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MAXIMALLY LOCALIZED GABOR ORTHONORMAL
BASES ON LOCALLY COMPACT ABELIAN GROUPS

FABIO NICOLA

Abstract. A Gabor orthonormal basis, on a locally compact Abelian

(LCA) group A, is an orthonormal basis of L2(A) that consists of time-

frequency shifts of some template f ∈ L2(A). It is well known that,

on Rd, the elements of such a basis cannot have a good time-frequency

localization. The picture is drastically different on LCA groups contain-

ing a compact open subgroup, where one can easily construct examples

of Gabor orthonormal bases with f maximally localized, in the sense

that the ambiguity function of f (i.e., the correlation of f with its time-

frequency shifts) has support of minimum measure, compatibly with

the uncertainty principle. In this note we find all the Gabor orthonor-

mal bases with this extremal property. To this end, we identify all the

functions in L2(A) that are maximally localized in the time-frequency

space in the above sense – an issue that is open even for finite Abelian

groups. As a byproduct, on every LCA group containing a compact

open subgroup we exhibit the complete family of optimizers for Lieb’s

uncertainty inequality, and we also show previously unknown optimizers

on a general LCA group.

1. Introduction

Let A be a locally compact Hausdorff Abelian (LCA, in short) group,

and denote by Â its dual group. We will write 〈x, ξ〉, with x ∈ A and

ξ ∈ Â, for the corresponding duality; hence |〈x, ξ〉| = 1. For x ∈ A, ξ ∈ Â
we define the translation and modulation operators Tx and Mξ on L2(A),
and the corresponding time-frequency shifts π(x, ξ) as

(1.1) Txf(y) = f(y−x), Mξf(y) = 〈y, ξ〉f(y), π(x, ξ)f(y) = MξTxf(y),

where y ∈ A.

A Gabor orthonormal basis on A is an orthonormal basis of L2(A) of the
type

(1.2) G(f,Γ) := {π(z)f : z ∈ Γ}

where f ∈ L2(A) and Γ is a (possibly uncountable) subset of A × Â. The
function f is called window. In other terms, a Gabor orthonormal basis is
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2 F. NICOLA

an orthonormal basis in an orbit of the Schrödinger representation of the
Heisenberg group associated to A.

There is a considerable amount of work on the construction of Gabor
orthonormal bases on R; see [2, 7, 12, 22, 41, 42, 47, 46, 53] and also [27]
for far reaching generalizations on nilpotent Lie groups. In fact, already
in 1929 J. von Neumann [59, footnote 10] considered the idea of using the
functions π(z)f above, when A = R, f is a Gaussian function and z belongs
to a suitable lattice of R2, to construct orthonormal bases of L2(R) (via
the Gram-Schmidt orthogonalization procedure). The above mentioned
papers focus mainly on windows that are characteristic functions of some
compact subset, hence with a poor frequency localization. Indeed, the
celebrated Balian-Low theorem states, roughly speaking, that there are no
Gabor orthonormal bases on Rd generated by a window with a good time-
frequency localization (see, e.g., the survey [4]), and similar obstructions
also apply to LCA groups having no compact open subgroups [13, 36]; see
also [26] for the issue of the time-frequency localization of Riesz bases on
Rd.

The situation is drastically different for LCA groups containing a com-
pact, open subgroup. Indeed, if H ⊂ A is such a subgroup, the function
f = |H|−1/2χH (where |H| stands for the measure of H) generates an or-
thonormal basis as in (1.2) if Γ is any set of representatives of the cosets

of H × H⊥ in A × Â (namely, Γ contains exactly one element of each
coset) [23, 28], and this window is, in a sense, maximally localized in the
time-frequency space. To explain this latter point properly, we need some
terminology.

For f, g ∈ L2(A), the short-time Fourier transform of f with window g

is the complex-valued function on A× Â given by

(1.3) Vgf(x, ξ) = 〈f, π(x, ξ)g〉L2(A) (x, ξ) ∈ A× Â.

It is known that, if ‖g‖L2(A) = 1, then Vg : L2(A) → L2(A × Â) is an
isometry, so that the quantity |Vgf |2 can be regarded as a time-frequency
energy density of f (see [23, 24, 44]). More generally, the time-frequency
localization of a function f ∈ L2(A) can be measured in terms of the Lp-
norm of Vff – the so-called ambiguity function – and corresponding versions
of the uncertainty principle, such as Lieb’s uncertainty inequality, can be
stated (see [23, 43] and Section 7 below). We recall, in particular, the
following elementary result (see [18, 23, 38], Theorem 2.2 below, and also
[5, 25] for other formulations of the uncertainty principle in terms of the
short-time Fourier transform), which corresponds to a limiting case of an
Lp-estimate as p→ 0 (cf. Remark 7.3 below):

Let f ∈ L2(A) \ {0}. Then

(1.4) |{z ∈ A× Â : Vff(z) 6= 0}| ≥ 1.
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Here we used the notation |S| for the measure of a set S ⊂ A× Â, where

the Haar measures on A and Â are chosen so that the Plancherel formula
holds true. The inequality (1.4) can be regarded as a time-frequency version
of a lower bound for the product of the measures of the supports of f and

f̂ , first proved by Matolcsi and Szűcs in [48] (see also [6, 11, 57, 58, 61])
and usually referred to as the Donoho-Stark uncertainty principle.

The inequality (1.4) is sharp on every LCA group containing a compact,
open subgroup H. Indeed, for the function f = |H|−1/2χH considered
above, we have Vff = χH×H⊥ (cf. [23] and Proposition 4.4 below) and
therefore f is maximally localized in the time-frequency space, in the sense
that the inequality (1.4) is saturated (|H × H⊥| = 1 by the Plancherel
formula). This is a desirable property that guarantees that the “analysis
operator” associated with the corresponding basis G(f,Γ) (cf. (1.2)), that
is L2(A) 3 h 7→ Vfh(z), with z ∈ Γ, is able to resolve the “blobs” of energy
of h in the time-frequency space, with the highest possible resolution – at
least in the measure theoretic sense.

This discussion raises the problem of identifying all the Gabor orthonor-
mal bases generated by a function f maximally localized in the above sense,
namely such that the set where Vff 6= 0 has measure 1 (this implies that
the same extremal property holds for every element of the basis). This
issue is also motivated, on one hand, by the recent advances [13] on the
Balian-Low theorem on general (second countable) LCA groups having no
compact open subgroups and, on the other hand, by the recent, consider-
able interest in optimizers of uncertainty inequalities on Euclidean spaces
and Riemannian manifolds [1, 10, 21, 35, 37, 39, 40, 45, 50, 51, 52, 54]. In
a sense, the results in this note can be regarded as complementary to the
no-go results in [13].

The main problem therefore lies in the identification of all the functions
f ∈ L2(A) for which equality occurs in (1.4), which is an open issue even for
finite Abelian groups. This should not come as a surprise, in light of other
extremal problems, e.g., for the Young and Hausdorff-Young inequalities,
which are notoriously difficult even on LCA groups containing a compact,
open subgroup (see [20, Theorem 3] and [30, Section 43]). Indeed, for
the finite cyclic group ZN all the optimizers for the inequality (1.4) were
obtained only recently, in [49]; see also [18] for a particular case.

Our first result (Theorem 4.5) provides the complete answer to this prob-
lem and can be summarized as follows:

Equality occurs in (1.4) if and only if f = cTx0h, for some c ∈ C \ {0},
x0 ∈ A and some subcharacter of second degree h of A. In this case,

‖f‖−2L2(A)Vff is a subcharacter of second degree of A× Â, and its support is

a maximal compact open isotropic subgroup of A× Â.
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A subcharacter of second degree of A is a continuous function h : A→ C
such that, for some compact open subgroup H ⊂ A, the restriction of h
to H is a character of second degree of H in the sense of Weil [60] (see
Section 2.3 below) and h(x) = 0 for x ∈ A\H. The term “isotropic” refers

to the standard symplectic structure of A × Â (see Section 3). Hence,

maximal compact open isotropic subgroups of A × Â are the minimum
uncertainty phase-space cells – the so-called “quantum blobs” – and play
the role of the symplectic images of the unit ball (or box) in Rd × Rd

[9, 15]. As a further motivation, notice the formal analogy with the extremal
problem for the Hausdorff-Young inequality on a LCA group A, that is

‖f̂‖Lp′ (Â) ≤ ‖f‖Lp(A), 1 < p < 2, where the optimizers are the constant

multiples of translates of subcharacters [30, Theorem 43.13].

The study of the cases of equality in (1.4) on ZN [49] relies on the explicit
description of the subgroups of order N of ZN×ZN and the equally explicit
construction of “finite chirps”, which is available in that case (see [8, 16]).
In the present generality we have to follow a more conceptual pattern.
To give a flavour of the argument let us briefly outline how the above
mentioned subcharacter of second degree arises. By using the covariance
property for the short-time Fourier transform we will show that, if the set

G = {z ∈ A × Â : Vff(z) 6= 0} has measure 1, then G is a maximal

compact open isotropic subgroup of A × Â. The projection onto the first
factor allows us to regard G as an extension of a compact open subgroup H

of A by H⊥ ⊂ Â. This induces, in a natural way, a continuous symmetric

homomorphism H → Ĥ, to which we can associate the desired character h
of second degree of H – here we use an extension theorem for characters of
second degree from [31]. The analogous problem for the short-time Fourier
transform Vgf is addressed in Theorem 5.2.

Let us now come back to the above problem of maximally localized Gabor
orthonormal bases. We anticipate here the main result (Corollary 6.2),
which provides the desired, full characterization.

Let f ∈ L2(A), ‖f‖L2(A) = 1 and G := {z ∈ A × Â : Vff(z) 6= 0}.
Let Γ ⊂ A× Â. Then G(f,Γ) (cf. (1.2)) is an orthonormal basis of L2(A)
and |G| = 1 if and only if f = cTx0h for some c ∈ C, x0 ∈ A and some
subcharacter h of second degree of A, and Γ is a set of representatives of

the cosets of G in A× Â.

The subsets of A× Â defined by Vf (π(z)f) 6= 0, with z ∈ Γ, are precisely
the cosets of the maximal compact open isotropic subgroup G, and define

therefore a tiling of A × Â. In fact, it turns out that for every tiling of
this type there is a corresponding Gabor orthonormal basis (see Remark
6.3). However the main point of the above result is clearly represented by
the necessary condition. We refer the reader to [32, 62] and the references
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therein for other constructions of (not necessarily maximally localized) Ga-
bor orthonormal bases in the setting of finite Abelian groups and to [13]
for general LCA groups.

In Section 7 we will show that, on any LCA group containing a compact
open subgroup, every extremal function for the uncertainty inequality (1.4)
is also an extremal function for Lieb’s uncertainty inequality [23, 43] and
vice versa. This will also provide, as a byproduct, previously unknown
optimizers for Lieb’s inequality on every LCA group, because such a group
is topologically isomorphic to Rd × A0 for some integer d ≥ 0 and some
LCA group A0 containing a compact open subgroup. It would certainly be
interesting to identify all the optimizers for Lieb’s uncertainty inequality –
as well as for related uncertainty inequalities – on a general LCA group,
but that would lead us too far, so that we decided to postpone this issue
to a future work. We also refer the reader to [21, 40] and the references
therein for recent advances on Lieb’s inequality on Euclidean spaces and
Riemannian manifolds.

2. Notation and preliminary results

2.1. Notation. We use the notation introduced at the beginning of the
introduction. Hence A denotes a locally compact Hausdorff Abelian (in

short, LCA) group, and Â its dual group, namely the group of continuous
homomorphisms ξ : A→ T (the multiplicative group of complex numbers of
modulus 1). When endowed with the topology of the uniform convergence

on the compact subsets, Â becomes a LCA group ([29, Theorems 23.13

and 23.15]). We denote by 〈x, ξ〉 the value of ξ ∈ Â at x ∈ A. The pairing

A× Â→ T given by (x, ξ)→ 〈x, ξ〉 is therefore well defined. We will write

the group laws in A and Â additively, hence 〈x + y, ξ〉 = 〈x, ξ〉〈y, ξ〉 and
〈x, ξ + η〉 = 〈x, ξ〉〈x, η〉.

For a subgroupH ⊂ A we denote byH⊥ = {ξ ∈ Â : 〈x, ξ〉 = 1 for all x ∈
H} the annihilator of H in A (cf. [29, Definition 23.23]). It is clearly a

closed subgroup of Â. Also, if H ⊂ A is a subgroup, we denote by A/H
the corresponding quotient group, whose elements are the cosets x + H =
{x+y : y ∈ H}, x ∈ A, ofH inA (these cosets define a partition, sometimes
called “tiling”, of A). In the following, by “a set of representatives” of the
cosets of H in A, we will mean a set that contains exactly one element of
each coset.

If H ⊂ A is a subgroup, A/H is a discrete space if and only if H is open
in A ([29, Theorem 5.21]). If H is closed, A/H has a natural structure

of LCA group ([29, Theorems 5.21 and 5.22]), Â/H ' H⊥ ([29, Theorem

23.25]) and Â/H⊥ ' Ĥ [29, Theorem 24.11] in the sense of topological
isomorphisms.



6 F. NICOLA

The groups A, Â are equipped with Haar measures related so that the

Plancherel formula holds true. The Haar measure on A × Â is given by
the Radon product measure. The inner product in L2(A) is denoted by

〈·, ·〉L2(A). We denote by |S| the measure of a subset S (of A or Â, or

A× Â), and by χS its characteristic function.

We refer to (1.1) for the definition of the translation operators Tx, x ∈ A,

the modulation operators Mξ, ξ ∈ Â, and the phase-space shifts π(x, ξ) =
MξTx. They are unitary operators on L2(A). The short-time Fourier trans-
form Vgf , for f, g ∈ L2(A), was defined in (1.3); more explicitly

Vgf(x, ξ) = 〈f, π(x, ξ)g〉L2(A)(2.1)

=

∫
A

〈y, ξ〉f(y)g(y − x) dy x ∈ A, ξ ∈ Â.

2.2. Preliminaries from time-frequency analysis. We recall some ba-
sic results about time-frequency analysis on LCA groups. We refer the
reader to [17, 23] for details (see also [24] for the analogous results in Rd).

The following result generalizes a well known property of the short-time
Fourier transform in Rd [24].

Proposition 2.1. Let f, g ∈ L2(A). Then Vgf is a continuous function on

A× Â, which vanishes at infinity.

Proof. Since the unitary representations A 3 x 7→ Tx and Â 3 ξ 7→ Mξ

are strongly continuous on L2(A), Vgf is a continuous function on A× Â.
Moreover, by the definition of Vgf in (2.1) we have |Vgf(x, ξ)| ≤ |f | ∗ |g̃|(x)

and similarly, |Vgf(x, ξ)| ≤ |f̂ | ∗ |˜̂g|(ξ), with g̃(y) := g(−y). On the other
hand, functions in L2 ∗ L2 tend to zero at infinity. �

As a consequence, we also see that the set {z ∈ A× Â : Vgf(z) 6= 0} is
σ-compact.

We will need a few elementary formulas concerning time-frequency shifts
and the short-time Fourier transform.

First, for x, y ∈ A, ξ, η ∈ Â we have the commutation relations

(2.2) π(x, ξ)π(y, η) = 〈y, ξ〉〈x, η〉π(y, η)π(x, ξ).

As a consequence, the following covariance-type properties hold true, for

x, y ∈ A, ξ, η ∈ Â:

(2.3) Vg(π(x, ξ)f)(y, η) = 〈x, ξ〉〈x, η〉Vgf(y − x, η − ξ)

and

(2.4) Vπ(x,ξ)g(π(x, ξ)f)(y, η) = 〈y, ξ〉〈x, η〉Vgf(y, η).
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An application of the Cauchy-Schwarz inequality gives at once the fol-
lowing pointwise estimate:

(2.5) |Vgf(x, ξ)| ≤ ‖f‖L2(A)‖g‖L2(A) x ∈ A, ξ ∈ Â.

We finally recall the Parseval equality

(2.6) ‖Vgf‖L2(A×Â) = ‖f‖L2(A)‖g‖L2(A).

The following uncertainty inequality was first proved in [38] in the case of
finite Abelian groups; see also [18, 23, 49].

Theorem 2.2. Let f, g ∈ L2(A) \ {0} and S = {z ∈ A× Â : Vgf(z) 6= 0}.
We have |S| ≥ 1. If |S| = 1 then |Vgf | = cχS, with c = ‖f‖L2(A)‖g‖L2(A),
and therefore S is compact and open.

Proof. We can suppose ‖f‖L2(A) = ‖g‖L2(A) = 1. By (2.6) and (2.5), we
have

1 =

∫
S

|Vgf(x, ξ)|2dx dξ ≤
∫
S

dx dξ = |S|.

If equality occurs in the above inequality, then |Vgf(z)| = 1 for almost every
z ∈ S, and therefore for every z ∈ S, since Vgf is continuous (Proposition
2.1), and S is open. Hence |Vgf | = χS, which implies that S is also closed.
Moreover, since Vgf tends to zero at infinity, S is contained in a compact
subset, and therefore is compact. �

We will also need the following uniqueness result for the ambiguity func-
tion Vff .

Proposition 2.3. Let f, g ∈ L2(A). Then Vff = Vgg on A× Â if and only
if f = cg for some c ∈ C, |c| = 1.

Proof. For the sake of completeness we provide a proof similar (but not
exactly equal) to that given in [24, Section 4.2] for A = Rd.

For every x ∈ A, we can regard Vff(x, ·) as the Fourier transform of the

L1 function fTxf . Hence, if Vff = Vgg, by the Fourier uniqueness theorem,
for every x ∈ A we have

f(y)f(y − x) = g(y)g(y − x)

for almost every y ∈ A. By the Fubini theorem (both sides vanish on the
complement of a σ-compact set in A × A; cf. [19, page 44]), the above
equality holds for almost every (x, y) ∈ A×A. Multiplying by f(y−x) and
integrating with respect to x yields ‖f‖2L2(A)f = 〈f, g〉L2(A)g, which gives

the desired conclusion.

The converse implication is obvious. �
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2.3. Characters of second degree. We recall from [60] (see also [55])
the notion of character of second degree.

Definition 2.4. Given a continuous symmetric homomorphism φ : A→ Â
(hence 〈x, φ(y)〉 = 〈y, φ(x)〉 for x, y ∈ A) a character of second degree of
A, associated to φ, is a continuous function f : A→ T such that

f(x+ y) = f(x)f(y)〈x, φ(y)〉 x, y ∈ A.

The following result provides the existence and uniqueness, up to multi-
plication by characters, of characters of second degree associated to a given
homomorphism φ as above.

Theorem 2.5. Given a continuous symmetric homomorphism φ : A→ Â
there exists a character of second degree associated to φ. Two characters
of second degree associated to the same φ differs by the multiplication by a
character.

The uniqueness is an immediate consequence of the definition. The exis-
tence was first proved in [31, Lemma 6] (see also [55, page 37] for an easier
proof due to M. Burger, and [3, Theorem 2.3] for generalizations). Explicit
constructions are available in particular cases; for example, if multiplica-
tion by 2 is an automorphism of G then one can take f(x) = 〈x, φ(2−1x)〉
[60, page 146]. We refer the reader to [55, Section 7.7] for an explicit con-
struction when G a finite dimensional vector space over a local field, [16]
for ZN , and [34] for finite Abelian groups.

3. Some symplectic analysis on A× Â

In this section we prove some auxiliary results concerning subgroups of

A× Â, in connection with the standard symplectic structure of A× Â, that

is the bicharacter σ : (A× Â)× (A× Â)→ T given by (cf. (2.2))

(3.1) σ((x, ξ), (y, η)) = 〈y, ξ〉〈x, η〉 (x, ξ), (y, η) ∈ A× Â.

The following description of the compact open subgroups of A× Â will be
crucial in the following.

Proposition 3.1. Let H ⊂ A, K ⊂ Â be compact open subgroups, and let

φ : H → Â/K be a continuous homomorphism. Then the set

(3.2) G = {(x, ξ) ∈ A× Â : x ∈ H, ξ ∈ φ(x)}

is a compact open subgroup of A× Â, and |G| = |H||K|.

Every compact open subgroup of A × Â arises in this way for a unique
triple (H,K, φ) as above.

Proof. It is easy to see that the set G in (3.2) is indeed a subgroup of

A × Â. Since H and K are compact and φ is continuous it follows from
some general (not completely trivial) results from the theory of topological
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groups (cf. [29, Note 5.24]), that G is compact. However, since H and K
are open, we can apply a more direct argument, that also has the advantage
to give some more information, namely that G is in fact a finite union of

pairwise disjoint compact open subsets of A× Â of product type. Precisely,

since K is open, Â/K is discrete, and φ(H) ⊂ Â/K is compact, therefore
finite. On the other hand we have

G = ∪B∈φ(H) φ
−1({B})×B.

The sets B ⊂ Â above are compact and open, because they are cosets of

K in Â. The subsets φ−1({B}) ⊂ H are open and closed and therefore
compact, because H is compact. This shows that G is compact and open.

For every x ∈ H, φ(x) is a coset of K in Â, and therefore has the same
measure as K. Hence

|G| =
∫
H

∫
φ(x)

dξ dx = |H||K|.

Now, given any compact open subgroup G ⊂ A×Â, let π1 : G→ A be the

projection onto the first factor, and set H = π1(G) and K = G∩Â = Kerπ1
(where Â is regarded as a subgroup of A×Â). It is clear that K is a compact

and open subgroup of Â and H is a compact open subgroup of A, because

the projection A× Â→ A is an open map. Hence we have the short exact
sequence

0→ K → G→ H → 0.

The map G → H is open, and therefore the algebraic isomorphism β :
G/K → H is in fact a topological isomorphism ([29, Theorem 5.27]) (this
also follows from the fact that β is a continuous bijection, G/K is compact

and H is Hausdorff). Now set φ = π′2 ◦ β−1, where π′2 : G/K → Â/K is

the natural epimorphism induced by the projection π2 : G → Â onto the

quotient spaces. Then φ : H → Â/K is a continuous homomorphism, and
clearly (3.2) holds for the triple (H,K, φ).

Finally, it is clear from (3.2) that the triple (H,K, φ) is uniquely deter-
mined by G. �

Remark 3.2. It is easy to see that G and H × K in Proposition 3.1 are
homeomorphic. Indeed, with the notation of the above proof, choosing a
representative ξ out of any [ξ] ∈ φ(H) (φ(H) is a finite set), yields a

continuous section α : φ(H)→ Â and therefore a lifting φ̃ := α◦φ : H → Â

of φ. We now extend φ̃ to A by setting φ̃(x) = 0 for x ∈ A \H. Since H is

both open and closed, φ̃ : A→ Â is continuous, and the map A×Â→ A×Â
given by (x, ξ) 7→ (x, φ̃(x) + ξ) is a homeomorphism (although not a group
homomorphism) which maps H ×K onto G.

We now single out a class of subgroups and provide a convenient char-
acterization in the spirit of Proposition 3.1.
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Definition 3.3. A subgroup G ⊂ A × Â is called isotropic if σ(z, w) = 1
(cf. (3.1)) for every z, w ∈ G.

Consider a triple (H,K, φ) as in Proposition 3.1 and assume, in addition,

that K ⊂ H⊥. Then a natural epimorphism Â/K → Â/H⊥ ' Ĥ is

induced. Hence, for x ∈ H, we can regard φ(x) ∈ Â/K as a character of
H, whose value at y ∈ H will be denoted by 〈y, φ(x)〉. In concrete terms,

〈y, φ(x)〉 := 〈y, ξ〉 for any ξ ∈ φ(x).

Definition 3.4. If K ⊂ H⊥, a continuous homomorphism φ : H → Â/K
is called symmetric if

〈x, φ(y)〉 = 〈y, φ(x)〉 x, y ∈ H.

We recall, for future reference, that ifH ⊂ A is a compact open subgroup,

then H⊥ is a compact open subgroup of Â (see e.g., [23, Lemma 6.2.3 (b)]).

Proposition 3.5. Let G ⊂ A × Â be a compact open subgroup of A × Â
and let (H,K, φ) be the corresponding triple (cf. Proposition 3.1). Then

G is isotropic if and only if K ⊂ H⊥ and φ : H → Â/K is symmetric.
Moreover |G| ≤ 1.

Proof. Let G be isotropic. Let x ∈ H, ξ ∈ φ(x) and η ∈ K, so that
z = (x, ξ) ∈ G and w = (x, ξ + η) ∈ G. We have

1 = σ(z, w) = 〈x, ξ〉〈x, ξ + η〉 = 〈x, η〉,

and therefore K ⊂ H⊥. Now, if x, y ∈ H and ξ ∈ φ(x), η ∈ φ(y), so that

z = (x, ξ) ∈ G and w = (y, η) ∈ G, we have 1 = σ(z, w) = 〈y, ξ〉〈x, η〉,
which means that φ is symmetric.

Vice versa, it is clear from the above computation that if K ⊂ H⊥ and
φ is symmetric then G is isotropic.

Finally, by Proposition 3.1, |G| = |H||K| ≤ |H||H⊥| = 1, where the last
equality follows from the Plancherel formula (see [56, Formula (4.4.6)]). �

We finally characterize the compact open isotropic subgroups of maxi-
mum measure.

Proposition 3.6. Let G ⊂ A × Â be a compact open isotropic subgroup
and let (H,K, φ) be the corresponding triple (cf. Propositions 3.1 and 3.5).
The following statements are equivalent:

(a) |G| = 1.

(b) K = H⊥.

(c) G is a maximal compact open isotropic subgroup, i.e., if G′ ⊂ A×Â
is a compact open isotropic subgroup with G ⊂ G′ then G′ = G.
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Proof. (a) ⇒ (b). We know from Proposition 3.5 that K ⊂ H⊥. If this
inclusion were strict then |K| < |H⊥|, because |H⊥| <∞ and |H⊥ \K| >
0, being H⊥ \ K open. Hence, since 0 < |H| < ∞, by Proposition 3.1
|G| = |H||K| < |H||H⊥| = 1, which is a contradiction.

(b) ⇒ (c). Let G′ ⊂ A× Â be a compact open isotropic subgroup with
G ⊂ G′. Let (H ′, K ′, φ′) be the corresponding triple, as in Propositions 3.1
and 3.5. Since G ⊂ G′ we have H ⊂ H ′ and K ⊂ K ′. On the other hand,
by Proposition 3.5 and the assumption, we have H ′ ⊂ K ′⊥ ⊂ K⊥ = H.
Hence H = H ′ and K = K ′. Since, for x ∈ H, φ(x) and φ′(x) are two

cosets of K in Â and φ(x) ⊂ φ′(x) we have φ(x) = φ′(x) and therefore
G′ = G.

(c) ⇒ (a). Suppose, by contradiction, that |G| = |H||K| < 1. Then the

inclusion K ⊂ H⊥ is strict. Consider the subgroup G′ ⊂ A× Â associated

to the triple (H,H⊥, φ′), with φ′ = α ◦ φ : H → Â/H⊥, where α : Â/K →
Â/H⊥ is the natural epimorphism. Since φ is symmetric, the same holds for
φ′. Hence, by Proposition 3.5, G′ is a compact open isotropic subgroup of

A×Â and G ⊂ G′ with strict inclusion, because G∩Â = K ⊂ H⊥ = G′∩Â
strictly. This is a contradiction. �

Corollary 3.7. Every compact open isotropic subgroup of A × Â is con-
tained in a maximal compact open isotropic subgroup.

Proof. Let G ⊂ A× Â be a compact open isotropic subgroup and (H,K, φ)
be its associated triple (Propositions 3.1 and 3.5), hence K ⊂ H⊥ and φ is
symmetric. Then the compact open isotropic subgroup associated to the

triple (H,H⊥, φ′), with φ′ : H → Ĥ as in the proof of “(c) ⇒ (a)” in
Proposition 3.6, is maximal by Proposition 3.6 and contains G. �

Remark 3.8. Notice that the result of the above corollary is no longer
valid if we drop the adjective “isotropic”. For example, consider the p-

adic field Qp. Its topological dual Q̂p can be identified with Qp. The balls
Bj := {x ∈ Qp : |x|p ≤ pj}, j ∈ Z, are compact open subgroups of Qp.

Hence the sets Bj ×Bj, are compact open subgroups of Qp× Q̂p. However,

if K ⊂ Qp × Q̂p is a compact subset, then K ⊂ Bj × Bj for some j, and
K ⊂ Bj+1×Bj+1 strictly. We refer to [14] for a quick review of the p-adic
number system from the perspective of time-frequency analysis.

We conclude this section with a result which will be useful below.

Proposition 3.9. Let G ⊂ A × Â be a maximal compact open isotropic
subgroup, hence |G| = 1 (cf. Proposition 3.6). Let (H,H⊥, φ) be the cor-
responding triple (cf. Propositions 3.1, 3.5 and 3.6). If f is a character of
second degree of H associated to φ (cf. Definition 2.4), then the function
G→ T given by

(x, ξ) 7→ f(x) (x, ξ) ∈ G
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is a character of second degree of G associated to the continuous symmetric

homomorphism φ′ : G→ Ĝ given by

(3.3) 〈(x, ξ), φ′(y, η)〉 = 〈x, η〉 (x, ξ), (y, η) ∈ G.

Proof. For (x, ξ), (y, η) ∈ G we have

f(x+ y) = f(x) f(y) 〈x, φ(y)〉 = f(x) f(y) 〈x, η〉

because η ∈ φ(y) (where φ(y) ∈ Ĥ ' Â/H⊥ is now regarded as a coset of

H⊥ in Â). �

4. Optimizers for the ambiguity function

From (2.5) we see that, for f ∈ L2(A) and z ∈ A× Â,

|Vff(z)| ≤ Vff(0) = ‖f‖2L2(A).

The following result provides some properties of the set where |Vff | attains
its maximum value.

Proposition 4.1. Let f ∈ L2(A) \ {0}, and

G = {z ∈ A× Â : |Vff(z)| = Vff(0)}.

Then G is a compact isotropic subgroup of A× Â and the restriction of the
function ‖f‖−2L2(A)Vff to G is a character of second degree associated to the

continuous symmetric homomorphism φ′ : G→ Ĝ given in (3.3).

Indeed, for (x, ξ) ∈ G, (y, η) ∈ A× Â we have

(4.1) Vff(y + x, η + ξ) = ‖f‖−2L2(A)Vff(x, ξ)Vff(y, η)〈x, η〉.

In particular, |Vff | is constant on every coset of G in A× Â.

Proof. Without loss of generality we can suppose ‖f‖L2(A) = 1, hence
Vff(0) = ‖f‖2L2(A) = 1.

Since Vff is a continuous function which vanishes at infinity (Proposition
2.1), G is compact.

For z ∈ G we have
|〈f, π(z)f〉L2(A)| = 1,

and therefore
π(z)f = c(z)f

for some c(z) ∈ C, |c(z)| = 1. As a consequence,

Vf (π(z)f)f(w) = c(z)Vff(w)

for w ∈ A× Â. Setting z = (x, ξ) and w = (y, η), by (2.3) we have

〈x, ξ〉〈x, η〉Vff(y − x, η − ξ) = c(x, ξ)Vff(y, η).

Setting y = 0, η = 0, we obtain

〈x, ξ〉Vff(−x,−ξ) = c(x, ξ),
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which gives

(4.2) Vff(y − x, η − ξ) = Vff(−x,−ξ)Vff(y, η)〈x, η〉

for (x, ξ) ∈ G, (y, η) ∈ A× Â.

On the other hand, it is clear from the very definition (2.1) of Vff , that

|Vff(−w)| = |Vff(w)| for w ∈ A × Â, and therefore if (x, ξ) ∈ G then
(−x,−ξ) ∈ G as well.

Hence we obtain

(4.3) Vff(y + x, η + ξ) = Vff(x, ξ)Vff(y, η)〈x, η〉

for (x, ξ) ∈ G, (y, η) ∈ A× Â, which proves (4.1).

By (4.3), if (x, ξ), (y, η) ∈ G then (x+y, ξ+η) ∈ G, hence G is a subgroup

of A× Â ((0, 0) ∈ G, of course). Finally, exchanging the roles of (x, ξ) and
(y, η) in (4.3) yields that G is isotropic. �

Remark 4.2. For A = Rd we recapture the well known radar correlation
estimate [24, Lemma 4.2.1]: if f ∈ L2(Rd) \ {0} and z ∈ R2d, z 6= 0, then
|Vff(z)| < Vff(0).

We now introduce the notion of subcharacter of second degree. This ter-
minology – in fact non-standard – is inspired by the definition of subchar-
acter [30, Definition 43.3], that is a character of a compact open subgroup
H ⊂ A, extended by 0 on A \H.

Definition 4.3. Let H ⊂ A be a compact open subgroup and let φ : H → Ĥ
be a continuous symmetric homomorphism. A function h : A→ C is called
subcharacter of second degree associated to (H,φ) if its restriction h|H is a
character of second degree of H associated to φ and h(x) = 0 for x ∈ A\H.

The following result provides the ambiguity function of a subcharacter
of second degree.

Proposition 4.4. Let h : A → C be a subcharacter of second degree as-
sociated to (H,φ) (cf. Definition 4.3); hence H ⊂ A is a compact open

subgroup and φ : H → Ĥ is a continuous symmetric homomorphism. Then

(4.4) Vhh(x, ξ) = |H|h(−x)χG(x, ξ) (x, ξ) ∈ A× Â,

where G is the maximal compact open isotropic subgroup of A × Â corre-
sponding to the triple (H,H⊥, φ) (cf. Propositions 3.1, 3.5 and 3.6).

Moreover the function |H|−1Vhh is a subcharacter of second degree of

A × Â associated to the pair (G, φ′), where φ′ : G → Ĝ is the continuous
symmetric homomorphism in (3.3).

Proof. Since h|H is a character of second degree of H associated to φ, for
x, y ∈ H we have

(4.5) h(y − x) = h(y)h(−x)〈x, φ(y)〉.
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We now compute Vhh. Observe that, if x ∈ A \H, ξ ∈ Â,

Vhh(x, ξ) = 〈h,MξTxh〉L2(A) = 0,

because H ∩ (x+H) = ∅ in that case.

On the other hand, if x ∈ H, ξ ∈ Â, by (4.5),

Vhh(x, ξ) =

∫
H

〈y, ξ〉h(y)h(y − x) dx

= h(−x)

∫
H

〈y, ξ〉|h(y)|2〈y, φ(x)〉 dy

= h(−x)

∫
H

〈y, η − ξ〉 dy,

where η is any element of the coset φ(x) ⊂ Â (recall φ : H → Ĥ ' Â/H⊥).
Now, in the last integral the measure dy can be regarded as a Haar measure
of the compact open subgroup H. Therefore, the integral does not vanish
if and only if ξ and η induce the same character of H ([29, Lemma 23.19]),
namely if η − ξ ∈ H⊥, that is ξ ∈ φ(x). This proves (4.4).

From (4.4) we see that

Vhh(x, ξ) = |H|h(−x) (x, ξ) ∈ G.

It is easy to see that the function h(−x), x ∈ H, is still a character of
second degree of H associated to the same homomorphism φ. Hence, it
follows from Proposition 3.9 that the function |H|−1Vhh(x, ξ), restricted

to G (that is h(−x)) is a character of second degree associated to the
homomorphism φ′ in (3.3). �

We can now state the main result of this section.

Theorem 4.5. Let f ∈ L2(A) and let G = {z ∈ A × Â : Vff(z) 6= 0}.
The following statements are equivalent:

(a) |G| = 1.

(b) G is a maximal compact open isotropic subgroup of A× Â.

(c) There exist c ∈ C \ {0}, x0 ∈ A and a subcharacter h of second
degree of A such that f = cTx0h.

If any of the above condition is satisfied, the function ‖f‖−2L2(A)Vff is a

subcharater of second degree of A× Â associated to (G, φ′), where φ′ : G→
Ĝ is given in (3.3).

Proof. We can assume, without loss of generality, that ‖f‖L2(A) = 1.

(a)⇒ (b) By Theorem 2.2 we have |Vff | = χG, and G is a compact open

subset of A× Â. By Proposition 4.1, G is an isotropic subgroup of A× Â.
Since |G| = 1, it is maximal by Proposition 3.6.
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(b)⇒ (c) By Proposition 3.6 we have that |G| = 1 and therefore |Vff | =
χG by Theorem 2.2. In fact, by Proposition 4.1, the restriction of Vff to G

is a character of second degree of A× Â associated to the homomorphism

φ′ : G→ Ĝ in (3.3).

Let now (H,H⊥, φ) be the triple associated to G (cf. Propositions 3.1,
3.5 and 3.6), and let h be a subcharacter of second degree of A associated
to (H,φ) (cf. Definition 4.3), which exists by Theorem 2.5. We know from
Proposition 4.4 that the function |H|−1Vhh, restricted to G, is a character
of second degree associated to the same homomorphism φ′ as above. Hence
by Theorem 2.5 there exists a character g of G such that

Vff(x, ξ) = g(x, ξ)|H|−1Vhh(x, ξ) (x, ξ) ∈ G.

The character g extends to a character of A× Â ([29, Corollary 24.12]) and

therefore there exist y ∈ A, η ∈ Â such that

g(x, ξ) = 〈x, η〉〈y, ξ〉.
We deduce that

Vff(x, ξ) = |H|−1〈x, η〉〈y, ξ〉Vhh(x, ξ) (x, ξ) ∈ G.

In fact, this formula holds for every (x, ξ) ∈ A × Â because both sides

vanish on A× Â\G, by (4.4) and the fact that |Vff | = χG. By comparison
with (2.4) we deduce that

Vff = |H|−1Vπ(y,η)h(π(y, η)h).

By Proposition 2.3 we obtain

f = c|H|−1/2π(y, η)h

for some c ∈ C, |c| = 1.

Setting h′ := Mηh, we have f = c′|H|−1/2Tyh′, |c′| = 1, and h′ is a
subcharacter of second degree associated to (H,φ), which gives the desired
conclusion.

(c) ⇒ (a) This is clear by Propositions 4.4 and 3.6.

The last part of the statement is also clear by Proposition 4.1. �

5. Optimizers for the short-time Fourier transform

In this section we identify the functions f, g ∈ L2(A) such that

|{z ∈ A× Â : Vgf(z) 6= 0}| = 1.

The following result will reduce the problem to the case f = g, that we
addressed in the previous section.

Proposition 5.1. Let f, g ∈ L2(A), with ‖f‖L2(A) = ‖g‖L2(A) = 1. Let

S = {z ∈ A× Â : |Vgf(z)| = 1} and G = {z ∈ A× Â : |Vgg(z)| = 1}. Let
z0 ∈ S. Then f = cπ(z0)g for some c ∈ C, |c| = 1, and S = z0 +G.
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Proof. Since |〈f, π(z0)g〉L2(A)| = |Vgf(z0)| = 1, we have f = cπ(z0)g for
some c ∈ C, |c| = 1. Hence, if z ∈ A,

|Vgf(z)| = |〈π(z0)g, π(z)g〉L2(A)| = |Vgg(z − z0)|,
which implies S = z0 +G. �

We therefore obtain the following characterization.

Theorem 5.2. Let f, g ∈ L2(A) and let S = {z ∈ A × Â : Vgf(z) 6= 0}.
The following statements are equivalent:

(a) |S| = 1.

(b) S is a coset in A×Â of a maximal compact open isotropic subgroup.

(c) There exist c1, c2 ∈ C \ {0}, z1, z2 ∈ A× Â and a subcharacter h of
second degree of A such that f = c1π(z1)h and g = c2π(z2)h.

Proof. The result follows easily from Theorem 2.2, Proposition 5.1 and
Theorem 4.5. �

6. maximally localized Gabor orthonormal bases

We recall that a Gabor orthonormal basis of L2(A) is an orthonormal
basis of the form G(f,Γ) (cf. (1.2)), where f ∈ L2(A) and Γ is a (possibly

uncountable) subset of A× Â.

The following result characterizes the Gabor orthonormal bases with f
maximally localized, in the sense that the subset

Gf := {z ∈ A× Â : Vff(z) 6= 0}

has measure 1. Observe that, by (2.4), Gf = Gπ(w)f for every w ∈ A× Â,
so that all the elements of the basis are then maximally localized.

Theorem 6.1. Let f ∈ L2(A), ‖f‖L2(A) = 1, with |Gf | = 1; hence Gf is a

maximal compact open isotropic subgroup of A× Â (by Theorem 4.5). Let

Γ ⊂ A× Â.

G(f,Γ) is an orthonormal basis of L2(A) if and only if Γ is a set of

representatives of the cosets of Gf in A× Â.

Proof. We know from Theorem 4.5 that |Vff | = χGf
.

Let Γ be a set of representatives of the cosets of Gf in A× Â. Since

|〈π(z)f, π(w)f〉L2(A)| = |Vff(w − z)|,
we see that π(z)f and π(w)f are orthogonal if z, w ∈ Γ, z 6= w, because Γ
contains at most (in fact exactly) one element of each coset of Gf .

Let us verify that the set G(f,Γ) is also complete. We claim that

span
(
{π(z)f : z ∈ Γ}

)
= span

(
{π(z)f : z ∈ A× Â}

)
.
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To see this, observe that if z ∈ A× Â there exists w ∈ Γ such that z−w ∈
Gf , hence |Vff(z − w)| = 1, which means that π(z)f = cπ(w)f for some
c ∈ C, |c| = 1, which yields the claim.

Now, the set {π(z)f : z ∈ A × Â} is clearly complete, because if g ∈
L2(A) and 〈g, π(z)f〉L2(A) = Vfg(z) = 0 for every z ∈ A × Â then g = 0,
since the short-time Fourier transform is injective (cf. (2.6)).

Conversely, suppose that G(f,Γ) is an orthonormal basis. If z, w ∈ Γ,
z 6= w, since π(z)f and π(w)f are orthogonal, we have Vff(z − w) = 0,
namely z − w 6∈ G, i.e., z and w belong to different cosets. Moreover,
if Γ did not contain any element of some coset z0 + G, then the function
π(z0)f would be orthogonal to all the functions π(z)f , with z ∈ Γ, which
is impossible since G(f,Γ) is a complete set by assumption. �

Combining Theorems 4.5 and 6.1 we deduce the desired characterization
of the maximally localized Gabor orthonormal basis.

Corollary 6.2. Let f ∈ L2(A), ‖f‖L2(A) = 1, and Γ ⊂ A× Â.

Then G(f,Γ) is an orthonormal basis of L2(A) and |Gf | = 1 if and only
if f = cTx0h for some c ∈ C \ {0}, x0 ∈ A and some subcharacter h of
second degree of A, and Γ is a set of representatives of the cosets of Gf in

A× Â.

Remark 6.3. Observe that, in Corollary 6.2, the sets {Vf (π(z)f) 6= 0} =

z + Gf , z ∈ Γ (cf. 2.3), define a tiling of A× Â and |z + Gf | = |Gf | = 1.

Vice versa, if G ⊂ A × Â is a maximal compact open isotropic subgroup
(hence |G| = 1), (H,H⊥, φ) is the triple associated to G (cf. Proposition
3.6) and h is a subcharacter associated to (H,φ), the function f = |H|−1/2h
generates a Gabor orthonormal basis corresponding to the tiling generated
by G.

Example 6.4. Let N ≥ 1 be an integer and let ZN = Z/NZN be the
cyclic group of order N , equipped with the counting measure. We coherently
choose the counting measure multiplied by N−1 as the Haar measure on the
dual group.

On ZN a subcharacter of second degree has the form h = Mξhb,p, where

ξ ∈ ẐN , b ≥ 1 is a divisor of N , p ∈ {0, . . . , b− 1}, and,

hb,p(x) =

{
exp

(πipx2b(1+b)
N2

)
x ∈ aZN

0 x ∈ ZN \ aZN ,

where a = N/b (see [49, Remark 2.1] and [16, Section 3 (iii)]). We also
have

Gh = {(ma, nb+mp) : m = 0, . . . , b− 1, n = 0, . . . , a− 1},

(see the proof of [49, Theorem 1.2]), which is indeed a subgroup of ZN × ẐN
of cardinality N , hence of measure 1 (incidentally, all the subgroups of
cardinality N have this form), and Corollary 6.2 applies.
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Of course, on ZN there are Gabor orthonormal bases G(f,Γ) which are
not maximally localized, e.g., we can take f = 2−1/2χ{0,1} and Γ = 2ZN ×
(N/2)ZN , assuming N ≥ 4 even. A straightforward computation shows
that

Gf = ({0, 1, N − 1} × ZN) \ {(0, N/2)},

so that |Gf | = 3− 1/N > 1.

We also obtain the following result for finite Abelian groups.

Corollary 6.5. Let A be a finite Abelian group and S ⊂ A × Â. The
following statements are equivalent, for the family of operators {π(z) : z ∈
S}:

(a) There exists a common eigenfunction.

(b) The operators π(z), z ∈ S, commute.

(c) There is a Gabor orthonormal basis, which consists of common
eigenfunctions, generated by a function f ∈ L2(A), with |Gf | = 1.

Proof. (a)⇒(b) If f ∈ L2(A) is a common eigenfunction, with ‖f‖L2(A) = 1,
then |Vff(z)| = 1 for z ∈ S, because the eigenvalues of π(z) have modulus

1. Hence S ⊂ G′ := {z ∈ A × Â : |Vff(z)| = 1}, and G′ is an isotropic

subgroup of A × Â by Proposition 4.1. Hence the operators π(z), with
z ∈ S, commute by (2.2).

(b)⇒(c) Since the operators π(z), z ∈ S, commute, the subgroup gener-
ated by S is isotropic. It is moreover contained in some maximal isotropic
subgroup G (whose existence is obvious, because A is finite; see also Corol-
lary 3.7). Let (H,H⊥, φ) be the triple associated to G (cf. Propositions
3.1, 3.5 and 3.6) and let h be a subcharacter of second degree associated
to the pair (H,φ) (cf. Definition 4.3), which exists by Theorem 2.5 (see
also [34]). By Proposition 4.4, for the function f = |H|−1/2h we have
‖f‖L2(A) = 1 and |Vff | = χG, and by Theorem 6.1 f generates a Gabor

orthonormal basis G(f,Γ), for a suitable subset Γ ⊂ A× Â. Since S ⊂ G,
|〈f, π(z)f〉L2(A)| = |Vff(z)| = 1 for z ∈ S, so that f is a common eigenfunc-
tion of the operators π(z), z ∈ S, and therefore, by (2.2), every function

π(w)f , with w ∈ A× Â, is a common eigenfunction too.

(c)⇒(a) This is obvious. �

We point out that extensive numerical experiments on eigenfunctions of
time-frequency shifts were done by H. Feichtinger (private communication),
in connection with the work [33].



MAXIMALLY LOCALIZED GABOR ORTHONORMAL BASES 19

7. Lieb’s uncertainty inequality

The following result was first proved in [43] for the group A = R, and
then extended to a general LCA group in [23], following essentially the
same proof.

We recall that every locally compact Abelian group A is topologically
isomorphic to Rd × A0, for some integer d ≥ 0 and some LCA group A0

containing a compact open subgroup, and the dimension d is an invariant
[29, Theorem 24.30].

Theorem 7.1 (Lieb’s uncertainty inequality). For f, g ∈ L2(A), we have

(7.1) ‖Vgf‖Lp(A×Â) ≤
(2

p

)d/p
‖f‖L2(A)‖g‖L2(A) 2 ≤ p <∞

and

(7.2) ‖Vgf‖Lp(A×Â) ≥
(2

p

)d/p
‖f‖L2(A)‖g‖L2(A) 1 ≤ p ≤ 2.

Using only (2.5) one easily obtains similar estimates – in fact weaker, if

d > 1 – with the constant
(
2
p

)d/p
replaced by 1 (see Theorem 7.2 below),

namely

(7.3) ‖Vgf‖Lp(A×Â) ≤ ‖f‖L2(A)‖g‖L2(A) 2 ≤ p <∞

and

(7.4) ‖Vgf‖Lp(A×Â) ≥ ‖f‖L2(A)‖g‖L2(A) 0 < p ≤ 2,

where now the case 0 < p < 1 is also included. These estimates are sharp
if A contains a compact open subgroup (i.e., d = 0).

We are going to prove that the pairs of functions f, g for which equality is
attained in (7.3) or (7.4) are precisely those for which the set where Vgf 6= 0
has measure 1, which have been characterized in Theorem 5.2.

Theorem 7.2. Let A be any LCA group. Then (7.3) and (7.4) hold true.

Equality holds in (7.3) for some p ∈ (2,∞) and f, g ∈ L2(A) \ {0} if and

only if there exist c1, c2 ∈ C \ {0}, z1, z2 ∈ A × Â and a subcharacter h of
second degree of A such that f = c1π(z1)h and g = c2π(z2)h. In that case,
equality occurs in (7.3) for every p ∈ [2,∞).

A similar uniqueness result holds true for the inequality (7.4), for 0 <
p < 2.

Proof. We can suppose ‖f‖L2(A) = ‖g‖L2(A) = 1.



20 F. NICOLA

Let 2 ≤ p <∞ and set S = {z ∈ A× Â : Vgf(z) 6= 0}. Using (2.5) and
(2.6) we see that∫

S

|Vgf(x, ξ)|p dx dξ =

∫
S

|Vgf(x, ξ)|p−2|Vgf(x, ξ)|2 dx dξ

≤
∫
S

|Vgf(x, ξ)|2 dx dξ = 1,

which proves (7.3). If equality occurs in the above inequality and 2 < p <
∞ then |Vgf | = χS and |S| = 1, which implies the desired conclusion for
the functions f and g by Theorem 5.2.

The result for the inequality (7.4), hence 0 < p ≤ 2, is analogous, using

1 =

∫
S

|Vgf(x, ξ)|2 dx dξ =

∫
S

|Vgf(x, ξ)|2−p|Vgf(x, ξ)|p dx dξ

≤
∫
S

|Vgf(x, ξ)|p dx dξ.

�

Remark 7.3. If f, g ∈ L2(A), we have Vgf ∈ L∞(A× Â) by (2.5). Hence,
by monotone convergence,

lim
p→0+

∫
A×Â
|Vgf(x, ξ)|p dxdξ = |{z ∈ A× Â : Vgf(z) 6= 0}|.

As a consequence, raising to the power p both sides of (7.4) and taking the
limit as p→ 0+, we obtain that, if f and g are non-zero,

|{z ∈ A× Â : Vgf(z) 6= 0}| ≥ 1,

that is the inequality in Theorem 2.2.

It is easy to check that, on a general LCA group A = Rd × A0, for
f1, g1 ∈ L2(Rd) and f2, g2 ∈ L2(A0), we have

Vg1⊗g2(f1 ⊗ f2) = Vg1f1 ⊗ Vg2f2.
As a consequence, for fixed p ∈ [1,∞), if f1, g1 is a pair of optimizers for
Lieb’s Lp-inequality in Rd (Theorem 7.1) and similarly for f2, g2 on A0,
then f1 ⊗ f2, g1 ⊗ g2 is a pair of optimizers for the Lieb’s Lp-inequality on
A. We now show a family of such optimizers. To this end, we need some
terminology, inspired by [43].

Definition 7.4. A function f on Rd is called a Gaussian if

f(x) = exp(−αx · x+ iβx · x+ γ · x+ δ),

where α is a real symmetric positive definite d × d matrix, β is a real
symmetric d × d matrix, γ ∈ Cd and δ ∈ C. Two functions f, g are called
a matched Gaussian pair if f and g are both Gaussian with the same α’s
and β’s but with possibly different γ’s and δ’s.

Similarly, a pair of functions f, g on a LCA group A is called a matched
pair of subcharacters of second degree if f = c1π(z1)h and g = c2π(z2)h for
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some c1, c2 ∈ C \ {0}, z1, z2 ∈ A × Â and some subcharacter h of second
degree of A.

It is easy to check that for a matched Gaussian pair f, g, equality occurs
in (7.1) and (7.2) (A = Rd). For A = R it was proved in [43] that these are
in fact the only pairs of non-zero optimizers if p 6= 2.

The previous discussion therefore leads to the following result.

Proposition 7.5. Let f1, g1 be a matched Gaussian pair on Rd and let
f2, g2 be a matched pair of subcharacters of second degree on A0. Then, for
the functions f := f1⊗ f2 and g := g1⊗ g2 on A = Rd×A0, equality occurs
in (7.1) and (7.2) for every p ∈ [1,∞).

The optimizers where f1 and g1 are time-frequency shifts of the Gaussian
exp(−π|x|2), and f2 and g2 are time-frequency shifts of the characteristic
function of some compact open subgroup of A, were already known from
[23].

We postpone to a future work the problem of identifying all the optimiz-
ers on a general LCA group – as already observed, the case A = R was
addressed in [43], whereas the case A = A0 is the content of Theorem 7.2
above.
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[26] K. Gröchenig and E. Malinnikova. Phase space localization of Riesz bases for

L2(Rd). Rev. Mat. Iberoam., 29(1):115–134, 2013.
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