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Abstract: Freeze-drying, also known as lyophilization, significantly improves the storage, stability,
shelf life, and clinical translation of biopharmaceuticals. On the downside, this process faces complex
challenges, i.e., the presence of freezing and drying stresses for the active compounds, the uniformity
and consistency of the final products, and the efficiency and safety of the reconstituted lyophilized
formulations. All these requirements can be addressed by adding specific excipients that can protect
and stabilize the active ingredient during lyophilization, assisting in the formation of solid structures
without interfering with the biological and/or pharmaceutical action of the reconstituted products.
However, these excipients, generally considered safe and inert, could play an active role in the
formulation interacting with the biological cellular machinery and promoting toxicity. Any side
effects should be carefully identified and characterized to better tune any treatments in terms of
concentrations and administration times. In this work, various concentrations in the range of 1
to 100 mg/mL of cellobiose, lactose, sucrose, trehalose, isoleucine, glycine, methionine, dextran,
mannitol, and (2-hydroxypropyl)-β-cyclodextrin were evaluated in terms of their ability to create
uniform and solid lyophilized structures. The freeze-dried products were then reconstituted in
the appropriate cell culture media to assess their in vitro cytotoxicity on both a healthy cell line
(B-lymphocytes) and their tumoral lymphoid counterpart (Daudi). Results showed that at 10 mg/mL,
all the excipients demonstrated suitable lyophilized solid structures and high tolerability by both
cell lines, while dextran was the only excipient well-tolerated also up to 100 mg/mL. An interesting
result was shown for methionine, which even at 10 mg/mL, selectively affected the viability of the
cancerous cell line only, opening future perspectives for antitumoral applications.

Keywords: freeze-drying; lyophilization; excipient; cytotoxicity; drug formulations; biopharmaceuticals

1. Introduction

Since the 1980s, biopharmaceuticals, produced through biotechnological processes
using molecular biology methods, have revolutionized the treatment of a broad range of
diseases [1]. They include enzymes, vaccines, monoclonal antibodies, cytokines, hormones,
recombinant blood products, hematopoietic growth factors, and nucleic acid- gene- or
cell-based therapeutics presenting higher specificity and targeting ability with respect to
conventional small molecule drugs [2]. However, biopharmaceuticals have high molecular
weight and complex structures, which confer certain physical and chemical instability,
negatively affecting their therapeutic action and patients’ health [3]. Furthermore, exposure
to organic solvents and environmental stresses, such as pH and temperature variations,
light, agitation, and shear stress, can be detrimental to maintaining the biopharmaceuticals’
properties [4]. For these reasons, pharmaceuticals are commonly produced as solid dosage
forms using freeze-drying to enhance their pharmaceutical stability, increase their shelf life
and preserve their in vivo efficacy [5].
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Lyophilization or freeze-drying is a three-step preservation method based on water
freezing, followed by its removal, initially by sublimation (primary drying) and then by
desorption (secondary drying). It is the most suitable method to preserve thermo-liable
materials such as vaccines, viruses, proteins, peptides, and colloidal carriers. Freeze-
dried materials can often be stored at room temperature (RT) and quickly reconstituted
in water or physiological solutions [6,7]. However, stresses may arise during this process,
impair product stability and lead to loss of biological activity. For instance, damage or
denaturation of biomolecules can be promoted by low temperatures, cryoconcentration,
interaction with the ice–water interface, and phase separation [8,9]. In addition, freeze-
drying is a highly time-consuming and energy-intensive process, and the pharmaceutical
industry increasingly requires optimizing lyophilization cycles by shortening the drying
steps, adjusting the process parameters, and customizing the formulations [3].

The addition of specific excipients contributes to the stability of biopharmaceuticals
and indirectly determines the most suitable parameters for developing a cost-effective
lyophilization process to obtain freeze-dried products with desirable appearance and prop-
erties. According to the International Pharmaceutical Excipient Council (IPEC), excipients
are defined as “any substance other than active drug that is included in the manufactur-
ing process or is contained in finished pharmaceutical dosage form”, and their dosage is
significantly higher than the active pharmaceutical ingredient (API) [10].

In biopharmaceutical formulations, different excipients are usually added to the
preparation before the freeze-drying process with the aims of stabilizing the biological
product, preventing aggregation and surface adsorption, conferring the physiological
osmolality and tonicity, pH control, minimizing adverse reactions upon injection, favoring
the targeted drug delivery, and acting as antimicrobial agent. Furthermore, excipients
for sterile formulation must withstand the final sterilization and not be impaired by the
aseptic process [10,11]. The ideal characteristics of an excipient are its chemical stability
and low sensitivity to the process. Furthermore, it must be inert and non-toxic to the
human body, efficient for the intended use, with accepted organoleptic properties, and
possibly, inexpensive [12]. Despite their widespread use, relatively little is known about
the biological effects of excipients because the importance of investigating the possible
adverse effects has been underestimated, and their safety is often taken for granted [13].
Like most chemicals, excipients are potentially toxic, able to cause renal failure, osmotic
diarrhea, hypersensitivity and allergic reactions, cardiotoxicity, and even death if not
strictly regulated [14]. For these reasons, different studies investigated the safety of various
excipients, increasing the awareness of systematic testing of possible adverse side effects.
For instance, Kiss et al. proved the toxicity of Cremophor EL and RH40 on endothelial and
epithelial cells, even at clinical doses [15], while Dai et al. associated with Cremophor EL
the metabolic dysregulation and unfolded protein response caused by Taxol [16]. Bajaj et al.
studied the P-glycoprotein inhibition mediated by different excipients since its modulation
played a critical role in oral drug bioavailability and safety [17]. Many researchers focused
on the effects of excipients on fragile people, such as pediatric patients [18–21]. Some studies
investigated the in vitro cytotoxicity of different excipients against different biological
targets [22–24], while others used machine learning algorithms to estimate the toxicity risk
of small molecular entities [25,26].

In this view, this study aims to combine thermal characterizations as differential scan-
ning calorimetry (DSC) and freeze-drying microscopy (FDM) with an in vitro cytotoxicity
test to evaluate the suitability of using a wide range of sugars, polyols, and amino acids for
freeze-drying, rehydration, and cell culture applications. In detail, sugars (i.e., cellobiose,
lactose, sucrose, and trehalose), (2-hydroxypropyl)-β-cyclodextrin (hp-β-cyclodextrin),
bulking agents such as mannitol, and amino acids (i.e., isoleucine, glycine, and methionine),
and a collapse temperature modifier (dextran) were investigated [3].

Stabilizers, such as sucrose, trehalose, polyethylene glycol, and cyclodextrins, are the
most widely used and studied excipients since they protect the API against chemical and
physical instability during both the freezing and drying steps. Their stabilizing activity
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is mainly driven by different physicochemical phenomena such as preferential exclusion,
water replacement and entrapment, and vitrification [27]. Excipients stabilize API by
establishing repulsive forces between the proteins and the carbohydrates molecules or
acting as a water substitute [28]. In other cases, it has been shown that excipients form a
cage around API, entrapping and slowing down water molecules, or otherwise, the API can
be immobilized inside the stabilizer’s glassy matrix, which prevents translational molecular
movements and thus its degradation [29–32].

Bulking agents, such as mannitol, glycine and amino acids, provide a proper porous
structure to the freeze-dried product [3,33], while adding a collapse temperature modifier,
such as dextran, can affect the lyophilization process by increasing the maximum allowable
product temperature, significantly reducing the primary drying time [34].

Most of the excipients considered in this study are widely used for the formulation of
intravenous and intramuscular injectable, oral, topical administrable or inhalable drugs [35].
Excipients in pharmaceutical formulations are used at a broad range of concentrations,
from 0.001 to up to 20% w/v. According to the most recurring concentrations of the inactive
ingredients in biologics, we investigated the 0.1, 1, and 10% w/v concentrations in our
study [36,37]. After 24 and 48 h of treatments, we evaluated their effects on both a healthy
cell line (B-lymphocytes) and on their tumoral lymphoid counterpart (Daudi).

2. Materials and Methods
2.1. Preparation of Formulations to Be Lyophilized

The effect of the freeze-drying process on solutions containing different excipients at
three different concentrations, i.e., a very high one, 100 mg/mL corresponding to 10% w/v,
a medium one, 10 mg/mL as 1% w/v and 1 mg/mL as 0.1% w/v. For this purpose, different
freeze-drying excipients were used to evaluate their impact on cell viability after thermal
characterizations: four disaccharides, i.e., cellobiose (Sigma, Darmstadt, Germany), lactose
(Fluka, Charlotte, NC, USA), sucrose (Fisher Chemical, Waltham, MA, USA), and trehalose
(Sigma), three amino acids, i.e., isoleucine (Sigma), glycine (Sigma), methionine (Sigma), a
polymer, i.e., dextran (40 kDa, PanReac AppliChem, Darmstadt, Germany), a polyol, i.e.,
mannitol (Chem-Lab, Zedelgem, Belgium), and (2-hydroxypropyl)-β-cyclodextrin (Sigma).

For each excipient, except for isoleucine and methionine, three solutions were prepared
in double-distilled (DD) water. The more concentrated one was prepared by dissolving
the excipient in DD water until the concentration of 100 mg/mL; the other two solutions
at 10 and 1 mg/mL were obtained by subsequent dilutions of the more concentrated
one. Isoleucine and methionine had a lower solubility than the other excipients (34 and
57 mg/mL, respectively); thus, only the solutions at 10 and 1 mg/mL were prepared
following the previously described protocol. All the tested solutions are summarized in
Table 1.

Table 1. List of the tested solutions.

1 mg/mL 10 mg/mL 100 mg/mL

Cellobiose
√ √ √

Lactose
√ √ √

Sucrose
√ √ √

Trehalose
√ √ √

Isoleucine
√ √

Glycine
√ √ √

Methionine
√ √

Dextran
√ √ √

Mannitol
√ √ √

Hp-β-cyclodextrin
√ √ √

2.2. Thermal Characterization

The thermal characterization of the solutions was carried out with two complementary
techniques: differential scanning calorimetry (DSC) and freeze-drying microscopy (FDM).
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The DSC is a consolidated technique for thermal analysis that detects the variations of the
specific heat capacity (Cp), measured as changes in the heat flow, comparing the sample
with a reference. It measures the temperature at which thermal events such as the glass
transition (Tg

′) for amorphous materials and the eutectic point (Teu) for crystalline ones
occur [38]. The FDM mimics the different steps of the freeze-drying process in miniature
by freezing and drying small volumes of formulation under the microscope. It allows for
the measurement of the collapse (Tc), for amorphous excipients, and melting (Tm), for
crystalline ones, temperatures identified as the onset of visible collapse [39].

Differential scanning calorimetry (DSC Q200, TA Instruments, New Castle, DE, USA)
was used to evaluate the thermal behavior of samples constituted by DD water and different
concentrations of the excipients listed above. An aluminum pan was filled with ~20 µL of
the solution and sealed; the reference was an identical empty pan. The dynamic temperature
program included a freezing step until −60 ◦C at 1 ◦C/min and a heating one up to
25 ◦C at 5 ◦C/min. Results were then evaluated using Universal Analysis software (TA
Instruments).

Freeze-drying microscopy (BX51, Olympus Europa, Hamburg, Germany; temperature
controller: PE95-T95, Linkam, Scientific Instruments, Tadworth, Surrey, UK) was employed
to verify the freeze-drying behavior of the excipient solutions and to identify the critical
temperatures that lead to collapse events. First, the freezing ramp was set at 5 ◦C/min
to −60 ◦C; then, lyophilization was performed at 10 Pascal, progressively increasing the
product temperature. At this point, the sublimation front was accurately tracked. The
temperature at which the sublimation of ice into water vapor from the sample was observed,
resulting in the movement of the sublimation front, was recorded as Tc [40].

2.3. Freeze-Drying Process

Samples were freeze-dried using a laboratory-scale freeze-dryer (Revo™ series, Mill-
rock Technology, Kingston, NY, USA). The chamber pressure was monitored through a
thermal conductive gauge (Pirani, PSG-101-S model, Inficon, Bad Ragaz, Svizzera) and
a capacitive sensor (Baratron, 626A model, MKS Instruments, Andover, MA, USA). The
primary drying endpoint was determined based on the Pirani-to-Baratron pressure ratio
signal [41].

Then, 300 µL of each excipient solution, at each concentration, was filled into 2R vials
(Nuova Ompi glass division, Stevanato Group, Piombino Dese, Italy), partially sealed with
silicon igloo stoppers (West Pharmaceutical Services, Milan, Italy), and loaded into the
freeze-dryer in direct contact with the temperature-controlled shelf.

During freezing, shelf temperature was decreased down to −45 ◦C at 0.5 ◦C/min and
held for 1 h; after that, primary drying was carried out at 100 µBar and −25 ◦C. When
all ice sublimed, secondary drying was performed at the same pressure, increasing shelf
temperature until 20 ◦C in 5 h, and held at those conditions for 12 h. At the end of the cycle,
the pressure was released to the atmospheric value by bleeding nitrogen into the drying
chamber. The lyophilization cycle is represented in Figure 1 in terms of temperature and
pressure evolution.

2.4. Freeze-Dried Samples Evaluation

The freeze-dried products were characterized in terms of cake appearance and residual
moisture. Ideally, the cake should preserve the same size and shape as the frozen product,
with uniform color and texture [42]. The residual moisture of the lyophilized samples was
investigated by the Karl-Fischer titration (Karl Fischer Moisture Meter CA-31, Mitsubishi,
Japan). The Hydranal titration solvent (Sigma-Aldrich, Milano, Italy) reconstituted most of
the formulations to be analyzed, whereas formamide (Honeywell, Fluka) was added to those
samples containing dextran, glycine, and mannitol for their low solubility in methanol.
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2.5. Cell Cultures

The cell lines used were maintained according to standard mammalian cell culture
protocols and sterile technique at 37 ◦C under 5% CO2 atmosphere in 75 cm2 not treated
cell culture flasks (Corning, Glendale, AZ, USA).

The cell culture medium of each cell line was supplemented with heat-inactivated
fetal bovine serum (FBS) obtained by heating at 56 ◦C for 30 min to destroy the action
of serum complement, without affecting the growth properties of FBS, and 1% of peni-
cillin/streptomycin (P/S, 10,000 units penicillin and 10 mg streptomycin/mL, Sigma).

Lymphocytes (IST-EBV-TW6B) were purchased from the cell bank IRCCS AOU San
Martino IST (Genova, Italy) and maintained in advanced RPMI 1640 cell culture medium
(Gibco) supplemented with 20% of FBS (Gibco, Thermo Fisher Scientific, Waltham, MA,
USA) and 1% L-glutamine 200 mM (Q, Lonza), with a cell density between 9 × 104 and
9 × 105 cells/mL. After 20 days of use, the cell culture medium was supplemented with 1%
Q and 1% of non-essential amino acid solution (Sigma).

Daudi cell line (ATCC® CCL-213TM), derived from the peripheral blood of a Burkitt’s
lymphoma patient, was cultured in RPMI 1640 culture medium (ATCC), with a cell density
between 3 × 105 and 3 × 106 cells/mL.

2.6. Cytotoxicity Assay

The cytotoxicity of the different excipients was tested at different concentrations,
i.e., 100, 10, and 1 mg/mL, and treatment times, i.e., 24 and 48 h, through the WST-1
cell proliferation assay. This technique was based on the conversion operated by cellular
mitochondrial dehydrogenases of the tetrazolium salt WST-1 in formazan. The quantity of
formazan dye converted depended on the number of viable cells.

The freeze-dried excipient was reconstituted with lymphocytes or Daudi’s culture
media to obtain a final concentration of 100 mg/mL. For optimal reconstitution, after the
addition of the media, samples were left for 30 min at 4 ◦C and then further 30 min at 37 ◦C
with 180 rpm shaking. After the reconstitution, the treatment solutions at 10 and 1 mg/mL
concentrations were prepared by diluting the 100 mg/mL solution.

Then, 2 × 105 cells for each mL of treatment were centrifuged, resuspended in the
treatment solution and 100 µL plated in each well of a 96-well flat-bottom plastic culture
plate (Greiner Bio-one, Kremsmünster, AT, Austria). After 20 and 44 h of incubation at
37 ◦C and 5% CO2, 10 µL of WST-1 reagent (CELLPRO-RO, Roche, Basel, CH) was added
to each well, and after further 4 h of incubation, in the same conditions, the formazan
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absorbance was detected at 450 nm through a microplate spectrophotometer (Multiskan
Go microplate spectrophotometer, Thermo Fisher Scientific) using a 620 nm reference.
Independent experiments were carried out in triplicate three times for each cell line, time,
concentration, and excipient, and results were normalized to the untreated sample.

2.7. Statistical Analysis

Data were plotted as mean± standard error (SE). For cytotoxicity results, the three-way
analysis of variance (ANOVA) tools of the SIGMA Plot software’s data analysis package
was used to compare the two cell lines and the two treatment times. Regarding the different
excipients and concentrations, a different approach was used and evaluated using the
two-way ANOVA.

Since isoleucine and methionine are significantly less water-soluble than all the other
selected excipients, only the concentrations of 10 and 1 mg/mL were tested. Thus, two
data pools were evaluated separately to refine the statistical analysis. The former, repre-
sented with black asterisks on the graphs, excluded isoleucine and methionine from the
comparison made between all the other excipients at the three concentrations. The latter,
represented with red asterisks, compared all the excipients only at the concentrations of 10
and 1 mg/mL.

* p ≤ 0.05 and ** p ≤ 0.001 were considered significant.

3. Results
3.1. Thermal Characterization

Understanding the thermal behavior of lyophilized formulations is critical for devel-
oping an efficient freeze-drying cycle. Thus, DSC and FDM analyses were performed to
evaluate the maximum allowable temperature of the formulation, i.e., the glass transition
temperature or the eutectic melting temperature, and to estimate the collapse or melting
temperatures, respectively [43]. The Tm of the FDM experiments corresponded to a visible
loss of structure of the formulation, which referred to a viscous flow in an amorphous
material (i.e., collapse) or to a eutectic melt in a crystalline one [44].

Table 2 shows the Tg
′ or Teu and Tm results of the DSC and FDM analyses for the

different excipients at 100 and 10 mg/mL. The results from the tests with 1 mg/mL were
not shown since all the solutions were too diluted to appreciate a significant thermal event
in the DSC graph or to resolve the formation of a solid structure in the FDM.

DSC and FDM results were not significantly affected by the decreasing excipient’s
concentration; the only exception was the Tm of glycine and mannitol, which noticeably
decreased by decreasing the concentration. However, the solution was too diluted to
maintain the structure and collapsed in this case.

Disaccharides, i.e., cellobiose, lactose, sucrose, and trehalose, showed a Tg
′ around

−30 ◦C, and the FDM results were slightly higher than the DSC ones. The amino acids
isoleucine and methionine did not display relevant thermal events before the fusion peak,
while glycine demonstrated glass transition temperatures at lower values. Dextran and
hp-β-cyclodextrin had similar Tg

′ and Tm between the two concentrations. On the contrary,
mannitol displayed two thermal events due to its polymorphism [45,46].



Processes 2022, 10, 2641 7 of 16

Table 2. Results of DSC and FDM measurements. ND represents not detectable samples.

100 mg/mL 10 mg/mL

Tg
′ Teu Tc Tm Tg

′ Teu Tc Tm

Cellobiose −32.5 −26.3 −33.3 −28.2
Lactose −31.6 −26.2 −31.7 −27.2
Sucrose −35.2 −31.2 −32.2 −32.2

Trehalose −31.8 −27.2 −31.1 −29.2
Isoleucine ND ND

Glycine −5.6;
−4 −3.1 −5.4 ND

Methionine ND ND
Dextran −13.4 −6.5 −13.8 −10.3

Mannitol −1.9 −1.4 −30.8;
−3.2 −20.8

Hp-β-cyclodextrin −15.8 −11.4 −16.6 −12.2

3.2. Freeze-Dried Samples Evaluation

Freeze-drying was generally applied to different thermolabile compounds to prevent
deleterious processes such as aggregation, deamidation, oxidation, and other degradation
pathways that can occur in solution.

An efficient freeze-drying process provides products with a residual moisture content
(RM) below 2% [47]; otherwise, it can act as a plasticizer, lowering the Tg

′ of the lyophilized
product. Small variations in the RM value might cause relevant changes in the physical
and chemical stability in the shelf life of the dried product.

The analyzed formulations at 100 and 10 mg/mL displayed an RM below 2%, which
was acceptable for a good-quality freeze-dried product.

The evaluation of the cake appearance of the freeze-dried products showed a homoge-
nous and structured cake for all the excipients at the concentrations of 100 and 10 mg/mL.
In contrast, the ones at 1 mg/mL were generally less compact, probably for the low con-
centration of solutes that caused a collapse of the structures, probably due to gravity. A
non-ideal cake appearance was considered a visual indication of a poor formulation, due
to the process not being totally under control or due to a poor drug product presentation,
or even to both cases. However, sometimes a non-ideal appearance can result from the
physics of freeze-drying, and it has no impact on the product quality [42].

3.3. Cytotoxicity Assay Results

The cytotoxicity tests were conducted on an in vitro model that included two different
cell lines, a healthy one (lymphocytes) and its tumoral counterpart (Daudi). The three-way
ANOVA comparisons showed that when cells were treated with different concentrations of
excipients, there were no significant differences between the two cell lines (lymphocytes
and Daudi) and the treatment times (24 and 48 h).

Figure 2 shows the results of the viability of lymphocytes after 24 h of treatment.
Comparing the concentrations among the different excipients, there was a statistically sig-
nificant difference between 1 and 100 mg/mL (p ≤ 0.001) and between 10 and 100 mg/mL
(p = 0.010 for glycine, and p≤ 0.001 for the others) for all the excipients analyzed apart from
dextran, which did not demonstrate any significant difference between the three tested
concentrations. Lastly, the viability assessment of lymphocytes at 1 and 10 mg/mL was
comparable for all the tested excipients.
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treated with dextran at 100 mg/mL was considerably higher than all the other treatments 
(p ≤ 0.001 for all the comparisons). At 10 mg/mL, glycine strongly affected the viability of 
Daudi when compared with dextran, hp-β-cyclodextrin, and trehalose (p = 0.011, p = 0.029 
and p = 0.043, respectively). 

Considering the second pool of data, which compared all the excipients at 1 and 10 
mg/mL in Figure 3, Daudi treated with methionine was significantly impaired by the 
treatment, if compared with hp-β-cyclodextrin (p ≤ 0.001), dextran (p ≤ 0.001), sucrose (p = 

Figure 2. The graph represents the viability of lymphocytes after 24 h of treatment with the different
excipients. Light grey is 1 mg/mL, dark grey is 10 mg/mL, and black is 100 mg/mL. Data are
displayed as mean ± SE. ** for p ≤ 0.001 and * for p ≤ 0.05. Black asterisks represent the comparison
of excipients at the three concentrations, without isoleucine and methionine.

Comparing the different excipients at the same concentrations, the viability of cells
treated with dextran at 100 mg/mL was considerably higher than the ones treated with
hp-β-cyclodextrin (p = 0.006), cellobiose (p = 0.018), mannitol (p = 0.024), glycine (p = 0.031),
trehalose (p = 0.037), and sucrose (p = 0.041). Differently, at 10 mg/mL, cells were less
affected by the treatment with hp-β-cyclodextrin if compared with glycine (p = 0.017).

Considering the second pool of data in Figure 2, which compared all the excipients at
1 and 10 mg/mL, lymphocytes treated with hp-β-cyclodextrin were more viable than the
ones with methionine (p = 0.005), glycine (p = 0.007), isoleucine (p = 0.013), and cellobiose
(p = 0.027).

Figure 3 shows the viability of Daudi after 24 h of treatment. Comparing the con-
centrations among the different excipients, there was a statistically significant difference
between 1 and 100 mg/mL (p = 0.035 for dextran and p ≤ 0.001 for the others), 10 and
100 mg/mL (p = 0.008 for dextran and p ≤ 0.001 for the others), and 1 and 10 mg/mL only
in the treatments with lactose, glycine, isoleucine, and methionine (p = 0.018, p ≤ 0.001,
p = 0.002, and p ≤ 0.001 respectively).

Comparing the different excipients at the same concentrations, the viability of cells
treated with dextran at 100 mg/mL was considerably higher than all the other treatments
(p ≤ 0.001 for all the comparisons). At 10 mg/mL, glycine strongly affected the viability of
Daudi when compared with dextran, hp-β-cyclodextrin, and trehalose (p = 0.011, p = 0.029
and p = 0.043, respectively).
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Figure 3. The graph represents the viability of Daudi after 24 h of treatment with the different
excipients. Light grey is 1 mg/mL, dark grey is 10 mg/mL, and black is 100 mg/mL. Data are
displayed as mean ± SE. ** for p ≤ 0.001 and * for p ≤ 0.05. Black asterisks represent the comparison
of excipients at the three concentrations, without isoleucine and methionine; red asterisks represent
excipients at 10 and 1 mg/mL.

Considering the second pool of data, which compared all the excipients at 1 and
10 mg/mL in Figure 3, Daudi treated with methionine was significantly impaired by the
treatment, if compared with hp-β-cyclodextrin (p ≤ 0.001), dextran (p ≤ 0.001), sucrose
(p = 0.004), and lactose (p = 0.017), and they were also affected by the treatments with
isoleucine than with hp-β-cyclodextrin (p = 0.021) and dextran (p = 0.037). Comparing
the viability of cells at 10 mg/mL, it was impaired more by methionine than by dextran,
hp-β-cyclodextrin, sucrose, cellobiose (p ≤ 0.001), lactose (p = 0.007), mannitol (p = 0.016),
by isoleucine than by dextran (p = 0.002) and hp-β-cyclodextrin (p = 0.006), and by glycine
than by dextran (p = 0.030).

Figure 4 shows the viability of lymphocytes after 48 h of treatment. Comparing the
concentrations among the different excipients, there was a statistically significant difference
between 1 and 100 mg/mL for all the excipients with the exception of lactose (p = 0.001
for cellobiose, p = 0.012 for sucrose, p = 0.005 for trehalose, p = 0.003 for glycine, p = 0.005
for dextran, p = 0.004 for mannitol, p ≤ 0.001 for hp-β-cyclodextrin); between 10 and
100 mg/mL (p = 0.012 for cellobiose, p = 0.017 for sucrose, p = 0.007 for trehalose, p = 0.009
for mannitol, and p ≤ 0.001 for hp-β-cyclodextrin); and between 1 and 10 mg/mL only in
the treatment with methionine (p = 0.041).
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There were no significant differences between the viability of cells treated with the
same concentration of excipients.

Figure 5 shows the viability of Daudi after 48 h of treatment. Considering the dif-
ferent excipients, cells were less affected by the treatment with dextran if compared with
mannitol, glycine, and trehalose (p ≤ 0.001), sucrose (p = 0.004), cellobiose (p = 0.007),
lactose (p = 0.041), and by the ones with hp-β-cyclodextrin in comparison with mannitol
and glycine (p = 0.012 and p = 0.042, respectively).

Comparing the concentrations among the different excipients, there was a statistically
significant difference between 1 and 100 mg/mL (p ≤ 0.001, p = 0.004 for dextran), between
10 and 100 mg/mL (p ≤ 0.001), and between 1 and 10 mg/mL only in the treatments with
glycine (p = 0.002), isoleucine, and methionine (p ≤ 0.001 for both).

Comparing the different excipients at the same concentrations, dextran affected the via-
bility of cells less than other treatments both at 100 mg/mL (p≤ 0.001 for hp-β-cyclodextrin,
trehalose, cellobiose, mannitol, sucrose, and lactose, p = 0.002 for glycine) and at 10 mg/mL,
(p = 0.002 for glycine and p = 0.041 for mannitol). Hp-β-cyclodextrin affected the viability
of Daudi less if compared with glycine (p ≤ 0.001), mannitol (p = 0.005), and trehalose
(p = 0.043) at 10 mg/mL, and with mannitol (p = 0.041) at 1 mg/mL.
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Figure 5. The graph represents the viability of Daudi after 48 h of treatment with the different
excipients. Light grey is 1 mg/mL, dark grey is 10 mg/mL, and black is 100 mg/mL. Data are
displayed as mean ± SE. ** for p ≤ 0.001 and * for p ≤ 0.05. Black asterisks represent the comparison
of excipients at the three concentrations, without isoleucine and methionine; red asterisks represent
all excipients at 10 and 1 mg/mL.

Considering the second pool of data in Figure 5, which compared all the excipients
at 1 and 10 mg/mL, Daudi treated with hp-β-cyclodextrin had higher viability than the
ones treated with methionine, isoleucine, and mannitol (p ≤ 0.001), glycine (p = 0.004),
and trehalose (p = 0.023); in addition, cells with dextran had higher viability than the ones
with methionine (p = 0.002) and isoleucine (p = 0.010). Lactose also impaired less Daudi
than methionine (p = 0.020). The viability of cells at 10 mg/mL was impaired more by
methionine than by hp-β-cyclodextrin, dextran, lactose (p ≤ 0.001), sucrose (p = 0.003),
cellobiose (p = 0.004), trehalose (p = 0.009). Similarly, the cell viability was affected more by
isoleucine than by hp-β-cyclodextrin, dextran (p ≤ 0.001), lactose (p = 0.004), and sucrose
(p = 0.040), by glycine than by hp-β-cyclodextrin (p = 0.002) and dextran (p = 0.014), and by
mannitol than by hp-β-cyclodextrin (p = 0.029).

4. Discussion

The development of a new medical product requires the use of animal models for
some crucial preclinical stages, but for ethical reasons, many efforts have been made to find
alternatives. After the introduction of the 3R rules (reduce, refine, and replace) to regulate
the use of animals in in vivo experiments, international organizations such as the FDA and
EMA enforce the use of in vitro and in silico methods for drug testing [48] and quantitative
risk assessment [49]. Although in vitro concentration–response curves data cannot be
directly used for clinical practice [50], modeling approaches, such as physiologically based
kinetic (PBK), can integrate data from in vitro experiments to obtain reverse dosimetry
or quantitative in vitro–in vivo extrapolation (QIVIVE). This new approach values the
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importance of the in vitro data as a reliable background to determine safe and effective
treatment doses for in vivo applications [51].

To accomplish this increasing request for reliable in vitro models, we used a human
cellular model constituted by an ad hoc designed physio (B lymphocytes) pathological
(tumoral lymphoid cells, Daudi) system that allowed us to selectively assess the effect on
cells viability of some of the most used excipients for lyophilized formulations.

Cytotoxicity results showed that for all excipients except dextran, the viability of both
lymphocytes and Daudi cells was strongly impaired by the 100 mg/mL treatments. It has
been shown that the use of excipients in high concentrations induces an osmotic unbal-
ancing, causing intracellular water loss with consequent cell shrinkage. As a result, this
phenomenon affects many homeostatic processes, halting cell proliferation and inducing
cell death [52–54]. Lower concentrations of excipients, i.e., 1 and 10 mg/mL, caused hyper-
osmotic stress that induced no cell apoptosis but, in some cases, their proliferation. In the
case of osmotic stresses, mammalian cells exploit the only known osmosensitive transcrip-
tion factor, i.e., the nuclear factor of activated T cells 5/tonicity enhancer binding protein
(NFAT5), to control the transcription of genes, with the aim of increasing the intracellular
osmolytes’ concentration. Considering the immune system, lymphoid tissues are hyperos-
motic relative to blood; thus, NFAT5 is highly expressed in the thymus, suggesting that
osmotic stress may be relevant to lymphocyte physiological function in vivo. Following this
observation, many researchers demonstrated that cells’ proliferation under conditions of
hypertonic stress strongly depends on the NFAT5-mediated response [55–58]. In addition,
cells under hyperosmotic stress, caused by the addition in the culture medium of some
non-penetrating excipients, demonstrated changes in the plasma membrane, such as the
glycosylation and translocation of the EGFR, which caused an upregulated proliferation of
cells [59].

A different behavior from all other excipients is demonstrated by dextran, which
seemed to be highly biocompatible even at the highest tested concentration. Dextran 40 is
already employed in pharmaceutical products alone at 10% w/v for intravenous infusion
as a plasma volume expander for the enhancement of the blood flow in solutions, or as
an excipient in some formulations such as Kymriah®, used for leukemia and lymphoma
at 11 mg/mL, or ocular drops at 0.1% w/v. Our results confirm the high biocompatibility
of Dextran 40, at the doses already used for human applications, due both to its high
molecular weight, which minimizes the osmotic shock to the treated cells [60,61], and to its
antioxidant and immunomodulatory activity [62].

Considering the other excipients, mannitol is one of the most used as a tonicity agent
since it is included in commercial drug products in the range of 0.04 to 10% w/v [36,63]. For
instance, in the oncological field, Yervoy® for melanoma treatment contains 10 mg/mL
of mannitol, Opdivo® used for a wide range of tumoral pathologies, among which are
lymphoma and gastrointestinal oncology, contains 30 mg/mL, and Gemzar®, for breast and
ovarian cancer, contains 40 mg/mL. Another bulking agent is glycine, used between 0.1
and 23 mg/mL, which is present at 1 mg/mL in Erbitux® and at 10 mg/mL in Cyramza®.
Sucrose is one of the most used stabilizers, usually employed in a wide concentration range
between 4 and 500 mg/mL [36]. High concentrations of these excipients are contained in
oncological drugs such as Keytruda® (70 mg/mL) and Tecentriq® (~40 mg/mL). Lactose
is used as excipients especially for oral administrable formulations of many oncological
drugs for breast cancer, such as Afinitor®, Tamoxifen®, Alecensa®, and Temodal®. In
addition, trehalose is commonly used in oncological formulations, in Mvasi® at ~6 mg/mL,
in Herceptin® at ~20 mg/mL, and in Trodelvy® at ~7 mg/mL [64].

Our results pointed out that 10 mg/mL methionine 24 h treatments selectively im-
paired the viability of Daudi cancer cells if compared to the healthy ones, lymphocytes
(p = 0.003). From the results of our preliminary study, the evident effect that the addi-
tion of methionine, recently introduced in oncological formulations, such as Phesgo® at
1.5 mg/mL for the treatment of breast cancer [65], has on the reduction of the viability of
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Daudi cancer cells opens the way to a series of possible applications of this molecule for
the development of new and more effective oncological drugs.

5. Conclusions

To conclude, biopharmaceutical discovery and development represent the driving
force for in vitro drug tests and preclinical and clinical trials studies. Freeze-drying is one
of the most widely spread methods to remove water from sensitive, thermo-liable samples
to stabilize, store and transport them, increasing their shelf life and reducing handling steps.
In addition, a stabilized dry product can significantly limit phenomena such as reductive
oxide, deamidation, and aggregation commonly known as occurring in an aqueous solution
and negatively affecting the effectiveness and/or the safety of biopharmaceuticals.

Since APIs could be strongly affected and/or damaged by freezing and drying stresses
during lyophilization, the addition of specific excipients acting as cryo- and lyoprotec-
tants is mandatory. Excipients should give consistency and stability to the formulation,
improving the API’s bioavailability and avoiding side effects during administration after
reconstitution [66].

Our studies, in addition to confirming what has already been published by several
colleagues on the cytotoxic effects of the use of high concentrations of excipients both
in in vitro and in vivo experiments [23–25,67,68], have shed light on the fact that higher
concentrations of specific excipients are well tolerated as in the case of the use of dextran.
What emerged in the behavior of molecules such as methionine is unprecedented, since it
seems that, already at 10 mg/mL, it could have exceptional potential in the preparation
of freeze-dried products to be used in oncology. Our preliminary results showed that it
could selectively increase the effectiveness of lyophilized formulations, making them more
cytotoxic to tumor cells than to healthy ones. Further in vitro and in vivo studies could
confirm this behavior at different concentrations using different tumor models.
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