques [15]–[19]. In particular, [15] adopts a data-driven
approach and uses convolutional neural networks to reduce the
necessary coordination between transmitter and receiver when
configuring their beam settings. A similar data-driven ap-
proach is used in [16] wherein a convolutional neural network
architecture is applied in tandem with LIDAR preprocessing

technique to optimize beam selection. The proposed model
is trained to exploit LIDAR and positional data in order to
identify the best beam directions and reduce the beam search
overhead in vehicle-to-infrastructure communication.

In [17], the authors tackle the optimal beam selection prob-
lem by formulating the decision-making process as a partially
observable Markov decision process. They also propose a
point-based value iteration method to design an approximately
optimal policy, wherein the goal is to select the strongest
beam pair that maximizes the beamforming gain between
a single base station-user pair. The study in [18] envisions
an optimal beam association policy in mmWave vehicular
networks using a lightweight alternative to the Q-learning
algorithm, while modeling the dynamics of the mmWave
communication link using a semi-Markov decision process
framework. [18], however, deals only with straight-road sce-
narios, with the assumptions that infrastructure nodes cover
separate and distinct segments of the road. The algorithm
is therefore independently applied by each node to identify
the optimal beam association strategy for vehicles under their
coverage. No coordination between nodes is foreseen.

To predict the best beam choice for a vehicle, [19] intro-
duces the usage of channel charting. The proposed approach
consists of two stages: one offline during which the channel
charts are constructed for each beam, and one online, during
which live collected data is used to make online predictions for
the best beam combination. Again, the work in [19] focuses
on a single infrastructure node covering a single straight road
segment.

Learning-based techniques, however, are known to be com-
putationally taxing and time consuming, which is why most
of these works consider limited scenarios with a single infras-
tructure node or address the best beam selection with respect
to a single vehicle. In addition, they address a highway or a
straight road scenario, thereby largely ignoring the interactions
and interference potential that can be found in an urban setting.

Furthermore, all of the above studies focus on beam aligning
for a single base station-vehicle pair, implicitly assuming that
each mmWave beam is employed to transmit to a single
user only. However, in ultra dense scenarios, a narrow beam
can cover several users simultaneously, users that can be
multiplexed within the same beam. There are only few works
that consider that a mmWave link can be used to establish
communication with several end users simultaneously [20],
[21]. In particular, [20] considers a dense urban scenario, and
uses traffic light information to guide the beam directions
chosen by the infrastructure nodes; however, [20] does not
consider coordination between nodes as we do in this work. In
[21], instead, the authors focus on vehicle-to-vehicle networks
and propose an adaptive beamforming scheme based on K-
means clustering for point-to-multipoint communications for
message dissemination. The work in [21], however, is tailored
to highway scenarios and message dissemination therein is
enabled by data relaying performed by individual vehicles,
and it cannot be easily extended to vehicle-to-infrastructure
communication scenarios.

We also remark that, to our knowledge, few works have ap-
plied graph theory to address beam management in mmWave
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communications [22]–[25]. Both [22] and [23] apply graph
techniques to reduce inter-cell interference, which is different
from our preliminary work in [24] and this work. We recall
that, in [24] as well as this work, the goal of the proposed
graph-based approaches is to maximize the network data
rate, the difference being that in [24] a centralized approach
is proposed, while in this work we consider a distributed
approach enabled through the coordination between connected
nodes in the graph.

As for message passing applied to mmWave networks,
studies that leverage such an approach can be found in [25],
[26]. In [25], the authors use a graph approach to tackle the
user association and power control in mmwave HetNets, by
modeling the network as a coordination graph with edges
between base stations and users. Using this graph, they apply
a message passing algorithm combined with reinforcement
learning to achieve a solution that maximizes the overall time
averaged risk averse rate of the network. The authors do not
address the management of the beams in such a network, rather
they consider the beam pattern of the base station to be fixed
and, consequently, users transition from an aligned to a non-
aligned state as they move. The work in [26], instead, uses a
dynamic compressed sensing-approximate message passing al-
gorithm, to leverage the sparsity and correlation in subchannels
for channel estimation and propose an alternative technique
that exploits information about the antenna geometry and
the range of the transceiver distance, for compressive beam
alignment. The message passing algorithm is used to establish
an individual short-range link between one access point and
its users, and, thus, it does not take into account the behavior
of other transmitters in the network.

Novelty. Our work represents an improvement over existing
literature along three main directions. First, our graph-based
representation of the mmWave infrastructure is a complete
and compact way to account for the non-trivial outcome
of beamforming decisions, without the intrinsic complexity
of data-driven approaches. Second, our distributed message-
passing solution strategy allows for swifter convergence com-
pared to centralized algorithms, without the need to share
and transfer large amounts of data. Third, by embedding
domain-specific knowledge into the messages being passed,
we are able to obtain higher-quality solutions compared to
general-purpose approaches, e.g., based upon Markov decision
processes, which need to blindly “learn” the problem structure.

III. SYSTEM MODEL

To develop a system model that captures all the main aspects
of a mmWave vehicular network, we consider a reference
scenario based on real-world mobility and infrastructure traces,
as per [27], [28]. Such traces contain information about the
topology of the city of Luxembourg, the road layout (e.g.,
regulated intersections), as well as the mobility traces of
around several thousands of vehicles traveling within the city
center, accumulated over a 12-hour window. Based on this
data, we construct a scenario as the one depicted in Fig. 1,
in which a set of gNBs, denoted by G, are co-located with
traffic lights to serve a set of vehicles, i.e., the mmwave users.

Fig. 1. Real-world scenario: Luxembourg city center. The red circles represent
the locations of the traffic lights, i.e., of the gNBs.

The service is divided into a set Z of discrete zones: each
vehicle is, at any given time, into exactly one zone. The set
of discrete zones is divided in two distinct subsets, the set
of non-empty zones Zn and the set of empty zones Ze. The
subset of non-empty zones is composed of zones which are
occupied by at least one vehicle at any given time, while
empty-zones are those zones which are not occupied by any
vehicles. This allows us to focus the beam optimization efforts
only on those zones that require service, and ignore those
spatial areas that do not contain any vehicles. Below, we detail
the characteristics of our scenario, and present the assumptions
we make to build an accurate, yet tractable, system model.

Antenna arrays and spatial signatures: We assume that
all network nodes (gNBs and vehicles) have the same height
and consider a 2D network topology, which allows for a
simpler mathematical analysis and a lighter notation. Indeed,
while easily generalizable to 3D, the 2D network model is
already able to describe and capture all important features
of the system. Both gNBs and vehicles are equipped with a
uniform planar array (UPA) of antennas, with the vehicle UPA
being capable of analog beamforming only1. We assume the
elements of a UPA arranged in a square grid and spaced by
λ/2, with λ denoting the signal wavelength. In particular, the
gNB’s UPA has size Nt × Nt elements, while the vehicle’s
UPA has size Nr × Nr elements. The surface of a generic
UPA is vertically placed; thus, the vector normal to the surface
points to the horizon and has azimuth ψ (measured with
respect to a global coordinate system).

If the UPA has N × N antenna elements, then its spatial
signature in the direction, defined by the azimuth φ (measured
with respect to its normal), is the N2-size vector

s(N,φ) = 1N ⊗ s̃(N,φ) , (1)

where 1N is a vector of length N with all elements equal to
1, ⊗ denotes the Kronecker product, and the n-th component
of s̃(N,φ) is given by [̃s(N,φ)]n = ejπn sinφ.

1While deriving our numerical results, the direction of the vehicle’s beam
is rounded to 1◦ accuracy, while the beamwidth is fixed to 13◦, which is the
value that can be obtained with a 8x8 UPA.
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Beamforming: A beam, b, is generated by a gNB using
a subset of antenna elements from its UPA. In practice, the
beam is obtained by coordinating (phasing) the signals emitted
by the antenna elements so that they globally act as a single
directional antenna whose main radiation lobe is characterized
by a specific half-power beam width (HPBW), α, and direction
δ. Beams with different HPBW can be obtained by varying
the number of antennas involved in the beam generation.
Specifically, if the array generating the beam b has size
N × N elements, the HPBW, α, depends on N through the
relation [29]:

α ≈ 1.78

N
[rad] ≈ 102

N

◦
. (2)

The direction of the beam can be set by properly choosing the
beamforming vector v i.e., the vector of phases applied to the
array elements in order to emit the considered beam, given by

v ,
1

N
s(N,ϕ) (3)

where the angle ϕ represents the direction of the generated
beam, in the azimuth plane, with respect to the normal to the
gNB UPA. In practical systems, the values that the angle ϕ
can take are limited to a discrete set. The direction of the beam
in a global horizontal coordinate system is then defined by the
angle δ = ϕ+ψ, where we recall that ψ is the azimuth of the
normal to the gNB UPA.
Remark. In our scenario, we consider each gNB equipped
with a single UPA and able to generate beams with arbitrary
direction. However, in a practical scenario, UPA hardware
limitations prevent a single beam to span the entire azimuth
range [0, 2π]. To do so, gNBs should be equipped with
multiple UPAs, each one covering a sector. Also, on the vehicle
side, UPA could be integrated into the vehicle roof whereas in
our scenario we consider it vertically placed. Our assumptions,
however, have the advantage of allowing for a simpler and
lighter mathematical notation, while being general enough to
encompass practical scenarios. Specifically, in our study a
beamforming configuration depends only upon the number of
beams available at each gNB, along with their direction and
beamwidth, regardless of the number or position of the UPAs
they are generated by.

We denote by B the set of possible beams, which is common
to all gNBs and whose cardinality is equal to the number of
possible beam directions multiplied by the number of HPBW
values available at the gNB. The set B contains also an extra
element, i.e., the null-beam denoted by ∅. In the following,
the notation b = ∅ denotes that the beam b is not emitted.

Let us define as B the maximum number of beams that can
be activated at a gNB g (g = 1, . . . , G), and denote with vector
bg = [bg,1, . . . , bg,B ] the generic beam-configuration adopted
at gNB g. The i-th beam, i = 1, . . . , B, is characterized
by direction δg,i and HPBW αg,i. However, not all beam-
configurations bg are possible since two main constraints
need to be accounted for. First, the sum of the number
of antennas elements simultaneously involved in the beam
generation should not exceed the number of antenna elements
of the gNB’s UPA (i.e., N2

t ). Second, we must ensure that
beams do not overlap with each other, i.e., for every two beams

bg,i, bg,j 6= ∅ simultaneously emitted on the same frequency
band by gNB g, the following condition must hold:

|δg,i − δg,j | ≥
αg,i + αg,j

2
. (4)

We then define F ⊆ B as the set of feasible beam configura-
tions at a generic gNB. Finally, a network beam configuration,
B, can be described as an array of G beam-configurations, one
for each gNB, i.e., B = [b1, . . . ,bg, . . .bG] ∈ FG.

Transmitted signal: Radio resources available for com-
munication are organized into an Nb × Nτ frequency-time
matrix, whose time size is called frame. A single element
of such matrix, named resource block, is characterized by a
bandwidth W and a time fraction τ = 1/Nτ . The total band-
width assigned for communication is then NbW . We assume
that every beam transmits over all resource blocks; therefore,
given a network beam configuration, B, the baseband signal
transmitted by the i-th beam of gNB g ∈ G, in resource block
q can be modeled by vector:

tg,i,q = vg,ixg,i,q (5)

where vg,i is the beamforming vector in (3) particularized
to beam bi,g , and xg,i,q is a complex random symbol with
zero mean. Further, assuming a uniform power allocation over
all resource blocks, we associate to xg,i,q a power equal to:
E[|xg,i,q|2] = Pg,i/Nb. Note that the available transmit power
at gNB g, Pg , is shared among the beams simultaneously
emitted therein. Therefore, the values Pg,i are subject to power
allocation constraints that also depend on the adopted beam
configuration.

Mmwave communication channel: In a typical mmwave
urban scenario, the channel between a gNB g and a zone z in
resource block q, can be modeled as described in [30]–[32].
Such models consider Lg(z) clusters of paths, each described
by a complex coefficient, hg,`,q(z), and two angles, φg,`(z)
and θg,`(z), ` = 1, . . . , Lg(z), which represent, respectively,
the departure and arrival direction of the signal, measured
with respect to the normal to the transmitting and receiving
UPAs. Since we consider zones to be sufficiently small so
that vehicles therein (if any) experience the same propagation
channel for a given beam and gNB, in the following we
associate a zone with a unique UPA and receiver, and we detail
the channel model by referring to a gNB-zone communication
link. For a given network beam configuration, B, the time-
domain channel experienced by beam bg,i, connecting gNB g
to zone z, in resource block q is given by the matrix:

Hg,i,q(z) =

√
1

Lg(z)

Lg(z)∑
`=1

hg,`,q(z)ug,`(z)µg,i,`(z)
H (6)

where µg,i,`(z) , s(Ng,i, φg,`(z)) and ug,`(z) ,
s(Nr, θg,`(z)) are the signatures of the transmit and receive
antenna arrays, and N2

g,i is the number of antenna elements
used by beam bg,i. Note that the channel model in (6) is
frequency-flat since we refer to a 5G scenario where the
bandwidth of a resource block is about 1.4 MHz, while the
channel delay spread is in the range of 30 to 300 ns [33].
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Received signal: For a given network beam configuration
B ∈ FG, the signal carried by beam bg,i in resource block q
and received within zone z can be represented by the following
N2
r × 1 vector:

yg,i,q(z) = Hg,i,q(z)tg,i,q + ηg,i,q(z) (7)

where Hg,i,q(z) and tg,i,q are given by (6) and (5), respec-
tively, and ηg,i,q(z) is a term accounting for noise and inter-
ference in zone z, e.g., caused by beams generated by nearby
gNBs (in general, all beams in B except for bg,i). We assume
that vector ηg,i,q(z) has complex Gaussian independent en-
tries with zero mean and covariance E[ηg,i,q(z)ηg,i,q(z)

H
] =

(N0W + Ig,i,q(z))I where N0 is the thermal noise power
spectral density, W is the signal bandwidth, and Ig,i,q(z) is the
interference power. Since only analog beamforming is possible
at the receiver, the receiver applies to yg,i,q(z) the vector of
weights w(z) given by w(z) , 1

Nr
s(Nr, ϕ

(z)). Notice that
such vector has norm 1 and allows the receiver to generate
a beam in the direction specified by the angle ϕ(z). After
weighting the UPA output, the receiver obtains

wH(z)yg,i,q(z) = h̃g,i,q(z)xg,i,q + wH(z)ηg,i,q(z) (8)

where the scalar h̃g,i,q(z) = wH(z)Hg,i,q(z)vg,i represents
the overall communication channel summarizing the effects
of the signal propagation and of the antenna and beam
design. The term wH(z)ηg,i,q(z) is a Gaussian random vari-
able with zero mean and variance N0W + Ig,i,q(z), and the
received signal power is given by E[|h̃g,i,q(z)xg,i,q(z)|2] =

Pg,i|h̃g,i,q(z)|2/Nb. Note that the values of the transmit power,
Pg,i, and of channel h̃g,i,q(z) depend on the specific network
beam configuration, B. To stress this dependence, in the
following, we will write Pg,i(B) and h̃g,i,q(z,B).

Serving and interfering beams: Each zone z ∈ Zn, is
allocated a set of resource blocks, Q(z), and a set of serving
beams. In turn, a beam can serve one or more zones, depending
on its direction and HPBW. Specifically, for a given network
beam configuration, B, the set of beams serving zone z is
denoted by S(z,B). In other words, the elements of S(z,B)
are pairs (g, i); and (g, i) ∈ S(z,B) if, under network beam
configuration B, the i-th beam emitted by gNB g serves zone
z. Note that, in CoMP-like communications, we can have 1 ≤
|S(z,B)| ≤ Gc where Gc is the maximum number of gNBs
that can partake in the coordinated transmission. Clearly, when
no CoMP is enabled, Gc = 1.

Similarly, Iq(z,B) denotes the set of 2-tuples (g, i) iden-
tifying the beams bg,i interfering in zone z, under network
beam configuration B and resource block q. By using these
definitions, the received signal and interference powers for the
resource block q ∈ Q(z) in zone z can be written, respectively,
as

P̃q(z,B) =

∣∣∣∣∣∣
∑

(g,i)∈S(z,B)

√
Pg,i(z,B)

Nb
h̃g,i,q(z,B)

∣∣∣∣∣∣
2

Iq(z,B) =
∑

(g,i)∈Iq(z,B)

Pg,i(z,B)

Nb
|h̃g,i,q(z,B)|2

TABLE I
MAIN NOTATION

Variable Description
G set of gNBs
Zn set of non-empty zones
Q(z) set of resource blocks assigned to zone z
F ⊆ B set of feasible beam configurations in a

gNB
B network beam configuration
bg beam configuration at gNB g
αg,i HPBW of the i-th beam when the local

configuration bg is adopted at gNB g
δg,i direction of the i-th beam when the local

configuration bg is used at gNB g
Π(B) probability that the network-wide config-

uration B is adopted
πg(bg) probability that the local configuration bg

is adopted at gNB g
T (B) network data rate achieved under beam

configuration B

χ(g,h)(bg,bh) joint compatibility function between
gNBs g and h when configurations bg
and bh are adopted

and the achievable rate as

Rq(z,B) = Wτ log2

(
1 +

P̃q(z,B)

N0W + Iq(z,B)

)
. (9)

Given B, the total network data rate is given by:

T (B) =
∑
z∈Zn

∑
q∈Q(z)

Rq(z,B) . (10)

IV. A RANDOMIZED APPROACH TO NETWORK
THROUGHPUT MAXIMIZATION

Given the set of gNBs, G, the maximum number of sup-
ported beams at each gNB, B, and the set of zones, Z , our
goal is to determine the best beam configuration to be used
at each gNB. More specifically, we aim at jointly addressing
the following questions while maximizing the overall network
data rate:
(i) how many beams, of what width and direction, each gNB

should set up, and
(ii) which zones should be associated to which gNB, and

scheduled on which beam.
Owing to the highly dynamic scenarios we target and

to the stochastic nature of the wireless channel, we adopt
a randomized approach, whereby (i) decisions concern the
probability with which a given configuration is adopted, and
(ii) the actual configuration to enact is chosen according to
such probabilities. Randomized approaches similar to ours
have been long used in many fields, including routing [34],
[35], resource allocation [36], and security [37]. It follows
that, in our problem formulation (i) the decision variables
correspond to probabilities that each beam configuration is

5
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adopted, and (ii) the objective function is the expected value of
the actual target metric. Below, first we present a centralized
formulation and discuss its complexity, then we introduce a
distributed version of the problem that allows for local decision
making based on local information. The main notation we use
in our formulations is summarized in Tab. I.

A centralized formulation: Let us first formulate a cen-
tralized optimization problem that aims at a globally optimal
solution. Such a problem needs to be time-dependent and
solved periodically2. Upon solving the problem, the solution is
represented by the probability values associated to each beam
configuration, which are delivered to the set of gNBs. The gNB
nodes set their beams according to the received configuration
probabilities, by devoting to each of them a fraction of time
that is proportional to the probability values. Since the problem
formulation holds at every decision period, to simplify the
notation, in the following we do not highlight the dependency
on time.

Let Π(B) represent the probability that network beam
configuration B is selected. Then the total network data rate
is given by:

EΠ[T ] =
∑

B∈FG

Π(B)T (B) (11)

and our problem can be formulated as:

max
Π(B)

EΠ[T (B)] . (12)

Note that (12) is maximized when Π(B) = 1 for B = Bmax

and 0 otherwise, where Bmax = arg maxB T (B). The optimal
beam configuration Bmax is however difficult to compute due
to the interference among beams, the need for centralized
global knowledge, and the non-linear nature of the problem.
Indeed, non-linear problems are notoriously complex to solve,
and solution strategies only find local optima in the general
case.

A decentralized formulation: In light of the issues above,
we are interested in a decentralized solution where each gNB
independently chooses its own beam configuration according
to a local probability distribution πg(bg). To this end, we
consider as objective function the following expression:

Eπ1,...,πG
[T (B)]=

∑
b1∈F

· · ·
∑

bG∈F

G∏
g=1

πg(bg)T ([b1, . . . ,bG])

(13)
and write our problem as:

max
{πg}

Eπ1,...,πG
[T (B)] . (14)

Under this decentralized approach, once a decision is made,
each gNB g will implement the optimal policy by applying in
each of the K time steps one of the possible configurations,
with such probability as specified by the densities πg(bg).
Importantly, the following holds:

Lemma 1: The joint probability obtained using the solutions
to (14) coincides with the optimal solution to (12).

2The extension to an event-driven decision making process is however
straightforward.

Proof: The proof comes from the well-known fact that,
if variables are independent, then the joint distribution of a
set of random variables is equal to the product of individual,
marginal distributions. In our scenario, independence is guar-
anteed by the fact that each individual gNB g performs its
own randomized strategy, i.e., chooses the concrete strategy
to enact according to πg , with no influence from other gNBs.
Then, it is sufficient to observe that the marginal densities
maximizing (13) are given by πg(bg) = 1 for bg = bmax

g and
0 otherwise, for g = 1, . . . , G and [bmax

1 , . . . ,bmax
G ] = Bmax,

as defined in the centralized approach.
Moving from the maximization over the joint distribution

in (12) to the one over the marginal distributions in (14) does
not, per se, change the complexity of the problem, nor its
solution. However, it does provide us with valuable insights
on a possible solution strategy, namely, one leveraging belief
propagation (BP) algorithms.

In general, BP allows multiple agents to cooperatively esti-
mate the marginal distributions of a set of random variables.
Specifically, each agent is associated with a random variable,
and an influence graph expresses which variables (hence,
which agents) influence one another. The algorithm works
iteratively, with agents that are neighbors on the influence
graphs exchanging messages (indeed, BP belongs to the family
of message passing algorithms). BP is guaranteed to converge
to the centralized solution if the influence graph is a tree, but
works remarkably well under a much wider set of conditions.

In our case, agents correspond to gNBs, the random vari-
ables to estimate are the local decisions πg(bg), and messages
express the extent to which decisions of different gNBs conflict
with one another. By leveraging BP, we are able to make
swift, high-quality decisions that (i) for particular network
topologies, match the optimal ones, i.e., the ones we would
obtain by solving (12), and (ii) in general, are very close to
the optimal decisions in most practical cases.

V. CRAB: COVERAGE-RATE AWARE BELIEF
PROPAGATION

Our solution strategy, named Coverage-Rate Aware Belief
propagation (CRAB), is predicated on allowing each gNB to
make local decisions about the number, direction, and width of
its beams. Such decisions are aimed to avoid conflicts among
distributed beam management decisions, thus yielding high
serving rate and coverage to vehicular users. Indeed, in our
scenario, improving the coverage of users is a very good way
towards optimizing the total data rate (10), as good coverage
implies less interference and more served users.

As discussed above, we follow a randomized approach,
where the decision variables are represented by probability
distributions; specifically, we associate to each gNB g and
beam configuration bg a probability πg(bg). Then, at every
time step k, each gNB adopts one of the possible configu-
rations with probability πg(bg). Such decisions are local in
nature, therefore, we want to allow each gNB to choose the
distributions πg(bg) that maximize its performance. At the
same time, we have to avoid conflicts among decisions made
by different gNBs. We define a conflict as two or more beams
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Fig. 2. Schematic representation of the CRAB framework: (1) the interaction graph is built using the given connectivity threshold as detailed in Sec. V-A; (2)
the belief propagation algorithm is run on the nodes of the graph, as described in Sec. V-B; (3) if the algorithm does not converge within a maximum number
of iterations, in step (4) the graph is pruned as described in Sec. V-C. Steps (2)-(4) are repeated until convergence is reached and the marginal probabilities
πg are obtained.

of distinct gNBs, not involved in CoMP communications,
covering the same zone(s): such a situation is doubly wasteful,
as (i) beams may interfere with each other, and (ii) one of the
them could cover different, hitherto unserved, zones instead.
Note that the system would greatly benefit from anticipating
such conflicts and avoiding them, as detecting a conflict a
posteriori would entail that the involved gNBs have to change
their configuration so as to remove the conflict itself, with the
intrinsic overhead as well as the risk to create a new conflict.

We tackle this conundrum by:

• creating an interaction graph, modeling the mmwave
network and summarizing which gNBs’ decisions may
conflict with each other;

• apply a belief propagation algorithm to solve the dis-
tributed problem introduced in Sec. IV;

• if the algorithm does not converge, pruning such a graph
and re-applying the belief propagation algorithm until
convergence is reached and a solution is obtained.

These steps are depicted in the general scheme of the CRAB
process in Fig. 2.

Below, we first present how the interaction graph is built,
in such a way that the mmwave network characteristics are
accounted for (Sec. V-A). Then, we associate with each gNB
a state, i.e., a beam configuration, and, given the objective
in (14), we design a belief propagation algorithm which
applies the message passing approach and yields a probabil-
ity distribution over the local beam configuration decisions
(Sec. V-B). Finally, we detail how the interaction graph can
be pruned if necessary, so as to make the algorithm reach
stable and mutually beneficial solutions to be adopted at the
gNBs (Sec. V-C).

A. Building the interaction graph

To address the beam management problem, we model the
network as a graph, composed of a set of nodes coinciding
with G, i.e., with each node representing a single gNB, and a
set of edges E between said nodes. As exemplified in Fig. 3,
an edge eg,h between nodes g and h exists if the value of the
connectivity criterion between the two vertices, cg,h, is above
a certain threshold cthr, i.e.,

E = {eg,h : ∀g, h ∈ G ∧ cg,h > cthr} .

As detailed below, such criterion should reflect the gNB’s
potential to interfere with each other’s transmissions and can
include, but it is not limited to, the inter-gNBs distance, the
existence of line-of-sight (LoS) conditions between gNBs, or
the gNBs coverage overlapping in terms of number of non-
empty zones.

Examples of how the graph of the mmWave network in Lux-
embourg city would look like using different criteria is shown
in Fig. 4. In the leftmost figure, the value of the connectivity
criteria is expressed as a function of the distance between
the nodes, i.e., cg,h = 1

dg,h
, and the threshold is related to

a fixed distance cthr = 1
dthr

where dthr = 400 m, as it has
been shown that the probability of maintaining a mmwave
communication link over longer distances is negligible [31].
In the center figure, the criteria is the existence of LoS between
two nodes, which can be expressed as cg,h = LoS(g, h), where
LoS(g, h) is a binary variable indicating whether there is LoS
between the two nodes, and cthr = 0. Finally, in the right-
hand plot the connectivity criteria is based on the fraction of
the number of non-empty zones under the coverage of the two
gNBs with respect to the total number of zones covered by
the two gNBs separately, and the threshold values has been
set to cthr = 0.1.

The various criteria can also be combined, and identifying
the most suitable criterion to be considered is one of the goals
of this work. It should be noted, however, that while the first
two criteria are topology based, and we can assume that the
structure of the graph will be fixed, the third one depends
on the vehicle traffic patterns since the number of non-empty
zones may change over time, as traffic patterns shift.

B. Configuring the belief propagation algorithm

Belief propagation is an algorithm allowing to infer the
(local) marginal distributions of a set of random variables
taking into account their mutual correlation. The algorithm is
defined over graphs where each random variable is associated
to a node, and works by letting messages flow along the graph
edges. A message is a real valued function that measures the
influence that a random variable (i.e., a node) exerts on the
neighboring ones. The algorithm works iteratively and, at ev-
ery iteration, the marginal distributions of the random variables
at each node are computed and updated, until convergence is
reached.
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Fig. 3. Examples of interaction graph modeling, highlighting two possible beam configurations at each gNB (i..e, graph node).

Fig. 4. Mmwave network graph using different connectivity criteria: (left) distance-based criterion with cg,h = 1
dg,h

and dg,h = 400m; (center) LoS-based
criterion; (right) overlapping coverage criterion with cthr = 0.1.

In our scenario the graph is the network interaction graph
obtained under one of the connectivity criteria mentioned in
Sec. V-A. The random variables are the beam configurations at
the nodes, bg (g = 1, . . . , G), and their marginal distributions
are the πg(bg)’s previously introduced.

Joint compatibility function: The interaction among ran-
dom variables is described by the joint compatibility function
χ(g,h)(bg,bh), which, for every pair of nodes g, h ∈ G,
measures the compatibility between beam configurations bg
and bh when they are simultaneously activated by nodes g
and h, respectively.

We design our compatibility function based upon the intu-
ition that two configurations interfere with each other when
they cover the same set of users. Such a situation hurts the
objective in (14) in two ways, namely:

• it results in fewer users being served, hence, the total data
rate decreases;

• it creates interference for the users that do get served,
further reducing the total data rate.

For the above reasons, improving coverage is strongly linked
with increasing the total data rate in (10).

For example, if we look at Fig. 3 where the maximum
number of activated beams is B = 1, we expect that the

compatibility value between the beam configurations b1 = β1

at node gNB1 and beam b3 = β3 at node gNB3, to be higher
than the value obtained when b1 = β2 at node gNB1 and
b3 = β3 at node gNB3, i.e., χ(1,3)(β1, β3) > χ(1,3)(β2, β3),
since in the first case the beams do not interfere with each
other. Accordingly, we define the joint compatibility function
as:

χ(g,h)(bg,bh) =
∑
z∈Zn

∑
q∈Q(z)

Rq(z,B
(g,h)) (15)

where3 B(g,h) = [∅, . . . ,∅,bg,∅, . . . ,∅,bh,∅, . . . ,∅], ∅ =
[∅, . . . , ∅] ∈ F is the null beam set, and Rq(z,B) is the rate
defined in (9). Note that, in order to calculate Rq(z,B), we
require the knowledge of the channels linking the gNB to the
users. Since beam configuration decisions are made for longer
time periods4, instead of instantaneous channel infomation,
CRAB uses averages of the square magnitude of the channel
coefficients h̃g,i,q . Such averages are calculated both over a
longer period of time, as well as over the area of the zone.

In practice, χ(g,h)(bg,bh) returns the rate achieved by

3Without loss of generality, we assume g < h.
4In highly mobile scenarios the channel coherence time is very small, e.g.

few ms whereas the CRAB algorithm requires to be run at much lower rate,
e.g. every second.
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the network when beam-configurations bg and bh have been
selected at gNBs g and h, respectively, and all other gNBs
are silent. It is interesting to observe how the compatibility
function in (15) is not directly derived from the objective (14);
rather, it incorporates domain- and scenario-specific knowl-
edge about which situations ought to be avoided in order to
improve performance.

Message passing process. As mentioned above, the belief
propagation algorithm works by exchanging messages along
graph edges as shown in Fig. 5. Let us denote by mg→h(bh)
the message that node g sends to node h about beam config-
uration, bh.

Once the interaction graph is built, we define ν(g) as the set
of neighbors of node g in the graph. We then design a belief
propagation algorithm that, thanks to the compatibility func-
tion defined above, yields probabilities πg(bg)’s that maximize
the network data rate. Specifically, at each iteration, a node g
computes the messages to be sent to each of its neighbors,
h, and for each of the neighbor’s beam configuration bh,
according to:

mg→h(bh)=
∑
bg∈F

χ(g,h)(bg,bh)
∏

k∈ν(g)\h

mk→g(bg) ∀h,bh

(16)
where mk→g(bg) is the last message received by g from
k about its beam configuration bg . At the first iteration of
the algorithm messages are initialized to a constant, arbitrary
chosen value.

In the first iteration all the nodes send their initialized
messages to the respective outgoing nodes. In the following
iterations, a node will send an outgoing message, once it has
received all incoming messages necessary to compute it5. An
iteration is complete once the node calculates and sends all
of its outgoing messages. Further, notice that since the joint
compatibility function can take any value, we must ensure a
proper normalization of the values πg(bg) at each iteration of
the algorithm. Such normalization is obtained by imposing:

Cg =
∑
bg∈F

∏
h∈ν(g)

m(h→g)(bg), ∀g = 1, . . . , G .

Convergence is reached when the difference between all
consecutively outgoing messages is negligible. If convergence
is not reached within a maximum number of iterations, we
proceed as explained in Sec. V-C. Upon convergence, the
estimated marginal distributions of the beam configuration at
node g is given by [12]:

πg(bg) =
1

Cg

∏
h∈ν(g)

m(h→g)(bg) (17)

for all bg ∈ F . Each node can then locally decide regard-
ing the beam configuration by randomly selecting the state
according to the obtained marginal probability.

C. gNB graph pruning
Belief propagation does not guarantee convergence in

graphs that contain cycles [12], [38], and, in general, the

5We consider that inter-gNB communication is enabled through reliable
links, hence no messages are lost during the exchange.

Fig. 5. An example of message passing in the CRAB framework.

conflict graph of a mmwave network is not guaranteed not to
contain cycles. The application of belief propagation in such
graphs, commonly referred to as loopy belief propagation,
is known to converge in most practical cases, although no
guarantee of convergence can be provided [38]. Rather, the
existing relevant literature provides upper bounds conditions
under which the graph will converge, which are quite loose
and often pessimistic compared to actual performance [38], as
confirmed by our own results.

In general, the convergence in such graphs depends heavily
on the irregularity of the geometry of the graph itself and
the variability in the strength, i.e., the range of the values
of the compatibility function along the different edges, as
shown in [38]. It follows that the criteria used to determine
the connectivity between the nodes plays a significant role. As
already discussed, in the case of mmwave networks, several
factors can be taken into account when determining whether
two gNBs are connected; nonetheless, it is quite apparent
that in an urban scenario, loops are unavoidable. To ensure
convergence, we therefore take the following approach: if
the graph does not converge within a maximum number of
iterations, we prune the graph by using Kruskal’s reverse
delete algorithm [39], which removes the least significant edge
that does not affect the overall connectivity of the graph. In
the worst case, the pruning process leads to a tree-like graph
for which convergence is guaranteed [12], but our results (see
Sec. VI) show that usually the graph converges much earlier
than that. In the rare instances in which it does not converge,
only a few prunings are required to obtain a graph that does
converge.

VI. NUMERICAL RESULTS

We evaluate the effectiveness of our approach by consid-
ering the real-world network layout of the Luxembourg city
center, as described in Sec. III, and the realistic vehicular
mobility trace in [27]. The 2×2 km2 service area is divided
into a discrete set of zones, each of 10×10 m2 size.

The system parameters are configured as follows. The center
frequency available for mmwave communication is set to
52 GHz, while the available bandwidth is W = 400 MHz.
The latter corresponds to the maximum allowed bandwidth in
5G New Radio (NR) using numerology µ = 3 with subcarrier
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spacing of 120 kHz and 264 resource blocks [33]. Further, we
assume that all gNBs are equipped with a 64 × 64 uniform
planar array (UPA) with up to 4 RF chains transmitting at a
maximum power of Pg = 33 dBm, while users are equipped
with a 8 × 8 UPA with a single RF chain. To simulate the
mmwave channel, we use the statistical approximation of
the 3GPP channel model accounting for the Doppler effect,
shadowing and multipath fading, and we set the large-scale
parameters used for modeling as in [20].

Beam directions can take any integer value between 0◦

and 360◦, but we limit the number of possible beamwidth
configurations to {5◦, 10◦, 15◦}. The maximum number of
beams at the gNB is limited by the number of available RF
chains, therefore B = 4 for all gNBs. The CRAB algorithm is
executed every second. We assume that channel information is
updated every ms, therefore the time averages of the channel
gains are computed over a 1-second time window, i.e., over
1,000 realizations of the channel.

Due to the level of complexity required to simulate a full
scale network consisting of 51 gNBs and over 2,500 vehicles,
the performance of the proposed approach is evaluated using
a single simulation that is 10 s long. The longer simulation
period was adopted to capture the realistic movement of the
vehicles in an urban environment. We assume that all vehicles
in the network are requesting data for the entire duration of
the simulation (the so-called full buffer model), and we focus
on the downlink performance of the network. The resource
allocation is performed according to the proportional fair
algorithm, while user association is based on the strongest
received reference signal. The effective data rate for each
vehicle is derived from the calculated SINR, by using the 4-
bit channel quality indicator (CQI) table in [40], which maps
the reported CQI onto a particular modulation coding scheme
(MCS) and spectral efficiency value.

For the purposes of this study, the SINR to CQI mapping has
been performed using the spectral-efficiency based approach
presented in [41]. To take account for the effects of frequent
changes in beam-configurations as well as handover of users
from one gNB to another, the overhead values reported in
[42] were used when calculating the effective data rate of the
individual vehicles. In particular, a beam-reselection overhead
of 23 ms was applied for each configuration change, and a
43 ms cell handover overhead was applied for each instance
of user handover between gNBs.

The performance of the CRAB algorithm is assessed against
three state-of-the-art benchmarks, namely,
• A Conflict-Aware Weighted Bipartite Matching

(CAWBM) algorithm - an iterative approach based
on avoiding overlapping between beams leveraging
conflict-aware weighted bipartite graph matching,
presented in [24] and labeled CAWBM in the plots;

• DBSCAN - a clustering-based approach [43] aiming to
serve as many users with the same beam by identifiying
largest vehicle clusters of fixed width;

• Upper Confidence Bound (UCB) algorithm - a simple
reinforcement learning approach [44] which balances
exploration-exploitation as it gathers more knowledge
about the best beam configuration.

The first two benchmark solutions offer a limited flexibility
when selecting beam configurations. Specifically, CAWBM
requires a fixed number of beams, which we set to 4, chosen
as the best performing option in line with the results in [24].
DBSCAN, on the other hand, requires a fixed beamwidth,
which we set to 10◦, selected as the option providing the
best trade off between performance and complexity, based on
the results in [24], [45]. On the positive side, DBSCAN is
a distributed algorithm which can be executed dynamically
to account for mobility in the network, while CAWBM is
a static, centralized, algorithm which takes advantage of the
comprehensive knowledge about the network to better match
gNBs with zones. The third benchmark algorithm, UCB, does
not impose any limits on flexibility and is a fully decentralizd
solution. However, since it is based on reinforcement learning
principles, it requires a significant number of iterations to learn
the beam configuration that provides the highest value of re-
ward. The reward of each gNB is defined, similar to the CRAB
optimization objective, in terms of the achievable rate, i.e., for
gNB g the reward is defined as

∑
z∈Zn

∑
q∈Q(z)Rq(z,bg).

For a detailed implementation of the algorithm, the reader is
referred to [44, Chapter 2].

For CRAB, we employ the coverage criterion with a thresh-
old of cthr = 0.15. Further, all messages are initialized to
random values uniformly drawn between 0 and 1, and we
deem that convergence at a single node is reached when the
difference between consecutive outgoing messages is lower
than 10−5 times the minimum over all values carried by the
most recent messages. A node will not send out a message
that has not changed from the previous iteration. A node
that has reached convergence will not send out any outgoing
messages. Finally, a node, which has stopped receiving a
message from a neighboring node, will use the latest received
message from that node. The network converges once all the
nodes reach convergency, and there are no more messages to
be exchanged between nodes. Once an estimate of the marginal
distribution for the gNB is obtained, the gNB randomly draws
the beam configuration to apply every 100 ms. Again, each
of the considered algorithms is executed periodically every
second, and the total simulation duration is 10 s.

A. Connectivity analysis

Due to the influence of the interaction graph on the overall
performance of the CRAB algorithm, we begin by assessing
how the topology of such a graph is influenced by the
connectivity criterion used to determine whether or not to
draw an edge between two gNBs. We compare two of the
criteria discussed in Sec. V-A, namely, the distance between
gNBs (hereinafter referred to as distance-based criterion) and
the fraction of the non-empty zones that are covered by both g
and h (hereinafter referred to as coverage-based criterion).

It is important to point out that, regardless of the criterion
employed, there is an inherent trade-off between the complex-
ity of the CRAB algorithm (which in turn depends upon the
connectivity of the interaction graph) and the performance of
the resulting solution, i.e., the value of the objective (10).
We can therefore compare the two connectivity criteria we
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consider by characterizing the trade-offs that can be reached
by adopting either of them.

The results are summarized in Fig. 6(left): each marker
therein corresponds to a different value of a different criterion,
with different criteria corresponding to different colors. The
position of each marker along the x- and y-axes corresponds,
respectively, to the degree of the resulting interaction graph
and the total data rate it yields. Ideally, we would like
solutions with a low complexity (i.e., markers closer to the
left-hand side of the plot) and a high data rate (i.e., markers
closer to the top of the plot). From Fig. 6(left) it is clear
that red markers, referring to the results obtained under the
coverage-based criterion, correspond to markedly better trade-
offs than blue markers, referring to the result achieved under
the distance-based criterion. Intuitively, this is equivalent to
saying that the coverage-based criterion creates better, i.e.,
more meaningful edges in the interaction graph, therefore, it
yields better performance with the same graph degree (or,
equivalently, the same performance with a simpler graph),
hence, less overhead and faster convergence of the CRAB
algorithm.

In terms of convergence, as mentioned in the previous sec-
tion, CRAB tends to reach the state well before the maximum
number of iterations, which is set at 50. This holds true
especially as the connectivity threshold is increased and the
average node degree is reduced, as shown in Fig. 6(center),
in blue. In particular, we can see that for threshold values
around cthr = 0.15, which offer the best trade-off between
complexity and performance, the number of iterations required
to converge is between 8 and 15. Recall that in those instances
in which CRAB does not converge within a maximum number
of iterations, we perform the pruning procedure. The number
of prunings required to obtain a converging graph with respect
to the threshold is plotted in red in Fig. 6(center), and we
see that on average the number of edges that are pruned
does not exceed 3. In contrast, UCB, the other iterative-
based learning algorithm that we use as benchmark, requires
significantly more iterations to converge, in the range of
several thousands, as shown in Fig. 6(right) for each gNB. The
number of iterations is capped at 10,000; therefore, for most
gNBs UCB fails to converge, oscillating between several beam
configurations that provide similar performance. Importantly,
this behaviour further justifies our randomized approach to the
beam management problem.

B. Benchmark evaluation

Next, we move to assessing the performance of our CRAB
algorithm against the benchmark solutions.

A first aspect we are interested in is the absolute perfor-
mance, i.e., which of the four solutions yields the highest
effective data rate. As shown in Fig. 7(left), CRAB outper-
forms the benchmark solutions, by delivering in total 41%
more data than DBSCAN, and 20% more than CAWBM.
The performance improvement over UCB is small, as CRAB
delivers only around 7% more data; however, as further
discussed below, we recall that UCB exhibits a very long
convergence time. It should also be noted that the overhead due

Fig. 6. Performance of the CRAB algorithm when using the distance-based
criterion (blue) and the coverage-based criterion (orange): amount of data
downloaded vs. average node degree (left); Average number of iterations as
a function of the coverage-based connectivity threshold (center); Average
number of iterations per gNB required for the convergence of the UCB
algorithm (right).

to beam configuration changes and handovers was taken into
account when processing the results shown in Fig. 7 and Fig. 8.
Indeed, losses in the amount of effective data downloaded due
to overhead are shown in orange in Fig. 7(left).

In order to gather more insight about the performance
difference for individual vehicles, Fig. 7(center) highlights
the fraction of vehicles covered by each solution. We can
immediately notice that one of the reasons for DBSCAN’s
poor performance is the fact that it only manages to serve
about 50% of the vehicles in the network, while both CRAB
and CAWBM serve more than 80%. Focusing on the users
that do get served, Fig. 7(right) shows the distribution of the
data rate obtained by individual vehicles. We can see that the
difference between CRAB and CAWBM is more clear for
the vehicles in the top highest percentiles: under CRAB 20%
of the top users can reach data rates over 500 Mb/s, while
with CAWBM only the top 10% can reach such data rates.
In other words, CRAB can serve more users than DBSCAN,
and offer to them a better rate than CAWBM. Lastly, we
note that in terms of these metrics, CRAB and UCB perform
quite similarly. Indeed, we can consider UCB performance
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Fig. 7. Total amount of data downloaded in blue, losses due to overhead in orange (left); percentage of vehicles covered (center); cumulative density function
(CDF) of the data rate offered to the vehicles in Gb/s (right).

Fig. 8. CDF of number of vehicles covered by individual beams (left); CDF of number of vehicles served by (i.e., receiving data from)
individual beams (center); CDF of the service duration per vehicle in seconds (right).

as an upper-bound for a fully decentralized solution, with
an unlimited amount of time resources to learn from the
environment and choose the optimal configuration in terms
of the reward, i.e., effective data rate. However, as we saw
in the previous section, UCB requires a significant number of
iterations, and it is infeasible to implement it periodically as
often as 1 s, as envisioned in this setup.

The high-level reason for such improved performance of
CRAB over the two more practical solutions lies in the
better coordination between beams and gNBs enabled by
the message-passing approach. Fig. 8(left) and Fig. 8(center)
highlight two of the main effects CRAB’s superior beam
configuration, namely, that CRAB is able to cover and serve
more users with each beam than its counterparts, respectively,
twice and four times more. Also, Fig. 8(right) shows how
CRAB can serve each vehicle for a longer time, up to four
times longer than CAWBM. In summary, CRAB is able to
serve more users, give them a higher data rate, and cover them
for a longer time, and at a feasible level of complexity.

Since CRAB is a randomized approach, the beam configura-
tions tend to change more often, as expected. The CDF of the
number of beam configuration changes per second per gNB is
shown in Fig. 9(left). Note that most gNBs tend to change
the beam configuration every second with DBSCAN and
CAWBM, which coincides with the algorithm update period.
With CRAB, on the other hand, 50% of the gNBs require
less than 0.75 changes per second, even though a randomized
approach is used. Only 40% of the gNBs in fact change the

beam configuration more often than once per second, however
the benefits in terms of data rate outweigh the overhead
incurred, as shown in Fig. 9(center), where we have plotted
the amount of data served by the gNB versus the number of
beam configuration changes per second, which shows clearly
that gNBs with higher number of beam configuration changes
also serve more data. Finally, as observed by looking at Fig. 9,
while some individual gNBs may see a drop in capacity due
to coordination resulting from CRAB, more than 80% of the
nodes experience significant gains, often exceeding 100%.
Specifically, when compared to DBSCAN over 30% of the
gNBs experience improvement over 100%, and 55% of the
nodes experience a gain of 50% or more. When compared to
CAWBM, these numbers are expectedly lower, respectively,
around 10% of the gNBs experience a data rate increase of
100% or more, while 30% of them experience a gain of 50%
or more.

Fig. 10 summarizes how the performance obtained by
different zones of the topology changes as a consequence
of moving from DBSCAN to CRAB (left plot) and from
CAWBM to CRAB (right plot). Compared to DBSCAN (left
plot), CRAB can better serve the areas around the center of
the city, where both the density of the gNB and vehicles is
higher. This is due to DBSCAN’s fully decentralized nature,
whereby gNBs decide the configuration of the beams solely
on their local knowledge about vehicle mobility. When the
number of gNBs is relatively high, the configured beams at
different gNBs may easily target overlapping areas, resulting
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Fig. 9. Number of beam configuration changes per second (left); Amount of
data downloaded using CRAB versus number of configuration changes per
second, per gNB (center); Improvement of individual gNBs due to CRAB in
terms of data rate compared to DBSCAN (blue circles) and CAWBM (red
diamonds) (right).

in inefficient beam usage and higher interference. Looking at
the right plot and the comparison with CAWBM, we can see
that the improvement is more evenly distributed across the
road topology, including the peripheral regions. This is due to
CAWBM’s centralized approach, which works best in dense
areas, but may overestimate the interference between far-away
nodes, thus providing a worse coverage in less dense areas.
Overall, CRAB emerges as an effective compromise between
a fully centralized approach like CAWBM, an approach like
DBSCAN that exploits only local information and a learning
approach which requires significant amount of time to con-
verge, like UCB.

VII. CONCLUSIONS

We identified mmwave as a promising technology to en-
hance the capacity of vehicular networks. However, the per-
formance of mmwave networks depends on the number, the
alignment, and the width of beams between gNBs and ve-
hicles, and these have to be carefully configured in order to
maximize the data rate and avoid coverage overlapping among
distinct gNBs.

To address this problem, we adopted a randomized approach
and formulated an optimization problem, providing both a
centralized and a decentralized version thereof. To efficiently

find a solution in a distributed manner, we devised an algorith-
mic framework leveraging belief propagation, called CRAB.
The proposed framework (i) models the vehicular mmwave
network as graph, capturing the interference that the possible
beam configurations at the gNB may generate, (ii) adopts
a message passing approach on such a graph, pruning it if
necessary, and (iii) effectively finds a high-quality solution.

Our performance evaluation, based on real-world topology
and realistic mobility traces, shows that CRAB significantly
outperforms practical state-of-the-art alternatives, delivering
in total from 20% up to 41% more data, while making, on
average, a single gNB transfer 50% more data. Further, CRAB
provides up to 30% better user coverage and an improved level
of fairness in data rate performance across users.
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