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Abstract— The COVID-19 pandemic brought an alarming 

surge in violence against women and children, referred to as The 

Shadow Pandemic. In response, a Canadian foundation 

introduced the "Signal for Help" gesture, a discreet way for 

individuals in danger to alert others. However, the success of 

this gesture hinges on its recognition and appropriate reaction 

by bystanders. This paper introduces an innovative real-time 

system designed to detect these silent pleas for help within 

surveillance footage. The system integrates three key 

components: a person tracking mechanism utilizing YOLOv7 

and Deep SORT to identify and follow individuals in videos; a 

hand feature extraction module based on MediaPipe to capture 

hand-related data; and a machine learning classification model 

to discern the presence of a help request. Our proposed model 

and pipeline architecture deliver real-time inference speeds 

without compromising on prediction accuracy, offering a potent 

tool to enhance safety in smart cities. 

Keywords: Violence Detection, Smart Cities, Artificial 

Intelligence. 

I. INTRODUCTION 

Despite technological progress, one of humanity's most 
complex issues remains unresolved: gender violence. 
Although violence and abuse are not new phenomena, global 
stressors like the COVID-19 pandemic have worsened 
gender-based violence, a situation called "The Shadow 
Pandemic." Victims often struggle to report their experiences 
due to fear, leading them to remain silent and hope the 
situation improves on its own. The Canadian Women’s 
Foundation introduced the "Signal for Help," a non-verbal 
method for victims to discreetly indicate they are in danger, as 
shown in Figure 1. This hand gesture involves placing the 
palm outward, tucking the thumb into the palm, and folding 
the fingers over the thumb. Widely recognized and used in 
public places to signal danger, the gesture's effectiveness 
depends on people recognizing and understanding it. Despite 
extensive awareness campaigns, some instances where the 
gesture was used went unnoticed, highlighting the need for 
broader recognition and understanding. 

State-of-the-art solutions addressing violence detection 
are based on  Convolutional Neural Networks (CNNs) [1][2], 
which require visible items to recognize violence (e.g., 
weapons, blood, etc.). Still, only a few approaches [3][4] have 
extended detection capabilities to situations without explicit 
violence indicators. Previous works on the detection of Signal 
for Help  [5][7]  mainly rely on 3D CNN to detect hand 
patterns within clips recorded by surveillance cameras. 
However, domain adaptation issues often affect such 
solutions, especially when the training dataset is limited.   

The work presented in this paper aims to propose a system 
that leverages smart city technology to identify emergency 
signals and notify the relevant authorities,  by combining 
surveillance cameras with advanced AI algorithms. This 
technology can be deployed in public areas such as 
restaurants, shopping malls, and parks, offering individuals a 
discreet means to call for help and enhancing their likelihood 
of receiving timely assistance. 

 

Figure 1. The Signal for help hand gesture. 
 

A. Main Contribution 

We propose a highly efficient real-time system designed 
to detect the "Signal for Help" hand gestures using video feeds 
from surveillance cameras while operating on low 
computational devices. Our methodology is based on a three-
step pipeline: 

• The system processes the input video from surveillance 
cameras, outputting frames cropped to the bounding boxes of 
each person. 

• These cropped frames are analyzed for the presence of 
hands; if hands are detected, their features are extracted using 
the MediaPipe framework. 

• The extracted features are classified by a machine 
learning (ML) model to determine the presence of a "Signal 
for Help" gesture. 

Please note that not only does our approach detect the 
occurrence of  Signal for Help, but it is also effective in the 
presence of more than one person and consecutively more 
than two hands in the scene, which has not been elaborated 
within previous works, but it is mandatory to make the system 
suitable to operate in a real-world scenario. 

Our approach achieves 91% accuracy in detecting the 
"Signal for Help" gesture and effectively addresses the 
domain adaptation challenges commonly associated with 3D 
CNNs encountered in previous works. 



The rest of the paper is organized as follows. Section 2 
introduces related works on violence detection 
methodologies. Section 3 presents the background necessary 
to understand the proposed model. Section 4 deeply details the 
proposed solution, while experimental results are provided in 
Section 5. Finally, Section 6 addresses the conclusion and 
paves the way for future work. 

II. RELATED WORKS 

Given the multifaceted nature of violence, researchers 
have developed various methodologies to address these 
complex issues. For instance, Clarin et al. [1] introduced a 
system that categorizes extreme actions by identifying visual 
clues such as skin and blood. Their method uses self-
organizing maps and assesses pixel motion intensity to 
classify scenes involving violence. Similarly, Zajdel et al. [3] 
developed the CASSANDRA system, which detects video 
motion patterns and identifies auditory cues resembling 
screams. By leveraging both video and audio data, they 
employ dynamic Bayesian networks to identify aggressive 
behavior in public spaces. Chen et al. [2] proposed another 
approach focused on motion detection of facial expressions 
and the presence of blood, aiming to detect and analyze violent 
behavior through these specific visual indicators. 
Furthermore, an innovative technique proposed by Deniz [4] 
was adopted as a primary feature for violence detection of 
people’s sudden movements, offering a novel approach to this 
challenging problem.  

The Signal for Help gesture presents unique challenges 
because of its nonverbal and secretive nature, which 
distinguishes it from typical, more overt, violent actions. 
Consequently, this covert request for assistance poses 
difficulties that conventional violence detection mechanisms 
cannot effectively address. Additionally, since it 
predominantly involves hand gestures, it's crucial to prevent 
false positives triggered by similar everyday gestures. As a 
result, Signal for Help falls under gesture recognition 
challenges. 

Recent research has devoted significant attention to hand 
gesture recognition within the fields of gesture control 
systems and the interpretation of sign language interpretations 
[8][9][10]. These efforts have achieved notable results 
through the use of CNNs [11][12][13]. A notable contribution 
in this field was made by Dominio [14], who proposed a 
methodological framework that combines various depth-
based descriptors for hand gesture recognition. In a separate 
endeavor, Liang [15] developed an innovative methodology 
that leverages depth-based features for gesture detection, 
complemented by fingertip tracking using a particle filter. 
This combination of advanced techniques has improved the 
precision and reliability of gesture recognition. Additionally, 
Hong [16] introduced a new technique for gesture recognition 
based on the analysis of convexity defect histograms, 
providing an additional level of sophistication and accuracy to 
this field of research. Based on previous studies, initial models 
for recognizing the Signal for Help have been explored, 
primarily using CNNs [5][7]. These models face significant 
challenges due to the nature of 3D convolution filters, which 
operate at the pixel level and extract features from both the 
background and foreground of images or videos, incurring 
domain adaptation [17]. To differentiate between important 

and irrelevant features for prediction tasks, these models 
require training with extensive datasets that exhibit high 
variability in background pixels, lighting conditions, and other 
factors. Specifically,  authors in [7] proposed a solution 
relying on a small dataset of 112 images, which the authors 
increased to 2352 images through data augmentation 
techniques. However, the limited size of the dataset may lead 
to insufficient variability both without and with augmentation. 
As a result, the reported accuracy results of 87.5% without 
augmentation and 100% with augmentation might rise some 
doubts. Indeed, when only a small amount of data is available, 
characterized by limited variability in recording setup, 
lighting conditions, camera position, and other configurations, 
achieving a high level of generalization with 3D-CNNs is very 
challenging. On the other hand, the proposed solution in [5] is 
based on transfer learning with the Jester dataset for the pre-
training phase. However, when pre-training a model on a 
dataset like Jester and then fine-tuning it for the Signal for 
Help recognition, there is an implicit assumption. Specifically, 
this approach assumes that the features extracted by the pre-
trained model are transferable and can effectively discriminate 
between the Signal for Help and non-Signal for Help classes. 

While transfer-learning techniques can be effective for 
similar tasks, this assumption can pose another significant 
problem for the 3D-CNN solution. Given these limitations, 
our proposed method bypasses these issues by using a new 
approach: a three-step pipeline based on YOLOv7, DeepSort, 
and Mediapipe [18][19][20]. Specifically, by integrating 
MediaPipe into the detection system, we can automatically 
filter out any information unrelated to the hand gesture. This 
guarantees that each model of the proposed pipeline focuses 
exclusively on pertinent features to the Signal for Help 
gesture. Moreover, the classifiers employed in this framework 
boast a low parameter count, facilitating effective training 
even with a limited number of samples without incurring 
overfitting on the training dataset. 

III. BACKGROUND  

This section details the general characteristics of the three 
key models exploited in our proposed approach to detect the 
Signal for Help gesture. Specifically,  YOLOv7, DeepSORT, 
and MediaPipe Hand. These models play a crucial role in 
various applications, ranging from object detection to hand 
tracking and gesture recognition. Finally, we will introduce 
the “Signal For Help” dataset, which has been used as the 
starting point to train the proposed model. 

A. YOLOv7 

YOLOv7 [18], the acronym for You Only Look Once 
version 7,  is a state-of-the-art object detection model based 
on a deep CNN architecture. It excels in detecting objects in 
both images and videos with remarkable accuracy and real-
time performance. YOLOv7's hallmark feature lies in its 
ability to rapidly process input data without compromising 
detection precision, making it ideal for applications requiring 
swift and reliable object detection.  

B. DeepSORT 

Real-Time Deep Learning-based Object Tracking 
combines deep learning techniques with traditional tracking 
algorithms to provide robust object-tracking capabilities in 
video sequences. By leveraging deep neural networks, 



DeepSORT [19] enables accurate association of objects across 
frames, enhancing tracking precision in challenging scenarios 
such as occlusions and complex motion patterns.  

C. MediaPipe Hand 

 Developed by Google, it is a state-of-the-art hand-
tracking model designed to accurately detect and track human 
hands in images and video streams. Unlike traditional object 
detection models, MediaPipe [20] associates each hand with 
21 key points, as shown in Figure 2, enabling precise 
localization and tracking of hand movements. This fine-
grained level of detail facilitates advanced hand gesture 
recognition and analysis tasks, making it suitable for 
applications such as sign language interpretation, hand 
gesture-based user interfaces, and augmented reality 
interactions. Additionally, MediaPipe's robustness and 
efficiency enable deployment in various computing 
environments, ensuring smooth and responsive hand tracking 
even in resource-constrained settings. 

 

 

Figure 2. Hand landmarks extracted by the MediaPipe [21]. 
 

D. Signal for help Dataset 

This medium-to-large dataset, developed in collaboration 
with Alta Scuola Politecnica (ASP), with students from 
Politecnico di Milano and Politecnico di Torino, contains 
approximately 4000 videos. These videos, recorded using a 
variety of devices, angles, and quality levels, present a wide 
array of scenarios, covering both indoor and outdoor settings 
with diverse lighting conditions and backgrounds. We took 
this dataset as our starting point. To further enhance our 
model’s learning capability, especially in recognizing 
ambiguous gestures that the initial dataset struggled with, we 
added additional videos. These supplementary videos were 
specifically curated to include scenarios where the gestures 
are less clear, ensuring that our model could learn to 
distinguish between subtle differences and improve its 
accuracy. This diversity has proven invaluable for training our 
model, ensuring it can generalize well across different 
conditions and enhancing its robustness and effectiveness in 
real-world applications. 

IV. THE “SIGNAL FOR HELP” DETECTION MODEL 

The proposed methodology for efficiently detecting the 
"Signal for Help" hand gesture utilizes a three-stage pipelined 
flow that can be summarized as the Person Tracking stage, the 
Feature Extraction, and the Real-time detection stages. 
Initially, the model processes video input is captured by a 
camera. This video feed is then transmitted to the first stage of 
the pipeline, which tracks the people present in the video. For 
each person, batches of 30 frames at a time are extracted and 
sent to the next step for hand feature extraction. Finally, all the 
extracted features are passed to a classifier, determining 
whether the Signal for Help gesture is present.  An overview 
of the proposed methodology is provided in Fig. 3. 

A. Person Tracking 

In the Signal for Help detection mechanism, the first step 
involves tracking and verifying the presence of persons in the 
input video. This functionality is accomplished by integrating 
the YOLOv7 model and the DeepSORT algorithm. 
Specifically, YOLOv7 is responsible for person detection, 
while DeepSORT handles person tracking. The entry point of 
our model is a version of YOLOv7 pre-trained on the MS 
COCO dataset [22]. The person tracking stage is crucial for 
two main reasons. Firstly, it aims to prevent unnecessary data 
processing in subsequent stages if no individuals are detected. 
Since the videos are processed in real time and continuously 
sourced from security cameras, this verification step helps 
avoid computational waste. Secondly, it allows handling 
scenarios where multiple persons are present in the video. 
Indeed, for each detected person, this step is tasked with 
tracking each individual, cropping their bounding box, and 
storing the data for each person. To maximize the probability 
of capturing the sequence of the “Signal for help” gesture 
using the minimum number of frames possible, a batch of 30 
frames is used. Once a batch of 30 frames available, it is sent 
to the next step. In cases where multiple people are present 
within the frame, for each individual, when enough frames are 
stored, they are sent in parallel to step two for hand feature 
extraction. 

For each person, the batch of frames is obtained through a 
sliding window, as shown in Fig. 4. Specifically, each batchi 
overlaps with the batchi-1 by 15 frames, being 15 the optimal 
overlapping value, allowing the capture of comprehensive 
temporal information. This is particularly important since 
Signal for Help is a sequence of hand gestures. 

Figure 3.  An overview of our proposed three-step pipeline model. 



B. Feature Extraction 

For each person detected and tracked in the previous step, 
one batch of 30 frames at a time is feeding the Feature 
Extraction module. The feature extraction is implemented by 
exploiting the Google MediaPipe framework. This step aims 
to extract hand landmarks from the input frames using the 
MediaPipe Hand Landmarker task. Specifically, given the 
input image, the task returns a list of hands, with each hand 
represented by a set of 21 three-dimensional points in the 
(x,y,z) coordinates. Processing these points for all 30 frames, 
we extract spatial and temporal hand information, creating a 
single feature corresponding to hand movement in a specific 
batch. The resulting time series dimension, related to each 
hand,  is calculated by multiplying the number of landmarks 
by the three dimensions and the number of frames, as shown 
in Eq. 1. 
 

Timeseries = Landmarks x Spatial Dimensions x Frames 
            = 21 x 3 x 30 = 1890        (1) 
 

After the features are normalized, they are passed to the next 
step for classification. 
 

 

Figure 4. Representation of the sliding window process on a video. 
 

C. Real-time Signal for Help Detection 

The final step of the proposed pipeline involves a machine 
learning (ML) model trained using features extracted from the 
developed Signal For Help Database. After extensive 
evaluation of different ML approaches testing, the Random 
Forest (RF) model was selected for its superior accuracy and 
ability to handle the diverse feature set effectively. The RF 
model, an ensemble learning method, constructs multiple 
decision trees during training and combines their outputs to 
make a final prediction. This approach reduces overfitting and 
improves the model's generalization ability from the training 
data to unseen examples. The trained RF random Forest model 
processes the hands’  features to identify potential instances of 
the Signal for Help. Given the critical nature of accurate 
detection and the potential consequences of false positives, we 
have integrated a double-check mechanism. This mechanism 
incorporates temporal redundancy. Specifically, if the model 
encounters the signal only once, it takes no action. However, 
if it detects the signal more than once within the specified time 
frame, it triggers the alert. By incorporating this double-check 
step, we aim to significantly reduce the likelihood of false 
positives, thereby increasing the precision and trustworthiness 
of our detection system. This approach ensures higher 
accuracy and minimizes unnecessary alerts, optimizing the 
overall efficiency and reliability of the surveillance system. 

V. EXPERIMENTAL RESULTS 

The proposed methodology was tested on multiple 
devices. Initially, it was tested on a machine equipped with an 
Apple M3 chip, featuring a 3.2 GHz CPU, 8 GB RAM, and an 
integrated Apple M3 GPU. Subsequently, it was tested on an 
NVIDIA Jetson Orin Nano to evaluate its performance on an 
embedded system. As mentioned in the previous section, we 
evaluated the performance of different ML classification 
models to select the solution offering the optimal tradeoff 
between latency and accuracy. Specifically, we evaluated 
Random Forest (RF) [23], Support Vector Machine (SVM) 
[24], Logistic Regression (LR) [25], K-Nearest Neighbors 
(KNN) [26], Multilayer Perceptron (MLP) [27], AdaBoost 
(Ada) [28], and Gaussian Naive Bayes (GNB) [29] models to 
conduct classification. These models have been compared 
concerning the following performance metrics. 

Accuracy 

This metric indicates the model's ability to correctly 
classify instances across all classes [30][31]. It is calculated as 
the ratio of the sum of true positive (TP) and true negative 
(TN) instances to the total number of instances, including TP, 
TN, false positive (FP), and false negative (FN) . 

       Accuracy=(TP+TN)/(TP+TN+FP+FN)                             (2) 
 
Class-specific Precision  

Precision measures the accuracy of positive predictions for 
a specific class [32]. It is calculated as the ratio of TP to the 
sum of TP and FP. A high precision indicates a low false 
positive rate. 

                                Precision=TP/(TP+FP)                              (3) 
 

Class-specific Recall 

Recall, also known as sensitivity, quantifies the ability of 
the model to correctly identify positive instances of a specific 
class [32]. It is calculated as the ratio of TP to the sum of TP 
and FN. A high recall indicates a low false negative rate. 

                                Recall=TP/(TP+FN)                                    (4) 
 

Class-specific F1-Score 

The F1-Score combines precision and recall into a single 
value. It is the harmonic mean of precision and recall and 
provides a balanced classifier performance assessment. It 
ranges from 0 to 1, where a higher value indicates better 
performance [33]. 

F1-score=2 x  (Precision x Recall)/(Precision+Recall)          (5) 
 
Area Under the Curve 

The Area Under Curve (AUC) is a fundamental measure 
used to evaluate the performance of a binary classifier. It 
represents the area under the Receiver Operating 
Characteristic (ROC) curve, which illustrates the model's 
ability to discriminate between positive and negative classes 
across different decision thresholds. The AUC provides a 
comprehensive assessment of the model's discriminative 
ability, regardless of the decision threshold used. It is a value 
ranging from 0 to 1, where a higher AUC indicates better 
discriminative ability. In practice, an area under the ROC 
curve closer to 1 corresponds to a classifier better performing 
separating positive and negative classes [30][31].  



A. Model Results  

The complete Signal for Help detection mechanism was 
comprehensively evaluated across different classification 
model solutions, using the performance metrics specified 
earlier. The results of this evaluation are presented in Table I. 
The RF model stands out for its superior performance across 
most metrics, achieving the highest accuracy (91.7%), 
precision (94.9%), and F1-score (90.3%). Only in the AUC 
metric does the MLP (Multilayer Perceptron) neural network 
hold a slight advantage, with a score of 0.9668 compared to 
0.9641 for the RF. 

 
 

Figure 5. ROC curves, comparison of all classifiers under consideration. 
 

 
 
 

Figure 6. Precision-Recall curves, comparison of all classifiers under 
consideration. 

 

However, this difference in AUC is minimal. RF’s strong 
performance can be attributed to its robust learning approach, 
which allows it to handle smaller or noisier datasets more 
effectively than neural networks or traditional classifiers 
[23]. Its ability to maintain high accuracy, even with diverse 
and imbalanced data, combined with its resistance to outliers 
and noise, makes it particularly well-suited for real-world 
applications. For further comparison, Fig. 5 shows the ROC 
curves for all models, while Fig. 6 displays the Precision-
Recall curves. It's important to note that all these curves, 
except for the Gaussian Naive Bayes (GNB), look very 
similar. Apart from GNB, the plots point out that no model 
truly outperforms the others across all metrics. However, 
considering the overall balance of metrics such as accuracy, 
recall, and F1-score, RF was ultimately selected as the most 
reliable model.  
The graphical representation of the Random Forest’s 
confusion matric in Fig. 7 further validates its efficacy, 
demonstrating its comprehensive recognition of the “Signal 

for help” gesture while maintaining a low probability of 
misclassification. 

 
Figure 7 Confusion matrix of Random Forest model.  
 

TABLE I. Performance metric comparison for various models 

 Accuracy AUC Precision Recall F1-score 

RF 0.9170 0.9641 0.9491 0.8615 0.9032 

SVM 0.9009 0.9629 0.9222 0.8512 0.8853 

LR 0.8894 0.9554 0.9298 0.8153 0.8688 

KNN 0.9055 0.9505 0.9184 0.8606 0.8918 

MLP 0.9101 0.9668 0.9431 0.8512 0.8948 

Ada 0.8824 0.9460 0.8956 0.8358 0.8647 

GNB 0.8041 0.9209 0.8618 0.6517 0.7550 
 

B. Hardware Results  

As mentioned earlier, the model was tested on multiple 
devices, specifically the Apple M3 and Jetson Orin Nano. 
Tables II provide additional insights into the inference speed 
and memory usage for both devices. The results show that the 
Jetson Orin Nano has a significantly faster inference speed 
compared to the Apple M3. However, the Apple M3 uses 
substantially less RAM memory during operation, likely due 
to the device's more intelligent memory usage [34]. 

 
 

TABLE II. Comparison of inference speed and memory usage across 

multiple devices. 
 

Device Inference time (s) Memory (GB) 

Mac M3 1.585 2.5 

Jetson Orin Nano 0.715 4.5 
 

Given that the final application will be deployed on an 
embedded system, these results are encouraging. The faster 
inference speed of the Jetson Orin Nano ensures that the 
system can respond quickly to real-time gestures, which is 
essential for the Signal for Help detection. 
 

VI. CONCLUSIONS AND FUTURE WORKS 

In this work, we proposed a three-step pipeline system able 
to perform real-time detection of the Signal for Help hand 
gesture. The developed model consists of two neural 
networks and a classifier. While the model addresses the 
state-of-the-art domain adaptation problem and it has proved 
to be suitable for real-time applications, it has a high 



computational cost. One possible solution to reduce the 
computational overhead could be developing a hand-tracking 
model tailored specifically for this setup. Additionally, the 
developed Signal for Help dataset enables us to achieve 
satisfactory results, reaching 91.70%. of accuracy, we plan to 
increase the dataset further, realizing videos more similar to 
the final applications of the system to surveillance cameras to 

improve the model’s training capabilities. 
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