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ON THE STUDY OF SLOW-FAST DYNAMICS, WHEN THE

FAST PROCESS HAS MULTIPLE INVARIANT MEASURES

B. D. GODDARD(1), M. OTTOBRE(2), K. PAINTER(3) AND I. SOUTTAR(4)

Abstract. Motivated by applications to mathematical biology, we study the
averaging problem for slow-fast systems, in the case in which the fast dynamics
is a stochastic process with multiple invariant measures. We consider both the

case in which the fast process is decoupled from the slow process and the case
in which the two components are fully coupled. We work in the setting in
which the slow process evolves according to an Ordinary Differential Equation
(ODE) and the fast process is a continuous time Markov Process with finite
state space and show that, in this setting, the limiting (averaged) dynamics
can be described as a random ODE (that is, an ODE with random coefficients.)

Keywords. Multiscale methods, Processes with multiple equilibria, Av-
eraging, Collective Navigation, Interacting Piecewise Deterministic Markov
Processes.

AMS Subject Classification 2020. 34C29, 34D05, 34E10, 34F05, 37H10,
60K35.

1. Introduction

This paper is concerned with the study of the averaging problem for coupled slow-
fast dynamics, in the case in which the slow dynamics is an Ordinary Differential
Equation (ODE) and, more importantly, the fast dynamics is a continuous time
Markov process (CTMP) with multiple invariant measures. This study is inspired
by problems in mathematical biology and in the modelling of collective behaviour
(specifically it emerged from [1] and related literature); in this work we focus on
extracting the mathematical structure underlying such problems and on tackling
it. In Section 2 we will discuss more explicitly how the theory we develop here is
relevant to such models.

To explain the difficulty in considering the averaging problem when the fast pro-
cess has multiple invariant measures, let us start by briefly recalling the classical
averaging paradigm in the case in which the fast process has a unique invariant
measure. The simplest case is the one in which the fast process evolves indepen-
dently of the slow process, i.e. it is decoupled from the slow process. To fix ideas

consider a slow-fast system (Xλ,x,v
t , V λ,v

t ), evolving as follows: the slow component
evolves in R

N according to an ODE,

dXλ,x,v
t = a(Xλ,x,v

t , V λ,v
t )dt , Xλ,x,v

0 = x , (1)

a : RN ×χ → R
N , while the fast component V λ,v

t is a CTMP on a finite state space

χ, with V λ,v
0 = v. That is, the process V λ,v

t changes state according to a given
transition matrix P every time a homogenous Poisson clock τλt with rate λ goes off.

1
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Here P = (P(v,v′))v,v′∈χ, where P(v,v′) denotes the probability of going from v

to v′ and in short we say that V λ,v
t is a (τλt ,P) – CTMP.1

As λ → ∞ the dynamics of V λ,v
t becomes faster and faster. Assume now that

the process V λ,v
t admits a unique invariant measure µ (i.e. it is ergodic), and

V λ,v
t ⇀ µ, as t → ∞, for every fixed λ > 0 ,

where the above convergence is meant in law.2 Then, as λ → ∞, the dynamics of

the slow component Xλ,x,v
t converges weakly to the so-called averaged dynamics,

namely to the solution of the following ODE3

dX̄x

t = ā(X̄x

t )dt X̄x

0 = x, (2)

where the effective coefficient ā : RN → R
N is given by

ā(z) :=
∑

y∈χ

a(z,y)µ(y) .

We emphasize that, by ergodicity of the fast process, the invariant measure µ does

not depend on the initial state v of the process V λ,v
t , hence the limiting averaged

dynamics does not depend on v either.
In the above we have taken the slow process to evolve according to an ODE and

the fast process to be a CTMP for two reasons: because this is the setting we will
consider in this paper and for ease of exposition. As is well known, however, the
conclusion is true in much greater generality (see e.g. [2] and more on the literature
in Section 2.1). In particular, a similar result still holds when the fast process is
coupled to the slow process. In the setup we have just introduced this is the case
if, for example, the entries of the transition matrix of the fast process depend not
only on the current position of the fast process but also on the position of the slow

process. In this case we denote the fast process by V λ,x,v
t rather than V λ,v

t (as
its evolution will depend on the initial datum of the slow process as well) and the

evolution of V λ,x,v
t is described by assigning a Poisson clock with rate λ and a family

of transition matrices indexed by x ∈ R
N , {Px}x∈RN = {Px(v,v

′)v,v′∈χ}x∈RN : if
the Poisson clock τλt goes off at time s > 0, then the fast process uses the transition
matrix PXλ,x,v

s
to determine the probability of transition to the next state. In short,

we write that V λ,x,v
t is a (τλt ,PXλ,x,v

t
)-CTMP.

When the slow and the fast processes are fully coupled, roughly speaking the idea
is that the slow process won’t change much in the time it takes the fast process to
reach equilibrium. So, in order to understand the limiting dynamics, one considers

an intermediate process, the so called ‘frozen process’, which we denote by Ṽ λ,x,v
t .

This process is obtained by ‘freezing’ the value of the slow component: in the setting

described so far this is the CTMP Ṽ λ,x,v
t on χ obtained by fixing Xλ,x,v

t say to

its initial value Xλ,x,v
t = x ∈ R

N , and by then using the transition matrix Px to
determine the transitions of the fast process when τλ goes off (that is, we always use

1We remark that here and throughout we will assume that the CTMP we deal with are cÃ dlÃ g
(right-continuous with left limits). Hence, if the Poisson clock goes off at time s > 0, the value of

V
λ,v
s is the new value obtained by using the transition matrix P. The paths of the slow variable

will instead be always continuous, thanks to our assumptions on a.
2Note that fixing λ > 0 and letting t → ∞ is here the same as fixing t > 0 and letting λ → ∞.
3With this setup the limit is deterministic so convergence is also in probability, but we stick

to weak convergence because it is the mode of convergence that we will consider in this paper.
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the same transition matrix Px, irrespective of the time when the Poisson clock goes

off). In other words, Ṽ λ,x,v
t is a (τλt ,Px)–CTMP. As customary, one can think of

Ṽ λ,x,v
t as a family of processes depending on the parameter x. Assuming that, for

each x fixed, the process Ṽ λ,x,v is ergodic with (unique) invariant measure µ(x; ·),4
as λ → ∞ the slow process Xλ,x,v

t converges weakly to the solution of the following
ODE

dX̄x

t = ā(X̄x

t )dt, X̄x,v
0 = x , (3)

where this time the averaged coefficient ā : RN → R
N is given by

ā(z) =
∑

v∈χ

a(z,v)dµ(z;v) .

Note that the limiting invariant measure of the fast (frozen) process is unique for
each x fixed and, again by ergodicity of the frozen process, it does not depend on
the initial state v.

Whether the fast and slow component are fully coupled or not, we have used
the unique invariant measure of the fast process (or, more precisely, of the frozen
process) to determine the limiting drift ā, and hence the limiting dynamics. If the
fast (frozen) process has more than one invariant measure (in the coupled case,
more than one for each x fixed),5 then what is the evolution we obtain as λ → ∞?
The precise answer to this question is stated in Theorem 4.4, which is the main
result of this paper. An informal statement of this theorem is as follows.

1.1. Informal statement of Main Result. Let (Xλ,x,v
t , V λ,x,v

t ) ∈ R
N × χ be a

slow-fast process where the slow component Xλ,x,v
t evolves according to the follow-

ing evolution equation,

dXλ,x,v
t = a(Xλ,x,v

t , V λ,x,v
t )dt, Xλ,x,v

0 = x, V λ,x,v
0 = v, (4)

and V λ,x,v
t is a (τλt ,PXλ,x,v

t
)-CTMP. Assume that the associated (family of) frozen

processes Ṽ λ,x,v
t – or, equivalently, the (family of) transition matrices Px – are such

that the following holds: under the dynamics of Ṽ λ,x,v
t the state space is partitioned

into a transient set, T , and L ergodic classes,6 χ = {E(1) ∪ · · · ∪ E(L) ∪ T }, where
the unions are disjoint and this decomposition is independent of x (see Note 2.2
and Section 2.1 for comments on this assumption). Because of this state space

decomposition, given any initial state v, there is probability one that Ṽ λ,x,v
t is

absorbed in one of the ergodic classes. Let q(i)(x,v) be the probability that the

frozen process Ṽ λ,x,v
t , starting at time zero from v, is absorbed in E(i) (so that

q(i)(x,v) = 1 if v ∈ E(i)). We will also make assumptions which guarantee that

the motion of the slow variable is such that, once the fast process V λ,x,v
t enters

an ergodic class, it will not leave it (see Assumption 3 (ii) in Section 4.2). In this
setting the limiting process is given by the following: let ζx,v be a discrete random
variable which can take L values and in particular takes the value i ∈ {1, . . . , L}

4We clarify that the notation µ(x; ·) means that for each x fixed µ(x; ·) is a probability measure
(in the second variable)

5Strictly speaking the number of invariant measures could depend on the x we fix, we come
back to this later.

6By ergodic class we mean a subset of state space which is irreducible and positive recurrent.
Hence, on each ergodic class E(i), the process admits a unique invariant measure, µ(i), supported
on that class.
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with probability q(i)(x,v). Draw a realization of ζx,v; if ζx,v = i then X̄x,v
t will

evolve according to

dX̄x,v
t = ā(i)(X̄x,v

t )dt, X̄x,v
0 = x (5)

where

ā(i)(z) =
∑

v∈E(i)

a(z,v)µ(i)(z;v) , (6)

and µ(i)(z; ·) is the ergodic measure of the frozen process Ṽ λ,z,v
t supported on the

class E(i). The limiting drift could also be seen as a function ā = ā(z, ζx,v),
ā : RN × {1, ..., L} → R

N . In other words, if ζx,v is as in the above, then the
limiting dynamics can be rewritten as

dX̄x,v
t = ā(X̄x,v

t , ζx,v)dt, X̄x,v
0 = x ,

with ā(z, ζx,v) = ā(i)(z) if ζx,v = i. For this reason we say that the limiting process
is a random ODE. The precise statement of this result is contained in Theorem 4.4,
which is the main (more general) result of this paper.

In this non-ergodic setting the method of multiscale expansions [2] does not seem
to be directly applicable to obtain, even just formally, an expression for the limiting
dynamics. Hence, besides technical aspects, it is important to develop an intuition
on how to obtain the limiting equation. For this reason the rest of this paper is
structured as follows.

In Section 2 we give a heuristic argument to illustrate the intuition behind our
main result and to show how such a problem naturally emerges from applications
to collective dynamics. In particular, in Note 2.2 we will make several remarks on
our main result, provide further motivation, and we will comment on the difference
between the case in which the fast (frozen) process has multiple invariant measures
and the case in which it is metastable; this is an important point from a modelling
and applications perspective. In Section 2.1 we explain relation to existing litera-
ture. Section 3 and Section 4 are devoted to proofs (and the organisation of the
proofs is better explained in the next section). To highlight main ideas, we have
strived for ‘hands on’ proofs, which don’t make use of any abstract results.

2. Heuristics and Motivation

We start with a toy example, which is a simplified version of the collective
navigation model which motivated us to look into this problem. To explain the way
in which the limit is obtained in the simplest possible scenario, in this example the
slow process has a specific drift, the fast process is decoupled from the slow process,
and it has two absorbing states (note that absorbing states are just ergodic classes
of cardinality one). We then give a heuristic explanation of how our main result is
obtained in two steps: in step one, we consider the case in which the slow component
is a general ODE, the fast component is decoupled from the slow component and
it has L absorbing classes. Then, in the second step, we first generalise to a fully
coupled slow-fast system where the fast (frozen) process has L absorbing states and
then to a fast (frozen) process with L ergodic classes.

These two steps also broadly mirror the approach of proof we take in Section 3
and Section 4, we will be more precise below.
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Toy Example. Let (Xλ,x,v
t , V λ,v

t ) be a process in R
N × {−1, 1}N , i.e. here

χ = {−1, 1}N , 7 where Xλ,x,v
t can be thought of as the vector of positions at time

t of N one-dimensional particles, each of which evolves with velocity given by the

i-th component of V λ,v
t ; that is

dXλ,x,v
t = V λ,v

t dt , Xλ,x,v
0 = x, V λ,v

0 = v . (7)

The dynamics of the velocity vector V λ,v
t evolves independently of the slow com-

ponent, according to the following rule: each particle carries a Poisson clock with
rate λ (the clocks are independent but the rate is the same for all particles); when
the i-th clock goes off the velocity of particle i switches (if it was +1 it becomes
−1 or viceversa) with a certain probability. When all the particles reach consen-

sus, i.e. if the process V λ,v
t hits either one of the states ±e where e is the vector

of length N with all entries equal to one, e := (+1, . . . ,+1), then the velocity
switches stop and all particles will indefinitely keep travelling with the consensus
velocity, ±1. That is, if for any v = (v1, . . . , vN ) ∈ {−1, 1}N we use the nota-
tion v(i) := (v1, . . . ,−vi, . . . , vN ) to denote the vector v with the ith component

switched, then the process V λ,v
t is a CTMP with overall Poisson clock of intensity

Nλ and transition matrix P with the following structure: for any v 6= ±e, we have

P(v,v′) =

{

> 0 if v′ = v(i) for some 1 ≤ i ≤ N ,

0 otherwise,
(8)

and moreover
P(e, e) = P(−e,−e) = 1 , (9)

so that e and −e are (the only) absorbing states.
By standard Markov Chain theory (see e.g. [3, Theorem 1.3.2]), the structure of

the transition matrix P implies the following two facts: given any initial velocity
configuration v, with probability one the fast process will be eventually absorbed in
either e or −e (the particles will ‘reach consensus’ and eventually will start moving
either all with velocity 1 or all with velocity −1); for any initial velocity v, there

is a positive (and computable) probability, 0 ≤ q(v) ≤ 1, that the process V λ,v
t

is absorbed in −e, so that 0 ≤ 1 − q(v) ≤ 1 is the probability that the process is
absorbed in e. We emphasize that this probability depends on the initial state v

(but not on λ). In particular in this case the state space χ is decomposed into two
ergodic classes, E(1) = {e}, E(2) = {−e}, and all other states are transient.

In this setting it is relatively easy to guess what the limiting dynamics will look
like: as λ gets larger, the velocity switches will happen faster and faster so, in the
limit λ → ∞, the fast process will reach consensus ‘immediately’, i.e. it will be
‘immediately’ absorbed either in −e or in e, with probability q(v) and 1 − q(v),
respectively. Therefore, one expects that the limiting dynamics will be described
by the following process:

dX̄x,v
t = ζvdt, X̄x,v

0 = x, (10)

where ζv is a realization of a Bernoulli random variable with

ζv =

{

−e with probability q(v)

e with probability 1− q(v).

7As customary, {−1, 1}N is the set of vectors of length N , whose components are either 1 or
-1.
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In words, the limiting dynamics is as follows: we flip a coin which has probability
q(v) of landing on −e and probability 1 − q(v) of landing on e. If the coin lands
on e then the position vector will evolve according to the ODE with drift e (i.e.
all particles will move with velocity one in a straight line), otherwise according to
the ODE with drift −e. This result is made precise in Proposition 3.1, and proved
in Section 3. Strictly speaking Proposition 3.1 is a corollary of Theorem 4.4 but
we prove it separately, as the simpler setting allows to highlight the important
ingredients of the proof.

Note 2.1. The process V λ,v
t of our toy example has multiple invariant measures;

indeed, for any α ∈ [0, 1], all functions µ on {−1, 1}N of the form

µ(v′) =







α if v′ = −e,

1− α if v′ = e,

0 for any other v′ ∈ {−1, 1}N

are invariant measures for the dynamics - and, since all the states except the ab-
sorbing states are transient, these measures are the only ones that matter for the

long time behaviour of the dynamics V λ,v
t . In particular, the measures µ(e) and

µ(−e), corresponding to the choice α = 0 and α = 1, respectively, are invariant, and
the same holds for each of the measures µv

∞ defined as

µv

∞(v′) =







q(v) if v′ = −e,

(1 − q(v)) if v′ = e,

0 for any other v′ ∈ {−1, 1}N .

(11)

Note that the above is a family of probability measures on {−1, 1}N , indexed by

the initial datum v. It is easy to show (see Lemma 3.1) that if V λ,v
0 = v then the

law of V λ,v
t converges to µv

∞. In other words, given the initial datum, we know the
corresponding limiting invariant measure. �

Step 1. The uncoupled regime. The only structure that matters in our toy
example is the fact that the fast process is a CTMP (on any finite state space χ)
with multiple absorbing states, e(1), . . . , e(L), and that, for each initial value v,
with probability one, one of these absorbing states is reached by the dynamics; let

q(i)(v) be the probability that V λ,v
t is absorbed in e(i) (if V λ,v

0 = v). It is now
easy to see that, under these assumptions on the fast process (and still assuming

that V λ,v
t is independent of Xλ,x,v

t ), if the slow process evolves according to (1), as

λ → ∞, Xλ,x,v
t will converge to the solution of

dX̄x

t = a(X̄x

t , ζ
v)dt X̄x,v

0 = x (12)

where now ζv is a discrete random variable which can take L values and is equal to
e(i) with probability q(i)(v). In words, the limiting dynamics is as follows: we have
L drifts at our disposal to choose from, namely a(1)(z) := a(z, e(1)), . . . , a(L)(z) :=
a(z, e(L)). We roll a dice (with L faces): if the dice lands on the i-th face then the
ODE we run with is the one with drift a(i). To reconcile with (5), it is worth noting
that

a(i)(z) := a(z, e(i)) =
∑

v∈χ

a(z,v)µ(i)(v) , (13)
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where µ(i) is the measure on χ defined as µ(i)(e(i)) = 1 and µ(i)(v) = 0 if v 6= e(i)

(clearly all the measures µ(i) are invariant for the fast process, similarly to the
measures µ(e) and µ(−e) for our toy example). This result is a consequence of
Theorem 4.4 so we don’t prove it explicitly, but we have presented it here as an
intermediate step for explanatory purposes.

Step 2. The fully coupled regime. We now want to understand the limiting
dynamics when the fast process is coupled to the slow process. So, assume the

slow process evolves according to (4), and V λ,x,v
t is a (τλt ,PXλ,x,v

t
) CTMP. In this

case one can use a strategy which combines the intuition given by our toy exam-
ple with the standard averaging approach for coupled processes: we consider the
‘frozen process’, obtained from the fast process by freezing the state of the slow

component, say to Xλ,x,v
t = x. This frozen process, denoted by Ṽ λ,x,v

t , is then a

(τλt ,Px)–CTMP. Assuming that Ṽ λ,x,v
t has L absorbing states (which are the same,

irrespective of the value of x we fix), and that, given any initial datum Ṽ λ,x,v
0 = v,

there is probability one of reaching one of them, one can consider the probability

q(i)(x,v) of Ṽ λ,x,v
t being absorbed in e(i). The limiting dynamics is then given by

(12), where now ζv is replaced by ζx,v, where ζx,v is equal to e(i) with probability
q(i)(x,v). This fact is proven in Theorem 4.2. Once this result is proved, since ab-
sorbing states are just ergodic classes of cardinality one, the main theorem follows
as a straightforward extension of Theorem 4.2, see Section 4.2.

Note 2.2. Let us make some comments on our main result, which we informally
stated in Section 1.1.
• There are at least two main differences between doing averaging when the fast
(frozen) process is ergodic and when it is not: i) whether the slow-fast processes
are coupled or not, in the non-ergodic setting the limiting dynamics (5) depends
on the initial datum v of the fast dynamics. This is not true when the fast process
is ergodic as, in view of ergodicity, the fast process would forget its initial state
and converge to the invariant measure, irrespective of its initial datum v; ii) in
the non-ergodic case the limiting dynamics is random, even if the slow motion is
governed by an ODE. This is in contrast with the case in which the fast process is
ergodic. Indeed, in this case, if the slow component is an ODE, the limiting aver-
aged dynamics is always deterministic, see (2) and (3). For the sake of completeness
let us point out that in the homogenization regime (see [2, Chapters 11 and 18])
the limiting dynamics can be stochastic even if the slow variable is described by an
ODE; however stochasticity in the homogenization setting comes from the fact that
the limit can be a stochastic differential equation (SDE), that is, an ODE perturbed
by random noise. The limiting dynamics (5) is random in a different sense, namely
in the sense that the coefficient of the averaged dynamics is random, so (5) is a
random ODE.
• There is a natural question concerning comparison with the case in which the
fast process is metastable (more precisely, the case in which the frozen process is
metastable, for every value of x). We are thinking for example of the Langevin
equation in double well potential, see e.g. [4]. The modelling of the effects of the
fast process is a very delicate matter, see e.g. [5] and we don’t discuss it here.
However we point out that metastable processes are processes with one invariant
measure, but such a measure is (highly) multimodal. Because of uniqueness of the
invariant measure, if the fast process is metastable the averaging regime can be
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tackled with known techniques, and the results of this paper are not needed. In
particular, if the slow variable is described by an ODE, the averaged process is (3),
and it is deterministic. In the many-invariant measures regime of this paper the
averaged process is given by (5), and it is random.
• In this work we assume that the frozen process will eventually be absorbed
by/reach an ergodic class (Assumption 3 (iii) in Section 4.2) - which, from the
point of view of migration, can be interpreted either as the group eventually reach-
ing one of many possible targets or, in the case of two targets, as successful/failed
migration. Moreover, we assume that the frozen process has the same (number of)
ergodic classes, irrespective of x (Assumption 3 (ii) in Section 4.2). This assumption
will hold or not depending on the model at hand. In particular, this assumption
is satisfied in the applications we have in mind (on which we will comment further
below) and in the queueing systems studied in [6], but it does not hold in other sce-
narios. Consider for example McKean-Vlasov type dynamics, which are non-linear
SDEs obtained in the large particle limit of interacting particle systems, see e.g. [7].
Depending on the choice of drift and on the strength of the noise coefficient, these
equations may exhibit a phase transition [8, 9, 10, 11]: typically, for large values of
the noise the dynamics has only one invariant measure but for small values of the
noise the SDE can have multiple invariant measures. If a McKean-Vlasov equation
of this type was used to model the fast process (and the slow variable appeared
in the noise coefficients of the fast process, scenario which is at the moment work
in progress from the second author and collaborators) then clearly the assump-
tion that we make in this paper would not hold. However, still within the class
of McKean-Vlasov dynamics, evolutions inspired by the Vicsek model have been
shown to have the same number of invariant measures, irrespective of the strength
of the noise - phenomenon which goes under the name of unconditional flocking,
see [12, 13, 14, 15]. In this case the assumption we make in this paper would be
satisfied.
• The proof of our main result is constructive. The main trick there is to introduce
not only the frozen process Ṽ λ,x,v, which makes use of the same transition matrix
Px every time the Poisson clock goes off, but also a further intermediate process,

V λ,x,v,ℓ
t , where ℓ = (x(j))∞j=1 is a fixed sequence of points in R

N . Such a process
moves according to the transition probability P

x(j) when the Poisson clock goes off
for the j-th time: intuitively, if the sequence (x(j))∞j=1 was a discretization of the

slow dynamics, then V λ,x,v,ℓ
t would remain close to V λ,x,v

t , see Section 4 for details.
�

Let us now further comment on motivation for this work and, more broadly, for
studying multiscale dynamics when the fast process has multiple invariant mea-
sures. The work of this paper was first inspired by the collective navigation model
introduced in [1]. In [1], a piecewise deterministic Markov process is used to model
the position and velocity of each individual in a group of animals. At random
(Poisson) times an animal makes a decision on its heading based on the infor-
mation available to it, and the authors distinguish between inherent information
(obtained e.g. through the environment) and the collective information (obtained
through the headings of the other animals in the group). Each type of information
can be acquired at different frequency and one can imagine that one of them is
obtained much faster than the other, creating a scale separation. The toy model
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we have presented can be seen as a simplified version of the model [1], where we
focus on just one type of information being acquired (the ”fast one”).

Other collective navigation models where the study of multiscale systems in
the non-ergodic setting is relevant are e.g. the recent [16, 17] where a model for
group navigation of animals towards one of two targets is introduced - again, a
spin model of the velocities was used, in conjunction with experimental data of
fish moving towards targets. In this model the animals initially move towards the
midpoint of the targets (that is, they are initially in the ”compromise region”);
after a certain point in space they transition from moving towards the midpoint of
the targets to deciding which of the two targets they will move towards (this region
is referred to as the “decision” region) and this can be viewed as a changing of the
structure of the velocity process, from having one invariant measure to two. If one
starts the animals in the “decision” region then a similar effect can be attained
using our toy model. If, however, the group starts in the “compromise” region,
then the work of [18] is more relevant, as the particles move from a region with
one invariant measure (taking the average heading of both targets) to two invariant
measures (moving towards only one of the two targets). In either case, the models
and data in [16, 17] and the references therein are indicative of the fast dynamics
(in this case a process describing the velocities of all the particles) exhibiting more
complicated invariant measure structure than universal uniqueness.

Aside from these specific models, the study of multiscale systems when the fast
process has multiple invariant measures naturally emerges when considering mul-
tiscale interacting particle systems, see e.g. [19, 20, 21] to mention just a few
references on the matter, which have recently attracted a lot of attention in sto-
chastic analysis, motivated by applications to the study of multiagent systems in
social dynamics, animal migration, opinion formation, deep learning etc. (note that
the models we consider here can be seen as multiscale interacting particle systems).
In this context one often needs to consider two limits, the large population size
limit (N → ∞, where N is the number of particles in the population) and the
scale separation limit (ǫ → 0, to use the notation of the cited references, ǫ = 1/λ
to compare with our notation). Typically, when N is fixed the fast process has
a unique invariant measure, so one knows how to take the limit ǫ → 0 first and
N → ∞ afterwards. However, if one lets N → ∞ first, the resulting dynamics can
be of McKean-Vlasov type and exhibit multiple invariant measures. While it is
known that in general these two limits do not commute, understanding the second
limit (N → ∞ first) is still largely and open problem, which the second author of
this paper and collaborators are working on.

2.1. Relation to the literature. The literature on averaging (for SDEs, stochas-
tic partial differential equations (SPDEs), jump processes etc) in the case in which
the fast (frozen) process has a unique invariant measure is vast and by now well-
developed. Hence, a complete review is outside of the scope of this paper, and
we only mention the excellent review books [2, 5] and some recent results, which
include: the case when the fast process is in compact [22] or non-compact state
space [23, 24], time dependent [25, 26], non-linear (in the sense of McKean) [27]. A
first result which proves convergence to the limiting dynamics to hold uniformly in
time has also been produced [28]; the non-Markovian setting [29] and The case in
which the fast process is periodic have been investigated as well, see e.g. [26] and
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references therein. In comparison, the study of the case in which the fast process is
non-ergodic is at early stages and there are, to the best of our knowledge, very few
works on the matter. In particular, while completing this paper we became aware of
the works [18],[6] which seem to be the only other two works who are close in spirit
and context to the present paper. The specific setup of [18], [6] and the methods of
proof used there are different from ours, but there are similarities, so we come to
compare. In [18] the authors consider slow-fast systems in which the slow variable
evolves in one dimension (in R) according to either an ODE or an SDE, and the fast
process is a Markov Chain on finite state space χ. When the slow process evolves
according to an ODE, say dXt = a(Xt, Vt)dt, they make the following assumption:
the function a is always strictly positive (so that Xt is increasing) and when x < 0
the fast process Vt has only one invariant measure, say µ(0), while for x ≥ 0 it has
two ergodic classes, and, correspondingly, two invariant measures, µ(1) and µ(2).
The limiting dynamics is then as follows: assuming X0 = x < 0, the dynamics
evolves according to

dX̄t = ā(0)(X̄t)dt, X̄0 = x, ā(0)(x) :=
∑

v∈χ

a(x,v)dµ(0)(v),

until it hits the origin x = 0; at that point we flip a coin and with probability q(i),
i ∈ {1, 2}, for which an expression is provided, the process X̄t continues according
to

dX̄t = ā(i)(X̄t)dt, X̄0 = x, a(i)(x) :=
∑

v∈E(i)

a(x,v)dµ(i)(v) .

In [18], like in the present paper, once the slow variable becomes positive, the fast
process ‘picks’ an ergodic class and the slow process is such that the fast process
will remain in that ergodic set.
There are clear similarities between the setting of [18] and the setting of this paper,
but also key differences. Firstly, our setting is ‘dimension independent’, in the sense
that the slow process can live in any dimension, not just on the real line. In [18] the
‘flip of the coin’ happens when the slow process hits the origin and the probabilities
q(i) of being absorbed in either ergodic class do not depend on the initial datum
of the fast dynamics (or on the initial datum of the slow dynamics either). Thus,
the limiting dynamics does not depend on the initial condition of the fast process
either. This is because in the setting of [18] the fast process has no transient states.
As a consequence of this, it is natural in their case to think of the limiting process
as a process on a graph, with the graph as in [18, Figure 1]. In our case we could
think of the process as living on a family of graphs, indexed by the initial conditions
(x,v) (or simply v in the uncoupled case). However, in our setup we find it simpler
to think of it as a random ODE.

In [6] the slow variable is a jump-diffusion process, where the jump part can
force the fast process to move between ergodic classes and the fast process evolves
on a finite state space. The number of ergodic classes is fixed, irrespective of x,
and there are no transient states.

Another related stream of literature is the one concerned with singularly per-
turbed ODEs, see for example [30, 31, 32, 33, 34], and references therein. We
also flag up [35], which tackles the issue of multiple invariant measures for the fast
dynamics in the context of multiscale Partial differential equations.
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Finally, we mention that the processes considered in this paper can be seen
as systems of interacting Piecewise Deterministic Markov Processes (PDMPs, also
referred to as velocity-jump processes or run-and-tumble); see [36]. PDMPs are
very popular both as modelling tools in mathematical biology, see [37], and as
sampling mechanisms [38, 39].

3. Non fully-coupled regime: toy example

Throughout this section, let Xλ,x,v
t , V λ,v

t be the process of the toy example
introduced in Section 2, see (8)-(9), and let X̄x

t be as in (10). Then the following
holds.

Proposition 3.1. For any t > 0 there exists a constants K > 0 (possibly dependent
on t, but independent of λ) and a constant c1 > 0 such that

∣
∣
∣E
[
f
(
Xλ,x,v

t

)]
− E

[
f(X̄x,v

t )
]
∣
∣
∣ ≤ K‖f‖

(
1√
λ
+ e−c1

√
λ

)

, (14)

for all x ∈ R
N ,v ∈ {−1,+1}N and f : RN → R such that f ∈ C1

b (R
N );8 in the

above ‖f‖ := ‖f‖∞ +
∑

i ‖∂xif‖∞ and ‖ · ‖∞ is the supremum norm.

The rate of convergence in (14) is not optimal, see footnote 9. As already com-
mented, by (8) with probability one the fast process eventually hits one of the
absorbing states. That is,

P[V λ,v
t ∈ {e,−e}] → 1, as t → ∞, (15)

for all λ > 0,v ∈ {−1,+1}N . One can obtain Proposition 3.1 assuming (15)
only, i.e one can use (15) instead of (8), but here we stick with the more concrete
assumption (8). Note also that we can write down expectations of the process (10)
explicitly: for any f : RN → R we have

E
[
f(X̄x,v

t )
]
= q(v)f(x − te) + (1− q(v))f(x + te), (16)

and this fact will be explicitly used in the proof. Before proving the above propo-

sition, we show in the next lemma that the fast dynamics V λ,v
t (defined after (7))

converges to the limiting measure (11). This lemma would be a trivial statement

if the fast process had only one invariant measure (as V λ,v
t is just a Markov Pro-

cess on finite state space); even with the process having many invariant measures
the proof is still relatively simple, but we could not find it in the literature so for
completeness we include the proof of Lemma 3.1 in the appendix.

Lemma 3.1. Let (8)-(9) hold, and let µλ,v
t denote the law of V λ,v

t . Then the
following holds: there exist K1, c1 > 0 (independent of v ∈ {−1,+1}, λ > 0 and
t > 0) such that

|µλ,v
t ({e,−e})− 1| ≤ K1e

−c1tλ (17)

|µλ,v
t (−e)− q(v)| ≤ K1e

−c1tλ (18)

|µλ,v
t (e)− (1− q(v))| ≤ K1e

−c1tλ. (19)

Hence, there exists K > 0 such that

‖µλ,v
t − µv

∞‖TV ≤ Ke−c1tλ, (20)

8This is the space of continuous and bounded real-valued functions on R
N with continuous

and bounded derivative.
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where ‖ ·‖TV is the total variation norm, i.e ‖µλ,v
t ‖TV =

∑

v′∈χ |µ
λ,v
t (v′)|, and µv

∞
has been introduced in (11).

Proof. The proof of Lemma 3.1 can be found in Appendix A
�

Proof of Proposition 3.1. We begin by defining t0 := 1√
λ
.9 Using the properties of

conditional expectation, and letting t > t0 we can write the following

E
[
f
(
Xλ,x,v

t

)]
= P[V λ,v

t0 = −e]E
[
f
(
Xλ,x,v

t

)
|V λ,v

t0 = −e
]

︸ ︷︷ ︸

=:A

+ P[V λ,v
t0 = e]E

[
f
(
Xλ,x,v

t

)
|V λ,v

t0 = e
]

︸ ︷︷ ︸

=:B

+ P[V λ,v
t0 /∈ {e,−e}]E

[
f
(
Xλ,x,v

t

)
|V λ,v

t0 /∈ {e,−e}
]

︸ ︷︷ ︸

=:C

(21)

From (16) and (21) we have
∣
∣
∣E
[
f
(
Xλ,x,v

t

)]
− E

[
f(X̄x,v

t )
]
∣
∣
∣

≤ |A− q(v)f(x − te)|+ |B − (1− q(v))f(x + te)|+ |C|.
(22)

Taking into account (22), (14) follows if we show there exists a constant K > 0
such that the following three inequalities hold

(1)

|A− q(v)f(x − te)| ≤ K‖f‖
(

1√
λ
+ e−c1

√
λ

)

, (23)

(2)

|B − (1 − q(v))f(x + te)| ≤ K‖f‖
(

1√
λ
+ e−c1

√
λ

)

. (24)

(3) Finally,

|C| ≤ K‖f‖e−c1
√
λ. (25)

By using the fact that for any three random variables X,Y, Z, the following holds
E[E[X |Y, Z]|Z] = E[X |Z], we can rewrite A as

A = P[V λ,v
t0 = −e]E

[
f
(
Xλ,x,v

t

)
|V λ,v

t0 = −e
]

= P[V λ,v
t0 = −e]E

[
E
[
f
(
Xλ,x,v

t

)
|V λ,v

t0 = −e, Xλ,x,v
t0

]
|V λ,v

t0 = −e
]
.

(26)

Now we use the fact that if V λ,v
t0 = −e, then the dynamics of Xλ,x,v

t is deterministic
for t ≥ t0:

E
[
f
(
Xλ,x,v

t

)
|V λ,v

t0 = −e, Xλ,x,v
t0

]
= f(Xλ,x,v

t0 − (t− t0)e). (27)

Using (26) and (27), we obtain

A = P[V λ,v
t0 = −e]E

[
f(Xλ,x,v

t0 − (t− t0)e)|V λ,v
t0 = −e]. (28)

9 We note that this can be pushed to λ−l for any l < 1, and that in this case, we recover the
rate λ−l on the right hand side of (14). To see this, observe that in the following we only need

that t0λ → ∞ as λ → ∞. For simplicity we keep t0 = 1
√

λ
.
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By (28) and the triangle inequality, we have

|A− q(v)f(x − te)|
≤ P[V λ,v

t0 = −e]|E
[
f(Xλ,x,v

t0 − (t− t0)e)|V λ,v
t0 = −e

]
− f(x− te)|

︸ ︷︷ ︸

=:D

+ |f(x− te)||P[V λ,v
t0 = −e]− q(v)|.

(29)

Since f is Lipschitz continuous, we also have

D ≤ E

[∣
∣
∣f(X

λ,x,v
t0 − (t− t0)e)− f(x− te)

∣
∣
∣ | V λ,v

t0 = −e
]

≤ ‖f‖E
[

‖Xλ,x,v
t0 − x+ t0e‖2 | V λ,v

t0 = −e
]

≤ ‖f‖
(

E

[

‖Xλ,x,v
t0 − x‖2 | V λ,v

t0 = −e
]

+ t0‖e‖2
)

≤ K‖f‖ · 1√
λ
,

(30)

where ‖ · ‖2 is the Euclidean norm. In the last inequality we have also used the fact

that Xλ,x,v
t0 is necessarily in a (Euclidean, closed) ball of radius t0

√
N around x,

which is due to the fact that each particle has velocity of magnitude 1. By (18) we
have

|f(x− te)||P[V λ,v
t0 = −e]− q(v)|

≤ ‖f‖∞|P[V λ,v
t0 = −e]− q(v)| ≤ K1e

−c1
√
λ‖f‖∞,

(31)

where ‖ · ‖∞ is the supremum norm. From (29), (30) and (31), (23) follows. The
inequality (24) is shown in exactly the same way, using (19) instead of (18).

We also have that

|C| ≤ P[V λ,v
t0 /∈ {e,−e}]‖f‖∞ ≤ K1e

−c1
√
λ‖f‖∞,

where we used (17). Hence (25) is shown. Then by (22), (23), (24) and (25), (14)
follows so the proof is complete. �

4. Fully coupled regime

In this section we consider the setup of Step 2 in Section 2; that is, Xλ,x,v
t

and V λ,x,v
t are fully coupled, and evolve according to (4). For ease of proof, as

outlined in Step 2 of Section 2, we split this section into two subsections; in Section

4.1 we start from the case when the frozen process Ṽ λ,x,v
t has L absorbing states

e(1), . . . , e(L) ∈ χ. Then in Section 4.2 we state and prove the more general result,

Theorem 4.4, when Ṽ λ,x,v
t has L ergodic classes. First, we make the following

assumption on a which will hold throughout Section 4.1 and Section 4.2.

Assumption 1. Let a : RN × χ → R
N . For every v ∈ χ, the function a(·,v) is

continuous and bounded.

Note that since χ is finite, Assumption 1 means, in particular, that the function

a is bounded and continuous, uniformly in v. If Ṽ λ,x,v
t is the frozen process (which,

we recall, is a (τλt ,Px)-CTMP) then Ṽ x,v
k denotes the discrete-time version of the

frozen process, namely the process that changes value at every time-unit (as opposed
to when the Poisson clock goes off) by using the transition probability Px. In
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particular, denoting the law of Ṽ λ,x,v
t by µ̃λ,x,v

t and the law of Ṽ x,v
k by µ̃x,v

k , the

following relation between µ̃λ,x,v
t and µ̃x,v

k holds:

µ̃λ,x,v
t =

∞∑

k=0

P
[
τλt = k

]
µ̃x,v
k . (32)

Since the slow and fast components are coupled, we can’t study the fast dynamics
independently of the slow one. For this reason we will use two intermediate pro-

cesses, the frozen process, Ṽ λ,x,v
t , and a process which, intuitively, depends on a

fixed sequence of states of the slow variable, V λ,x,v,ℓ
t , see Section 4.1 for a precise

definition.

4.1. Frozen process with multiple absorbing states. In this subsection we

assume that for every x ∈ R
N , the frozen process Ṽ λ,x,v

t associated with the fast

process V λ,x,v
t appearing in (4) has L absorbing states e(1), . . . , e(L) ∈ χ. We make

the following assumption on the transition probabilities of the fast process.

Assumption 2. The following hold for the function P : RN × χ× χ → [0, 1].

(i) Transition probabilities: For all x ∈ R
N and v ∈ χ,

∑

v′∈χ Px(v,v
′) = 1.

(ii) The states e(1), . . . , e(L) ∈ χ are absorbing states: For all 1 ≤ i ≤ L and
x ∈ R

N , Px(e
(i), e(i)) = 1.

(iii) Probability of absorption: There exist ñ ≥ 1 and z0 < 1 such that for all
x ∈ R

N ,v ∈ χ,

P[Ṽ x,v
ñ /∈ {e(1), . . . , e(L)}] ≤ z0.

(iv) Lipschitzianity in x: There exists K0 > 0 such that for all v ∈ χ and x,x′ ∈
R

N ,
∑

v′∈χ

|Px(v,v
′)− Px′(v,v′)| ≤ K0‖x− x′‖1

where ‖w‖1 =
∑n

i=1 |wi| for any w ∈ R
N .

Because the fast process evolves in finite state space, (i) − (iv) of Assumption
2 imply the state space decomposition χ = {E(1) ∪ · · · ∪ E(L) ∪ T }, outlined in
Section 1.1, with E(i) = e(i). Assumption 2 (iii) implies that the fast process will
be absorbed into some absorbing state e(i), and Assumption 2(ii) implies that slow
variable will never have the effect of making the fast process change absorbing state.
Moreover, Assumption 2 (iii) requires the rate of absorption to be independent of x.
This implies that the constants in the convergence rates of Lemma 4.1 and Lemma
4.3 are independent of x.

Let µ̃x,v
∞ be the measure on χ defined as follows:

µ̃x,v
∞ (v′) :=

{

qi(x,v) if v′ = e(i) for some 1 ≤ i ≤ L,

0 otherwise,
(33)

where qi(x,v) is the probability that Ṽ λ,x,v
t is absorbed in e(i); see, for example, [3,

Chapter 3] for details on how to calculate qi(x,v) using the transition probabilities.
The next lemma (which is the analogue of Lemma 3.1 in the decoupled case)

states that µ̃x,v
∞ is the limiting distribution of Ṽ λ,x,v

t .
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Lemma 4.1. Let Assumption 2 hold. Then there exist K, c1 > 0, independent of
x ∈ R

N , v ∈ χ, λ > 0 and t ≥ 0, such that

‖µ̃λ,x,v
t − µ̃x,v

∞ ‖TV ≤ Ke−c1tλ, (34)

Proof. We do not give details of the proof, since the argument is completely anal-
ogous to the one in the proof of Lemma 3.1. However, note that K and c1 in (34)
are independent of x in this case because of Assumption 2 (ii)− (iii). �

It is useful to introduce a further process V λ,x,v,l
t , depending on an extra pa-

rameter, namely on a sequence l =
(
x(j)

)∞
j=1

with each x(j) ∈ R
N . This process

is a continuous time random process with an underlying Poisson clock (of rate λ),
for which the transition matrix at the kth switch is P

x(k) (this process is time-

inhomogenous). We denote the law of V λ,x,v,l
t by µλ,x,v,l

t . We denote the marginal
of the law of the fully coupled dynamics with respect to the fast component (i.e. the
marginal obtained when the law of the slow component has been integrated out)

by µλ,x,v
t . Now we state two lemmas and our main theorem; proofs are postponed.

Lemma 4.2 studies the distance between the law of the frozen process and the law

of V λ,x,v,l
t , while Lemma 4.3 quantifies the distance between the (marginal) law of

the fast process, µλ,x,v
t , and the limit measure of the frozen process, µ̃x,v

∞ .

Lemma 4.2. Let Assumption 1 and Assumption 2 hold. Then there exists K > 0
independent of x ∈ R

N , v ∈ χ, λ and l := {x(k)}∞k=1 ⊂ B̄(x, (1 − z0)/2K0ñ) such
that

‖µ̃λ,x,v
t − µλ,x,v,l

t ‖TV ≤ K sup
i
{‖x− x(i)‖1}, (35)

where ‖ · ‖TV is the total variation norm, and B̄(x, (1 − z)/2K0ñ) is the 1-norm
closed ball centred on x with radius (1− z)/2K0ñ.

Lemma 4.3. Let Assumption 1 and Assumption 2 hold. Then there exists K > 0
independent of x, v, λ and t > 0 such that

‖µλ,x,v
t − µ̃x,v

∞ ‖TV ≤ Ke−c1tλ +Kt, (36)

where µ̃x,v
∞ is as in (33).

Note 4.1. Equation (36) does not state

‖µλ,x,v
t − µ̃x,v

∞ ‖TV → 0, (37)

for fixed λ > 0, as t → ∞, as was the case in the decoupled regime (see (20)).

Because of the coupling, in general as t → ∞, µλ,x,v
t converges to something other

than µ̃x,v
∞ . In other words, it need not be the case that µ̃x,v

∞ = limt→∞ µλ,x,v
t .

Instead, one would expect that (37) might hold for fixed t > 0, as λ → 0. This
is not implied by (36), so (36) may not be sharp. While we don’t need to show this
convergence, we point out that the focus of the proof of Theorem 4.2 is on working
with times t of the order 1/

√
λ (see the proof of Theorem 4.2), and for these times

(36) implies (37) for fixed t > 0, as λ → 0. �

Now we can define the averaged process:

dX̄x,v
t = a(X̄x,v

t , ζx,v)dt, X̄x,v
0 = x. (38)
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where ζx,v is a discrete random variable taking values e(1), . . . , e(L), such that
ζx,v = e(i) with probability qi(x,v). We can write down the expectation of the
above process explicitly:

E
[
f(X̄x,v

t )
]
=

L∑

i=1

qi(x,v)T i
t f(x), (39)

where T i
t f(x) := f(yi(t)) where yi(t) is the unique solution of dyi

dt = a(yi(t), e(i))

with initial condition yi(0) = x. Note that formula (16) in Section 3 is a particular
instance of (39), and indeed in the setting of Section 3 one has T 1

t f(x) = f(x− te)
and T 2

t f(x) = f(x+ te).

Theorem 4.2. Let Assumption 1 hold and let Xλ,x,v
t be as in (4), where we assume

that the fast process V λ,x,v
t in (4) is such that Assumption 2 holds (that is, in short,

we are in the setting in which the frozen process has L absorbing states). Let X̄x,v
t

as in (38). Then there exists K > 0, possibly dependent on t, such that

∣
∣
∣E[f(X

λ,x,v
t )]− E

[
f(X̄x,v

t )
]
∣
∣
∣ ≤ K‖f‖ 1√

λ
, for all x ∈ R

N , v ∈ χ

for all f : RN → R such that f ∈ C1
b (R

N ), where we recall the notation ‖f‖ :=
‖f‖∞ +

∑

i ‖∂xif‖∞.

Before proving Lemma 4.2, Lemma 4.3, and Theorem 4.2, we outline some pre-
liminaries. We begin by pointing out the structure of the transition matrices. In the
following we denote by Px the transpose of the transition matrix Px, i.e Px := PT

x
.

Hence if µ0 is the initial law of Ṽ λ,x,v
k , then µ1 = Pxµ0 is the law of Ṽ λ,x,v

1 . By
possibly ‘reordering’ the states in χ (so that the first L coincide with the absorbing
states) we can write

Px =

[
IL PAb

x

0 PNA
x

]

.

That is, with this ‘reordering’ the matrix Px takes a block structure where IL ∈
[0, 1]L×L is the L×L identity matrix, 0 ∈ [0, 1](2

N−L)×L is the zero matrix, PAb
x

∈
[0, 1]L×(2N−L) contains the probabilities of moving from a non-absorbing state to

an absorbing state and PNA
x

∈ [0, 1](2
N−L)×(2N−L) contains the probabilities of

moving from a non-absorbing state to a non-absorbing state. Hence,

P k
x
=

[

IL

∑k−1
i=0 PAb

x

(
PNA
x

)i

0
(
PNA
x

)k

]

. (40)

Note that this is simply the transpose of the transition matrix of the process where
k jumps are done in a row. In a similar way, given a sequence l, we can write the

transpose of the transition matrix of the process V x,v,l
k (which we define to be the

discrete-time version of V λ,x,v,l
t ) up to k jumps

P
x(k) · · ·Px(1) =

k−1∏

i=0

P
x(k−i) =

[

IL

∑k−1
i=0 PAb

x(i+1)

∏i−1
j=0 P

NA
x(i−j)

0
∏k−1

i=0 PNA
x(k−i)

]

, (41)
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where we use the convention that a product over an empty set is the identity, to
ease notation. Using (40) and (41) we have

P k
x
−

k−1∏

i=0

P
x(k−i)

=

[

0
∑k−1

i=0

(

PAb
x

(
PNA
x

)i − PAb
x(i+1)

∏i−1
j=0 P

NA
x(i−j)

)

0
(
PNA
x

)k −∏k−1
i=0 PNA

x(k−i)

]

.

(42)

Let ‖ · ‖op be the operator norm of a matrix, namely:

‖A‖op = sup
‖u‖1=1

‖Au‖1.

By Assumption 2 (iii)

‖
(
PNA
x

)ñ ‖op ≤ z0 < 1. (43)

More precisely,

‖
(
PNA
x

)ñ ‖op = max
v/∈{e(1),...,e(L)}

P[Ṽ x,v
ñ /∈ {e(1), . . . , e(L)}] ≤ z0 < 1.

We also define

CAb := sup
x

‖PAb
x

‖op. (44)

We also have, by Assumption 2 (iv) that for all x,x′ ∈ R
N ,

‖PNA
x

− PNA
x′ ‖op + ‖PAb

x
− PAb

x′ ‖op ≤ K0‖x− x′‖1. (45)

Proof of Lemma 4.2. First we consider the matrix (42). We wish to bound the
operator norm of such a matrix. We can write the difference in the bottom right
hand block of (42) as

(
PNA
x

)k −
k−1∏

i=0

PNA
x(k−i) =

k−1∑

j=0

(
j−1
∏

i=0

PNA
x(k−i)

)

(
PNA
x

− PNA
x(k−j)

) (
PNA
x

)k−1−j
. (46)

Using (43), (45) and (46) we then have

∥
∥
∥

(
PNA
x

)ñ −
ñ−1∏

i=0

PNA
x(ñ−i)

∥
∥
∥
op

≤ K0ñ‖x− x(i)‖1.

Hence, using (43) yields, for all subsequences {x(ni)}∞i=0 of l

‖
ñ−1∏

i=0

PNA
x
(ñ−ni)

‖op ≤ z0 +K0ñ max
1≤i≤k

‖x− x(ni)‖1 ≤ z0 + 1

2
=: z̃ < 1.

Using (43), (45) and (46) we have

∥
∥
∥

(
PNA
x

)k −
k−1∏

i=0

PNA
x(k−i)

∥
∥
∥
op

≤ C

k−1∑

j=0

z̃⌊
k−1
ñ ⌋‖x− x(k−j)‖1

≤ C̃ · k · z̃⌊ k−1
ñ ⌋ max

1≤i≤k
‖x− x(i)‖1

(47)
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for some C̃ > 0 independent of k and x. Now we consider the upper right block:

k−1∑

i=0



PAb
x

(
PNA
x

)i − PAb
x(i+1)

i−1∏

j=0

PNA
x(i−j)





≤
k−1∑

i=0

(
PAb
x

− PAb
x(i+1)

) (
PNA
x

)i
+

k−1∑

i=0

PAb
x(i+1)




(
PNA
x

)i −
i−1∏

j=0

PNA
x(i−j)





(48)

Using (43), (44), (47) and (48)

∥
∥
∥

k−1∑

i=0



PAb
x

(
PNA
x

)i − PAb
x(i+1)

i−1∏

j=0

PNA
x(i−j)





∥
∥
∥
op

≤ C
k−1∑

i=0

z
⌊ i
ñ ⌋

0 ‖x− x(i+1)‖1 + C̃ · CAb
k−1∑

i=0

i · z̃⌊ i−1
ñ ⌋ max

1≤j≤i
‖x− x(j)‖1

≤ C max
1≤i≤k

‖x− x(i)‖1

(49)

for some C > 0 independent of k. Hence, by (42), (47) and (49)

‖P k
x
−

k−1∏

i=0

P
x(k−i)‖op ≤ C max

1≤i≤k
‖x− x(i)‖1. (50)

Now (35) follows from (50) by writing (where we denote by µx,v,l
k the law of V x,v,l

k ,

the discrete version of V λ,x,v,l
t )

‖µ̃λ,x,v
t − µλ,x,v,l

t ‖TV = ‖
∞∑

k=0

P
[
τλ(t) = k

]
(µ̃x,v

k − µx,v,l
k )‖TV

≤
∞∑

k=0

P
[
τλ(t) = k

]
‖µ̃x,v

k − µx,v,l
k ‖TV

≤
∞∑

k=0

P
[
τλ(t) = k

]
‖P k

x
−

k−1∏

i=0

P
x(k−i)‖op

≤ C sup
i

‖x− x(i)‖1.

�

Proof of Lemma 4.3. Firstly,

‖µλ,x,v
t − µ̃x,v

∞ ‖TV ≤ ‖µλ,x,v
t − µ̃λ,x,v

t ‖TV + ‖µ̃λ,x,v
t − µ̃x,v

∞ ‖TV. (51)

From (35) we have

‖µλ,x,v
t − µ̃λ,x,v

t ‖TV ≤ sup
l∈L

‖µ̃λ,x,v
t − µλ,x,v,l

t ‖TV

≤ C sup
x′∈B̄(x,‖a‖∞t)

‖x− x′‖1

≤ Ct,

(52)

where L is the space of sequences (x(k))∞k=1 with terms x(k) ∈ B̄(x, ‖a‖∞t) and
B̄(x, ‖a‖∞t) is the 1-norm closed ball centred on x with radius ‖a‖∞t. To see the
first step of this inequality notice that at time t the slow dynamics is contained in
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B̄(x, ‖a‖∞t), so all terms of the sequence of positions that the Poisson clock goes off
at are contained in B̄(x, ‖a‖∞t). Finally, (36) follows from (34), (51) and (52). �

Proof of Theorem 4.2. The proof is analogous in spirit to the proof of Proposition
3.1. We begin by defining t0 := 1√

λ
. Instead of (22), using (39) we have

∣
∣
∣E
[
f
(
Xλ,x,v

t

)]
− E

[
f(X̄x,v

t )
]
∣
∣
∣

≤
L∑

i=1

|P[V λ,x,v
t0 = e(i)]E

[
f
(
Xλ,x,v

t

)
|V λ,x,v

t0 = e(i)
]
− qi(v)T i

t f(x)|

+ P[V λ,x,v
t0 /∈ {e(1), . . . , e(L)}]|E

[
f
(
Xλ,x,v

t

)
|V λ,x,v

t0 /∈ {e(1), . . . , e(L)}
]
|.

Now, instead of (23)-(25) we proceed by proving the existence of a constant K > 0
such that the following two bounds hold

(1) For every 1 ≤ i ≤ L

|Ai − qi(x,v)T i
t f(x)| ≤ K‖f‖ 1√

λ
, (53)

where Ai = P[V λ,x,v
t0 = e(i)]E

[
f
(
Xλ,x,v

t

)
|V λ,x,v

t0 = e(i)
]
.

(2) We have

|C| ≤ K
1√
λ
‖f‖, (54)

where C := P[V λ,x,v
t0 /∈ {e(1), . . . , e(L)}]E

[
f
(
Xλ,x,v

t

)
|V λ,x,v

t0 /∈ {e(1), . . . , e(L)}
]

Equation (53) is shown by first writing

E
[
f
(
Xλ,x,v

t

)
|V λ,x,v

t0 = e(i)
]
= E[T i

t−t0f(X
λ,x,v
t0 )], t > t0 (55)

so that a similar procedure to (29) can be followed. That is, we write

|Ai − qi(x,v)T i
t f(x)| ≤ |E[T i

t−t0f(X
λ,x,v
t0 )]− T i

t f(x)|
+ |T i

t f(x)||P[V λ,x,v
t0 = e(i)]− qi(x,v)|.

(56)

Instead of (30) we use Assumption 1 to address the first term of (56) to get

|E[T i
t−t0f(X

λ,x,v
t0 )]− T i

t f(x)| ≤ sup
x′∈B̄(x,‖a‖∞t0)

∣
∣T i

t−t0f(x
′)− T i

t f(x)
∣
∣

≤ K‖f‖ · 1√
λ
.

(57)

Instead of (31) we have that there exists K̃ > 0 such that

|T i
t f(x)||P[V λ,x,v

t0 = e(i)]− qi(x,v)| ≤ |T i
t f(x)||µλ,x,v

t − µ̃x,v
∞ ‖TV

≤ |T i
t f(x)|(Ke−c1t0λ +Kt0)

≤ K̃‖f‖∞
1√
λ
,

(58)

having used Lemma 4.3 and Assumption 1. Hence, by (57) and (58), (53) follows.
Equation (54) is shown in the same way as (25), using Lemma 4.3. This concludes
the proof. �



20 B. D. GODDARD(1), M. OTTOBRE(2) , K. PAINTER(3) AND I. SOUTTAR(4)

4.2. Frozen process with multiple ergodic classes. Now we extend the result
of Theorem 4.2 to the case where, instead of absorbing states, we have ergodic

classes. That is, each e(i) is now a set of states E(i) = {e(i)1 , . . . , e
(i)
mi}, within

which, the frozen process is ergodic in the sense that there is one unique invariant
measure µ(i)(x; ·) if we restrict to this set.

Assumption 3. The following hold for the function P : RN × χ× χ → [0, 1]

(i) Transition probabilities: For all x ∈ R
N and v ∈ χ, we have

∑

v′∈χ Px(v,v
′) = 1.

(ii) The sets E(1), . . . , E(L) are ergodic classes: For all 1 ≤ i ≤ L,x ∈ R
N and 1 ≤

j ≤ mi we have
∑mi

j′=1 Px(e
(i)
j , e

(i)
j′ ) = 1. Furthermore for every v ∈ E(i) there

exists n′ ≥ 1, which is independent of v, such that

P[Ṽ x,v
n′ = e

(i)
j ] > 0, for every 1 ≤ j ≤ mi.

(iii) Probability of absorption: There exist ñ ≥ 1 and z0 < 1 such that for all
x ∈ R

N ,v ∈ χ

P[Ṽ x,v
ñ /∈ {E(1) ∪ . . . ∪E(L)}] ≤ z0.

(iv) Lipschitzianity in x: There exists K0 > 0 such that for all v ∈ χ and x,x′ ∈
R

N ,
∑

v′∈χ

|Px(v,v
′)− Px′(v,v′)| ≤ K0‖x− x′‖1

where ‖w‖1 =
∑n

i=1 |wi| for any w ∈ R
N .

Note 4.3. In the case where the ergodic classes are single states, i.e E(i) = e(i),
Assumption 3 is equivalent to Assumption 2. Assumption 3 (ii) implies the existence
of the unique invariant measure µ(i)(x; ·) for each i = 1, . . . , L and x ∈ R

N . �

The proof of this result is very similar to Theorem 4.2, but we first introduce
some new notation. Instead of (33) we have

µ̃x,v
∞ (v′) :=

{

q(i)(x,v) · µ(i)(x;v′) if v′ = e
(i)
j for some 1 ≤ i ≤ L, 1 ≤ j ≤ mi

0 otherwise,

where q(i)(x,v) is the probability that Ṽ λ,x,v
t enters e(i); again, see, for exam-

ple, [3, Chapter 3] for details on how to calculate q(i)(x,v) using the transition
probabilities. Note that for fixed x,v, µ̃x,v

∞ is a probability measure since
∑

v′∈χ

µ̃x,v
∞ (v′) =

∑

1≤i≤L

∑

v′∈E(i)

q(i)(x,v) · µ(i)(x;v′) = 1.

Further, note that the existence of q(i)(x,v′) and the convergence of µ̃λ,x,v
t to µ̃x,v

∞
for fixed t > 0 as λ → ∞ is implied by Assumption 3. Now we can define the
averaged process X̄x,v

t , namely:

dX̄x,v
t =

mζx,v
∑

j=1

µ(ζx,v)(x; e
(ζx,v)
j )a(X̄x,v

t , e
(ζx,v)
j )dt, X̄x,v

0 = x, (59)

where ζx,v is a random variable, independent of time, with possible values 1, . . . , L
such that ζx,v = i with probability q(i)(x,v).
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The expectation of X̄x,v
t is the same as in (39) which we write out here for the

convenience of the reader

E
[
f(X̄x,v

t )
]
=

L∑

i=1

qi(x,v)T i
t f(x), (60)

except this time T i
t f(x) := f(yi(t)) where yi(t) is the unique solution of the equation

dyi

dt
=

mi∑

j=1

µ(i)(x; e
(i)
j )a(X̄x,v

t , e
(i)
j ),

with initial condition yi(0) = x.

Theorem 4.4. Let Assumption 1 hold and let Xλ,x,v
t be as in (4), where we assume

that the fast process V λ,x,v
t in (4) is such that Assumption 3 holds (that is, in short,

we are in the setting in which the frozen process has L absorbing classes). Let X̄x,v
t

as in (59). Then there exists K > 0, possibly dependent on t, such that

∣
∣
∣E[f(X

λ,x,v
t )]− E

[
f(X̄x,v

t )
]
∣
∣
∣ ≤ K‖f‖ 1√

λ
, for all x ∈ R

N , v ∈ χ. (61)
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Appendix A. Auxiliary proofs

Proof of Lemma 3.1. We begin by proving (17). In the following, we denote by

{V v(k)}∞k=0 the discrete time version of the Markov chain V λ,v
t . That is, {V v(k)}∞k=0

is the process that changes value at every time-unit rather than when the Poisson
clock goes off according to the transition probabilities P(v,v′) of going from state
v ∈ {−1,+1}N to v′ ∈ {−1,+1}N (construction of this discrete time-process is
analogous to (32)).

There is at least one way of reaching e or −e after N steps of the discrete
time Markov chain V v(k) and hence the probability that the chain has not been
absorbed after N steps is strictly less than 1 (i.e P [V v(N) /∈ {e,−e}] ≤ bv < 1).
Since {−1,+1}N is finite, there exists b < 1 independent of v (but dependent on
N) such that

P [V v(N) /∈ {e,−e}] ≤ b.

Hence, for all k,

P [V v(k) /∈ {e,−e}] ≤ (P [V v(N) /∈ {e,−e}])⌊
k
N ⌋ ≤ b⌊

k
N ⌋. (62)
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From here, we assume that b > 0, otherwise we are done. Using (62) and the
distribution of the Poisson process τNλ

t

P[V λ,v
t /∈ {e,−e}] =

∞∑

k=0

P
[
τNλ
t = k

]
P [V v(k) /∈ {e,−e}]

≤
∞∑

k=0

P
[
τNλ
t = k

]
b⌊

k
N ⌋ ≤

∞∑

k=0

(Nλt)ke−Nλt

k!
b⌊

k
N ⌋.

(63)

Then, since ⌊ k
N ⌋ ≥ k

N − N−1
N we can write

∞∑

k=0

(Nλt)ke−Nλt

k!
b⌊

k
N ⌋ ≤ b−

N−1
N e−Nλt

∞∑

k=0

(Nλtb1/N )k

k!

≤ b−
N−1
N e−Nλt(1−b1/N ).

(64)

Then (63) and (64) prove (17).
We use (17) to show that (18) and (19) must hold. We first use (17) to write

1− b−
N−1
N e−Nλt(1−b1/N ) ≤ P[V λ,v

t = −e]− q(v) + P[V λ,v
t = e]− (1− q(v)) + 1 ≤ 1.

Hence,

0 ≤ q(v)− P[V λ,v
t = −e] + (1− q(v)) − P[V λ,v

t = e] ≤ Ke−Nλt(1−b1/N).

Now we note that P[V λ,v
t = e] and P[V λ,v

t = −e] are increasing functions of time.
This can be seen by observing that, as you increase the number of available steps
to get to e or −e, the number of ways to get to e or −e increases as well (though
not strictly). Hence, (18) and (19) are shown.

To complete the proof, (20) follows from (17)-(19) since for all A in the power
set of {−1,+1}N we have

|µλ,v
t (A)− µv

∞(A)| ≤ |µλ,v
t (A \ {e,−e})|+ |µλ,v

t ({−e})− q(v)|
+ |µλ,v

t ({e})− (1 − q(v))|
≤ 3K1e

−c1tλ.

�

Proof of Theorem 4.4. The proof of Theorem is very similar to that of Theorem
4.2, so we just sketch it and point out the differences. We cannot write (55), since
the process is exactly the averaged process once it is absorbed into an ergodic class.
However, we can use classical averaging results to work around this by writing

∣
∣
∣E
[
f
(
Xλ,x,v

t

)
|V λ,x,v

t0 ∈ E(i)
]
− T i

t f(x)
∣
∣
∣ ≤

∣
∣
∣E
[
E
[
f
(
Xλ,x,v

t

)
− T i

t−t0f(X
λ,x,v
t0 )|V λ,x,v

t0 ∈ E(i), Xλ,x,v
t0

]
|V λ,x,v

t0 ∈ E(i)
]
∣
∣
∣

+ sup
x′∈B̄(x,‖a‖∞t0)

∣
∣T i

t−t0f(x
′)− T i

t f(x)
∣
∣ ,

where t0 = 1
λ . The first addend can be bounded via classical averaging techniques,

see e.g [2, Chapter 16], using which it is easy to show that the first addend tends
to zero as λ → ∞.
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The second addend can be bounded using the Lipschitzianity f and Assumption
1. That is, we have

sup
x′∈B̄(x,‖a‖∞t0)

∣
∣T i

t−t0f(x
′)− T i

t f(x)
∣
∣ ≤ K‖f‖ 1√

λ
.

Hence a bound analogous to (53) follows again by Lemma 4.3. A bound analogous
to (54) can be proved in exactly the same way as in Theorem 4.2. Hence (61) is
shown. �
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