
27 September 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Mental Effort Detection When Using a Motor Imagery-Based Brain-Computer Interface / Arpaia, Pasquale; Esposito,
Antonio; Gargiulo, Ludovica; Moccaldi, Nicola; Natalizio, Angela; Parvis, Marco; Robbio, Rachele. - ELETTRONICO. -
(2024). (Intervento presentato al  convegno IEEE International Instrumentation and Measurement Technology
Conference (I2MTC) tenutosi a Glasgow (United Kingdom) nel 20-23 May 2024) [10.1109/i2mtc60896.2024.10560561].

Original

Mental Effort Detection When Using a Motor Imagery-Based Brain-Computer Interface

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/i2mtc60896.2024.10560561

Terms of use:

Publisher copyright

©2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2991675 since: 2024-08-12T14:34:22Z

IEEE



Mental effort detection when using a motor
imagery-based brain-computer interface

Pasquale Arpaia1,2,3, Antonio Esposito1,2, Ludovica Gargiulo1,2, Nicola Moccaldi2,4, Angela Natalizio2,5,
Marco Parvis5, and Rachele Robbio1

Abstract—A wearable electroencephalographic (EEG) device-
based method for the classification of the mental effort during
motor imagery is presented. The solution can be used to improve
the training of novice surgeons involved in minimally invasive
surgery. The method was validated on a public dataset compris-
ing recordings from two participant groups: the control group
(engaging in pure motor imagery tasks without feedback) and
the neurofeedback group (receiving feedback during their mental
tasks). In particular, a previous work on the same dataset found
a higher cognitive effort for the neurofeedback group than for
the control group, which was confirmed by the results of the
NASA-TLX questionnaire. EEG signals were acquired with an
8-electrode dry device. The EEG features of the mental effort
were identified by using the Sequential Feature Selector (SFS),
in combination with different classifiers, on the EEG data of
the control group. In order to classify between low and high
mental effort (baseline accuracy of 50 %), four EEG features
and the Multi-Layer Perceptron classifier resulted in the best
combination for the mental effort assessment in the control group,
achieving an average accuracy of 82.1 ± 8.7 %. The 4 features
identified were: (i) theta-to-alpha ratio on Fz channel, (ii) beta-
to-delta ratio on O1 channel, (iii) theta-to-beta ratio on FP1
channel, and (iv) (theta+alpha)/beta on FP1 channel. The same
pipeline was employed on the neurofeedback group, achieving
an average accuracy of 84.0 ± 6.8 %. These findings are in
accordance with the results of NASA-TLX questionnaire. This
work demonstrated the feasibility of assessing cognitive effort
in real-time by means of wearable EEG device during motor
imagery tasks. Thus, neurofeedback-supported motor imagery
systems can be enriched by a new module to adapt the training
to the novice surgeons and optimise learning outcomes.

Index Terms—Electroencephalography; mental effort; brain-
computer interfaces; motor imagery.

I. INTRODUCTION

In the field of surgery, fine motor control is crucial for
successful outcomes. Surgeons often need to perform delicate
and precise movements, such as suturing or manipulating small
instruments, during surgical procedures. These movements
require a high level of dexterity and coordination, which
can be improved through practice [1]. However, there is a
lack of preparation of graduate trainees due to few clinical
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opportunities to practise these skills [2]. A method that could
be effective for enhancing motor control in surgeons is the use
of motor imagery tasks [3].

Motor imagery is the mental execution of specific move-
ments without physically executing them [4]. Mental training
through motor imagery was found useful in many fields,
including sport, music and rehabilitation medicine [5]. Motor
imagery has been proved to be effective in improving technical
skills of novice surgeons in minimally invasive surgery [5].
Experienced surgeons have been found to display higher motor
imagery ability for robotic surgery, indicating that motor
imagery is a component of surgical expertise [3].

Subjective questionnaires have traditionally been used to
assess motor imagery ability [6], [7]. However, they have
limitations in terms of reliability and objectivity. To overcome
these limitations, assessments of motor imagery ability based
on electroencephalography (EEG), a non-invasive technique
that measures the electrical activity of the brain, are used.
By examining changes in EEG signals during motor imagery
tasks, objective information on an individual’s motor imagery
capacity can be obtained [8]. The EEG signal was found to be
sensitive in assessing the motor imagery skills of the robotic
suture, showing differences between beginners, intermediates
and experts [3]. In particular, the alpha-band power in frontal
and parietal regions of novices and intermediates was almost
10 times lower than that of experienced surgeons. However,
EEG-based neurofeedback should be investigated to enhance
training.

In the context of brain-computer interfaces (BCIs), EEG-
based motor imagery assessments offer not only an objective
measure of the user’s imaginative abilities, but can also provide
the user with a feedback [9]. Neurofeedback, i.e. real-time
feedback on brain activity, allows users to adapt and refine
motor imagery processes within a BCI framework, promoting
greater engagement and continuity in the motor imagery task
[10]. It may offer a mechanism to influence and accelerate the
learning process, enhancing surgeon training [3].

However, prolonged motor imagery can induce mental fa-
tigue, reducing its positive effects [11], [12]. To maximise
the training of surgeons, another advantage of BCIs can be
exploited, namely the monitoring of the user’s cognitive state.
By monitoring the user’s cognitive state during motor imagery,
it is possible to assess the level of mental effort exerted
by the subject [13]. This information is crucial because it
can provide valuable insights into the effectiveness of motor
imagery training and allow for customised interventions to



optimise learning outcomes.
This study is based on a public dataset in which two

groups of subjects used a BCI based on motor imagery for
five consecutive sessions [10]. The subjects were divided
into a control group, which never received feedback as a
result of the motor task, and a neurofeedback group, which
received multimodal feedback. The EEG signal was acquired
by means of a device with only eight dry electrodes, promoting
wearability and user comfort.

The goal of this study is to demonstrate the feasibility of a
wearable electroencephalographic (EEG) device-based method
for the classification of the mental effort during motor imagery.

The device is a candidate as a tool for adaptive technology-
based training [14] of surgeons since it is based on innovative
neural interfaces and can potentially adapt to the engagement
condition detected in the subject through the EEG signal.

The remainder of the paper is organized as follows: Section
II recalls the inherent literature, Section III describes the
dataset, and explains data reorganization and processing, while
Section IV reports the results of the study.

II. BACKGROUND

Several studies in the literature focused on the identification
of mental effort on an electroencephalographic basis. In [15],
25 students were asked to solve 24 scientific problems of two
complexity levels. The EEG signal was acquired during task
execution to assess changes in the theta and alpha band. The
study highlights how increasing mental effort results into a
synchronization of theta waves and a desynchronization of
alpha waves. Specifically, the theta in the frontal and occipital
regions are significantly higher than those in the central and
parietal regions.

In [16], the mental effort is associated with gross and fine
motor exercises mediated by a robot. The EEG was acquired
from FP1, F3, FC3, C3, C4, P3, O1, and T7. During fine
motor exercises, an increase of powers for theta relative and
alpha relative resulted in all the channels. In contrast, a general
decrease for delta relative power was found, particularly in the
FP1 channel.

The Tetris game with three difficulty levels was used in
the study presented in [17]. Auditory probes were used to
assess attention span while participants played the game.
The theta/alpha ratio power revealed that it was generally
significantly higher for the medium and hard challenge levels
compared to the easy challenge level.

In [18], participants performed a two levels cognitive task
while either seated or walking on a dual-belt treadmill. The
cognitive task required participants to detect stimuli that
took the form of objects composed of various shapes and
colors. Statistical analysis revealed significantly higher frontal
theta/alpha power when the more difficult task was performed.
Furthermore, the same feature was sensitive for the walking
condition compared to the seated one.

In [19], EEG features were input into different classifiers,
namely Logistic Regression, Support Vector Machine and
Decision Tree. The most discriminant feature between resting

state and the execution of multitasking SIMKAP test resulted
the alpha-to-beta ratio power from parietal and frontal areas.

The study presented in [20] performed an EEG-based clas-
sification of mental states related to (i) resting, (ii) mental
reading and (iii) mental calculations. The results of this
study suggest that cognition index which is a combination
of EEG band ratios based on theta, alpha, beta, and gamma
bands was an excellent predictor for detecting cognitive states.
The subject-independent optimal features also included theta
to gamma ratio, alpha to beta ratio, Hjorth mobility and
entropy over the optimal channels mainly located in parietal,
parieto-occipital, frontal, and occipital regions. These features
combined with coherence and phase-locking value (PLV)
between distinct brain regions provided the highest recognition
accuracy for cognitive states.

III. MATERIALS AND METHODS

The goal of this study is to demonstrate the feasibility
of a method based on EEG signal acquired with an 8 dry
electrode device to assess the mental effort of novice surgeons
supported by neurofeedback during motor imagery tasks. The
starting point of the proposed method concerns the results
of the NASA-TLX questionnaire, administered to the partici-
pants, which indicated that the neurofeedback group perceived
greater mental effort. Accordingly, a proper strategy to sepa-
rate the impact on mental effort of (i) the succession of mental
tasks execution and (ii) the neurofeedback was adopted. In
particular, the most significant EEG features for mental effort
detection were identified on the control group as task execution
time increased. Then, the same features were validated for the
detection of mental effort on the neurofeedback group.

A. Dataset

A public dataset was exploited in this study [10]. It com-
prises the EEG data of 27 healthy subjects who participated in
a BCI study based on motor imagery. Participants were divided
into two groups: a control group (13 subjects) that received
no feedback and a neurofeedback group (14 subjects) that
received multimodal feedback during sessions in response to
the motor imagery task. Each participant completed five one-
hour sessions. They imagined left and right hand movements
according to a synchronous paradigm. Each session comprised
six runs each with 30 randomised trials (15 per task) for a total
of 180 trials per session. The control group performed the six
runs without ever receiving feedback. For the neurofeedback
group, the first three runs were without feedback and were
used to calibrate the system; the last three runs provided
multimodal feedback to the participants. EEG signals were
acquired via eight dry electrodes with a sampling rate of
512Hz. Electrode placements followed the international 10-
20 EEG system, with channels located at FP1, FP2, Fz, Cz,
C3, C4, O1, and O2, while reference and bias electrodes were
placed in the frontal region at AFz and FPz, respectively. For
the complete data set and experimental details, please refer to
https://metroxraine.org/metroxraine2022/contest-dataset.

https://metroxraine.org/metroxraine2022/contest-dataset


At the end of the motor imagery sessions, participants from
both groups were administered the NASA-TLX questionnaire
[21]. Upon analyzing the questionnaire results, the neuro-
feedback group reported a perceived higher level of effort
compared to the control group. This discrepancy was statisti-
cally significant, as expected due to the additional engagement
required for the neurofeedback component.

B. Data reorganization

Participants performed six motor imagery runs in two
experimental phases, each of three runs. The runs lasted 4
minutes and were all interspersed with short breaks. Subjects
assigned to the control group performed both phases without
neurofeedback, while subjects assigned to the neurofeedback
group were supported by neurofeedback during phase 2.

In this study, data were re-labeled to detect mental effort
rather than motor imagery. To achieve this, the first and sixth
runs of the first session were used to represent low and
high mental effort, respectively. The assumption of increased
effort as time passes requires participant’s performance be-
ing constant during the whole session. This assumption was
statistically verified by comparing the classification accuracy
of motor imagery tasks between phase 1 and phase 2 of all
sessions in general for the participant belonging to the control
group. The Wilcoxon test (α = 0.05) was carried out to
assess the average difference in the control group subjects
performances between phase 1 and phase 2. Since the EEG
features for the detection of mental effort were identified on
the control group, the statistical analysis was performed on this
group. No difference in the mean between the two performance
distributions was assumed as the null hypothesis.

C. Signal preprocessing and Feature extraction

A 4th order Butterworth bandpass filter with cutoff frequen-
cies between 1Hz and 45Hz was applied to the raw EEG
data to extract the frequency bands of interest. Subsequently,
artifacts were removed from the EEG signal using the Artifact
Subspace Reconstruction (ASR) setting a cutoff for rejection
of 11.75 (this rejection threshold parameter value was found to
be the best in the case of 8 channels in the study [22]). Next,
the signals were segmented into 1.5 s epochs. Fast Fourier
Transform (FFT) was applied to segmented signals to calculate
absolute powers in the delta [1−4] Hz, theta [4−8] Hz, alpha
[8− 13] Hz, beta [13− 30] Hz, low-beta [13− 20] Hz, high-
beta [20 − 30] Hz, gamma [30 − 45] Hz, frequency bands.
Starting from the absolute powers, the EEG features related
to cognitive effort ( [16]–[20]) were calculated:

• theta-to-beta ratio
• theta-to-alpha ratio
• beta-to-delta ratio
• (beta+gamma)/delta
• (theta+alpha)/beta

It is worth noting that the last feature corresponds to the
inverse of the engagement index [23]. Feature extraction
was performed the same way on both groups, while feature

selection was performed only on the control group and is
explained in the next subsection.

D. Feature selection and classification

In the feature selection phase, the EEG features for the
detection of mental effort were identified by considering the
first and the last run of the control group. Then, the previously
selected EEG features were employed for assessing the level
of mental effort on the neurofeedback group. Feature selection
was performed on the 13 subjects belonging to the control
group, considering the first run (low mental effort) and the
last run (high mental effort) of the first session. An algorithm
belonging to the wrapped methods [24], namely the Sequential
Feature Selection (SFS) algorithm, was used. The SFS adds
or removes features from the dataset iteratively based on
the cross-validation score of an estimator. For this study,
Forward-SFS, based on the addition of features, was imple-
mented and Leave-One-Subject-Out (LOSO) cross-validation
technique was used. The employed estimators were: k-Nearest
Neighbor (kNN), Random Forest (RF), Gaussian Naive-Bayes
(NB), Support Vector Machine (SVM), and Multi-Layer Per-
ceptron (MLP). 40 features were provided as input to the SFS,
i.e. the 5 features previously extracted for all 8 channels.

The number of features to be selected was varied until the
best performance was obtained. Next, starting from the best
classifier and the features obtained in the previous phase, a
two-level classification of mental effort was conducted on 13
subjects belonging to the neurofeedback group considering
the first run (without neurofeedback) and the last run (with
neurofeedback) of the first session. In this phase, the subject
7 of the neurofeedback group, with very low performances,
was discarded to allow a balance of samples between the two
groups. A LOSO cross-validation was employed in an inter-
subject setting.

IV. RESULTS

The Wilcoxon test on the the classification accuracy of
motor imagery tasks revealed a p-value of 0.845. Conse-
quently, the null hypothesis was not rejected and the com-
patibility between the performances of phase 1 and phase
2 was accepted. Therefore, a constant application during the
whole session was assumed. The box-plots relating to the two
phases accuracies of the control group are shown in Fig. 1.
The comparability between the accuracy values of the two
conditions demonstrates perseverance in application during
the task. This result reasonably suggests that the participants
expended more mental effort during the last run of the session.

Average classification accuracy of the mental effort level
considering the control group for the various classifiers, as
the number of features to be selected provided to the SFS
increases, is shown in Tab. I. In all cases, maximum perfor-
mance is achieved with 4 features. In particular, the highest
performance (average accuracy of 82.1 % ± 8.7 %) was
obtained when the SFS algorithm in combination with the
MLP classifier selected the following features: (i) theta-alpha
ratio on Fz channel, (ii) beta-delta ratio on O1 channel, (iii)



TABLE I
PERCENTAGE CLASSIFICATION ACCURACY (MEAN AND STANDARD DEVIATION) OF THE MENTAL EFFORT DETECTION IN THE CONTROL GROUP, AT

VARYING THE NUMBER OF THE FEATURES AND THE CLASSIFIER ADOPTED WITHIN THE SFS ALGORITHM.

Number of Classifier

selected features MLP kNN NB RF SVM

1 60.8± 14.1 % 56.5± 11.1 % 54.9± 10.9 % 60.4± 15.1 % 62.3± 16.6 %

2 62.4± 14.6 % 61.1± 10.1 % 57.0± 9.7 % 64.9± 9.6 % 65.3± 13.7 %

3 64.0± 12.8 % 72.2± 10.3 % 57.2± 10.5 % 69.7± 8.5 % 71.3± 9.6 %

4 82.1±8.7 % 77.9± 6.9 % 57.2± 10.5 % 70.6± 9.6 % 81.6± 5.9 %

Fig. 1. Box plots: percentage classification accuracy for the participants from
control group when the motor imagery tasks were performed in phase 1 and
phase 2 of the session, respectively.

theta-beta ratio on FP1 channel, and (iv) (theta+alpha)/beta on
FP1 channel.

TABLE II
PERCENTAGE CLASSIFICATION ACCURACIES (MEAN AND STANDARD
DEVIATION) OF MPL IN DISCRIMINATING MENTAL EFFORT ON THE
NEUROFEEDBACK GROUP AT INCREASING THE NUMBER OF INPUT

FEATURES. FEATURE WERE SELECTED ACCORDING TO THEIR IMPACT ON
CLASSIFICATION ACCURACY OF THE CONTROL GROUP, IN DECREASING

ORDER.

Features Channel Accuracy

Theta-Alpha ratio Fz 50.6± 7.6 %

& Beta-Delta ratio O1 51.1± 13.5 %

& Theta-Beta ratio FP1 50.8± 15.6 %

& (Theta+Alpha)/Beta FP1 84.0±6.8 %

In Tab. II, average accuracies for the MLP classifier of
mental effort in neurofeedbak group are shown. The best
average accuracy (84.0 % ± 6.8 %) was achieved with the 4
previously selected features. The higher mean accuracy with
respect to control group (although the ranges of standard

deviations are slightly overlapping) are in accordance with
the NASA-TLX results. Therefore, the hypothesis that mental
effort is promoted by neurofeedback appears compatible with
the experimental results.

V. DISCUSSION

Motor imagery-based Brain-Computer Interfaces (BCIs) can
have different fields of application, including enhancing sur-
geons’ surgical skills and manipulative abilities [3], [5]. Often
supported by neurofeedback [3], [10], motor imagery is related
to attentional processing, as it is still a mental practice [25],
[26]. Understanding the mental effort involved in such tasks
is crucial for optimizing training protocols, as it reflects the
subject’s allocated capacity to satisfy the task demands [23]. In
this study, the discriminative features of mental effort during
motor imagery tasks using a few-channel-based EEG mea-
surement system Data were labeled under the assumption that
mental effort was lower during the first and higher during the
sixth run. According to the time-based resource-sharing model
[27] [28], the persistence of cognitive task execution over
time results in progressive cognitive fatigue. The occurrence
of a cognitive fatigue condition results in a decrease in task
performance or an increase in the effort required to maintain a
high level of performance. Actually, the performance during a
task execution may be affected by the levels of engagement or
distraction [29]. The persistence of high level of performance
during the task makes it possible to rule out the advent
of distraction and ascertain a continuous application of the
subject to the proposed task over time. Therefore, in the time-
based resource-sharing model framework, the hypothesis that
as time passes, the mental effort expended by the subject
increases can be assumed.

The SFS was effective for selecting a small number of
relevant features (5 features extracted per 8 channels) from the
total of 40 EEG features extracted to classify mental effort.
The good accuracy achieved in both groups (82.1 % and
84.0 % for control and neurofeedback group, respectively)
confirms that relevant information can be acquired from a
few sources, regardless of the classifier used. This result
confirms that mental effort can also be monitored through
the use of highly wearable systems based on a few channels.
Furthermore, the spatial region found to be most informative
on mental effort is the frontal region. This is consistent with



several studies stating how the frontal lobe is associated with
cognitive processes, including complex cognitive processes
[15], [16], [18]–[20]. The small improvement in predicting
mental effort in the neurofeedback group is consistent with
previous work that showed that mental effort increases when
neurofeedback is provided [30], [31]. However, considering
that feature learning occurred only on the control group, such
a high accuracy on the neurofeedback group highlights that
the phenomenon is more discriminable. Finally, the study
has some limitations. Firstly, it was confined to a single
experimental session to mitigate participant variability effects.
Future studies should encompass multiple sessions to assess
robustness. Moreover, the use of tasks more suited to surgical
scenarios and the comparison of different EEG cap densities
could provide insights. Future investigations could extend the
proposed methodology to neurosurgeons performing motor
imagery tasks similar to their surgical routines and perform
a multi-channel cap comparison to strengthen the validation
of this wearable EEG-based study.

VI. CONCLUSIONS

The study demonstrated the feasibility of an EEG-based
method for assessing the level of mental effort during motor
imagery tasks supported by neurofeedback. The solution can
be used to improve the training of novice surgeons involved
in minimally invasive surgery by adapting the training on
the basis of mental effort detected. For all classifiers, SFS
identified four features for maximizing accuracy. MLP resulted
in higher performance, with an average accuracy of 82.1 % ±
8.7 %. The selected features were: (i) theta-to-alpha ratio on
Fz channel, (ii) beta-to-delta ratio on O1 channel, (iii) theta-to-
beta ratio on FP1 channel, and (iv) (theta+alpha)/beta on FP1
channel. The EEG features identified by the SFS are consistent
with those related to mental effort reported in the literature.
These features were used in the mental effort classification
of the neurofeedback group, employing the MLP classifier,
achieving an average accuracy of 84.0 % ± 6.8 %. This
finding is in line with the results of the NASA-TLX question-
naire, namely that subjects supported by neurofeedback show
slightly greater mental effort with respect to the group without
neurofeedback. Future research will be directed towards the
utilization of alternative feature selection algorithms capable of
navigating the feature space without becoming trapped in local
maxima.In particular, meta-heuristic approaches such as the
Salp Swarm Algorithm, which has recently been shown to be
effective for EEG feature selection in motor imagery [32], will
be tested. Additionally, the identification of a ”mental effort”
threshold after which the surgeon should stop the current
action will be pursued. The classification binary choice, i.e.,
low vs high mental effort, represents a first step towards
the adoption of a metric scale with a finer resolution. The
greater the number of classes, the greater the resolution of
the classifiers in discriminating the levels of mental effort. In
this way, a classifier trained on a single subject data could
recognize the personalized alert threshold corresponding to
a specific class. Finally, integration of the proposed method

into the adaptive system for neurosurgeon training and its
experimental validation will be pursued.
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