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Learning and teaching problem solving is a hard task, nomatter the domain. Computer Science is no exception.Recursion

is a paradigm often used for problem solving, but it is non-intuitive and it is unnatural.Most second programming courses

(CS2-level) for Computer Engineering students apply recursion to mathematical problems or basic recursive data

structures with a limited focus on problem solving. Third programming courses (CS3-level) deal with search and

optimization problems and they use recursion because of its ability, due to its backtracking mechanism, to explore the

whole solution space. However, most of them do not rely on a systematic and well-formed approach to teaching this

approach to problem solving. Our main contribution is to adopt schema-based instruction for recursion-based problem

solving, where schemas come fromEnumerative Combinatorics. This is the core of our attempt at developing second-year

computer Engineering students’ problem-solving skills. We provide the students with these schemas as templates in the C

language to guide them step-by-step in solving search and optimization problems with uninformed and complete

algorithms. To extend the applicability of this approach to other than small-size problems, we show students how they can

introduce pruning to limit searchwhile keeping it complete.We present experimental evidencewe gathered for our second-

year CS2+CS3 programming course for Computer Engineering students at Politecnico di Torino, a major technical

university in Italy. We evaluate students’ perception of the approach in terms of understanding and of ability to apply it.

We compare students’ perception to faculty expectations and we evaluate students’ performance in terms of improvement

in the success rate at exams. Data prove that the approach we adopt is beneficial both in terms of quantitative results

(success rate at exams) and qualitative results (knowledge and skills acquired by students).

Keywords: applied computing; education; schema-based instruction; theory of computation; algorithm design techniques; recursion;
problem solving

1. Introduction

It is hard to say whether there are more differences

or similarities between Computer Engineering and

Computer Science. They originate from Electrical

Engineering and from Applied Mathematics
respectively, the former has always focused more

on developing skills in designing software, hard-

ware and systems, the latter on theoretical founda-

tions of computation. The former is historically

more hardware-oriented, the latter more software-

oriented. In practice, the overlap between these two

fields of studies is large, as they both have as a goal

computers, their study and their use. Traditionally
Computer Science curricula have focused more

than Computer Engineering ones on programming,

algorithms and data structures. Because of the

convergence of the two fields, this is not true any-

more, as programming has become a must also for

Computer Engineering students.

Programming is a cognitive activity that, while

solving a problem, involves high-order aspects like
mathematical skills, abstraction abilities and criti-

cal thinking [1, 2]. Because of its nature, it makes

decontextualized teaching and mere rote learning

[3, 4], still common approaches to teaching and

learning in Engineering, totally useless.

In general, teaching programming to undergrad-

uate Computer Engineering students follows two
main approaches:

1. Select a language and then teach the syntax and
the main constructs of that language, with

problems mostly exploited as examples of use

of the constructs.

2. Teach the students how to solve problems and

resort to programming as a tool to automate

the process.

Language-oriented programming courses often

focus more on the technicalities of the language,

rather than on its use. As a result students master a
large number of details, but often they fail to use

themwhen facing a problem to solve, even when it’s

not a real-world one. They know the syntax, they

understand the semantics of each construct, but they

are unable to write code solving a specific problem.
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This is true in particular for novice programmers,

but not restricted to them [5]. According to [6] this is

due to the lack of design strategies and problem-

solving skills. Problem-solving oriented approaches

consider the language as a tool and not as a goal,

thus they aim at identifying strategies and at
designing algorithms and then, last but not least,

at implementing them as code written in a specific

programming language.

In our experience the second approach is much

more challenging for the students but also much

harder to learn, as problem solving is a typically

creative activity, that relies on knowledge, intuition

and intelligence. However, being creative doesn’t
mean that everything must start from scratch, as

there is a vast background of pre-existing knowl-

edge developed over the years that comes to the aid.

In this sense our approach is a mix of deductive and

inductive teaching [4]: it is deductive because we

leverage on knowledge developed in Mathematics

(if one knows what a permutation is, there is no

need to examine several examples to understand
what an anagram is), it is inductive because the

connection to problems coming from the real world

is stressed right from the beginning (e.g., problems

coming from programming contests or job inter-

views), thus motivating the students. It is hybrid

because it cross-fertilizes Enumerative Combinato-

rics and problem solving in Informatics, bridging a

gap that purely deductive approaches don’t cross.
Our approach belongs to the broad category

known as schema-based instruction [7], originally

developed to help students who had difficulties in

learning Maths. An interesting experience about

Geometry problem solving is reported in [8].

According to [7], a ‘‘schema is a vehicle of

memory, allowing organization of an individual’s

similar experiences in such a way that the individual:

� can easily recognize additional experiences that

are also similar, discriminating between these and

ones that are dissimilar (identification knowl-

edge);

� can access a generic framework that contains the

essential elements of all of these similar experi-

ences, including verbal and nonverbal components

(elaboration knowledge);

� can draw inferences, make estimates, create goals,

and develop plans using the framework (planning

knowledge);

� can utilize skills, procedures, or rules as needed

when faced with a problem for which this particular

framework is relevant (execution knowledge)’’.

The purpose of identification knowledge is to

recognize that a schema might fit the problem.

Conversely, elaboration knowledge adapts the

schema to the problem, resulting in a mental

model. Planning knowledge exploits the schema to

define the set of actions needed to solve a problem.

Execution knowledge allows the individual to carry

out the planned steps.

Schema-based instruction [7]:

� ‘‘unifies declarative and procedural knowledge

within a broader framework;

� de-emphasizes the quantity of factual bits of infor-

mation that the student acquires, as its goal is to

cultivate learners who will be active problem-

solvers in the field – not to produce students who

have a large store of passive or inert knowledge;

� introduces the domain to students in a top-down

rather than a bottom-up way’’.

We tailor schema-based instruction to our spe-

cific domain: teaching recursion-based problem

solving to Computer Engineering students. Why

recursion? Among the approaches to problem sol-

ving in Informatics, recursion-based techniques
play a key role in educational terms: recursion is a

non intuitive concept and a powerful but unnatural

divide-and-conquer paradigm, difficult to teach and

to learn [9–11]. Many second programming courses

(CS2-level) deal mainly with the concept of recur-

sion and illustrate it in terms of mathematical

recursion, where there is an immediate translation

from a recursive formulation of the problem into
code.Moreover, in general, there is no need tomake

choices, as every step follows immediately from the

previous ones. Most courses apply recursion to

classical recursive objects, like lists, trees and

graphs, introducing functions on Abstract Data

Types or algorithms that are well known from the

literature. Some courses resort to visualization [12]

or to video games [13] to teach novices recursion.
Fewer courses, mainly at CS3-level, use it for more

advanced problem solving based on uninformed

exhaustive search in a solution space generated by

taking into account all possible choices. Their key

to success is the intrinsic backtrack mechanism that

guarantees completeness. Their limit is the size of

the solution space that precludes applicability

beyond medium-small problem instances. Pruning
the search space or introducing heuristics to bias

choices is normally left to more advanced courses.

To the best of our knowledge no course is fully

based on schema-based instruction, very few intro-

duce some form of schema as combinatorics-based

solution space modelling. Our schemas originate

from Enumerative Combinatorics and span the

entire portfolio of models. We cultivate second-
year undergraduate students in Computer Engi-

neering attending a CS2+CS3-level course top-

down and step-by-step: Enumerative Combinato-

rics models represent identification knowledge,

their accommodation to the problem at hand
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relates to elaboration knowledge, algorithm design

is planning knowledge and C code is a result of

execution knowledge. Advanced techniques for

searching the solution space fall into the sphere of

AI or Operational Research, that are beyond the

scope of this paper. We do not aim at skills that
boost performance, needed for example for pro-

gramming contests: our main concern is that the

students become able to master complete recursive

solutions, with the awareness of their intrinsic

complexity, that they are able to tackle just by a

proper selection of the search space, and by limited

and straighforward pruning techniques, plus a

selective application of dynamic programming
and memoization.

In the context of a second-year Computer Engi-

neering CS2+CS3 course, focusing on how to

effectively teach problem solving, leveraging recur-

sive techniques, this paper addresses the following

research questions:

1. What challenges do students encounter in

learning how to solve problems with recursion?
2. What challenges do lecturers encounter in

teaching problem solving based on a recursive

paradigm?

3. Is schema-based instruction a suitable ap-

proach to improve second-year students’

problem-solving skills?

2. Background

This section describes the context of our experience,

the main issues lecturers have to deal with when

teaching recursion and problem solving, and the

contributions and organization of this paper.

2.1 The Context

Algoritmi e Programmazione (Algorithms and Pro-

gramming) is a second-year undergraduate course

mandatory for Computing Engineering students at

Politecnico di Torino (around 450 new students

each year). It follows a first-year course (Informa-

tica, CS1-level) where students acquire basic pro-
gramming skills in the C language (syntax,

datatypes, input/output, loops and conditionals,

arrays and multi-dimensional arrays, C structures

as composite data types, functions and files). First-

year problem solving is restricted to simple cases.

Elementary notions on the representation of

numerical data, Boolean algebra and computer

architecture are also part of the syllabus. The
second-year course, at CS2+CS3-level, builds on

the first year:

� More advanced C language features, including

pointers and dynamic memory allocation.

� Abstract Data Types implemented in C (trees,

graphs, symbol tables, etc.) and related algo-

rithms.

� Analysis of algorithmic complexity.

� Problem-solving paradigms (recursive divide-

and-conquer, dynamic programming, greedy

algorithms, etc.).

The expected learning outcomes are the ability to

solve with complete algorithms medium-small pro-

blems, analyzing their complexity, to design and use

classical Abstract Data Types and algorithms, and

to master the C language as a tool to support

problem solving. The course spans one semester
(14 weeks), it is worth 12 ECTS credits, it consists of

38h of lectures concerning complexity, algorithms,

and problem-solving paradigms, 38h of lectures

concerning advanced C features and their use in

algorithms, data structures, and problem solving,

20h of in-class problem-solving sessions, and 24h of

assisted in-lab training. As 1 ECTS credit is worth

25h of student work, students are supposed to
devote additional 180h of personal work to this

course, including 70h for unassisted training and

lab assignments. Available material includes a text-

book in Italian [14], specifically covering recursion,

video-recorded lectures, transparencies, assign-

ments and commented solutions to assignments.

Access the course website is restricted to enrolled

students.
Teaching resources are constrained (2 professors,

5 assistant professors, a varying number of under-

graduate and graduate students). Until academic

year 2017/18 the same teaching resources served 2

parallel classes. Starting from academic year 2018/

19 a third class in parallel has been offered, reducing

class size from about 220 to about 150 and lab

classes size from about 110 to about 75. Class size
reduction is one among the course setups considered

in [15]. Its effect is analyzed in Section 5. Student

population and availability of teaching resources

greatly limit the possibility of experimenting with

new teaching approaches, like the ones reported in

[3]. Therefore the teaching-learning pattern relies on

lectures (participation and control of the educator)

and labs where educator and students share partici-
pation and control [3]. The paradigm for in-lab

training is constructivism, especially as regards to

the internalization of the recursivemodels and to the

application of individual knowledge to problem

solving. Lectures followmainly the deductive teach-

ing paradigm, but they include application of theo-

retical concepts not just to examples, but to

problems. During in-class problem-solving sessions,
the lecturer follows a think-aloud protocol [16],

verbalizing his thought process while analyzing a

significant problem, discussing the strategies to

solve it and then defining a high-level structure of
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the code that solves it. Reported experience with

think-alouds in programming courses confirms that

it is a very good approach, appreciated by students

and relatively lightweight for faculty [17]. Assign-

ments are on a weekly basis, students may work

individually or in a group, they receive counselling
during in-lab sessions or by e-mail, but most of the

work is done at home. Exercises are classified as

basic, intermediate and advanced. They may be

mandatory or optional. The goal of basic exercises

is to make the foundations of a given topic more

solid. They are optional: if the student feels con-

fident enough, he/she doesn’t need to hand them in

for evaluation. Intermediate exercises are more
complicated, require selecting a model from Enu-

merative Combinatorics or to define a divide-and-

conquer strategy. They are mandatory, as this is the

level students are supposed to reach. Advanced

exercises may require combining several models,

may have more difficult solution validation func-

tions, solution space pruning may be requested.

They are optional, most top students solve them,
as they find them challenging. As an example, a

basic exercise is to write the code for the greatest

common divisor of 2 positive integers given a

recursive formula. An intermediate one is to com-

pute a minimum vertex cover, given the list of nodes

and edges of an undirected graph. An advanced

exercise may be a tile game, where the goal is to

arrange tiles on a board according to given rules,
maximizing the score. Assignments are handed in

for evaluation in 4 groups of 3 assignments each, so

students have around 3 weeks to complete each

group. This allocates enough time also for slow

programmers. Faculty verify selected assignments

with a personal interview. The goal of the interview

is not only to rank the assignment, but also to

understand whether the student has built his/her
own mental model of the problem and has defined a

suitable strategy for solving it. This interactive

phase is a form of feedback for the faculty, both as

regards to the individual students (e.g., fixing wrong

models) and to the course as a whole (e.g., clarifying

aspects still perceived as obscure).

The exam consists of both awritten and of an oral

part. There are two written examination modes:

� Problem solving at large, i.e., writing a program

in the C language to solve a problem where the

candidate is totally free to make his/her choices.

This entails identifying the underlying model,

select the data structures, write a function to

verify that a solution is valid, write an objective
function for optimization problems, identify pos-

sible pruning techniques.

� Constrained problem solving, where there is a

guidance in the selection of the model and rank-

ing is about the ability to implement it as a C

language program, rather than to discover it.

The first mode leads to full marks, the second one

has an upper bound on the marks. The oral exam

has two goals: to assess knowledge on algorithms

and data structures and to test the ability to write C

code on the fly. As regards to the latter issue, the

exam looks like a job interview: given a well-defined

problem, show the problem-solving skills the can-
didate has acquired and the ability to implement the

solution as a C program. Duration is around 30

minutes. Marks are relevant in the Italian Univer-

sity system, as they are the basis for rankings related

to academic and economic benefits and to employ-

ment opportunities.

2.2 Recursion-Based Problem Solving

Among the approaches to problem solving in Infor-

matics, recursion-based techniques play a key role

in educational terms: recursion is a non intuitive

concept and a powerful but unnatural divide-and-

conquer paradigm, difficult to teach and to learn [9–

11]. The next sections analyze the issues in learning

and teaching recursion and problem solving. We

conclude that we modify the way we teach, by
changing the contents we teach, according to the

schema-based paradigm. Our schemas originate

from cross-fertilizing Enumerative Combinatorics

and recursion-based paradigms. The goal is to

equip students with a problem-solving methodol-

ogy and portfolio of models applicable to a large set

of cases.

2.2.1 Issues in Learning (and Teaching!)

Recursion

Students feel recursion is ‘‘obscure, difficult and

mystical’’ [18] when they start approaching it and

conversely for lecturers it is ‘‘one of the most

universally difficult topics to teach’’ [19, 20]. It thus

challenges both categories. Many academics have

studied the multiple facets of teaching recursion.
Excellent surveys are [21] and [22]. According to

[22] students progress through 3 steps:

1. Comprehension: they understand what recur-

sion means and what it is intended to do,

building their own mental model [23]. From

the lecturers’ point of view, the main point is to

orient them to develop a correct model. A

viable one is the ‘‘copies’’ model [24, 23],

where recursive functions generate new instan-

tiations of themselves, passing control and
possibly data forward to successive instantia-

tions and back from terminated ones. Lecturer

guidance is needed: in fact it often happens

that, without guidance, the spontaneous

model students end up with is not viable or it
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is incomplete, like the ‘‘looping’’, the ‘‘active

flow’’, and the ‘‘syntactic’’ ones [25]. The first

one considers recursion as a single object with

an entry point and an iterative part, the second

one correctly reaches the base case but fails to

understand how recursion unrolls itself, the
third one is limited to a mere template ‘‘base

case and recursive case’’.

2. Evaluation: given a recursive functionwritten in

the C language, they learn how to simulate its

behaviour on simple datasets (dry-run).

3. Construction: they first interpret the simple

recursive examples they have understood and

traced at the previous steps as instances of a
general-purpose divide/decrease-and-conquer

problem-solving approach. They then apply

an ‘‘analysis and synthesis’’ method [23] to

start solving problems on their own, breaking

a problem into smaller and smaller subpro-

blems, until they find trivially solvable ones,

building the solution to bigger problems thanks

to the solutions to smaller ones, encoding their
approach in the C language and running it on

significant examples. Mathematical functions

(factorial, Fibonacci, Bell and Hofstader num-

bers (more in [26]), greatest common divisor,

etc.) expressed as embedded recursive functions

[27] offer a large set of examples to start with, as

well as recreational Mathematics (Towers of

Hanoi, Sierpinski’s triangle, more in [28]) and
basic Informatics (recursive list processing,

trees, etc.). These targeted practice exercises,

possibly supported by tutoring software [29],

are considered the best way to learn. Problem-

solving skills at this step are still limited, but

students become aware that divide/decrease-

and-conquer strategies are powerful para-

digms. Most of them succeed in solving such
problems because they are familiar, if not with

the problems themselves, at least with the

domain (Mathematics) and they are good at

applying templates to situations that are

already known [30].

A search in the web for open-access teaching

material has shown that almost all CS2+CS3-level

courses in major Universities around the world
follow this approach with more or less emphasis

on topics like the model of recursion and its

implementation on a computer, dry-runs and the

ability to understand and possibly design recursive

solutions to simple problems. Most courses resort

to the deductive approach.

2.2.2 Issues in Learning (and Teaching!) Problem

Solving

Problem solving is an activity that encompasses

several domains, ranging from philosophy to

science, engineering, psychology and computer

science. Teaching problem-solving skills has

always been recognized as a major issue in educa-

tion starting from elementary school to University

and life-long learning [31, 32]. The goal of problem
solving in Informatics is to let students develop a

mindset and an approach to systematically analyze

problems, to design strategies that, starting from

input data, generate output data, i.e., results, pos-

sibly compliant with external constraints, and even-

tually to automate the process by means of code

written in a programming language.

A non-exhaustive classification of common pro-
blems is:

� Pure-computation problems: for which in general

there exists a mathematical formula that we

almost immediately transform into code. Such

problems are rather straightforward, as there is

no need to make a choice selected from a pool of
available ones. They are more akin to exercises

than to problems, the difference being that pro-

blem solving needs creativity, whereas exercise

solving just needs the application of known

procedures. Examples of this class are mainly

mathematical problems, including the ones

suitable for a recursive solution listed in

Section 2.1.1.
� Decision problems: for each problem instance the

solution is either yes or no. Among them a vast

class is represented by verification problems: given

a problem instance and a possible solution, check

whether it is valid or not.

� Search problems: for each problem instance a

solution, i.e., a string of bits that encodes an

information item, is an element in the solution

space. In fact not all solutions are valid, only the

ones that comply with given constraints. One

valid solution, if it exists, may be enough. If all

valid solutions are sought after, it is an enumera-

tion problem. Examples are the 8-queens pro-

blem, Sudoku, listing all simple paths from a

source node in a graph, etc.

� Optimization problems where all solutions in the
solution space are valid, but the result is the one

or the ones that minimize or maximize an objec-

tive function, e.g., loss, cost, utility, fitness, etc.

Enumeration is required if seeking an absolute

maximum or minimum. Many examples come

from graph theory, like single-source longest

paths, maximum independent set, the travelling

salesman problem, etc. Search and optimization
problems turn into decision problems when there

is a bound on the admissible value of the solution

and the question becomes whether such a solu-

tion exists or not.
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Other classes include problems solved by means

of numerical methods or simulation, that are

beyond the scope of CS2+CS3-level courses.

Teaching problem solving even in a restricted

domain like Informatics is a hard task, as ‘‘it is

not science, but part art and part skill ’’ [33]. Just
looking at the syllabus of the average programming

course, it is rare not to find the claim that that

course teaches problem solving. However, as

observed by [34] and [1], in most cases problem

solving remains nebulous and scattered in a bunch

of programming knowledge. Widely used

approaches when the target is a CS3-level course

for Computer Engineering students are:

1. Teach the tool (the programming language),

then face the students with problems and let

them solve them without guidance.
2. Teach them the programming language, a large

set of knowledge about data structures and

algorithms known from the literature, then

face the students with problems and let them

solve them on their own.

3. Add to the previous step examples of solved

problems. The students proceed by imitation

and improvement (‘‘imitatio et aemulatio’’
according to the letter ‘‘De imitatione’’ written

in 1513 by the Italian Renaissance scholar

Pietro Bembo in a totally different context).

4. Add to the previous steps some problem-

solving paradigms, like divide/decrease-and-

conquer, dynamic programming, and greedy

approaches. Heuristics-based paradigms,

simulated annealing, integer linear program-
ming and the use of solvers are beyond the

scope of such a course.

5. Add to the previous steps or partially replace

them with inductive-based learning by experi-

ence on real problems and/or assignments,

under cooperative (student teams) and

faculty-supervised working models.

The first approach has limited educational value

and works just on simple problems. Moreover, it

doesn’t take into account the existence of a vast
amount of knowledge. The second one keeps

knowledge and practice apart, putting the burden

of bridging them on the students’ shoulders. Both

are common in deductive teaching approaches. The

effectiveness of the third one depends on a careful

choice of representative examples and on the avail-

ability of a repository of classified problems like

[33]. It is a form of learning by analogy, a type of
knowledge transfer where the problem is first repre-

sented, then an analogous one is searched for and its

solution adapted [35]. Resorting to paradigms is a

important step in helping the students create a

problem-solving mindset. Paradigms introduce a

methodology, which is general-purpose enough

not to reduce problem solving to exercise solving,

but still requires creativity to find a solution. The

3rd, the 4th and the 5th approaches mix to different

degrees deduction, i.e., methodologies and para-

digms, and induction, i.e., experiential learning.
Lecturer guidance may intervene at any phase.

Our appoach belongs to the 4th group, but it is

not an analogy-based reasoning: we do not look for

analogous problems, we rather identify a schema,

i.e., a mathematical model, of the problem based on

Enumerative Combinatorics. Code for general-

purpose models is provided, independent of specific

data, as inputs and outputs are encoded as integers.
This code is then adapted to the inputs and outputs

of the current problem and extended with solution

validation functions, optimality functions and

pruning. Our approach best fits the broad class of

schema-based instruction, as discussed in Section 1.

A search in the web for open-access teaching

material has shown that the 2nd and 3rd

approaches are the most common ones, but the
paradigm-based approach is becoming increasingly

popular. Nevertheless, as regards to recursion-

based paradigms for search and optimization pro-

blems, it is uncommon to find modelling of the

solution space and templates for its exploration in a

schema-based instruction context.

2.3 Contributions

Given the constraints reported in Section 2.1,

namely a large student population and limited

teaching resources, experimenting with new teach-

ing approaches, like the ones reported in [3] is not

feasible in our context. Nevertheless some of the

activities surveyed in [15] are applicable to our case,

namely:

� Peer support: support by hired peer mentors, in

general past or graduate students, during lab

sessions.

� Support activities, e.g., extra hours where faculty
tutor students, additional support channels, like

e-mail or a faculty-moderated forum on the

course site.

� Contents change.

The novelty of our approach residesmainly in the

change in the contents in agreement with schema-

based instruction, a method of teaching problem

solving that emphasizes both the semantic structure

of the problem and its mathematical structure. We

have modified what we teach by cross-fertilizing
Enumerative Combinatorics and problem solving,

importing the models from the former to typify the

latter, guiding students with a template-based

approach to solve search and optimization pro-

blems with uninformed and complete approaches.
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Algorithms are uninformed, i.e., they have no spe-

cific knowledge of the problem at hand and com-

plete, i.e., they are capable of exploring the whole

solution space. Models also serve the purpose of

classifying problems that would otherwise be pre-

sented in an unstructured, empirical way.

2.4 Schema-Based Instruction for Teaching

Problem Solving

We focus on search and optimization problems that

require exploring a solution space, because these are
inherently suitable for a recursive approach with

backtracking. We describe the solution space in

terms of models coming from Combinatorics. Enu-

merative Combinatorics [36, 37] courses are

common in undergraduate curricula in Mathe-

matics, but, due to their context, they do not

focus on problem solving. Basic Combinatorics

courses are found in Computer Engineering under-
graduate curricula, but their aim is to count the

elements that belong to the solution space, rather

than to list them. Counting is in fact the basis for

Probability Theory. We provide the students with

abstract schemas implemented as a portfolio of

templates in the C language that they customize

to the specific case they are dealing with. The steps

they follow when solving a problem are clear and
predefined and follow the three stages of computa-

tional thinking presented in [38]:

1. Problem formulation:

� Understanding the specifications is, in our

experience, by no means a trivial task for

the average student. Many students are

increasingly limited in the use of natural

language and in the amount of information
they exchange. They often find it difficult to

understand texts that are long and complex

not per se, but in relation to their scale.

Paying attention to writing the specifications

using plain, yet not poor, language is a must.

Resorting to mathematical formulas is fea-

sible, it has a significant advantage in terms

of conciseness and precision, yet some stu-
dents find it hard to understand them. This is

probably due to a difficulty in abstracting

concepts and in building mental models for

what they read. For this reason examples are

of the uttermost importance and we must

select them with care to be representative of

the problem and not just of some corner

cases.
� Identifying the Enumerative Combinatorics

model that describes the solution space (iden-

tification knowledge in the schema-based

instruction approach): first students have to

identify which are the choices (groups in

Combinatorics terms), then to checkwhether

order matters, whether elements are unique

and whether they may appear in several

instances. If there is more than one model,

they should select the one that best fits the

problem. This is the most difficult step, as it
requires abstraction capabilities.

2. Solution expression (elaboration, planning and

execution knowledge in the schema-based

instruction approach):

� Instantiating a template for the model

selected at the previous step as a skeleton of

the solution; the template provides a base

case and a scheme for recursive calls.
� Representing the solution, usually as a single

set (or two sets, current and best solution, in

optimization problems), whereas we typi-

cally avoid a data structure to collect the

full enumeration of possible solutions. If

needed, we usually just ask to print them.

� Filling the base case, which typically means

setting up:
– A function to check the solution.

– Handling solution scoring and/or weight-

ing, in case of optimization problems.

3. Solution execution and evaluation:

� The solution is validated on small datasets.

� Improving the solution: the size of the solu-

tion space grows exponentially and, in order

to make the code developed at the previous
step applicable to at least medium-size pro-

blems, it is necessary to resort to pruning

techniques. A simple way of pruning the

space is to subordinate recursive calls to

validity checks, i.e., imposing constraints as

soon as possible and not just in the base case.

Another aspect that allows reducing space

size without loosing completeness is identify-
ing symmetric solutions. Exploiting symme-

try is beyond our scope, as we believe it is too

advanced for the students’ level. In optimiza-

tion problems, branch-and-bound strategies

are also considered, though they are not a

major focus for us.

Courses that adopt [33, 18] and similar books as

textbooks follow the same approach as ours, but to

a more limited extent, both because they are neither

conscient nor rigorous in applying schema-based

instruction and because they use only a subset of
schemas based on Enumerative Combinatorics. We

systematically introduce:

� A unifying framework for recursive objects like

sets and multisets in Combinatorics.

� The 2 counting principles: the principle of addi-

tion (a.k.a. rule of sum) and the principle of

multiplication (a.k.a. rule of product).
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� The 6models: simple arrangements, arrangements

with repetitions, simple permutations, permuta-

tions with repetitions, simple combinations, com-

binations with repetitions.

� The powerset of a set when the solution space is

the set of all the subsets of that set.
� The partitions of a set when the solution space is

the set of non-empty subsets such that each

element belongs to one and only to one subset.

2.5 Outline

Section 3 introduces the background notions on

Enumerative Combinatorics. Section 4 describes

templates for them written in the C language,

including the use of pruning techniques to improve

scalability to medium-size cases and a discussion of

significant examples students are requested to solve

as assignments or at exams. Section 5 analyzes data
collected over a period of 7 years to evaluate the

impact of this approach on the students’ problem-

solving skills. Finally, Section 6 concludes with

some summarizing remarks and points to future

work.

3. Modelling the Solution Space by Means
of Enumerative Combinatorics

Let us consider the problem of selecting a subset of

elements from a given set or multiset. We just
consider finite sets C ¼ fc0; c1; . . . ; cn�1g repre-

sented by the explicit collection of their elements.

A multiset extends the concept of set by taking into

account distinguishability of elements: a multiset is

a set with repeated identical, thus undistinguish-

able, elements. A partition of a set captures the idea

of grouping all set elements into non empty and

disjoint subsets. We just consider multisets with a
finite base set, represented by the explicit set of base

elements, each one labelled by its multiplicity. The

multiset C ¼ fm0 � c0;m1 � c1; . . . ;mn�1 � cn�1g is

thus a set where ci element is repeated mi times.

A given multiplicity can be either finite or infinite:

we consider both cases, as they support explicit

representation. A partitioned set is represented by

an explicit enumeration of subsets, or by the
original set, with a proper element-partition label-

ling.

When solving non-trivial problems, consisting in

selecting choices from a given set or multiset C of

available ones, the solution S � C might be either e

set or a multiset. Partitioning problems either

operate on possibly already partitioned sets or

multisets, or deal with the problem of finding a
partition of a given set or multiset.

Depending on the problem, we might be inter-

ested in an ordered or unordered set or multiset.

Order is usually considered only when generating a

solution S, not when providing the choice set C:

two solutions S1, S2 might differ either for some

elements or just in terms of their order. Order in

multisets does not distinguish among multiple

instances of the same element. In the most general

case, the space of all solutions is thus represented by
the powerset of set ormultisetC when order doesn’t

matter, or by all permutations of elements of the

powerset of C when order matters.

As an example, let us consider the problem of

generating the anagrams of a given word or the

equivalent problem of generating all numbers

obtained by different orderings of a given set of

digits: the problems are from sets to ordered sets,
when no duplicates are considered, whereas they

are frommultisets to ordered multisets if duplicates

are allowed. Generating numbers from a given set

of digits and/or strings from a set of allowed

characters, are problems from sets to orderedmulti-

sets. Here order matters, as the output of the

problem is a string or a number in a positional

representation. Other problems do not care about
the order, e.g., finding the set of the 4 most frequent

characters in a given text: this is a problem from a

multiset1 to a set.

Whenever a given solution S is a subset of C, it

can be provided either as an ordered list or as an

array, i.e., a tuple where the order matters or not, or

as a proper binary labelling for sets or integer

labelling for multisets and/or ordered sets, of the
elements of C. With partitioning problems, we

extend the above representations to multiple lists

or arrays or integer labellings, where each element

of C is labelled with the index of a partition.

The problem-solving strategy we propose is

based on an explicit enumeration of the solution

space. We enumerate by recursively and incremen-

tally taking or collecting possible decisions or
choices, following two alternatives:

� At each decision or choice step, we select one

among the atmost n available elements ofC. This

element is the one we add to the solution, where

the solution is an ordered or unordered set or

multiset, depending on the problem.

� At each decision or choice step we consider one of

the n elements of C by properly labelling it. The

final solution is given by the labelling. A subset is
identified by a 0=1 labelling, an ordered subset by
a natural number labelling.

Our uninformed and complete problem-solving

technique resorts to an incremental approach to

Gianpiero Cabodi et al.1512

1 The starting set is actually a multiset, when counters of
occurrences for single characters are already given, it is the
base set if we start from the text and still have to count
repetitions.



explore the solution space: starting from the empty

solution S ¼ ;, step-by-step we:

� Extend by one (si) the partial solution selecting

one of the cj 2 C choices. We terminate when we

havemade all decisions, e.g., when the cardinality

of the solution is k (whenever given).

or

� Decide whether to select or how to label the

current ci 2 C choice. We terminate when we

have labelled all choices. The final solution is

given by the labelling.

We deem explicit enumeration more understand-

able for students than implicit enumeration techni-
ques or constructive, recursive divide-and-conquer

approaches where the solution is built by combin-

ing simpler ones. The first approach, the one that at

each step extends the solution, is more intuitive and

thus more easily understood by students for most

cases where they know in advance the cardinality of

the solution and therefore when they terminate they

don’t have to perform additional checks.
In this case a search tree represents the solution-

building process: the tree:

� has height k, the cardinality of the solution, i.e.,

the number of decisions we have to make;

� has degree n, the maximum number of possible

choices;

� the root is the initially empty solution S ¼ ;;
� choices selected so far and representing partial

solutions label internal nodes;

� leaves are base cases (solutions) and they form
the solution space.

We may check solution validity on a leaf or

earlier (‘‘pruning’’ the space) to anticipate con-

straints. We check solution optimality on a leaf or

we early discard that solution in a branch-and-

bound approach [7], not considered in this course.

The following pseudo-code illustrates an algorithm

based on a generic data structure DS to explore a

solution space:

1. Search():
2. insert initial item in DS
3. while DS not empty
4. extract item from DS
5. if solution
6. return success
7. for all valid choices
8. apply choice
9. put resulting items in DS
10. return failure

Algorithm 1. Solution space search based on a

generic data structure DS

If DS is:

� a queue: search proceeds breadth-first;

� a stack: search proceeds depth-first;

� a priority queue: search proceeds best-first.

Our approach to exploring the solution space is
depth-first, complete, uninformed and based on

recursion. We have n choices, where n is the cardin-

ality of setC, andwe collect decisions about them in

groups of cardinality k according to specific rules.

Combinatorics [39] is the branch of Discrete

Mathematics concerned with counting how many

finite elements, choices in our problem-solving

context, satisfy certain properties. There are two
basic principles: addition and multiplication. They

apply whenever there are several sets of choices.

When there is a single set of choices, the principle of

multiplication gives rise to more specific models

that group elements together according to 2 criteria

[1]:

� Uniqueness of the elements: if elements are

unique, we are dealing with sets, otherwise with
multisets.

� The importance of ordering: 2 groups with same

elements but different orderings are the same or

not.

This results in a portfolio of schemas that we

exploit for solution space exploration, listed in

Table 1 where rows are labelled in terms of how

the C inputs and choices are grouped as either sets
or multisets and columns in terms of how the S

outputs or decisions are grouped (sets, multisets,

tuples, tuples with repetition). Element multiplicity

is known a priori for permutations with repetitions,

thus the input is a finite multiset. It is typically free,

though with an upper bound k, for arrangements

with repetitions and combinations with repetitions, so

in this case the inputs are infinite multisets2. In
terms of data structures, both sets and tuples are

represented as arrays in the C language, where a

predecessor/successor relation is implicit. It is up to

the context to interpret whether this relation mat-

ters, like for tuples or not, like for sets. This remark

allows us to consider simple combinations as a

particular case of simple arrangements when just

one of the possible orderings is considered.
We first introduce the two principles of addition

andmultiplication, that solve the problem of select-

ing single elements out of sets in a group of sets or,

equivalently, in a partitioned set. We then describe

combinatorics problems on sets and multisets, and

finally face the problem of partitioning a given set.
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The principle of addition applies to b sets

B0; . . . ;Bb�1. If such sets are pairwise disjoint they

are a partition of a global set C of choices. Let
ni ¼ jBij represent the size of the ith set. If we can

pick just one element from a set, then selecting one

element (k ¼ 1) from any of the b sets can be done in

�b�1
i¼0 ni ways. When sets are not pairwise disjoint,

this principle evolves into the principle of inclusion/

exclusion.

The principle of multiplication states that if k

elements x0 . . . xk�1 are selected in sequence each
from a set of cardinality n0 . . . nk�1, the k-tuple of
elements (x0 . . . xk�1) is built in �k�1

i¼0 ni ways.
We use the principle of addition for very few non-

trivial problems. Application examples of the prin-

ciple of multiplication are much more common.

Though the principle applies to both overlapping

and non overlapping sets, we found that for stu-

dents the problems of the latter category are gen-
erally easier to understand and to solve. We thus

explicitly use the principle of multiplication when-

ever there are several disjoint sets of choices, form-

ing a partition of a set C, and we have to build the

solution picking one choice from each subset.

Considering overlapping sets, typically generated

by the given choice set, taking into account order

and repetitions, the application of the multiplica-
tion principle originates the models described next.

A simple arrangement An;k of n distinct elements of

class k is a tuple composed of k out of the n elements

(0 � k � n). As elements are distinct, the input is a

setC. As the output is a tuple, order matters and the

adjective simple implies that in each tuple there are

exactly k non repeated elements. Two arrangements

differ if there is at least a different element or if the
same elements appear in different order.

An arrangement with repetitions A0
n;k of n distinct

elements of class k is a tuple composed of k out of

the n elements (0 � k) each appearing at most k

times. As in the case of simple arrangements, order

matters. Unlike simple arrangements, elements may

appear several times. The input set is actually an

infinite multiset, having C as base set, and each
element appearing with infinite multiplicity. Two

arrangements with repetitions differ, in addition to

what holds for simple arrangements, also in the case

the elements are the same, but appear a different

number of times.

A simple permutation Pn is a simple arrangement

An;n of n distinct elements of class n, i.e., a tuple

composed of n elements. Two permutations differ
because of their order.

Given a finite multiset C of n elements with

multiplicity �; �; . . ., a permutation with repetitions

P�;�;...
n is a tuple composed of n elements, each of

which can appear at most �, �, ..., etc. times. While

simple permutations are a particular case of simple

arrangements, permutations with repetitions are

not a particular case of arrangements with repeti-
tions. Permutations with repetitions differ, in addi-

tion to what holds for simple permutations, also in

the case the elements are the same, but appear a

different number of times.

A simple combination Cn;k of n distinct elements

of class k (‘‘n choose k’’) is a subset composed by k

out of the n elements (0 � k � n). Two combina-

tions differ if there is at least a different element. The
number of simple combinations is the number of

simple arrangements divided by the number of

permutations, i.e., the number of possible order-

ings, as ordering matters in arrangements, but not

in combinations.

A combination with repetitions C 0
n;k of n distinct

elements of class k is a subset composed by k out of

n elements (0 � k) each of which can appear at most
k times. Two combinations with repetitions differ,

in addition to what holds for simple combinations,

also in the case the elements are the same, but

appear a different number of times.

Given a set C composed of n elements, its power-

set PðCÞ is the set of all subsets ofC, empty set ; and
set C included. If we interpret elements as choices,

we are in the case where a solution is a taken or left
labelling of the choices. Not all solutions are

necessarily valid, an additional check keeps only

the ones that satisfy the constraints, e.g., number of

decisions, objective function, etc.

Partitioning a set C of n elements means identify-

ing a collection B ¼ fBig of non empty subsets,

often called blocks, such that each element belongs

to one and just one block. The number of blocks k
ranges from 1, i.e., there is one block that coincides

with C, to n, i.e., each block is a unit set, i.e., it

contains just one element of C. Ordering among

blocks and inside each block doesn’t matter, thus

symmetries exist in partitioning. For example
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Table 1. Inputs, outputs, and models

Input

Output

Set Multiset Tuple Tuple w/reps.

finite set simple comb. simple arrang.

finite set simple perm.

finite multiset comb. w/reps. arrang. w/reps.

infinite multiset perm. w/reps.



f1; 3g; f2g; f4g and f2g; f3; 1g; f4g are some of the

symmetrical partitions in 2 blocks of set

S ¼ f1; 2; 3; 4g. For simplicity we do not consider

partitions of multisets.

Powerset and partitioning often underpin pro-

blems that deal with combinatoric objects like sets,
where the solution is one, some, or all of the set’s

subsets that satisfy some constraints. To the best of

our knowledge, models supporting repetitions are

not common in problem solving and the fact that k

is no more upper bounded by n is not intuitive and

students find it hard to understand how a solution

can have a size bigger than the number of available

choices.

4. Templates in C for Enumerative
Combinatorics Schemas

Avariety of languages and of paradigms is available

to implement the Enumerative Combinatorics sche-
mas described in Section 3. We propose for each of

them a template in the C language based on recur-

sion. As recursion is intrinsically a divide/decrease-

and-conquer approach, the main issue is how to

break into subproblems the generation of each

element of the solution space. As discussed in

Section 3, we envisage two avenues of attack:

1. The ith recursive call makes a decision on the i-
th element of the solution, i.e., it picks one

choice among the n available ones. The base

case in general consists in verifying that we

have reached the desired size k of the solution.

Picking a choice requires an iteration that

walks through the set of possible choices.

2. The ith recursive call decides whether to label

each choice as either taken or left. The base case
is reached when all choices are labelled. It may

be necessary to check what has been found to

make certain that it is indeed a solution.

We resort to the first one for all cases where the

size k of the resulting set ormultiset S is known, as it

seems easier and more intuitive for students to

understand: this is mainly related to a straightfor-

ward application of the principle of multiplication
and a known height k of the recursion tree. For

powerset and partition computations we use the

second one, because k is not given and the taken or

left labelling of choices is more natural.

4.1 Data Structures

Functions operate on either global information
items or on local ones. Global means that the

items are known, shared and accessible to all

recursive calls, local means data created, generated

or modified inside a recursive call, but not visible

outside. Data structures like arrays, matrices, lists,

tables, or other compound structures used for

storing input data are normally global information

items that recursive calls access: they typically

operate in read/write mode on the proper array,

list or table element, based on the recursion level or

on other properly handled parameters. Global
counters for recursive calls, solutions, etc. are

other global data that should be visible and updated

by all recursive calls. Depending on the adopted

programming style or paradigm two options are

available in order to handle global data structures:

� Using global variables of the C language, shared
by all recursive calls. This is an easy and straight-

forward solution, but typically it is discouraged

for the sake of program modularity.

� Handling global data as variables local to or

dynamically allocated and initialized by the call-

ing function, passed as parameters by reference

across recursive calls.

We follow the latter option and we adopt an

array-based representation of sets of information

items. Information items are in general quite com-

plex: in order to make our templates item-indepen-

dent we map an information item onto an integer in

a range, so that our templates internally work on

integers and symbol tables implement the mapping.
It is the same approach that [40] applies to graphs.

Integers, not necessarily consecutive, thus serve the

purpose of representing inputs and outputs of the

problem, whereas the symbol table is in charge of

input/output. A set or a tuple is represented as an

array of integers, operated:

� As a stack, whenever it simply collects elements

by adding or removing them through push/pop

operations (type Set or type Tuple if order

matters).

� As a direct access table, whenever Boolean or

integer labels are associated to set elements,

implemented as an array of integers.

A dynamic array, wrapped by a structure in the C

language, is identified by the pointer data, by the
number n of used elements and by the number max
of allocated elements.

Declaration: Data structures

1. typedef struct { int *data; int n,
max; } Set, Tuple;

2. typedef struct { Set *part; int n,
max; } PartSet;

BothSet and Tuple types refer to the same base
array type. We similarly introduce an array of sets

PartSet for partitioned sets serving as inputs to

the principle of multiplication template.

As our goal is not to store all solutions, rather to
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list them one by one, we simply call function

checkAndPrint that validates a given solution

and possibly prints it. We also explicitly handle a

counter cnt of generated and validated solutions,
returned as a result by all recursive calls. Whenever

necessary, we resort to the lev parameter to

represent the recursive level of a given call. We

omit constraints that define whether a choice is

legal or not. They might be either global data or

additional parameters.

4.2 Schemas in C

Algorithm 2 shows a multi-purpose template in C

for all the Enumerative Combinatorics schemas of

Section 3 for search problems. Optimization pro-

blems are not described for the sake of conciseness.

They could be dealt with scoring the current solu-

tion and comparing it with current best one, instead

of only checking the validity of the solution.

1. /* recursive function */
2. int functionR(...) { // function

header
3. int cnt = 0;
4. if (termination condition) {
5. if (solution valid) {
6. ...
7. return 1;
8. } else
9. return 0;
10. }
11. for (iteration on choices) {
12. make choice;
13. cnt +=functionR(...) //

Recursive call
14. backtrack;
15. }
16. return cnt;
17. }

Algorithm 2.Multi-purpose template for Enumera-

tive Combinatorics schemas

Each schema features its specific base case, itera-

tion on choices, choice selection and backtrack,

summarized in Table 2. For each schema we show

the C statements for the function’s header and for a
recursive call. As already pointed out, optional

parameters to handle best solutions in optimizaton

problems are omitted.

As the principle of addition makes just one

decision, the corresponding solution space is quite

trivial. Its use is not common in our problem-

solving context and thus we shall not consider it

in the rest of this paper.
Principle of multiplication: the number of deci-

sions is k and each choice is selected from a specific

set. We limit the application of the principle of

multiplication to problems modelled by disjoint

sets. The data structure is thus a partitioned set C

of k=C->n elements of type Set, as defined in

Section 4.1. We reach the base case when

lev>=k. Otherwise, if the ith choice is possible
(i<curr->n where curr=C->part[lev]), we
select it and we use it to extend the solution by 1

pushing curr->data[i] onto S. A linear recur-

sive descent then starts on the next decision

(lev+1). The integer variable cnt, used as the

function’s return value, stores the number of solu-

tions. Backtracking is implemented as a pop from S
operation.

int multPrinc(PartSet *C, Set *S, int
lev); //function header
multPrinc(C, S, lev+1); // example of
recursive call

The schema for simple arrangements is the root

one, from which we derive the others. To the best of

our knowledge, this is not very common in some
contexts, e.g., the Anglo-Saxon world, where the

basic schemas are permutations and combinations,

whereas it is common practice in others, e.g.,

continental Europe.

Simple arrangements: the number of decisions is
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Table 2. Schema-specific features

Schema Base case Iteration Choice selection Backtrack

multPrinc lev >= k i=0; i<curr->n; i++ push(S,curr->el[i]); pop(S);

simplArr S->n >= k i=0; i<C->n; i++ if (mark[i] != 0) continue;
mark[i]=1;
push(S,C->data[i]);

mark[i]=0;
pop(S);

repArr S->n >= k i=0; i<C->n; i++ push(S,C->data[i]); pop(S);

simplPerm S->n >= C->n i=0; i<C->n; i++ if (mark[i] != 0) continue;
mark[i]=1;
push(S,C->data[i]);

mark[i]=0;
pop(S);

repPerm S->n >= nTot i=0; i<C->n; i++ if (mark[i] <= 0) continue;
mark[i]--;
push(S,C->data[i]);

mark[i]++;
pop(S);

simplComb S->n >= k i=start; i<C->n; i++ push(S,C->data[i]); pop(S);

repComb S->n >= k i=start; i<C->n; i++ push(S,C->data[i]); pop(S);



k, the input is just one set of n choices and the

output is a tuple of k decisions. The data structures

are array C of type Set and array S of type Tuple.
We apply here the principle of multiplication with

overlapping choice sets, as choices at a given recur-

sion level are the same as the ones at the previous
level, with the exception of the last choice taken3.

We reach the base case when S->n>=k. In the basic
approach without pruning, we test the validity of

the solution in the base case. In order to prevent

using the same choice more than once an array of

integersmark of sizen records whether choice i has
already been used (mark[i]=1) or not. This array
is an example of how to impose a dynamic con-
straint on available choices. If we are not in the base

case, if the ith choice is possible, i.e., i<C->n and

not yet made, i.e., mark[i]==0, we select it, we
mark it and we use it to extend the solution by 1

pushing onto S C->data[i]. A linear recursive

descent then starts on the next decision. The integer

variable cnt, the function’s return value, stores the
number of solutions. Backtracking is explicit: upon
return from the recursive call, a pop occurs on S and
mark[i] is reset to 0, making the ith choice

available again.

int simplArr(Set *C, Tuple *S, int
*mark, int k); //function header
simplArr(C, S, n, mark, k);
// example of recursive call

Arrangements with repetitions: as repetitions of

the same choice up to k times are allowed, there is

no more need to check whether we have already

picked a choice or not and thus there no need for

array mark. Taking this remark into account, the

code follows directly from the one for simple

arrangements.

int repArr(Set*C, Tuple *S, int k); //
function header
repArr(C, S, k);
// example of recursive call

Simple permutations: they are simple arrange-

ments where k=n. The code follows straightfor-

wardly from the one for simple arrangements.

int simplPerm(Set *C, Tuple *S, int
*mark); //function header
simplPerm(C, S, mark);
// example of recursive call

Permutations with repetitions: this is the only case

where the input is a multiset. Moreover we modify

multiplicities during computation. For these rea-

sons, we do not deem it necessary to introduce a

specific type MultiSet. It is enough to have the

base set C and an array for multiplicities mark,
initialized with the number of instances of each

distinct element in the base set. We pick choice i
if mark[i]>0 and then we decrement mark[i].
This is what we mean by dynamically modifying

multiplicities. Parameter nTot is the size of the

multiset. The code follows the same strategy used

for simple arrangements and simple permutations.

int repPerm(Set *C, Tuple *S, int
*mark, int nTot); //function header
repPerm(C, S, mark, nTot);
// example of recursive call

Simple combinations: they are derived form

simple arrangements by ‘‘forcing’’ one of the pos-

sible orders. We walk through C with an index i
initially set to start so we prevent reconsidering

already used choices. The initial call to simpComb
is with start assigned with 0. Recursion thus

concerns both the following decision and the fol-
lowing choice (i+1). There are no constraints on

the choices, thus array mark is not necessary.

Taking this remark into account, the code follows

directly from the one for simple arrangements.

int simplComb(Set *C, Set *S, int k,
int start); //function header
simplComb(C, S, n, k, i+1);
// example of recursive call

Combinations with repetitions: we proceed as in

the case of simple combinations, the difference

being that recursion concerns only the following

decision and not the following choice (i
unchanged). Index start is incremented only at

the end of the for loop when no other choices are

available.

int repComb(Set *C, Set *S, int k, int
start); //function header
repComb(C, S, n, k, i);
// example of recursive call

Powerset: we propose 2 implementations to

compute the powerset of a set C of n elements

based on:

(1) A strategy based on element labelling: every

element can either be taken or left. We use

arrangements with repetitions as a schema,

provided we remember that the number of

choices is 2 and that the number of decisions

is n. The space size is A0
2;n ¼ 2n. The solution

array S contains a 1/0 present/absent flag.

(2) A strategy based on simple combinations: the

powerset is the union of the sets for simple

combinations n choose i, where i is in the range
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from 0 to n. The C wrapper function is shown

in Algorithm 3.

1. int powerset(Set *C, Set *S){
2. int i, cnt = 0;
3. for(k = 0; k <= C->n; i++)
4. cnt += simplComb(C, S, k, 0);
5. return cnt;
6. }

Algorithm 3. Implementation of powerset: wrapper

function to iterate on simple combinations

The two templates are equivalent, but the first

one is more oriented to enumerating the entire

powerset, the second one is more useful in optimi-

zation processes where minimum- or maximum-

cardinality subsets are requested, as the ascending

or descending for loopmay be stopped as soon as a

suitable solution is found.

Set partitioning: in order to represent partitions
we could:

� either indicate the unique block each element

belongs to;

� or list the elements that belong to each block.

The first solution is preferable, as we use arrays of

integers where each integer value represents the

partition the element with that index belongs to.

For example if S ¼ f1; 2; 3; 4g, n ¼ 4 and k ¼ 3

(blocks have indices 0, 1 and 2), partition f1; 4g,
f2g, f3g is represented by an array val = {0, 1, 2,

0}.
Given a set C with n elements and a number of

blocks k, partitioning C may require to find:

� any partition in exactly k blocks;

� all partitions in k blocks, where k ranges from 1

to n;

� all partitions in exactly k blocks.

If there is no need to identify symmetries or if just

one solution is enough, we compute set partitions

resorting to a generalization of the powerset imple-

mented with the arrangement with repetitions

mode. Instead of partitioning the elements in 2
subsets, i.e., the one belonging to the current

subset and the ones not belonging to it, we put an

element in one of the blocks whose labels range

from 0 to k � 1. Since the definition of set partition

excludes empty subsets, in the base case we test and

prevent such a solution to be considered checking

that each block contains at least one element. In the

case of more sophisticated requirements we suggest
to use Er’s algorithm [37].

4.3 Searching for just one Solution

Inmany search problems there is no need to explore

the whole solution space, as any of the solutions is

enough. Preventing recursion from exploring the

whole space is thus important, but the techniques

for stopping it in an orderly way are not intuitive.

Many students, especially those whose mental

model of recursion is still rickety, believe they can

‘‘pierce’’ the sequence of recursive calls returning to
the original calling function in one step. To avoid

this, we present two templates:

� The first one is based on a flag, a global informa-

tion item, implemented:

– either as a global variable in the C language,
though we strongly discourage this solution

because of the reasons explained in Section

4.1;

– or as a parameter passed by reference.

� The second one is based on a return value that is

tested for success or failure.

Following the first approach, we declare an inte-

ger flag stop initially set to 0 (int stop = 0;) and
we pass its pointer as a parameter to the recursive

function (functionR(... , &stop);). In the

recursive function:

� In the base case, if a valid solution has been

found, the flag is set to 1 ((*stop_ptr) = 1;).
� In the iteration on choices, the loop iterating

is controlled not only by the number of

choices, but also by the flag still being at 0 (for
(i = 0; (iteration on choices) &&
(*stop_ptr)==0; i++)).

Following the second approach, we have a recur-

sive function with an integer return value (1 for

success, 0 for failure):

� In the base case, if a valid solution has been

found, the function returns success, else failure.

� In the the loop iterating on the choices:

– we make a choice;

– we test the result returned by the recursive

function: if it is success, we return success;

– when the loop is over, as no success case has

ever been found, we return failure.

The multi-purpose template of Algorithm 2 is

upgraded in order to accommodate our needs. Only

the relevant parts are shown in the following code

snippet.

1. /* main */
2. if (functionR(...) == 0)
3. printf(‘‘no solution

found\n’’);
4.
5. /* recursive function */
6. int functionR(...) {
7. ...
8. for (iteration on choices) {
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9. make choice;
10. if (functionR(...))
11. return 1;

// Direct return upon success
12. backtrack;
13. }
14. return 0;
15. }

Algorithm 4. Searching for just one solution: testing
a success or failure return value

4.4 Improving Scalability

If we remain in the domain of complete algorithms,

no matter how fast computers are or will be, when

the size of the solution space grows exponentially,

only small- to medium-size problems can be solved

resorting to Enumerative Combinatorics in its basic

version. However, for search problems, not all
elements in the solution space are valid solutions,

but only the ones that satisfy some constraints. In

the basic templates seen in Section 4 we checked

constraints in the base case, working directly on the

solution, with or without auxiliary data structures.

Of course this is a major waste of time and of

computing resources, as we first compute and then

discard many solutions. An alternative is to sub-
ordinate recursive calls to constraint satisfaction.

We prevent exploration of a portion of the solution

space where no valid solution can be found. Aux-

iliary data structures may or may not be needed.

‘‘Pruning is the technique of cutting off the search the

instant we have established that a partial solution

cannot be extended into a full solution’’ [33].

A constraint or validity condition consists in
most cases of a logical condition, possibly tested

in an intermediate node of the recursion tree, rather

than in a leaf. There is no general-purpose metho-

dology for pruning, however there are some fre-

quently found cases:

� We enforce a static filter on available choices: in

the iteration on choices, an acceptance constraint

is logically conjuncted in the loop iteration con-

dition. Acceptance constraints do not depend on
previous choices, but only on the problem.

Examples are boundaries on maps, available

cells on paths, etc.

� We enforce a dynamic filter on available choices:

in this case the acceptance constraint depends on

past choices, i.e., on the current state. Examples

are the location of chess pieces on the chequer-

board that prevent some moves, the path already
walked through in a maze, etc.

� We validate a partial solution, evaluating if there

is any hope of eventually finding a valid solution

or not. If a sufficient condition to decide that a

solution cannot eventually be reached holds, we

exclude whole regions of the solution space from

further exploration.

Evaluating dynamic filters or validating partial

solutions often require dynamic data structures,

updated in the backtracking phase. As there is no

general methodology, we introduce pruning by
means of numerous examples. We require students

to at least prune the solution space by subordinat-

ing recursive descent to constraint satisfaction.

More advanced pruning techniques are highly

appreciated both in assignments and in written

exams.

Branch and Bound [41] for optimization pro-

blems, heuristic search methods, and approximate
algorithms are beyond the scope of the course.

Dynamic programming is on the contrary included

in the syllabus, but it is beyond the scope of this

paper.

4.5 Examples of Problems

Examples in the classroom, lab assignments and

exam essays cover a wide range of problems, start-

ing from simple ones up to NP-complete and NP-

hard ones. An exhaustive list is out of scope,

however some remarks help to elucidate our work.

Looking at their domains, the problems we deal

with may be classified as:

� Games and puzzles: the 8-queens, Sudoku, the
knight’s tour, verbal arithmetic, tiling puzzles,

etc.

� Set and string theory: set cover, longest increasing

sequence, longest alternating sequence, etc.

� Combinatorial optimization: knapsack, weighted

activity selection, minimal or maximal subsets

satisfying a constraint, etc.

� Graph theory: clique, independent set, vertex
cover, longest paths, feedback vertex or edge

set, etc.

Looking at the underlying combinatorial model:

� Some problems exhibit a unique model, e.g.,

anagrams and permutations.

� For other problems there exists a panoply of

applicable models, with varying outcomes in

terms of efficiency.

The n-queens problem, for instance, belongs to

the second group: queens can be undistinguishable,
thus their order doesn’t matter, or distinguishable.

We could, in decreasing size of the solution space:

� Place or not place an undistinguishable queen on

any of the n2 cells (powerset implemented as

arrangements with repetitions).

� Choose the n cells where to place a distinguish-
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able queen out of the n2 possible cells (simple

arrangements).

� Choose the n cells where to place an undistin-

guishable queen out of the n2 possible cells

(simple combinations).

� Shrink the 2-dimensional board to one dimen-
sion (an array of n column indices), as each row

must contain exactly 1 distinguishable queen

(arrangements with repetitions, i.e., choosing

tuple of n column indices).

� As each row and each column must contain

exactly one distinguishable queen, permute the

n different column indices (simple permutations).

Looking for a Hamiltonian path on an undir-

ected and connected graph may be reduced:

� To computing simple permutations of the nodes,
verifying for each of them in the base case that an

edge from a node to the following one exists for

all pairs of nodes.

� To applying a dynamic version of the principle of

multiplication. The choices are the edges insisting

on each node. It is dynamic because the cardin-

ality of the choice set is not fixed at a given

recursion depth. The approach is also introduced
as a variant of permutations with pruning, given

by the available edges.

For these classical examples students analyse

complexity, in terms of solution space size, realizing

the impact the choice of the model has on scal-

ability, For the n-queens problem solution space

size ranges from 2n
2

(powerset implemented as

arrangements with repetitions, feasible only for

very small values of n) down to n! (simple permuta-
tions). For theHamilton path, using the principle of

multiplication walking only on allowed edges intro-

duces a very efficient, though not easily estimated,

pruning.

Taking models into account, combinations and

permutations are commonly used whereas arrange-

ments, both simple and with repetitions, appear less

frequently. Whenever pruning is applied, a certain
flexibility in the choice of the reference model or

template is available, given the similarities between

combinations and powerset, and between arrange-

ments and permutations.

For strings and numbers order matters and

arrangements are a convenient model when the

goal is to identify subsequences of known length4.

If the length of the desired subsequence is unknown,
but an objective function must be satisfied, it is

necessary to compute a sorted powerset and we

suggest to resort to arrangements with repetitions.

Some of the problems of this kind are well-known in

the literature, like the longest increasing sequence,

the longest alternating sequence, etc.

A wide range of problems’ results can be repre-

sented as subsets. Whenever the cardinality of the

subset is known a priori, as in sets order does not
matter, simple combinations or combinations with

repetitions fit as models. Whenever cardinality is

unknown, all the subsets must be considered and

the model is the powerset. If the objective function

aims at finding a subset withminimumormaximum

cardinality, the implementation of the powerset

with combinations supports early stopping of the

search, thus pruning. Many problems from graph
theory fall in this category when the goal is to

identify a minimal or maximal subset of the nodes

or of the edges satisfying a certain validity condi-

tion. Examples are maximal clique, maximum inde-

pendent set, minimum vertex cover, etc.

We find it useful to introduce combinatoric

models as a starting point for state-of-the-art algo-

rithms. Some examples are:

� Simple paths in directed or undirected graphs,

and minimum distance problems: we interpret

these problems as an application of permutations
or arrangements with pruning, as they can be

reduced to enumerating ordered sequences

(tuples) of nodes.

� Minimum-spanning trees inweighted, undirected

and connected graphs: they are a subset of the

edges where both a validity constraint, i.e., span-

ning all nodes without loops and an optimality

one, i.e., minimizing the sum of the weights of the
selected edges, hold. The subset can be trivially

generated by following the powerset template, or

more like efficiently by the principle of multi-

plication on a partition of edges. Edges are

partitioned based on the node they insist on. In

our experience students’ understanding of the

problem increases, so they easily evolve to opti-

mal greedy algorithms like Kruskal’s and Prim’s
algorithms.

� We also solve clique, connected and strongly

connected component problems by resorting to

powerset models, properly enhanced with prun-

ing.

� For both the longest increasing sequence and for

the discrete knapsack problem: we are looking

for a subset of the objects, the combinatorics
model is thus the powerset. Starting from this

basic understanding, students arrive more easily

to the solution based on dynamic programming.

5. Educational Results

In this section we analyze some relevant statistical
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data that we collected along the years in order to

assess the impact of this approach to problem

solving on the students. We consider the expecta-

tions faculty has about students’ knowledge and

skills, the perception students have of their knowl-

edge and of their ability to apply it and results at
exams. The course in its current format first

appeared in the 2011/12 syllabus. In academic

year 2013/14 we introduced schema-based instruc-

tion for problem solving based on Enumerative

Combinatorics. In the next year we offered for the

first time the written exam with two programming

tracks (see Section 2.1). In academic year 2015/16

we published the textbook [14]. In academic year
2017/18 we retuned all lab assignments to make

them fully compliant with the approach.

5.1 Faculty Expectations in Terms of Students’

Knowledge and Skills

We did not expect that, after introducing our

approach, most students would suddenly fully

understand the new contents, apply the approach

and improve all their skills. We rather expected a

continuous improvement due to the joint effect of

our actions in terms of contents delivery, availabil-
ity of material and student support described in the

previous paragraph.

Table 3 reports how we expected the students’

receptiveness to course topics would evolve along

the years. Scores close to 5 are for knowledge and

skills any student should master at the end of the

course. Intermediate scores around 3 characterize

more advanced topics taught in the course, more
challenging to master for the larger part of the

audience. Lower scores are for topics we deemed

only few motivated and capable students could

master. Scores are average marks given by the

faculty.

As regards to knowledge, the first 6 rows refer to

the models. As regards to skills, in the following 6

rows we consider the ability to identify the base

case, to iterate on choices, to stop as soon as a

solution is found, to handle function calls, return

values and parameter passing, to manage the back-

tracking phase and to prune the solution space.

In the earlier years we were satisfied when stu-
dents used simple models, like the principle of

multiplication or the powerset, identifying the cor-

rect base case and properly iterating on choices. In

more recent years we expected proficiency in more

advanced aspects like:

� The use of all the models, including partitioning.

� The introduction of pruning: efficient pruning is

requested in simple cases and contributes signifi-

cantly to the final mark in more difficult ones.

� The use of branch and bound techniques or the
abilty to break symmetry: in the course we do not

emphasize them, but we expect brilliant students

to discover and use them on their own.

Our expectations define each year the threshold

for passing the exam and the criteria for ranking. As

data in Section 5.3 show, there has been a steady

increase in the number of students that pass the

exam. What Table 3 shows is that the level in terms

of knowledge and skills required to pass the exam
has also increased, thus combining quantitative and

qualitative improvements. We believe we have now

reached a steady state: there is no room in the

syllabus for new topics given the number of credits

allotted to the course and we can’t further increase

the threshold for passing the exam. Expected scores

for academic years 2018/19 and 2019/20 are the

same.

5.2 Students’ Perception Of The Schema-Based

Approach to Problem Solving

Starting from academic year 2016/17, the lab

assignments described in Section 2.1 are discussed

and ranked during a personal interview. One of the
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Table 3. Expected students’ receptiveness to course topics year by year

2012/13 2013/14 2014/15 2015/16 2016/17 2017/18
2018/19
2019/20

Models Mult. Princ. 4.3 4.3 4.3 4.4 4.4 4.4 4.4

Powerset 4.0 4.0 4.1 4.3 4.3 4.4 4.4

Arrangements 2.1 3.0 4.1 4.1 4.3 4.3 4.3

Permutations 2.1 3.0 4.1 4.1 4.3 4.3 4.3

Combinations 1.3 2.3 3.3 3.5 3.9 4.0 4.0

Partitioning 0.1 0.8 2.4 2.4 2.7 2.7 2.9

Skills Base case 3.7 4.2 4.2 4.5 4.5 4.5 4.5

Choices 3.7 2.9 3.0 3.0 3.5 3.7 4.0

Early stop 2.8 3.7 3.5 4.0 4.2 4.4 4.4

Calls 1.2 1.5 1.5 2.4 3.2 3.6 4.2

Backtrack 2.8 4.2 4.2 4.3 4.4 4.4 4.4

Pruning 1.2 1.3 2.8 3.5 3.5 3.7 3.7



questions asked concerns the usefulness of schema-

based instruction in problem solving. The very large

majority of interviewees (>90%) agrees that the

approach helps them in understanding the problem

and that, applying the methodology, solving the

problem is much easier. This has confirmed our
impression that schema-based instruction was

useful, though we could not support the claim

with data or a detailed analysis.

To measure how students perceive schema-based

instruction, at the end of the current 2019/20 winter

semester we asked them to answer a questionnaire.

During the lectures, we explained the students that

we were collecting data for this paper and asked for
their cooperation. Out of 424 new students, i.e.,

students attending the course for the first time, 2/3

answered, i.e., almost all those who were attending

the lectures and handing in the assignments in due

time.

The questionnaire breaks down in 4 sections

asking students to self-assess:

1. Previous knowledge on Combinatorics and

recursion from High School or from personal

study, and its usefulness for the course.

2. Identification knowledge (Enumerative Com-

binatorics model selection), elaboration knowl-
edge (adaptation of the model to the problem),

planning and execution knowledge (algorithm

design and coding in C).

3. Personal understanding of models and ability

to apply them.

4. Skills related to recursion-based programming.

Sections 3 and 4 match the rows in Table 3, but

this time from the student’s perspective. Score 0

means no knowledge, useless or unable to apply,

score 5 deep knowledge, extremely useful or per-

fectly able to apply.

As regards toCombinatorics, 63% of the students
have previous knowledge. Note that Combinatorics

is an optional topic in Italian High School Maths

syllabuses. As regards to recusion, 75% of the

students have no previous knowledge, 10% have

some knowledge thanks to personal study and only

in 15% of the cases recursion appeared in their High

School syllabus, mainly in technical tracks (‘‘Istituti

Tecnici’’).

Fig. 1 shows self-assessment results for previous

knowledge of Combinatorics and recursion and its

usefulness for the course. Only students that
declared they have such previous knowledge are

considered.

The mean is around 3 for the quality of previous

knowledge both for Combinatorics and for recur-

sion. The usefulness of recursion is scored again

around 3. The usefulness of Combinatorics is lower

(2.67), probably because at High School the

approach was more Maths-oriented, in particular
the goal was to serve as a basis for Probability

Theory and not solution space modelling in pro-

blem solving. A standard deviation around .75

indicates that the values are reasonably close to

the mean.

Taking into account all students, including those

that have never been previously exposed to Combi-

natorics and recursion, Fig. 2 shows a drastic
decrease in the scores and a very large spread in

the values, especially for recursion, due to the large

number of zeroes (no previous exposure). This

proves that both Combinatorics and recursion are

novel topics first addressed in a complete and

systematic way in this course, no matter how

technical the High School track might have been.

As regards to the degree students believe they
have in identification, elaboration and planning/

execution knowledge, Fig. 3 shows that the diffi-

culty is perceived in identifying the model, in

adapting and in implementing it. It also summarizes

the very good opinion the students have about the

usefulness of the schema-based instruction

approach. This evidence confirms the qualitative

impression collected during personal interviews.
The line chart of Fig. 4 shows how students rank

their comprehension of the models and their ability

to put them in practice. It also shows our expecta-

tions for the current academic year (see Table 3

rows labeled Models, last column).

Students confirm our classification of the models
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in terms of what is more or less difficult to under-
stand. There are two exceptions:

1. In our opinion, permutations are as difficult as

arrangements, students find them more diffi-
cult.

2. In our opinion, partitioning is much more

difficult than what students perceive.

As regards to permutations, this is probably due

to the reduced presence of permutations in exam-

ples and exercises with respect to arrangements. As

regards to partitioning, as we believe it is difficult,

examples and exercises we propose are simple, so
students do not feel its complexity in general.

No surprise that understanding is easier than

applying: the gap remains roughly the same for

the multiplication principle, the powerset and

arrangements, it widens for permutations and com-

binations, its maximum is for partitioning, proving

that the students’ perception of partitioning was

fallacious. Standard deviation is largely under 1,
witnessessing an acceptable uniformity in the over-

all evaluation by students.

Fig. 5 shows how students perceive their under-
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Fig. 3. Evaluation of identification, elaboration and planning/execution knowledge and usefulness of the approach.

Fig. 4. Expected and perceived comprehension of models and ability to use them.



standing and their skills in key aspects of recursion.

It also shows our expectations for the current

academic year (see Table 3 rows labeled Skills,

last column).

Excluding tha base case, that is at no surprise
considered as the easiest aspect both to understand

ad to manage, there is a certain uniformity on all

other aspects, with a second high for stop criteria,

somehow related to the base case. Bigger difficulties

in both comprehension and usage seem to relate to

iterating on choices, to managing function calls, to

pruning and backtracking. The message to us is

that the way we address these topics must be
improved. The gap between comprehension and

usage exhibits two areas: a smaller difference is seen

for more standard and well encoded aspects, such

as base case identification, iterating on choices and

managing function calls, whereas the gap increases

with the more skill-demanding ones, like early stop,

pruning and backtracking, considered much easier

to understand than to put in practice. In our
opinion this is due to the lack of a general-purpose

methodology/scheme, replaced by many examples.

As regards to the expectations of faculty listed in

Table 3, there is a good agreement with students’

perceptions for base case identification, iteration

on choices and early termination. The expectations

of faculty are in the middle between students’

expectations in terms of understanding and usage
for call management and pruning. We interpret this

as the faculty has a more realistic view than the

students about comprehension and skills in call

management and pruning. As regards to back-

tracking, the lower score on the students’ side

means that, no matter the time already devoted

to it, there is still a considerable part in the

audience that finds it hard to follow and internalize

the many examples emulating how recursion pro-

ceeds. It’s our task to find a better balance between

fast-learning students that do not appreciate an

overly pedantic explanation and the slower ones,

for whom even the simplest steps must be
explained.

5.3 Measurable Results at Exams

We did not only look at our expectations or at the
students’ perception, but we also tried to measure

the impact of our educational choices in terms of

the students’ final results at the exams. Let N be

number of new students and P the number of new

students who successfully passed the exam within

the academic year (before September 30). The

success ratio is � ¼ P
N
. Setting as year 0 the academic

year 2011/12, Table 4 shows the percentage increase
or decrease � of �with respect to the valuemeasured

in year 0, the actions taken that year and the

available support.

Academic years 2011/12 and 2012/13 show no

substantial difference, the slight decrease being

statistically insignificant. In academic year 2013/

14 we introduced the schema-based instruction

approach to problem solving with Enumerative
Combinatorics. The only material available were

the transparencies used during the lectures. Despite

the limited amount of material, this resulted in an

increase of about 5% of the success rate with respect

to year 0. In the following year we offered for the

first time the written exam with 2 programming

tracks (see Section 2.1). As a result the increase with

respect to year 0 jumped to 18%. In academic year
2015/16 the textbook [14] became available and the

increase climbed to 47%. Retuning the labs and

offering a 3rd parallel class in 2017/18 had nomajor

consequence. The success rate has remained stable
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around 50% in the following academic years with

some oscillations.

5.4 Graduate Students’ Opinion

No data are available as regards to the opinion of

graduate students on the course as a whole and of

the schema-based instruction approach. However

we receive many messages from graduate students

we are still in touch with that state that the topics
dealt by the course have been very useful in the

sequel of their education. In particular the ability to

apply recursion to problem solving seems to be a

key point in job interviews. Graduates exposed to

schema-based instruction have acquired a full mas-

tery of the topics and in general perform quite well

in interviews.

6. Discussion

Instead of leaving the students without guidance

when solving a problem and writing code in the C

language for it, we perceived that schema-based

instruction could be of help. We imported from

Combinatorics notions student had learned for
other purposes, mainly Probability Theory, and,

resorting to Enumerative Combinatorics, we used

them to model the solution space for the problems

they were facing. We provided them with a metho-

dology, namely a sequence of steps to follow,

starting from specification analysis, to combinator-

ial model identification, and with a set of templates

for the models written in the C language. What was
left to them was, apart the initial decision phase, to

identify the constraints for valid solutions and to

implement them in terms of validity checking func-

tions, to identify the objective function in the case of

optimization problems and to implement it.

Another aspect where student creativity plays a

key role is scalability: efficient pruning can make

the difference in terms of size of the problem the
approach can deal with and also in terms of ranking

the student’s solution in an exam.

This approach has been gradually introduced

over the years: we started with themodels explained

during lectures, then we added more and more self-

learning material in terms of transparencies, text-

book, solved and commented lab assignments and

new assignments every year. Students’ response has

been in line with our expectations: more students
reached with less difficulty the required level for

passing the exam, the average knowledge level of

students has increased over the years, so that we are

now requesting more than in the past, e.g., evalua-

tion criteria include aspects like pruning that we

normally disregarded.

However, our task as lecturers has not finished

yet. We see some limitations in the current
approach, that represent possible future work:

� The teaching-learning pattern relies on lectures,

labs and assignments. Other patterns that would

require more lecturer manpower are impossible
in our context of bounded resources. However,

we could develop self-assessment software in

terms of question & answers, self-correcting

exercises where the student has to complete

partially written code. Existing experience how-

ever shows that it is difficult to offer other than

simple examples.

� Students are more motivated when they feel that
what they are learning has practical aspects.

Alongisde with labs and assignments, we could

envisage to start an in-course problem-solving

challenge for some selected groups of volunteer

top students. Limiting the number of groups also

limits the manpower required to supervise them.

The students may benefit not only in terms of

knowledge and know-how, but also because this
activity could complement or replace the final

exam.

� Students have to make a leap of faith when we

claim that problem solving and recursion are

important for their their future career as Com-

puter Engineers. We could gather examples of

frequently asked questions in job interviews and

relate them to recursion-based problem-solving.
We could also be more precise in explaining the

students the setting of our course in the context of

the Computer Engineering curriculum, empha-

sizing the links with following courses. As it often
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Table 4. Percentage success rate increase with respect to year 0

Academic year � Action Support

2011/12 0.00% None

2012/13 –1.31% None videolectures

2013/14 5.33% introduction of models transparencies

2014/15 18.05% two programming tracks

2015/16 46.97% textbook

2016/17 53.55%

2017/18 45.76% lab retuning/3rd parallel class

2018/19 46.36%



happens in academic environments, including

Italy, each course is seen as monadic, i.e.,

stand-alone, independent and non communicat-

ing. Coordination with courses that precede and

follow, though difficult to implement, would be

of great value.

From the content’s point of view, what we perceive

as difficult or easy does not always match the stu-

dents’ feeling. In particular, we must revise the way
we introduce permutations and pruning and focus

more on partitioning, so that the students become

aware of its intrinsic difficulty. We also need to focus

moreon the expressionof constraints andofobjective

functions, not just in terms of a rich set of examples,

but in more structured form of templates.

As regards to measurable results, analyzing ques-

tionnaires not resorting to professional support
tools proved to be on the one hand heavy in terms

of human resources devoted to this task and not

accurate enough in statistical terms. However,

though preliminary, it gave us a valuable insight in

terms of matching faculty and students perceptions

and expectations. Repeating an improved question-

naire in the editions to come with the support of

better tools is a decision we have already taken.

7. Conclusions

Our long-standing experience in teaching a

CS2+CS3 course to second-year Computer Engi-

neering students has allowed us to point out the

main challenges students and lecturers encounter in

learning and in teaching problem solving based on

recursion.

There are difficulties inherent to recursion: it is an
unnatural way of thinking, whose mode of opera-

tion is often understood in a wrong way, decentra-

lized control, where each instance does its job, but

there is no centralized supervision, is difficult to

imagine, base case identification is not straightfor-

ward, apart from trivial cases, the recursive case is

simple only if there is no selection among a panoply

of choices, pruning strategies are needed to make it
applicable to other than small-size problems.

There are difficulties inherent to problem solving:

it is not mere exercise solving, it requires the ability

to analyze a problem and the creativity to design a

solution strategy. The need for creativity persuades

many that all problems must be solved from

scratch, as if it were the first time they appear.

This is especially true in Informatics, a young

science with respect to Mathematics, Logics, Phy-

sics etc. Consolidated methodologies are lacking

and very often courses are like an artist’s workshop:

the lecturer is the artist, the students are the

apprentices who look at what the artist does, try
to imitate his/her work and then possibly to

improve it.

No doubt creativity is a must in problem solving.

However problems may be grouped into classes

that share the same mathematical model. This is

where schema-based instruction is valuable. It is

top-down, rather than bottom-up: it requires to

understand a concept and then derive consequences
from it, rather than to gather lots of examples and

then abstract. It promotes proactivity in students as

regards to problem solving, it does notmean to turn

them into repositories of passive knowledge.

We apply schema-based instruction to problem

solving based on recursion. Schemas are models

derived from Enumerative Combinatorics that

describe in a formal and structured way a space
where the solutions to a specific problem are

located. We offer the students a complete portfolio

of schemas in the form of templates written in the C

language and a step-by-step methodology to

approach problems and to design solutions. We

do not avoid the need for creativity: creativity is

still required in understanding the problem, in

selecting the correct model, in identifying the con-
ditions for a valid or for an optimal solution, in

pruning the search space without loosing complete-

ness. We rather harness problem solving within a

clear framework.

We measure the effects of our schema-based

instruction to recursion-based problem solving

gathering data about the students’ perception of

the difficulties they encounter and compare them to
our expectations. We also analyze improvements in

successful exam completion and students’ knowl-

edge level.

These results show that schema-based instruction

is a valuable approach in teaching and learning in

general, beyond the original domains it was

intended for, and that its version in terms of

Enumerative Combinatorics models as C language
templates has improved students’ knowledge and

know-how in recusion-based problem solving, their

results at exams, the quality of our lectures and of

our support material.
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