
02 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A reduced variable neighborhood search for the just in time job shop scheduling problem with sequence dependent
setup times / Brandimarte, Paolo; Fadda, Edoardo. - In: COMPUTERS & OPERATIONS RESEARCH. - ISSN 0305-
0548. - 167:(2024), pp. 1-12. [10.1016/j.cor.2024.106634]

Original

A reduced variable neighborhood search for the just in time job shop scheduling problem with sequence
dependent setup times

Publisher:

Published
DOI:10.1016/j.cor.2024.106634

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2987691 since: 2024-04-10T06:54:50Z

Elsevier

Computers & Operations Research 167 (2024) 106634

A
0

Contents lists available at ScienceDirect

Computers and Operations Research

journal homepage: www.elsevier.com/locate/cor

A reduced variable neighborhood search for the just in time job shop
scheduling problem with sequence dependent setup times
Paolo Brandimarte, Edoardo Fadda ∗

Department of Mathematical Sciences ‘Giuseppe Luigi Lagrange’, DISMA, Politecnico di Torino, Torino, Italy

A R T I C L E I N F O

Dataset link: https://github.com/EdoF90/just-i
n-time-jss-setup-times

Keywords:
Applications of mathematical programming
Reduced variable neighborhood search
Just in time
Matheuristic
Dual variables
Less is more

A B S T R A C T

In this paper, we deal with the just-in-time job shop scheduling problem with sequence-dependent setup times
and release dates. Given a set of jobs characterized by release and due dates, the goal is to execute them by
minimizing a weighted sum of their earliness, tardiness, and flow time (i.e., the difference between completion
and start time of each job). We develop new destroy and repair operators by exploiting the structure of
the problem, and we use them within a reduced variable neighborhood search matheuristic. Computational
experiments carried out on several sets of instances show that the proposed algorithm outperforms existing
solution methods.
1. Introduction

Job-shop scheduling problems are well-known optimization prob-
lems, tackled by a huge amount of literature, mostly focused on the
minimization of regular objective functions like makespan. A more lim-
ited literature deals with non-regular scheduling objectives (Bürgy and
Bülbül, 2018). Moreover, the majority of the papers assume that setup
times are negligible or included within the job processing time (Al-
lahverdi et al., 2008). These assumptions are not necessarily met in
practice, where sequence-dependent setup times often play a major
role, and non-regular objective functions must be considered.

This paper examines such a setting, tackling Just in Time (JIT)
scheduling, whose aim is to complete jobs as close to their due date
as possible. Therefore, JIT models feature a non-regular objective func-
tion, encompassing both earliness and tardiness penalties. Earliness
captures the holding or deterioration cost of the finished jobs, while
tardiness accounts for the penalty of missing the due dates and the
resulting loss of customer goodwill. Nevertheless, considering only ear-
liness and tardiness may lead to schedules in which the first operation
of a job is processed as early as possible, and the last one is completed
close to the due date, thus inducing waiting times and costs for keeping
stock at the shop floor level, which contradicts the JIT philosophy. One
example of this effect is shown in Fig. 1, where we depict a solution
with zero earliness and tardiness, but with the first two operations of
job 1 processed as soon as possible. As a result, there is more work in
process on the shop floor than necessary.

∗ Corresponding author.
E-mail address: edoardo.fadda@polito.it (E. Fadda).

To counter this effect, some papers introduce operation due dates
by subtracting the sum of the processing times of the subsequent oper-
ations from the job due date (Abderrazzak et al., 2022; Ahmadian and
Salehipour, 2020; Baptiste et al., 2008). Then, they penalize earliness
and tardiness of each single operation of a job in the objective function
so that, in the ideal situation, each operation completes at its due date,
the job is on time, and there is no waiting time between operations. This
cannot be done if sequence-dependent setup times are considered, since
the sequence of operations may strongly affect the single operation due
dates. To overcome this problem, we introduce in the objective function
the flow time, i.e., the amount of time elapsing between the start time
of the first operation and the completion time of the last operation of
each job. Note that the flow time is measured with respect to the actual
job start time, not its release date. In Fig. 1, the flow time of job 2 is
minimal, while the flow time of job 1 is not.

Using the three-field notation 𝛼|𝛽|𝛾 of Graham et al. (1979) (where:
𝛼 describes the shop (machine) environment; 𝛽 collects miscellaneous
information about setups, release dates, additional constraints, and de-
tails of the processing characteristics; 𝛾 defines the objective function),
the problem that we address can be denoted as 𝐽 |𝑟𝑗 , 𝑠𝑖𝑘|

∑

𝑗
[

𝑤𝐸
𝑗 𝐸𝑗 +

𝑤𝑇
𝑗 𝑇𝑗 +𝑤𝐹

𝑗 (𝐶
𝑗 −𝑆𝑗)

]

. In the following, we refer to this problem as Just
In Time Job Shop Scheduling with Sequence-dependent Set-up Times and
release dates (or 𝐽𝐼𝑇 − 𝐽𝑆𝑆 − 𝑆𝑒𝑞𝑆𝑇 , for short). To the best of our
knowledge, while each individual feature of this problem, as well as
some partial combinations, has been considered in the literature, their
vailable online 4 April 2024
305-0548/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access a

https://doi.org/10.1016/j.cor.2024.106634
Received 16 June 2023; Received in revised form 10 December 2023; Accepted 27
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

March 2024

https://www.elsevier.com/locate/cor
https://www.elsevier.com/locate/cor
https://github.com/EdoF90/just-in-time-jss-setup-times
https://github.com/EdoF90/just-in-time-jss-setup-times
https://github.com/EdoF90/just-in-time-jss-setup-times
https://github.com/EdoF90/just-in-time-jss-setup-times
https://github.com/EdoF90/just-in-time-jss-setup-times
https://github.com/EdoF90/just-in-time-jss-setup-times
https://github.com/EdoF90/just-in-time-jss-setup-times
https://github.com/EdoF90/just-in-time-jss-setup-times
https://github.com/EdoF90/just-in-time-jss-setup-times
https://github.com/EdoF90/just-in-time-jss-setup-times
https://github.com/EdoF90/just-in-time-jss-setup-times
https://github.com/EdoF90/just-in-time-jss-setup-times
https://github.com/EdoF90/just-in-time-jss-setup-times
https://github.com/EdoF90/just-in-time-jss-setup-times
https://github.com/EdoF90/just-in-time-jss-setup-times
https://github.com/EdoF90/just-in-time-jss-setup-times
https://github.com/EdoF90/just-in-time-jss-setup-times
https://github.com/EdoF90/just-in-time-jss-setup-times
https://github.com/EdoF90/just-in-time-jss-setup-times
https://github.com/EdoF90/just-in-time-jss-setup-times
https://github.com/EdoF90/just-in-time-jss-setup-times
https://github.com/EdoF90/just-in-time-jss-setup-times
https://github.com/EdoF90/just-in-time-jss-setup-times
https://github.com/EdoF90/just-in-time-jss-setup-times
https://github.com/EdoF90/just-in-time-jss-setup-times
https://github.com/EdoF90/just-in-time-jss-setup-times
https://github.com/EdoF90/just-in-time-jss-setup-times
https://github.com/EdoF90/just-in-time-jss-setup-times
https://github.com/EdoF90/just-in-time-jss-setup-times
https://github.com/EdoF90/just-in-time-jss-setup-times
https://github.com/EdoF90/just-in-time-jss-setup-times
https://github.com/EdoF90/just-in-time-jss-setup-times
https://github.com/EdoF90/just-in-time-jss-setup-times
https://github.com/EdoF90/just-in-time-jss-setup-times
https://github.com/EdoF90/just-in-time-jss-setup-times
https://github.com/EdoF90/just-in-time-jss-setup-times
https://github.com/EdoF90/just-in-time-jss-setup-times
https://github.com/EdoF90/just-in-time-jss-setup-times
https://github.com/EdoF90/just-in-time-jss-setup-times
https://github.com/EdoF90/just-in-time-jss-setup-times
https://github.com/EdoF90/just-in-time-jss-setup-times
https://github.com/EdoF90/just-in-time-jss-setup-times
https://github.com/EdoF90/just-in-time-jss-setup-times
https://github.com/EdoF90/just-in-time-jss-setup-times
https://github.com/EdoF90/just-in-time-jss-setup-times
https://github.com/EdoF90/just-in-time-jss-setup-times
https://github.com/EdoF90/just-in-time-jss-setup-times
https://github.com/EdoF90/just-in-time-jss-setup-times
https://github.com/EdoF90/just-in-time-jss-setup-times
https://github.com/EdoF90/just-in-time-jss-setup-times
https://github.com/EdoF90/just-in-time-jss-setup-times
https://github.com/EdoF90/just-in-time-jss-setup-times
https://github.com/EdoF90/just-in-time-jss-setup-times
https://github.com/EdoF90/just-in-time-jss-setup-times
mailto:edoardo.fadda@polito.it
https://doi.org/10.1016/j.cor.2024.106634
https://doi.org/10.1016/j.cor.2024.106634
http://creativecommons.org/licenses/by/4.0/

Computers and Operations Research 167 (2024) 106634P. Brandimarte and E. Fadda

n
c
j
o

f
t

g
p
a
t
s
b
c
V
s
c
a
p
a
f
e
r
p

1

s
t
d
n
r
i
e
p

i
a
l

1

t
S
S
r
s
s
p
p
S

Fig. 1. Example of a schedule minimizing the sum of earliness and tardiness, but
ot the flow time. The dashed vertical lines correspond to release dates, whereas the
ontinuous ones correspond to due dates (red for job 1, grey for job 2; 𝑗 stands for
obs and 𝑜𝑝 for operations). We could delay the start times of the first two operations
f job 1, reducing the flow time, without affecting earliness and tardiness.

ull combination has not been tackled. Hence, the main contribution of
his paper is to fill this gap.

As in, e.g., Ahmadian and Salehipour (2020), in order to find
ood solutions within a reasonable amount of time, we decompose the
roblem into sequencing (i.e., deciding the order of the operations of
ll jobs to be processed on each machine) and timing (i.e., deciding
he starting time of each operation) subproblems since, if a feasible
equence is provided, an optimal schedule for the given sequence can
e obtained in polynomial time by solving a linear programming model
alled timing problem (Pinedo, 2008, p. 74). Then, we develop a Reduced
ariable Neighborhood Search (RVNS) to guide the search in the space of
equences (Mladenović et al., 2016; Brimberg et al., 2023). Here, our
ontribution is the definition of different neighborhoods using destroy
nd repair operators, and the comparison of their performances. In
articular, we analyze the performance of two families of destroy oper-
tors, one based on random selection, and one leveraging information
rom the dual variables of the timing problem. We also compare differ-
nt repair operators based either on the possibly approximated solution
estricted mixed-integer linear problems (MILPs), or the simulation of
riority rules.

.1. Paper contributions and limitations

The contribution of this paper is twofold. First, we consider a JIT
cheduling problem encompassing sequence-dependent setup times. To
he best of the authors’ knowledge, both JIT setting and sequence-
ependent setup times have been tackled individually, but there is
o paper dealing with both features together, also including non-zero
elease dates. For the sake of simplicity, and in order to get better
nsights, we consider these features within a job shop setting, where
ach operation is assigned to one machine. Hence, a limitation of this
aper is that we do not consider flexibility.

Second, we propose new neighborhood structures leveraging the
nformation provided by the dual variables of the timing problem. This
llows to exploit information from the timing subproblem to guide the
ocal search in the space of sequences.

.2. Paper organization

The paper is organized as follows. Section 2 presents a review of
he literature concerning just-in-time job shop scheduling problems.
ection 3 introduces the mathematical model of the problem, and
ection 4 presents the proposed heuristics along with the destroy and
epair operators. Section 5 reports computational experiments on a
et of instances ranging from 5 to 50 jobs and 10 machines. This
ection is divided into two parts: the first one comparing the relative
erformance of pairs of destroy/repair operators, and the second one
roving the effectiveness of the overall proposed algorithm. Finally,
ection 6 concludes the paper and outlines future research directions.
2

2. Literature review

The JIT job shop scheduling models have their roots in the earliness-
tardiness (ET) models that were introduced in the 1980s by Fox and
Smith (1984). While this latter class of models minimizes a weighted
sum of earliness and tardiness, JIT models also account for the time
that jobs spend on the shop floor during their execution. How the
model deals with this quantity generates two different branches of
the literature, one addressing due dates at the operation level and
one addressing due dates at the job level (Ahmadian and Salehipour,
2020). As mentioned above, if sequence-dependent setup times are
considered, due dates at the operation level are not immediate to
calculate. Therefore, we focus on the second branch of the literature.

While JIT job-shop scheduling without sequence-dependent setup
times has been considered in several papers (Baptiste et al., 2008; dos
Santos et al., 2010; Wang and Li, 2014; Ahmadian and Salehipour,
2020), no one deals with the JIT job-shop scheduling with sequence-
dependent setup times. Therefore, in order to account for the operations
waiting times, we add a term in the objective function accounting
for the holding cost and the inconvenience related with the work in
process. This has been done in multiple ways in other works. Leonardi
and Raz (1997) include in the objective function the flow time, com-
puted as the time between the job release date and the completion
time, thus accounting for the holding cost before the start of the first
operation. Instead, Brandimarte and Maiocco (1999) consider the time
elapsed between the start time of the first operation and the delivery
time (i.e., the maximum between the due date and the job completion
time), thus accounting for the cost of holding the completed job. In
this paper, we assume that the incurred holding cost is proportional
to the difference between the starting time of the first operation of a
job and the completion time of the last one, thus accounting for the
work in process inconvenience at the shop floor level during all of the
operations.

To the best of authors’ knowledge, as we mentioned, no paper deals
with the full set of features of the 𝐽𝐼𝑇 − 𝐽𝑆𝑆 − 𝑆𝑒𝑞𝑆𝑇 , and the
literature dealing with JIT problems with sequence-dependent setup
times is rather scarce (Allahverdi et al., 1999, 2008). Kolahan and Liang
(1998) tackle a single machine JIT scheduling problem with sequence-
dependent setup times, in which there are linear costs for compression
or extension of job processing times. The objective function consists
of a linear combination of the total weighted earliness, tardiness, and
compression/extension costs. They propose tabu search as a solution
method. The same solution method is adopted by Santos and França
(1997), who consider a single machine problem and minimize the sum
of earliness, tardiness, and setup times.

In the parallel machine setting, no JIT model with sequence-
dependent setup times has been considered. The papers closest to
our setting are Radhakrishnan and Ventura (2000), Feng and Lau
(2007) in the identical parallel machines setting, and Zhu and Heady
(2000) in the unrelated parallel machines setting. While the first paper
proposes simulated annealing, the second one decomposes the problem
into sequencing and timing subproblems and proposes a custom meta-
heuristic for dealing with sequencing. Instead, in the third paper, the
authors propose a MILP model that provides optimal solutions in a
reasonable time for instances up to 9 jobs and 3 machines.

In the flow shop setting a few papers deal with JIT objective func-
tions (Shabtay, 2012; Xiong et al., 2021), but none of them consider
setup times. Finally, in the other settings (e.g., job shop, flexible job
shop, etc.), there seems to be no work dealing with JIT or ET models
featuring sequence-dependent setup times.

Several solution methods have been applied to compute solutions
for JIT and ET models. Since a comprehensive analysis is beyond the
scope of the paper, we only report applications of Variable Neighbor-
hood Search (VNS) to those problems.

In the ET context, VNS has been used in Liao and Cheng (2007),

Thevenin and Zufferey (2019). In the first paper, the authors address

Computers and Operations Research 167 (2024) 106634P. Brandimarte and E. Fadda
a single-machine weighted earliness and tardiness with a common due
date for all the jobs. They hybridize VNS with tabu search and consider
neighborhoods based on insertion and swap moves. In the second
paper, the authors tackle a single-machine scheduling problem with
rejections, sequence-dependent setup times, and earliness and tardiness
penalties. They enhance VNS with a learning mechanism that helps
to drive the search towards promising areas of the search space. The
neighborhoods are based on pairwise swap moves.

In the JIT context, VNS has been applied to the JIT job shop
scheduling without setup times in Wang and Li (2014), Ahmadian and
Salehipour (2020). In both papers, the authors decompose the problem
into sequencing and timing, and use a VNS to explore the sequences.
Nevertheless, in the first paper, the neighborhoods used are based on
swap and insertion. Instead, in the second one the neighborhoods are
based on MILP problems and swap operations.

3. Mathematical model

Let = {1,… , 𝐽} be the set of jobs to process on a set of machines
 = {1,… ,𝑀}. We make standard assumptions: each machine is
continuously available and can process at most one job at a time, and
no job preemption is allowed. Each job 𝑗 ∈ is characterized by a
due date 𝑑𝑗 , a release date 𝑟𝑗 , and by a ordered chain of operations
𝑗 = {1, 2,… 𝐼𝑗}. Operation 𝑖 ∈ 𝑗 of job 𝑗 must be processed on a
given machine, denoted by 𝑀(𝑖, 𝑗), with processing time 𝑝𝑗𝑖 . We call
𝑚 the set of jobs having one operation to be executed on machine 𝑚,
its cardinality is 𝐽𝑚. In other words, 𝐽𝑚 is the number of operations
that machine 𝑚 has to perform. For the sake of simplicity, we rule
out reentrant flows, i.e., all of the machines to be visited by a job are
distinct. This assumption streamlines notation, but does not really affect
the solution approach and the computational experiments. Moreover, a
job need not visit all of the machines. For each machine 𝑚 and job
𝑗 ∈ 𝑚, we denote by 𝐼(𝑗, 𝑚) the operation of job 𝑗 to be executed on
machine 𝑚.

On each machine, indexed by 𝑚, it is possible that, after the opera-
tion of job 𝑗1 and before the operation of job 𝑗2, a sequence-dependent
setup is required, whose duration is denoted by 𝛿𝑚𝑗1𝑗2 . Initially, each
machine is configured to perform the operation of a fictitious job 𝑗𝑚0 .

Finally, we define 𝑤𝐸
𝑗 , 𝑤𝑇

𝑗 , and 𝑤𝐹
𝑗 to be weights reflecting the

relative importance of the earliness, tardiness, and flow time for each
job 𝑗, respectively.

The decision variables of the model are:

• 𝐶𝑗
𝑖 completion time of operation 𝑖 of job 𝑗;

• 𝑆𝑗
𝑖 starting time of operation 𝑖 of job 𝑗;

• 𝐸𝑗 earliness of job 𝑗: max
(

𝑑𝑗 − 𝐶𝑗
𝐼𝑗
, 0
)

;

• 𝑇𝑗 tardiness of job 𝑗: max
(

𝐶𝑗
𝐼𝑗
− 𝑑𝑗 , 0

)

;

• 𝑦𝑚𝑗1𝑗2 binary variable set to 1 if operation of job 𝑗1 immediately
precedes operation of job 𝑗2 on machine 𝑚.

Using these definitions, the flow time of job 𝑗 can be expressed as
𝐶𝑗
𝐼𝑗

− 𝑆𝑗
1 , where 𝐶𝑗

𝐼𝑗
is the completion time of the last operation of

job 𝑗, and 𝑆𝑗
1 is the starting time of the first operation of job 𝑗. The

mathematical model can be formulated as the following MILP problem:

min
∑

𝑗∈

(

𝑤𝐸
𝑗 𝐸𝑗 +𝑤𝑇

𝑗 𝑇𝑗 +𝑤𝐹
𝑗 (𝐶

𝑗
𝐼𝑗
− 𝑆𝑗

1)
)

(1)

s.t. 𝐶𝑗
𝐼𝑗
+ 𝐸𝑗 − 𝑇𝑗 = 𝑑𝑗 ∀𝑗 ∈ (2)

𝑆𝑗
𝐼(𝑗2 ,𝑚)

≥ 𝐶𝑗1
𝐼(𝑗1 ,𝑚)

+ 𝛿𝑚𝑗1𝑗2 −𝑀(1 − 𝑦𝑚𝑗1𝑗2)

∀𝑚 ∈ ∀𝑗1, 𝑗2 ∈ 𝑚 (3)

𝑆𝑗
𝑖+1 ≥ 𝐶𝑗

𝑖 ∀𝑖 = 1,… , 𝐼𝑗 − 1 ∀𝑗 ∈ (4)

𝑆𝑗
1 ≥ max

[

𝑟𝑗 , 𝛿
𝑀(1,𝑗)
𝑗𝑀(1,𝑗)
0 𝑗

]

∀𝑗 ∈ (5)

𝑗 𝑗 𝑗
3

𝐶𝑖 = 𝑆𝑖 + 𝑝𝑖 ∀𝑖 ∈ 𝑗 ∀𝑗 ∈ (6)
∑

𝑗2∈

∑

𝑗1∈ ⧵{𝑗}
𝑦𝑚𝑗1𝑗2 = 𝐽𝑚 − 1 ∀𝑚 ∈ (7)

∑

𝑗1∈𝑚

𝑦𝑚𝑗1𝑗2 ≤ 1 ∀𝑚 ∈ ∀𝑗2 ∈ 𝑚 (8)

∑

𝑗2∈𝑚

𝑦𝑚𝑗1𝑗2 ≤ 1 ∀𝑚 ∈ ∀𝑗1 ∈ 𝑚 (9)

𝑦𝑚𝑗′𝑗 ∈ {0, 1} ∀𝑗, 𝑗′ ∈ , ∀𝑚 ∈ (10)

𝑆𝑗
𝑖 , 𝐶

𝑗
𝑖 , 𝐸𝑗 , 𝑇𝑗 ∈ R+ ∀𝑗 ∈ (11)

The objective function (1) to be minimized is the weighted sum of
earliness, tardiness, and flow time of each job. Constraints (2) define
earliness and tardiness for each job. Constraints (3) are the disjunctive
constraints forcing the starting time of one operation to be later than
the completion time of the previous operation on the same machine,
plus the possible setup time. Constraints (4) force the starting time of
an operation of a job to be after the completion time of the previous
one of the same job. Constraints (5) enforce the starting time of the first
operation of each job to be after its release date and after the end of the
initial setup. Constraints (6) require that the completion time of each
operation must be equal to the sum of its starting time and processing
time. Constraints (7) state that exactly 𝐽𝑚 − 1 of the 𝑦𝑚𝑖𝑗 variables must
be set to one for each machine 𝑚, and constraints (8) and (9) force
each operation to have at most one immediate predecessor and one
immediate successor. These latter constraints are asymmetric traveling
salesman problem-like constraints: For each machine, there is a set of
𝐽𝑚 operations to be executed, and we must connect their nodes with
𝐽𝑚−1 arcs. Constraints related to sequencing and timing variables make
sure that there is no subtour.

Following a common approach in the literature, we decompose
the overall problem into sequencing and timing subproblems; see,
e.g., Brandimarte and Maiocco (1999), Pinedo (2008). We represent the
sequence of operations 𝑆 as a sequence array including 𝑀 sequences,
each one describing the sequence of jobs on a single machine. We recall
that we do not assume that a job must visit all of the machines; hence,
𝑆 may be a ‘‘ragged’’ array, rather than a proper matrix. Formally, we
use

𝑆 =

⎡

⎢

⎢

⎢

⎣

𝑚1 ∶ 𝑗1(1) … 𝑗1(𝐽1)
… … … …

𝑚𝑀 ∶ 𝑗𝑀(1) … 𝑗𝑀(𝐽𝑀)

⎤

⎥

⎥

⎥

⎦

, (12)

where 𝑗𝑚(𝑛) is the 𝑛th job executed on machine 𝑚. Computing the timing
for a sequence 𝑆 is equivalent to setting 𝑦𝑚𝑗1𝑗2 = 1 if 𝑗1 is processed
immediately before 𝑗2 on machine 𝑚, 0 otherwise, in model (1)–(11). By
fixing these variables and removing the redundant constraints (i.e., all
the constraints (3) for which 𝑦𝑚𝑗1𝑗2 = 0, and constraints (7)–(9)), model
(1)–(11) becomes:

min
∑

𝑗∈

(

𝑤𝐸
𝑗 𝐸𝑗 +𝑤𝑇

𝑗 𝑇𝑗 +𝑤𝐹
𝑗 (𝐶

𝑗
𝐼𝑗
− 𝑆𝑗

1)
)

(13)

s.t. 𝐶𝑗
𝐼𝑗
+ 𝐸𝑗 − 𝑇𝑗 = 𝑑𝑗 ∀𝑗 ∈ (14)

𝑆𝑗
𝐼(𝑗𝑚(𝑛) ,𝑚)

≥ 𝐶𝑗1
𝐼(𝑗𝑚(𝑛−1) ,𝑚)

+ 𝛿𝑚𝑗𝑚(𝑛−1)𝑗𝑚(𝑛)

∀𝑛 = 2,… , 𝐽𝑚 ∀𝑚 ∈ (15)

𝑆𝑗
𝑖+1 ≥ 𝐶𝑗

𝑖 ∀𝑖 = 1,… , 𝐼𝑗 − 1 ∀𝑗 ∈ (16)

𝑆𝑗
1 ≥ max

[

𝑟𝑗 , 𝛿
𝑀(1,𝑗)
𝑗𝑀(1,𝑗)
0 𝑗𝑀(1,𝑗)

(1)

]

∀𝑗 ∈ (17)

𝐶𝑗
𝑖 = 𝑆𝑗

𝑖 + 𝑝𝑗𝑖 ∀𝑖 = 1,… , 𝐼𝑗 ∀𝑗 ∈ (18)

𝑆𝑗
𝑖 , 𝐶

𝑗
𝑖 , 𝐸𝑗 , 𝑇𝑗 ∈ R+ ∀𝑗 ∈ (19)

Model (13)–(19) is the so-called timing problem. Given a sequence array
𝑆, the solution of this timing model yields the optimal time at which
the operations must start and end in order to minimize the objective
function. Model (13)–(19) is a continuous LP problem, thus it can be
solved in polynomial time by interior point methods.

Computers and Operations Research 167 (2024) 106634P. Brandimarte and E. Fadda

a
u
i
t
f
f

f

Algorithm 1 Reduced VNS
1: while 𝑡 < 𝑡max do
2: generate 𝑆 randomly
3: 𝑘 ← 1
4: while 𝑘 ≤ 𝐾 do
5: generate 𝑆′ from 𝑘(𝑆)
6: if 𝑆′ is better than 𝑆 then
7: 𝑆 ← 𝑆′

8: 𝑘 ← 1
9: else

10: 𝑘 ← 𝑘 + 1
11: end if
12: 𝑡 ← CPU time
13: end while
14: end while

4. Reduced variable neighborhood search

VNS is a metaheuristic first proposed in Mladenović and Hansen
(1997), whose basic idea is to apply a systematic change of neigh-
borhoods when carrying out a descent phase to find a local optimum,
nd a perturbation phase to escape from the corresponding valley. We
se VNS to guide the search in the space of sequences. Therefore, we
nterpret sequences as the underlying solutions to the problem, whereas
he timing subproblem maps such sequences into the value of objective
unction. Within this framework, for a given sequence 𝑆, we denote a
inite set of pre-selected neighborhood structures by 1(𝑆),… ,𝐾 (𝑆).

In the standard VNS, the first step is to generate a random initial
incumbent solution 𝑆. Then, a candidate solution 𝑆′ is computed by
applying the neighborhood structure 𝑘(𝑆), after setting the counter
𝑘 = 1. If the candidate solution is better than the incumbent solution,
this is replaced (𝑆 ← 𝑆′), and the search proceeds with 𝑘 ← 1;
otherwise, we consider the next neighborhood (𝑘 ← 𝑘 + 1). These
steps are repeated until all of the different neighborhoods have been
explored, i.e., 𝑘 = 𝐾.

If the local search in 𝑘(𝑆) is expensive, an alternative is to sample
solutions from 𝑘(𝑆), which leads to the RVNS. Moreover, in contrast
to standard VNS, RVNS iterates the standard VNS steps until a max-
imum CPU time 𝑡max is reached (Hansen and Mladenović, 2018). We
report the pseudo-code of RVNS in Algorithm 1.

The steps of Algorithm 1 that require customization are the genera-
tion of the initial sequence 𝑆, the definition of the neighborhoods, and
the generation of 𝑆′ from 𝑘(𝑆).

We generate the initial sequence by using an EDD priority rule in
the first iteration. Then, from the second iteration on, we generate 𝑆 by
solving model (1)–(11) with a perturbed objective function (we add a
uniform ±20% noise to 𝑤𝐸

𝑗 , 𝑤𝑇
𝑗 , and 𝑤𝐹

𝑗), setting a time limit, and fixing
as starting solution the best solution found (not necessarily optimal). In
this way, we are sure to find a solution which, in the worst case, is the
initial one (i.e., the best solution found).

To define the set of neighborhoods 𝑘(𝑆), we first need to define
a set of 𝐷 destroy operators and a set of 𝑅 repair operators.
We define stochastic destroy operators embedding choices that depend
on a random outcome 𝜔, while the repair operators are deterministic.
Therefore, we define 𝑅 × 𝐷 neighborhoods, each one containing all
the solutions that can be obtained by applying a pair of destroy and
repair operators. In formulas, setting 𝑘 = (𝑖, 𝑗), we generate the set of
candidates 𝑆′ by applying the repair and destroy operators as follows:

(𝑖,𝑗)(𝑆) =
{

𝑆′ ∣ 𝑆′ = 𝖮𝑟
𝑖
(

𝖮𝑑
𝑗 (𝑆,𝜔)

)}

, (20)

where 𝖮𝑑
𝑗 (⋅, 𝜔) is the 𝑗th destroy operator, depending on the outcome
𝑟

4

𝜔, and 𝖮𝑖 (⋅) is the 𝑖th repair operator.
4.1. Solution representation

We use the solution representation shown in Eq. (12), even if
a widely used alternative is the operation-based encoding proposed
in Gen (1994). For a general problem, this representation gives a
sequence of ∑

𝑚∈𝑀 𝐽𝑚 elements in which each job 𝑗 appears a num-
ber of times equal to the number of machines such that 𝑗 ∈ 𝑚.
Following the example in Ahmadian and Salehipour (2020), in the
sequence (1, 1, 2, 3, 2, 4, 3, 1, 3, 2, 4, 4) the first 1 (2 or 3) represents the
irst operation of job 1 (2 or 3) and so on. This representation can be

read as
job ∶

machine ∶

[

1 1 2 3 …
0 1 2 1 …

]

, (21)

where the first row denotes the operations of the jobs and the second
row represents the machines that perform those operations. Despite this
representation being effective in several settings [e.g., in the heuristic
proposed in Ahmadian et al. (2021) or for crossover in a genetic
algorithm], we do not consider it, since different permutations may lead
to the same solution, thus decreasing its effectiveness. For example,
[

1 1 𝟐 3 …
1 2 𝟑 2 …

]

,
[

1 𝟐 1 3 …
1 𝟑 2 2 …

]

(22)

are equivalent since they both lead to the same sequence array:

𝑆 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑚1 ∶ 1 … …
𝑚2 ∶ 1 … …
𝑚3 ∶ 2 3 …
… … … …

⎤

⎥

⎥

⎥

⎥

⎦

. (23)

4.2. Operators

We consider two families of destroy operators, one that destroys
part of the solutions randomly or based on the solution features,
and one that destroys part of the solution by leveraging information
obtained from the timing problem. All of the operators depend on the
parameter OP_TO_REMOVE, which specifies the number of operations
to be removed, which allows to control the degree of disruption and
thus the effort of the repair.

The destroy operators of the first family are:

• Remove random jobs. Randomly select ⌈

max𝑚 𝐽𝑚
𝙾𝙿_𝚃𝙾_𝚁𝙴𝙼𝙾𝚅𝙴 ⌉ jobs and

remove all of their operations.
• Remove random operations. Randomly remove OP_TO_REMOVE

operations.
• Remove random machine. Randomly select ⌈

𝙾𝙿_𝚃𝙾_𝚁𝙴𝙼𝙾𝚅𝙴
𝐽 ⌉ ma-

chines and remove all of the operations from the selected ma-
chines.

• Remove worst jobs. Sort the jobs in decreasing order with
respect to

[

𝑤𝐸
𝑗 𝐸𝑗 + 𝑤𝑇

𝑗 𝑇𝑗 + 𝑤𝐹
𝑗 (𝐶

𝑗
𝐼𝑗

− 𝑆𝑗
1)
]

, and remove all of the
operations of the first ⌈ max𝑚 𝐽𝑚

𝙾𝙿_𝚃𝙾_𝚁𝙴𝙼𝙾𝚅𝙴 ⌉ jobs.
• Remove random slice. Randomly select a position between 1

and
(

min𝑚 𝐽𝑚
)

− ⌈

𝙾𝙿_𝚃𝙾_𝚁𝙴𝙼𝙾𝚅𝙴
𝑀 ⌉, assuming that 𝙾𝙿_𝚃𝙾_𝚁𝙴𝙼𝙾𝚅𝙴 is not

too large, so that this quantity is not negative, and remove all
of the operations in the selected column and in the subsequent
⌈

𝙾𝙿_𝚃𝙾_𝚁𝙴𝙼𝙾𝚅𝙴
𝑀 ⌉ ones. See Fig. 2(a) for a graphical representation.

• Remove random rectangle. Pick a rectangular region charac-
terized by OP_TO_REMOVE operations and remove them. See
Fig. 2(b) for a graphical representation.

• Remove setup. Sort all of the setup times in decreasing order.
Then, starting from the greatest one, remove the operations before
and after the selected setup until OP_TO_REMOVE operations are
removed.

An alternative to randomly removing operations is to decide which
operations to remove on the basis of information obtained from the
timing subproblem. We use the values of the dual variables 𝜆𝑚
𝑗1𝑗2

Computers and Operations Research 167 (2024) 106634P. Brandimarte and E. Fadda

a
d
o

p
h
b
m

r
o
(

a
e

Fig. 2. Example of operations removed (in gray) by different destroy operators.

ssociated with each precedence constraint (Eq. (15)). The greater the
ual variable, the more the constraint affects the optimal solution. In
ther words, given 𝑗1, 𝑗2 ∈ 𝑚, if a constraint 𝑆𝑗

𝐼(𝑗2 ,𝑚)
≥ 𝐶𝑗1

𝐼(𝑗1 ,𝑚)
+ 𝛿𝑚𝑗1𝑗2 is

characterized by a high 𝜆𝑚𝑗1𝑗2 , anticipating 𝐼(𝑗1, 𝑚) may result in a better
solution. On the other hand, if 𝜆𝑚𝑗1𝑗2 = 0, we expect that anticipating
𝐼(𝑗1, 𝑚) will not produce any improvement in the objective function.
In fact, most of the time, when 𝜆𝑚𝑗1𝑗2 = 0 the optimal solution presents
a slack, i.e., there is some idle time between the completion time of
𝐼(𝑗1, 𝑚) and the starting time of 𝐼(𝑗2, 𝑚). Using the dual variables, we
define the following destroy operators:

• Remove dual job. Randomly select, ⌈ max𝑚 𝐽𝑚
𝙾𝙿_𝚃𝙾_𝚁𝙴𝙼𝙾𝚅𝙴 ⌉ different jobs,

where job 𝑗 is selected with probability
∑

𝑗2
∑

𝑚 𝜆𝑚𝑗,𝑗2
∑

𝑗

(

∑

𝑗2
∑

𝑚 𝜆𝑚𝑗,𝑗2

) .

Then, remove all the operations of these jobs.
• Remove dual operations. Remove OP_TO_REMOVE different

operations sampling from the set of operations and assign to the
operation of job 𝑗 executed on machine 𝑚 before the operation of
job 𝑗2 a probability equal to

𝜆𝑚𝑗,𝑗2
∑

𝑚
∑

𝑗
∑

𝑗2
𝜆𝑚𝑗,𝑗2

.

• Remove dual machine. Randomly select ⌈

𝙾𝙿_𝚃𝙾_𝚁𝙴𝙼𝙾𝚅𝙴
𝐽 ⌉ different

machines, where machine 𝑚 is selected with probability
∑

𝑗1
∑

𝑗2
𝜆𝑚𝑗1𝑗2

∑

𝑚

(

∑

𝑗1
∑

𝑗2
𝜆𝑚𝑗1𝑗2

) .

By applying a destroy operator to a sequence array 𝑆, we get a
artial sequence array, i.e., a sequence array in which some operations
ave been removed. We repair it by using three possible operators: one
ased on the usage of priority rules, and two based on mathematical
odels.

Given a partial solution, the first repair operator applies priority
ules to repair a solution, by fixing the assignment and the sequence
f the partial solution. The rules considered are Earliest Due Date
EDD), Longest Processing Time (LPT), Shortest Processing Time (SPT),

Weighted Shortest Processing Time (WSPT), Apparent Tardiness Cost
with Setup (ATCS), Minimum Slack First (MSF). Hence, this is actually

family of six operators, whose application requires a sort of discrete-
5

vent simulation procedure whose pseudo-code is outlined in Algorithm
2. Given a partial sequence array 𝑆, we start by defining the set of
operations that are ready to be processed at the current simulated time
(as in the standard list scheduling algorithm, Pinedo (2008)). Then,
until this set becomes empty, we pick the first free machine that is able
to process at least one ready operation. If it already has an assigned
operation (i.e., 𝑆 has an operation in the position that we have to fill),
we leave it. Otherwise, we assign the best operation that is ready to
be processed but not yet assigned (i.e., it is not in 𝑆) according to the
given priority rule. Finally, we update the set of operations ready to be
processed and the time in which each machine becomes free.
Algorithm 2 Priority Rule Based Repair Operators

𝑆 ← partial sequence
end_times ← [0] ∗ 𝑀
last_pos ← [0] ∗ 𝑀
ready_ops ← {first operation of each job}
while ready_ops ≠ ∅ do

𝑎 ← {𝑚 = 𝑀(𝑖, 𝑗), 𝑖 ∈ ready_ops}
𝑚 ← argmin𝑎

(end_times) ⊳ solve ties arbitrarily
if 𝑆[𝑚][last_pos[𝑚]] is empty then

𝑎 ← ready_ops ⧵ operations in 𝑆
𝑗 ← best(𝑎|priority_rule).

else
𝑗 ← 𝑆[𝑚][last_pos[𝑚]]

end if
𝑆[𝑚][last_pos[𝑚]] ← 𝑗
last_pos[𝑚]+ = 1
Update ready_ops.
Update end_times.

end while
To better explain the application of these operators, we show a

simple example with the EDD priority rule. Let us consider 3 jobs 𝑗1, 𝑗2,
and 𝑗3 with the following characteristics:

𝑑𝑗 𝑟𝑗
𝑗1 ∶ 𝑚1 → 𝑚2 2 0
𝑗2 ∶ 𝑚1 3 0
𝑗3 ∶ 𝑚1 → 𝑚2 → 𝑚1 1 0

, (24)

and with all the processing times equal to 1. Starting from the sequence
array
[

𝑚1 ∶ 𝑗2 𝑗1 𝑗3
𝑚2 ∶ 𝑗1 𝑗3

]

(25)

we apply some destroy operator and we get:
[

𝑚1 ∶ □ □ 𝑗3
𝑚2 ∶ □ 𝑗3

.
]

(26)

Since all of the machines are free at time 0, we pick 𝑚1, which starts
processing the first operation of 𝑗1, since this job has a smaller due
date than 𝑗2, and 𝑗3 is already in the sequence. Since machine 𝑚1 will
complete the selected operation and be free at time 1, we now consider
machine 𝑚2. This machine could process 𝑗3, this job is already assigned
to a later position in the sequence array. Moreover, no other operations
can be processed by 𝑚2. Hence, we move to time 1, when 𝑚1 completes
the first operation of job 𝑗1 and starts processing the first operation of
job 𝑗2, whereas 𝑚2 starts the second operation of job 𝑗1. Therefore, we
obtain the following final sequence array

𝑆 =
[

𝑚1 ∶ 𝑗1 𝑗2 𝑗3
𝑚2 ∶ 𝑗1 𝑗3

]

. (27)

The second repair operator solves model (1)–(11) by setting to 1
all the variables 𝑦𝑚𝑗1𝑗2 such that the operation of job 𝑗1 is executed
immediately before the operation of job 𝑗2 on machine 𝑚 in the par-
tial sequence array. This results in a model of smaller size, which
can be solved in a reasonable amount of time for small values of

OP_TO_REMOVE. In the following, we call this repair operator Exact.

Computers and Operations Research 167 (2024) 106634P. Brandimarte and E. Fadda

m
p
d
n
a

𝑦

𝑣

C
r
f
m
s
c
O
o
b
o

i
a
g
d
o
s
T
i

a
e
t
d
a

5

t
b
a
c

C
G
b
a
e
b

t

t

t
a

b
s
s
a

w
𝐿
c
p
p

r
m
T
s
b
𝜌
t
p
s
a
a
s
e
t
s
w
a
T

Fixing the variable 𝑦𝑚𝑗1𝑗2 to 1 implies that job 𝑗1 must immediately
precede job 𝑗2 on machine 𝑚. This may result in a too-restrictive

odel. Therefore, we define an alternative model by enforcing looser
recedence relations by adding to the MILP model (1)–(11) the binary
ecision variables 𝑣𝑚𝑗1𝑗2 , set to 1 if job 𝑗1 is executed before (but not
ecessarily immediately before) job 𝑗2 on machine 𝑚. Moreover, we
dd the following constraints:

𝑚
𝑗1𝑗2

≤ 𝑣𝑚𝑗1𝑗2 ∀𝑗1, 𝑗2 ∈ , ∀𝑚 ∈ (28)
𝑚
𝑗1𝑗2

+ 𝑣𝑚𝑗2𝑗1 = 1 ∀𝑗1, 𝑗2 ∈ , 𝑗1 ≠ 𝑗2, ∀𝑚 ∈ . (29)

onstraint (28) links variables 𝑣𝑚𝑗1𝑗2 and 𝑦𝑚𝑗1𝑗2 , and constraint (29)
equires that job 𝑗1 is executed either before or after job 𝑗2. Then, we
ix the variables 𝑦𝑚𝑗1𝑗2 if the partial solution has all the 𝐽𝑚 operations in
achine 𝑚 and we set the variables 𝑣𝑚𝑗1𝑗2 according to the given partial

olution, otherwise. This results in a model of smaller dimensions that
an be solved in a reasonable amount of time for small values of
P_TO_REMOVE. It is important to notice that, due to the structure
f constraints (28) and (29), the variables 𝑣𝑚𝑗1𝑗2 can be assumed to
e continuous instead of binary. In the following, we call this repair
perator Exact loose.

When the last two repair operators are applied, it is advisable to
mpose a time limit to the exact solver. In fact, it usually takes a small
mount of time to reach a good solution, but a lot of time to close the
ap, and spending plenty of time to obtain small improvements can be
eleterious, especially in the first phases of the heuristic. Moreover, in
rder to speed up the computation of both operators, we fix as initial
olution the one we had before the application of the destroy operator.
herefore, in the worst possible case, the operators will return the

nitial solution, but no model infeasibility issue has to be managed.
In conclusion, it is important to point out that some of the destroy

nd repair operators have already been considered in other works. For
xample, the pair consisting of Remove randommachine and Exact is
he relax-1 heuristic of Ahmadian and Salehipour (2020). However, the
estroy operators leveraging information from the dual timing problem
nd Exact loose are contributions of this paper.

. Computational experiments

In this section, we evaluate the performance of the proposed solu-
ion methods. Since the 𝐽𝐼𝑇 − 𝐽𝑆𝑆 − 𝑆𝑒𝑞𝑆𝑇 has never been treated
efore, we generate a set of benchmark instances1 by extending those
vailable for JIT job shop scheduling in Baptiste et al. (2008). We
onsider instances with 10 machines, and with 5, 10, 20, and 50 jobs.

The tests have been performed on an Intel(R) Core(TM) i7-5500U
PU@2.40 GHz computer with 16 GB of RAM, running Ubuntu v22.04.
urobi v9.5.2 is used to solve the timing models, to obtain exact
enchmarks when feasible, and for the Exact and Exact loose oper-
tors. Instead, CP-SAT (the Google constraint programming solver) is
mployed to build the initial solution for the RVNS, since it is able to
etter deal with large instances.

Due to the different sizes of the instances, we set different compu-
ational time limits. In particular, we set:

• 3 s for instances with 5 jobs,
• 10 min for instances with 10 jobs,
• 15 min for instances with 20 jobs,
• 30 min for instances with 50 jobs.

1 Problem instances are available at https://github.com/EdoF90/just-in-
ime-jss-setup-times.
6

s

5.1. Problem instance generation

Following the generation procedure in Baptiste et al. (2008), we
denote each instance by I-<J>x<M>-<DD>-<W>-<ID>, where 𝐽 is
he number of jobs, 𝑀 is the number of machines, and DD, W and ID
re characteristics of the instance explained below.

For each machine 𝑚, the set 𝑚 of jobs visiting it is generated
y including each job with probability 0.9. Then, for each job, the
equence of machines that job 𝑗 has to visit is generated by randomly
huffling the list of all the machines 𝑚 such that 𝑗 ∈ 𝑚. Release dates
re sampled uniformly in the interval [0, 100], processing times in the

interval [10, 30], and due dates are set equal to the release date plus 𝜋
times the sum of the processing times. The constant 𝜋 is equal to 1.1,
1.3, 1.5, and 1.7 for the instances with DD = extra_tight, DD =
tight, DD = loose, DD = extra_loose, respectively.

As to earliness and tardiness weights, we consider two possible set-
tings, respectively denoted as equal and tard. In setting W = equal,
both weights are sampled from a uniform distribution on the interval
[0.1, 1]. The second generation scheme (setting W = tard) corresponds
to a situation where tardiness cost dominates earliness cost: 𝑤𝐸

𝑗 is
sampled from a uniform distribution on the interval [0.1, 0.3], whereas
𝑤𝑇

𝑗 is uniformly distributed on the interval [0.3, 1]. Flow time weights
𝑤𝐹

𝑗 are set to 0.1𝑤𝐸
𝑗 , since we expect work-in-process costs to be smaller

than both earliness and tardiness penalties.
Finally, setup times are randomly selected from the set of values

{0, 5, 10, 30}, with corresponding probabilities {0.5, 0.3, 0.15, 0.05}. This
ensures that setup times are comparable with the processing times in
20% of the cases.

Five instances (ID = 0, 1, 2, 3, 4) have been randomly generated for
each combination of parameters, leading to a total of 4×1×4 ×2×5 = 160
problem instances.

5.2. Operator performance analysis

In this section, we perform an analysis of the performance of the
pairs of destroy and repair operators described in Section 4.2. Given a
pair of operators 𝖮𝑑

𝑗 ∈ , 𝖮𝑟
𝑖 ∈ , we measure its suitability through a

sample average defined as:

𝜌𝑖𝑗 =
𝑁
∑

𝑛=1

1
𝑁

𝐿
∑

𝑙=1

1
𝐿

[

𝑓 (𝑆𝑛) − 𝑓 (𝖮𝑟
𝑖 (𝖮

𝑑
𝑗 (𝑆𝑛, 𝜔𝑙)))

𝑓 (𝑆𝑛)

]

, (30)

here 𝑁 is the number of different sequence arrays 𝑆𝑛 considered,
the number of times that we run the destroy operator, 𝜔𝑙 is the

orresponding outcome, and 𝑓 (𝑆𝑛) is the optimal value of the timing
roblem computed for a fixed sequence array 𝑆𝑛. Notice that 𝜌𝑖𝑗 is
ositive if, on average, 𝖮𝑟

𝑖 (𝖮
𝑑
𝑗 (𝑆,𝜔)) is better than 𝑆.

Unfortunately, a comprehensive analysis is impractical, since it
equires considering how 𝜌𝑖𝑗 varies with respect to the type and di-
ension of the instance, the characteristics of the sequences 𝑆𝑛, etc.
herefore, we focus on estimating 𝜌𝑖𝑗 on a set of heterogeneous in-
tances with 𝐼 = 10, and 𝑀 = 10. Moreover, 𝜌𝑖𝑗 is strongly affected
y the quality of the sequences 𝑆𝑛. If they are randomly generated,
𝑖𝑗 is large for all pairs of destroy and repair operators. Instead, if
hey are close to the optimal sequence, 𝜌𝑖𝑗 is close to zero for all
airs. Therefore, we generate sequences 𝑆𝑛 by running for 3 s an exact
olver on model (1)–(11) with a perturbed objective function (we add
random perturbation ±50% to all of the parameters), starting from

n initial random solution. This procedure enables us to produce 𝑁
equences of average quality. For each of these sequences, we apply
ach pair of destroy and repair operators 𝐿 times (to account for
heir intrinsic variability). The 𝜌𝑖𝑗 computed for 𝑁,𝐿 = 10, and their
tandard deviation are shown in Table 1. For all of the destroy operators
e set OP_TO_REMOVE = 10. Moreover, the time limit of both Exact
nd Exact loose operators is 10 s, and we set 𝑆𝑛 as initial solution.
herefore the worst possible solution returned by these operators is the

tarting one.

https://github.com/EdoF90/just-in-time-jss-setup-times
https://github.com/EdoF90/just-in-time-jss-setup-times

Computers and Operations Research 167 (2024) 106634P. Brandimarte and E. Fadda

o
i
f
𝑆
s
R
t

d
1
r
t
w
s
r

w
f

5

p

W
t
o
i
t
t
s
l
d

Table 1
𝜌𝑖𝑗 computed with 𝑁,𝐿 = 10 and for each pair of operators. The standard deviation is reported within brackets.

Exact Exact loose ATCS EDD LPT SPT MSF WSPT

rnd_jobs 2.47(3.49) 18.24(8.79) −41.79(31.05) −34.51(21.25) −39.01(35.12) −32.50(35.42) −31.66(36.60) −36.12(26.39)
rnd_ops 0.30(0.86) 13.27(15.27) −75.06(47.44) −49.91(32.52) −62.10(51.99) −50.28(45.58) −56.76(32.72) −62.76(48.45)
worst_jobs 3.68(4.02) 29.81(12.31) −43.46(47.55) −29.38(32.13) −43.42(45.37) −44.84(56.52) −19.72(35.67) −29.11(27.61)
rnd_machines 1.59(4.50) 1.90(5.37) −42.26(20.62) −35.68(28.62) −44.37(38.95) −31.88(18.89) −37.92(42.16) −32.91(26.03)
rnd_slice 0.00(0.00) 25.54(14.29) −57.53(56.12) −50.17(42.30) −68.42(30.19) −60.15(58.63) −53.90(37.90) −61.57(50.71)
rnd_rectangle 1.43(3.07) 7.55(11.83) −63.62(52.88) −64.30(79.34) −69.67(89.86) −53.39(43.12) −55.25(68.21) −63.45(80.87)
dual_machines 2.91(5.41) 3.23(6.11) −63.83(59.16) −43.88(51.87) −62.60(53.20) −42.94(40.23) −27.32(40.22) −56.37(68.16)
dual_ops 9.79(12.05) 28.66(12.54) −50.33(30.52) −29.67(38.56) −40.27(34.00) −18.89(31.27) −40.88(53.92) −52.07(35.35)
dual_jobs 10.57(19.82) 32.84(22.58) −57.55(68.69) −62.42(81.32) −53.49(80.27) −52.33(51.29) −45.98(63.81) −54.21(62.31)
set_up 0.00(0.00) 9.21(10.63) −48.29(44.1) −45.3(39.08) −46.22(52.38) −45.92(43.69) −31.21(29.76) −36.25(28.24)
The results in Table 1 clearly show that the repair operators based
n priority rules fail to provide improvements. Nevertheless, conclud-
ng that these operators are useless would be wrong, since they are
aster than Exact and Exact loose and have good performance if the
𝑛 are randomly generated. Therefore, they can be useful in the first
teps of a local improvement procedure. However, since in the proposed
VNS we generate an initial solution of good quality, we are not going

o use them.
Both Exact and Exact loose lead to good results, confirming the

effectiveness of math-based neighborhoods. Since Exact loose has
always better results than Exact, we use it as the only repair operator.

Considering the destroy operators, and focusing on the Exact loose
column, we see that leveraging dual information is beneficial. In fact,
while rnd_ops and rnd_jobs achieve average improvements of 13.27%
and 18.24%, respectively, dual_ops and dual_jobs achieve improve-
ments of 28.66% and 32.84%, respectively. The beneficial effect of
dual information holds, in a relative sense, for rnd_machines and
ual_machines too, where the first has an average improvement of
.90%, while the second of 3.23%. In this latter case, the poor results of
nd_machines, and dual_machines are due to precedence constraints
hat allow only a small set of possible variations on partial solutions
here just one machine is removed. The same happens for the operators
et_up and rnd_slice, which do not lead to new solutions when the
epair operator used is Exact.

Due to these results, in the RVNS, we use dual_ops, rnd_slice,
orst_jobs, and dual_jobs as destroy operators. Hence, we consider

our types of neighborhood.

.3. Numerical results

In this section, we investigate the performance of RVNS and com-
are it against three benchmarks:

• Gurobi v9.5.2, a commercial MILP solver (Gurobi Optimization,
LLC, 2023).

• Local solver2 (LS) v11.0, a commercial mathematical optimiza-
tion solver that implements proprietary heuristics to solve MILP
problems of large size.

• CP-SAT,3 a freely available constraint programming solver pro-
vided by Google’s OR-Tools suite.

e split the analysis into three subsections. In the first one (Sec-
ion 5.4), we show the results for instances that can be solved to
ptimality by Gurobi. In the second one (Section 5.5), we consider
nstances that Gurobi is not able to solve to optimality within the given
ime limit. In the third one (Section 5.6), we report the results for
he instances for which Gurobi is not able to find an initial feasible
olution, nor to improve an initial solution within the given time
imit. In each of these subsections, we just show summary tables, but
etailed results are reported in the Appendix. In all of the experiments,

2 https://www.localsolver.com/
3 https://developers.google.com/optimization/cp/cp_solver
7

we set different time limits for Exact loose, and different numbers
of operations to destroy (OP_TO_REMOVE). These values have been
selected by carrying out preliminary experimentation.

5.4. Small size instances

The instances that can be solved to optimality by Gurobi are those
characterized by 5 jobs and 10 machines (i.e., the 40 instances I-
5x10-<DD>-<W>-<ID>). In Table 2 we report the average CPU time
of Gurobi and of CP-SAT (the two exact methods), and we report the
average gap achieved by LS and by the RVNS (the two heuristics). The
time limit for all of the methods is set to 3 s, the time limit of Exact
loose to 1 s, and we set OP_TO_REMOVE = 10.

The results in Table 2 show that CP-SAT requires a time comparable
with that of Gurobi. In particular, CP-SAT is faster than Gurobi in the
tight and extra_tight instances and slower in the loose and
extra_loose ones.

LS performs well, as it achieves an average gap of 6.81% and is able
to find the optimal solution in 12 out of 40 instances. The worst perfor-
mances are achieved in the tard-extra_tight instances, with an
average gap of 24.21%, while the best performances are for the tard-
tight instances with an average gap of 0.53%. RVNS provides better
performance, as it features an average gap of 0.80% and is able to find
the optimal solution in 29 out of 40 instances. Its worst performances
are achieved for the tard-extra_tight instances with an average
gap of 3.42%, while the other average gaps are below 2%.

5.5. Medium size instances

As medium size instances, we consider the case of 10 jobs and
10 machines (i.e., the 40 instances I-10x10-<DD>-<W>-<ID>). In
this case, the time limit for all the methods is set to 600 s. With this
limit, Gurobi is able to find a solution, but it is not able to close the
gap. For this reason, we report the average optimality gap obtained by
Gurobi, and the gaps between the solution provided by Gurobi and the
ones provided by the other solution methods (CP-SAT, LS, and RVNS).
Therefore, a negative gap means that, on average, the solution method
finds a better solution than Gurobi.

We set the time limit of Exact loose to 10 s, and OP_TO_REMOVE
= 10 (as in Section 5.2). Moreover, to ensure a fair comparison, we
initialize Gurobi with the same initial solution as RVNS (i.e., a solution
obtained with the EDD priority rule). We report the average values for
the different types of instances in Table 3.

As the reader can notice, the instances with the greatest optimality
gap are the equal-extra_loose, tard-tight, and the tard-
extra_tight. Therefore, the instances in which the due dates are
tight are more demanding for Gurobi. In these types of instances, CP-
SAT is able to outperform or to be really close to Gurobi. In more detail,
CP-SAT is able to outperform Gurobi in 27 out of 40 instances (and in
8 instances it is able to find the best solution among all the methods).
Its average gap with respect to Gurobi is −2.98%. All its executions are
stopped by the time limit and no optimal solution is reached.

https://www.localsolver.com/
https://developers.google.com/optimization/cp/cp_solver

Computers and Operations Research 167 (2024) 106634P. Brandimarte and E. Fadda

s
d
6
t
m

G
a
r
t

5

1
i
t
I
i
n
g
b

w
t
m
T
f

o
a
e
r
t

Table 2
Summary results for the small-size problem instances (𝐽 = 5,𝑀 = 10).

Gurobi
time [s]

CP-SAT
time [s]

LS
gap [%]

RVNS
gap [%]

equal-extra_loose 1.30 (0.97) 1.17 (0.33) 7.94 (12.57) 0.12 (0.28)
equal-loose 0.37 (0.15) 0.71 (0.58) 1.87 (1.39) 0.34 (0.76)
equal-tight 0.53 (0.38) 0.22 (0.11) 14.15 (20.64) 1.10 (1.04)
equal-extra_tight 0.52 (0.35) 0.24 (0.21) 2.47 (3.41) 1.18 (2.63)
tard-extra_loose 1.02 (0.68) 0.95 (0.82) 1.81 (3.02) 0 (0)
tard-loose 0.30 (0.13) 0.35 (0.17) 0.53 (0.92) 0.02 (0.04)
tard-tight 0.46 (0.24) 0.21 (0.06) 1.44 (2.04) 0.21 (0.47)
tard-extra_tight 0.66 (0.60) 0.22 (0.15) 24.21 (31.25) 3.42 (5.01)
Average 0.64 (0.44) 0.51 (0.31) 6.81 (9.41) 0.80 (1.28)
Table 3
Summary results for the medium-size problem instances (𝐽 = 10,𝑀 = 10).

Gurobi CP-SAT LS RVNS

opt-gap [%] gap [%] gap [%] gap [%]
equal-extra_loose 29 (06) 7.62 (25.00) 43.95 (11.28) −6.02 (10.65)
equal-loose 40 (15) 5.42 (25.56) 32.43 (24.26) −13.61 (15.92)
equal-tight 52 (14) −7.91 (13.89) 18.45 (31.25) −6.07 (26.23)
equal-extra_tight 65 (04) 0.05 (16.21) 7.28 (14.41) −28.20 (11.13)
tard-extra_loose 36 (07) −13.25 (15.44) 38.50 (36.24) −15.78 (9.42)
tard-loose 36 (15) 12.73 (47.61) 45.70 (31.20) −10.81 (14.04)
tard-tight 71 (03) −27.56 (22.23) 0.30 (16.85) −35.85 (13.08)
tard-extra_tight 68 (05) −2.11 (20.60) 12.53 (15.26) −25.35 (8.67)
Average: 49 (18) −2.98 (26.35) 24.89 (28.25) −17.54 (16.72)
i

6

On average, LS performs worse than Gurobi for all types of in-
tances. Its average gap with respect to Gurobi is +24.89%. Considering
isaggregated data (Table A.6), LS is able to outperform Gurobi in
out of 40 instances, and it never finds the best solution among all

he methods. This may be related to the poor efficiency of heuristic
ethods for relatively small instances.

Finally, the proposed RVNS achieves better average results than
urobi in all types of instances, and it obtains the best average results
mong all the methods in all but 13 instances. Its average gap with
espect to Gurobi is −17.54%. In more detail, RVNS is able to achieve
he best results in 34 out of 40 instances.

.6. Large size instances

As large size instances, we consider those with 20 or 50 jobs and
0 machines. For all of the methods, the time limit is 900 s for the
nstances with 20 jobs, and 1800 s for the instances with 50 jobs. The
ime limit of Exact loose is set to 30 s, and OP_TO_REMOVE = 20.
n these instances, Gurobi is not able to find a feasible solution nor to
mprove a given one. Instead, CP-SAT is able to find good solutions, but
o instance is solved to optimality. Therefore, we report the average
ap between the solution of CP-SAT and RVNS, and the average gap
etween LS and RVNS in Table 4. These gaps are computed as:

𝑓 (𝑆) − 𝑓 (𝑆𝑅𝑉𝑁𝑆)
𝑓 (𝑆)

, (31)

here 𝑆𝑅𝑉𝑁𝑆 is the sequence computed by RVNS, and 𝑆 is either
he sequence computed by CP-SAT or LS. Therefore, a positive value
eans that RVNS obtains a better value than the alternative methods.
o better appreciate the trends in the results, we also report the results
or the instances with 10 jobs.

All the average gaps are positive, meaning that on average RVNS
utperforms both benchmark methods. The average gap between RVNS
nd both CP-SAT and LS is around 20% and 30%, respectively. Nev-
rtheless, while for CP-SAT the gaps have no trend, for LS the gaps
educe as the dimension of the instance increases. This may be due to
he heuristic that LS is implementing, which achieves higher efficiency
8

p

Table 4
Summary results for the large-size problem instances (𝐽 > 10,𝑀 = 10). The case of
𝐽 = 10 is included as a reference.

CP-SAT LS
instance gap [%] gap [%]

10 × 10-equal-extra_loose 13.36 (18.31) 55.18 (23.77)
10 × 10-equal-loose 21.86 (18.89) 33.07 (16.72)
10 × 10-equal-tight 02.82 (26.80) 18.15 (20.34)
10 × 10-equal-extra_tight 40.92 (21.65) 49.53 (11.62)
10 × 10-tard-extra_loose 2.91 (13.86) 64.13 (43.35)
10 × 10-tard-loose 22.82 (37.03) 38.13 (04.21)
10 × 10-tard-tight 14.40 (35.53) 34.46 (18.36)
10 × 10-tard-extra_tight 30.08 (17.93) 51.18 (19.53)
20 × 10-equal-extra_loose 36.35 (23.12) 54.02 (19.77)
20 × 10-equal-loose 27.29 (23.90) 29.50 (10.57)
20 × 10-equal-tight 21.26 (11.17) 22.76 (09.07)
20 × 10-equal-extra_tight 30.19 (19.53) 24.07 (15.12)
20 × 10-tard-extra_loose 31.15 (9.06) 46.66 (12.20)
20 × 10-tard-loose 30.32 (38.33) 21.60 (28.26)
20 × 10-tard-tight 22.10 (03.87) 20.41 (08.69)
20 × 10-tard-extra_tight 27.42 (16.62) 17.12 (10.41)
50 × 10-equal-extra_loose 27.77 (19.10) 21.31 (15.00)
50 × 10-equal-loose 16.69 (16.66) 10.13 (08.56)
50 × 10-equal-tight 22.11 (09.29) 06.71 (08.80)
50 × 10-equal-extra_tight 17.73 (06.34) 6.69 (08.77)
50 × 10-tard-extra_loose 25.80 (13.40) 15.42 (08.45)
50 × 10-tard-loose 22.48 (07.79) 06.72 (04.58)
50 × 10-tard-tight 27.34 (07.35) 07.36 (07.08)
50 × 10-tard-extra_tight 18.75 (07.50) 03.21 (08.29)
Average 22.99 (19.63) 33.11 (28.72)

for large instances, or to the MILP models underneath RVNS, whose
efficiency tends to decrease for large instances. Looking at the detailed
results, we observe that RVNS finds the best solution among the three
methods in 106 instances, CP-SAT in 10 instances, and LS just in 4
nstances out of the 120 instances considered.

. Conclusions

In this paper, we have considered a just-in-time job shop scheduling

roblem with sequence-dependent setup times and release dates, for

Computers and Operations Research 167 (2024) 106634P. Brandimarte and E. Fadda
Table A.5
Detailed results for small-size problem instances (𝐽 = 5,𝑀 = 10).

Gurobi CP-SAT LS RVNS

Instance_name Of Time [s] Of Time [s] Of Time [s] Of Time [s] Time to best[s]

I-5 × 10-equal-extra_loose-0 67.32 0.78 67.32* 0.80 87.08 2.37 67.32* 3.22 1.60
I-5 × 10-equal-extra_loose-1 70.85 0.95 70.85* 1.15 71.22 2.18 70.85* 2.59 2.53
I-5 × 10-equal-extra_loose-2 54.30 0.59 54.30* 1.26 54.33 2.74 54.30* 3.21 3.17
I-5 × 10-equal-extra_loose-3 48.21 1.19 48.21* 0.99 48.47 2.86 48.51 2.46 2.42
I-5 × 10-equal-extra_loose-4 80.15 3.00 80.15* 1.66 87.54 2.52 80.15* 2.43 2.30
I-5 × 10-equal-loose-0 83.05 0.59 83.05* 0.54 85.26 2.33 83.05* 2.49 0.83
I-5 × 10-equal-loose-1 68.53 0.19 68.53* 0.30 70.18 2.66 69.71 2.58 1.50
I-5 × 10-equal-loose-2 49.50 0.28 49.50* 0.61 51.20 2.91 49.50* 2.21 1.92
I-5 × 10-equal-loose-3 53.66 0.38 53.66* 0.38 53.67 2.17 53.67 2.88 1.33
I-5 × 10-equal-loose-4 81.26 0.41 81.26* 1.73 81.96 2.84 81.26* 2.08 2.02
I-5 × 10-equal-tight-0 84.23 1.03 84.23* 0.29 126.99 2.16 84.23* 2.14 2.09
I-5 × 10-equal-tight-1 48.45 0.19 48.45* 0.14 49.48 2.01 49.55 2.54 0.44
I-5 × 10-equal-tight-2 40.71 0.19 40.71* 0.18 44.00 2.18 40.71* 2.05 0.65
I-5 × 10-equal-tight-3 55.22 0.39 55.22* 0.09 59.35 2.87 56.22 2.61 2.19
I-5 × 10-equal-tight-4 95.65 0.85 95.65* 0.39 97.89 2.22 97.03 2.58 1.53
I-5 × 10-equal-extra_tight-0 93.75 0.95 93.75* 0.61 100.08 2.56 99.27 2.38 2.35
I-5 × 10-equal-extra_tight-1 55.89 0.70 55.89* 0.24 59.03 2.97 55.89* 2.49 2.45
I-5 × 10-equal-extra_tight-2 96.14 0.66 96.14* 0.10 96.14* 2.12 96.14* 2.14 2.11
I-5 × 10-equal-extra_tight-3 51.97 0.18 51.97* 0.13 51.97* 2.82 51.97* 2.55 2.50
I-5 × 10-equal-extra_tight-4 58.70 0.14 58.70* 0.14 58.70* 2.72 58.70* 2.21 0.86
I-5 × 10-tard-extra_loose-0 54.71 1.30 54.71* 0.82 58.61 2.76 54.71* 2.88 2.84
I-5 × 10-tard-extra_loose-1 71.25 2.06 71.25* 2.38 71.63 2.56 71.25* 2.33 2.29
I-5 × 10-tard-extra_loose-2 48.13 0.77 48.13* 0.63 48.13* 2.86 48.13* 3.12 2.49
I-5 × 10-tard-extra_loose-3 68.45 0.62 68.45* 0.54 68.45* 2.88 68.45* 3.26 2.24
I-5 × 10-tard-extra_loose-4 67.47 0.33 67.47* 0.37 68.39 2.89 67.47* 3.06 1.75
I-5 × 10-tard-loose-0 42.62 0.14 42.62* 0.14 42.73 2.10 42.62* 2.07 1.44
I-5 × 10-tard-loose-1 77.91 0.51 77.91* 0.25 77.91* 2.87 77.91* 2.18 0.55
I-5 × 10-tard-loose-2 59.63 0.33 59.63* 0.57 59.63* 2.61 59.63* 2.21 1.83
I-5 × 10-tard-loose-3 43.89 0.26 43.89* 0.49 43.98 2.63 43.89* 2.15 0.62
I-5 × 10-tard-loose-4 55.31 0.28 55.31* 0.28 56.52 2.68 55.37 2.06 2.04
I-5 × 10-tard-tight-0 74.95 0.28 74.95* 0.17 77.08 2.50 75.75 2.21 2.00
I-5 × 10-tard-tight-1 40.15 0.16 40.15* 0.23 40.15* 2.67 40.15* 2.11 0.82
I-5 × 10-tard-tight-2 62.75 0.58 62.75* 0.22 65.50 2.61 62.75* 2.06 1.91
I-5 × 10-tard-tight-3 53.40 0.79 53.40* 0.32 53.40* 2.28 53.40* 2.87 2.23
I-5 × 10-tard-tight-4 50.33 0.49 50.33* 0.13 50.33* 2.44 50.33* 2.15 0.68
I-5 × 10-tard-extra_tight-0 60.46 0.16 60.46* 0.16 60.46* 2.60 60.46* 3.04 1.47
I-5 × 10-tard-extra_tight-1 76.40 1.60 76.40* 0.47 92.89 2.18 80.99 2.55 2.51
I-5 × 10-tard-extra_tight-2 67.29 0.10 67.29* 0.07 67.29* 2.19 67.29* 3.06 1.91
I-5 × 10-tard-extra_tight-3 69.22 0.71 69.22* 0.24 122.12 2.66 76.89 2.95 2.91
I-5 × 10-tard-extra_tight-4 72.99 0.74 72.99* 0.16 89.82 2.79 72.99* 2.40 2.36
which we have proposed a mathematical model and an efficient RVNS
approach to tackle it. By considering 80 different neighborhoods gen-
erated from the application of 10 destroy and 8 repair operators, we
find that the destroy operators leveraging information obtained from
the mathematical models outperform the ones that randomly destroy
part of the solution. Moreover, we define a new and effective repair
operator based on a MILP model. To evaluate the performance of the
proposed algorithm, as well as the quality of its solutions, we have
conducted comprehensive computational experiments on a set of 160
benchmark instances. The results are compared with those obtained
by Gurobi, CP-SAT, and Local Solver. The comparative analysis shows
that the proposed heuristic is able to find the optimal solution in 29
out of 40 instances, and to find the best solution in 106 over 120 of
the remaining instances (the ones for which we cannot compute the
optimal solution).

CRediT authorship contribution statement

Paolo Brandimarte: Conceptualization, Investigation, Methodol-
ogy, Writing – original draft, Writing – review & editing. Edoardo
Fadda: Conceptualization, Software, Writing – original draft, Writing
– review & editing, Investigation, Methodology.

Data availability

Problem instances are available at https://github.com/EdoF90/just-
in-time-jss-setup-times. The code that supports the findings will be
9

made available on request.
Appendix. Detailed results

In this Appendix, we provide the detailed results for each experi-
ment, with the main aim to provide a benchmark for future studies.

In Table A.5, we show the data used to compute Table 2. We report
the optimal objective function and the CPU time of Gurobi, CP-SAT, LS,
and RVNS for the small instances (i.e., 𝐽 = 5,𝑀 = 10). Moreover, we
also report the time to reach the best solution for RVNS. We highlight
in boldface the best result, and we add a ∗ if the solution is optimal. As
expected, since CP-SAT is an exact constraint programming solver, it
is able to find the optimal solution for all of the instances. Instead, LS
finds the optimal solution in 12 instances, and RVNS in 29. In several
instances, RVNS is able to find the optimal solution with a time-to-best
far smaller than the whole execution time. This proves that RVNS is
able to effectively explore the solution space.

In Table A.6, we show the data used to compute the values in
Table 3 for the medium-size instances (i.e., 𝐽 = 10,𝑀 = 10). We report
the objective function of the solution found by Gurobi, its optimality
gap, and the objective function of CP-SAT, LS, and RVNS (for all the
methods, we set the time limit to 600 s). We highlight in boldface the
best result for each instance. As the reader can notice, Gurobi is not
able to close the gap in any of the instances considered. Moreover, it
finds the best solution only in 5 instances, while CP-SAT in 8 and RVNS
in 27.

Finally, in Table A.7, we show the data used to compute the values
in Table 4. Even though Table 4 contains the data of the medium-size

instances to appreciate a trend, we do not report them here, since they

https://github.com/EdoF90/just-in-time-jss-setup-times
https://github.com/EdoF90/just-in-time-jss-setup-times
https://github.com/EdoF90/just-in-time-jss-setup-times

Computers and Operations Research 167 (2024) 106634P. Brandimarte and E. Fadda

a
t
f

Table A.6
Detailed results for the medium-size problem instances (𝐽 = 10,𝑀 = 10).

Instance Of Gap [%] Of CP-SAT Of LS Of RVNS

I-10 × 10-equal-extra_loose-0 226.18 32 238.06 374.21 226.53
I-10 × 10-equal-extra_loose-1 125.10 25 114.22 165.38 115.43
I-10 × 10-equal-extra_loose-2 170.07 27 251.87 236.71 176.19
I-10 × 10-equal-extra_loose-3 252.50 41 188.40 359.39 186.90
I-10 × 10-equal-extra_loose-4 115.29 24 137.03 162.14 115.14
I-10 × 10-equal-loose-0 323.81 59 283.77 340.99 235.54
I-10 × 10-equal-loose-1 182.09 19 244.80 227.92 206.10
I-10 × 10-equal-loose-2 156.95 34 207.74 183.87 135.12
I-10 × 10-equal-loose-3 195.47 43 171.11 321.21 163.39
I-10 × 10-equal-loose-4 289.12 45 246.18 434.25 220.60
I-10 × 10-equal-tight-0 272.66 44 243.88 410.69 382.05
I-10 × 10-equal-tight-1 482.03 73 368.57 360.76 385.26
I-10 × 10-equal-tight-2 357.63 58 307.82 526.18 276.09
I-10 × 10-equal-tight-3 176.58 37 166.78 193.68 158.31
I-10 × 10-equal-tight-4 200.87 51 228.95 220.95 166.21
I-10 × 10-equal-extra_tight-0 411.19 65 410.05 490.68 330.45
I-10 × 10-equal-extra_tight-1 341.44 60 307.95 388.45 238.08
I-10 × 10-equal-extra_tight-2 291.31 62 274.64 354.37 224.44
I-10 × 10-equal-extra_tight-3 395.43 66 518.04 426.51 319.66
I-10 × 10-equal-extra_tight-4 411.82 73 350.30 303.91 210.07
I-10 × 10-tard-extra_loose-0 174.01 36 137.68 333.84 144.55
I-10 × 10-tard-extra_loose-1 185.25 36 152.81 213.13 174.99
I-10 × 10-tard-extra_loose-2 135.42 31 117.46 173.01 111.87
I-10 × 10-tard-extra_loose-3 212.62 50 148.47 193.50 144.78
I-10 × 10-tard-extra_loose-4 178.85 29 206.67 298.35 166.11
I-10 × 10-tard-loose-0 106.41 28 125.17 185.62 108.28
I-10 × 10-tard-loose-1 245.84 59 145.78 258.41 172.21
I-10 × 10-tard-loose-2 165.24 30 203.35 238.49 154.90
I-10 × 10-tard-loose-3 164.22 43 131.56 207.73 130.05
I-10 × 10-tard-loose-4 152.29 20 279.57 271.27 154.09
I-10 × 10-tard-tight-0 522.56 74 433.38 514.70 413.62
I-10 × 10-tard-tight-1 326.96 71 243.38 279.54 250.27
I-10 × 10-tard-tight-2 348.78 70 175.79 358.89 195.16
I-10 × 10-tard-tight-3 611.00 66 641.66 778.50 405.09
I-10 × 10-tard-tight-4 536.69 74 294.64 468.03 264.68
I-10 × 10-tard-extra_tight-0 299.46 68 283.66 371.51 243.87
I-10 × 10-tard-extra_tight-1 385.96 61 419.86 438.77 289.55
I-10 × 10-tard-extra_tight-2 351.73 68 457.56 444.76 304.64
I-10 × 10-tard-extra_tight-3 678.67 76 468.20 778.72 431.84
I-10 × 10-tard-extra_tight-4 255.32 67 221.79 213.70 169.97
Table A.7
Detailed results for the large-size problem instances (𝐽 > 10,𝑀 = 10).

Instance_name CP-SAT LS RVNS

Of Time [s] Of Time [s] Of Time [s]

I-20 × 10-equal-extra_loose-0 1006.86 900.07 1471.63 899.11 841.54 900.85
I-20 × 10-equal-extra_loose-1 1721.74 900.06 1541.99 899.04 1026.70 901.49
I-20 × 10-equal-extra_loose-2 1608.14 900.08 1974.95 899.80 1484.79 829.94
I-20 × 10-equal-extra_loose-3 1249.23 900.06 1515.35 899.40 869.70 897.79
I-20 × 10-equal-extra_loose-4 1219.06 900.08 1178.91 899.63 855.59 900.40
I-20 × 10-equal-loose-0 1304.20 901.50 1655.29 899.24 1128.21 900.92
I-20 × 10-equal-loose-1 1875.73 900.06 1787.33 899.19 1374.88 900.72
I-20 × 10-equal-loose-2 1202.63 900.03 1385.64 899.28 733.66 845.28
I-20 × 10-equal-loose-3 1577.04 900.05 2025.22 899.85 1548.77 857.55
I-20 × 10-equal-loose-4 1874.75 900.08 2024.80 899.68 1579.68 876.11
I-20 × 10-equal-tight-0 2057.45 901.57 2436.38 899.85 1698.39 900.15
I-20 × 10-equal-tight-1 1923.13 900.07 2272.32 6287.53 1688.46 895.71
I-20 × 10-equal-tight-2 1996.10 900.04 2327.48 899.60 1856.68 826.27
I-20 × 10-equal-tight-3 2353.74 900.07 2456.92 899.70 1733.75 857.88
I-20 × 10-equal-tight-4 1729.82 900.06 1471.77 899.42 1351.58 900.56
I-20 × 10-equal-extra_tight-0 1872.88 900.09 1984.48 899.06 1685.81 899.00
I-20 × 10-equal-extra_tight-1 2537.44 900.07 2586.27 899.19 2354.30 901.27
I-20 × 10-equal-extra_tight-2 2301.46 900.07 2493.28 899.59 1671.56 900.57
I-20 × 10-equal-extra_tight-3 2676.36 900.07 2344.20 899.59 1862.51 901.94
I-20 × 10-equal-extra_tight-4 3189.72 900.07 2492.58 899.05 2116.67 902.76
I-20 × 10-tard-extra_loose-0 1385.75 900.07 1757.53 900.01 1141.10 901.47
I-20 × 10-tard-extra_loose-1 1475.29 900.05 1531.87 899.71 1148.88 902.14
I-20 × 10-tard-extra_loose-2 1550.83 900.09 1836.68 899.29 1148.14 899.76

(continued on next page)
t
i
b

re already contained in Table A.6. Therefore, in Table A.7 we report
he best objective function and the CPU time of CP-SAT, LS, and RVNS
or large-size instances (i.e., 𝐽 > 10,𝑀 = 10). As in the other tables,
10
he best result for each instance is highlighted in boldface. For these
nstances, the best results are typically obtained by RVNS which is the
est method in 74 instances, while CP-SAT is in 2 and LS in 4.

Computers and Operations Research 167 (2024) 106634P. Brandimarte and E. Fadda
Table A.7 (continued).
Instance_name CP-SAT LS RVNS

Of Time [s] Of Time [s] Of Time [s]

I-20 × 10-tard-extra_loose-3 1650.21 900.06 1528.00 899.55 1139.85 898.18
I-20 × 10-tard-extra_loose-4 1811.76 900.06 2182.93 899.73 1436.88 890.06
I-20 × 10-tard-loose-0 1386.22 900.21 1263.26 899.37 1218.93 899.11
I-20 × 10-tard-loose-1 1565.81 900.44 1718.33 899.38 2023.20 898.99
I-20 × 10-tard-loose-2 1941.75 900.06 2274.83 899.81 1548.70 900.32
I-20 × 10-tard-loose-3 1833.10 900.06 1750.97 899.79 1086.45 875.70
I-20 × 10-tard-loose-4 1236.07 900.05 1558.90 899.89 742.91 865.04
I-20 × 10-tard-tight-0 2050.37 901.69 1892.16 899.79 1739.00 867.47
I-20 × 10-tard-tight-1 2678.78 901.84 2713.74 899.23 2241.30 900.15
I-20 × 10-tard-tight-2 1606.64 900.07 1645.01 900.00 1329.62 900.43
I-20 × 10-tard-tight-3 2429.73 900.06 2727.28 899.62 1912.74 877.19
I-20 × 10-tard-tight-4 1864.13 900.07 2053.54 899.17 1488.58 885.96
I-20 × 10-tard-extra_tight-0 2663.94 900.07 2254.73 899.35 2034.15 901.57
I-20 × 10-tard-extra_tight-1 3520.72 900.08 2996.17 899.81 2447.78 903.45
I-20 × 10-tard-extra_tight-2 2397.94 900.07 1802.70 899.99 1726.42 901.42
I-20 × 10-tard-extra_tight-3 1972.66 900.06 2130.92 899.95 1621.39 902.13
I-20 × 10-tard-extra_tight-4 2400.22 900.07 2748.43 899.12 2358.56 899.95
I-50 × 10-equal-extra_loose-0 17 541.61 1800.19 16 820.48 1800.02 15142.86 1798.31
I-50 × 10-equal-extra_loose-1 19 149.58 1800.13 16 396.87 1799.86 13014.09 1795.58
I-50 × 10-equal-extra_loose-2 18 615.07 1800.23 18 553.95 1799.90 15769.38 1801.76
I-50 × 10-equal-extra_loose-3 17 258.67 1800.43 16 725.03 1799.23 11547.16 1799.34
I-50 × 10-equal-extra_loose-4 17 177.62 1800.20 16 959.56 1799.03 15851.91 1801.50
I-50 × 10-equal-loose-0 17567.83 1813.49 16933.15 1799.76 15723.49 1800.91
I-50 × 10-equal-loose-1 18563.47 1800.18 17560.57 9056.45 13391.69 1761.68
I-50 × 10-equal-loose-2 16853.23 1800.23 18049.89 1799.37 17996.77 1788.31
I-50 × 10-equal-loose-3 18019.40 1800.23 15816.82 1799.87 14419.72 1800.71
I-50 × 10-equal-loose-4 16150.50 1800.24 15789.73 1799.68 14108.75 1788.30
I-50 × 10-equal-tight-0 19655.75 1809.33 17193.25 1799.81 16613.74 1795.84
I-50 × 10-equal-tight-1 19043.11 1800.36 19024.38 1799.77 15979.70 1799.02
I-50 × 10-equal-tight-2 18338.51 1800.22 13014.14 1799.33 13891.73 1744.06
I-50 × 10-equal-tight-3 19072.55 1800.21 16030.53 1799.62 14558.36 1755.63
I-50 × 10-equal-tight-4 15419.31 1800.33 15873.92 1799.78 14007.83 1800.66
I-50 × 10-equal-extra_tight-0 22 478.06 1800.30 18414.10 1799.75 19 983.32 1799.70
I-50 × 10-equal-extra_tight-1 17 739.85 1800.23 17 189.70 1799.15 16134.87 1802.96
I-50 × 10-equal-extra_tight-2 18 688.75 1800.30 17 039.98 1799.54 15198.65 1801.25
I-50 × 10-equal-extra_tight-3 22 381.51 1800.31 20 305.58 1799.27 18828.24 1798.24
I-50 × 10-equal-extra_tight-4 20 187.68 1800.30 18 634.47 1799.18 16233.10 1804.14
I-50 × 10-tard-extra_loose-0 18 459.53 1800.39 17 590.03 1799.63 16089.75 1802.06
I-50 × 10-tard-extra_loose-1 14 834.61 1800.20 15 656.24 1799.09 13057.58 1785.91
I-50 × 10-tard-extra_loose-2 16 941.54 1800.41 13 976.15 1799.92 13459.31 1799.36
I-50 × 10-tard-extra_loose-3 18 437.27 1798.35 17 303.06 1799.91 14406.77 1795.25
I-50 × 10-tard-extra_loose-4 16 904.87 1800.20 14 265.26 1799.25 11512.95 1801.91
I-50 × 10-tard-loose-0 21188.58 1800.04 17228.17 1799.69 17205.28 1790.48
I-50 × 10-tard-loose-1 22788.54 1800.46 19217.73 1799.76 16897.47 1801.48
I-50 × 10-tard-loose-2 19167.28 1800.27 17753.04 1799.27 16873.75 1796.41
I-50 × 10-tard-loose-3 17567.82 1800.36 16272.71 1799.23 14696.68 1800.34
I-50 × 10-tard-loose-4 19755.13 1800.33 17475.88 1799.29 16293.69 1794.84
I-50 × 10-tard-tight-0 24063.68 1800.90 18433.78 3308.39 17848.88 1788.17
I-50 × 10-tard-tight-1 19718.57 1800.43 19085.70 1799.46 15571.34 1800.49
I-50 × 10-tard-tight-2 19002.23 1800.23 15976.37 1799.90 15204.04 1799.74
I-50 × 10-tard-tight-3 19419.60 1800.19 16725.15 1799.18 16650.01 1800.44
I-50 × 10-tard-tight-4 20991.90 1800.19 17446.00 1800.00 15709.61 1800.96
I-50 × 10-tard-extra_tight-0 16 369.09 1800.46 14 408.46 1799.55 13201.38 1801.09
I-50 × 10-tard-extra_tight-1 18 720.66 1800.72 16 909.03 1800.01 14774.83 1751.71
I-50 × 10-tard-extra_tight-2 21 122.72 1800.30 18822.68 1799.63 19 685.03 1797.32
I-50 × 10-tard-extra_tight-3 21 796.83 1800.29 18 455.03 1799.86 18341.98 1805.53
I-50 × 10-tard-extra_tight-4 19 173.64 1800.25 15774.99 1800.01 16 397.02 1802.62
References

Abderrazzak, S., Hamid, A., Omar, S., 2022. Adaptive large neighborhood search for
the just-in-time job-shop scheduling problem. In: 2022 International Conference on
Control, Automation and Diagnosis. ICCAD, IEEE, pp. 1–6. http://dx.doi.org/10.
1109/iccad55197.2022.9853973.

Ahmadian, M.M., Salehipour, A., 2020. The just-in-time job-shop scheduling problem
with distinct due-dates for operations. J. Heuristics 27 (1–2), 175–204. http:
//dx.doi.org/10.1007/s10732-020-09458-6.

Ahmadian, M.M., Salehipour, A., Cheng, T., 2021. A meta-heuristic to solve the just-
in-time job-shop scheduling problem. European J. Oper. Res. 288 (1), 14–29.
http://dx.doi.org/10.1016/j.ejor.2020.04.017.

Allahverdi, A., Gupta, J.N., Aldowaisan, T., 1999. A review of scheduling research
involving setup considerations. Omega 27 (2), 219–239. http://dx.doi.org/10.1016/
s0305-0483(98)00042-5.
11
Allahverdi, A., Ng, C., Cheng, T., Kovalyov, M.Y., 2008. A survey of scheduling
problems with setup times or costs. European J. Oper. Res. 187 (3), 985–1032.
http://dx.doi.org/10.1016/j.ejor.2006.06.060.

Baptiste, P., Flamini, M., Sourd, F., 2008. Lagrangian bounds for just-in-time job-shop
scheduling. Comput. Oper. Res. 35 (3), 906–915. http://dx.doi.org/10.1016/j.cor.
2006.05.009.

Brandimarte, P., Maiocco, M., 1999. Job shop scheduling with a non-regular objec-
tive: A comparison of neighbourhood structures based on a sequencing/timing
decomposition. Int. J. Prod. Res. 37 (8), 1697–1715. http://dx.doi.org/10.1080/
002075499190969.

Brimberg, J., Salhi, S., Todosijević, R., Urošević, D., 2023. Variable neighborhood
search: The power of change and simplicity. Comput. Oper. Res. 155, 106221.
http://dx.doi.org/10.1016/j.cor.2023.106221.

Bürgy, R., Bülbül, K., 2018. The job shop scheduling problem with convex costs.
European J. Oper. Res. 268 (1), 82–100. http://dx.doi.org/10.1016/j.ejor.2018.01.
027.

http://dx.doi.org/10.1109/iccad55197.2022.9853973
http://dx.doi.org/10.1109/iccad55197.2022.9853973
http://dx.doi.org/10.1109/iccad55197.2022.9853973
http://dx.doi.org/10.1007/s10732-020-09458-6
http://dx.doi.org/10.1007/s10732-020-09458-6
http://dx.doi.org/10.1007/s10732-020-09458-6
http://dx.doi.org/10.1016/j.ejor.2020.04.017
http://dx.doi.org/10.1016/s0305-0483(98)00042-5
http://dx.doi.org/10.1016/s0305-0483(98)00042-5
http://dx.doi.org/10.1016/s0305-0483(98)00042-5
http://dx.doi.org/10.1016/j.ejor.2006.06.060
http://dx.doi.org/10.1016/j.cor.2006.05.009
http://dx.doi.org/10.1016/j.cor.2006.05.009
http://dx.doi.org/10.1016/j.cor.2006.05.009
http://dx.doi.org/10.1080/002075499190969
http://dx.doi.org/10.1080/002075499190969
http://dx.doi.org/10.1080/002075499190969
http://dx.doi.org/10.1016/j.cor.2023.106221
http://dx.doi.org/10.1016/j.ejor.2018.01.027
http://dx.doi.org/10.1016/j.ejor.2018.01.027
http://dx.doi.org/10.1016/j.ejor.2018.01.027

Computers and Operations Research 167 (2024) 106634P. Brandimarte and E. Fadda
dos Santos, A.G., Araujo, R.P., Arroyo, J.E.C., 2010. A combination of evolutionary
algorithm, mathematical programming, and a new local search procedure for
the just-in-time job-shop scheduling problem. In: Lecture Notes in Computer
Science. Springer Berlin Heidelberg, pp. 10–24. http://dx.doi.org/10.1007/978-3-
642-13800-3_2.

Feng, G., Lau, H.C., 2007. Efficient algorithms for machine scheduling problems with
earliness and tardiness penalties. Ann. Oper. Res. 159 (1), 83–95. http://dx.doi.
org/10.1007/s10479-007-0284-z.

Fox, M.S., Smith, S.F., 1984. ISIS a knowledge-based system for factory scheduling.
Expert Syst. 1 (1), 25–49. http://dx.doi.org/10.1111/j.1468-0394.1984.tb00424.x.

Gen, M., 1994. Solving job-shop scheduling problem using genetic algorithms. In:
Proceedings of the 16th International Conference on Computer and Industrial
Engineering, Ashikaga, Japan, 1994. pp. 93–98.

Graham, R., Lawler, E., Lenstra, J., Kan, A., 1979. Optimization and approximation
in deterministic sequencing and scheduling: a survey. In: Discrete Optimization
II, Proceedings of the Advanced Research Institute on Discrete Optimization and
Systems Applications of the Systems Science Panel of NATO and of the Discrete
Optimization Symposium Co-Sponsored By IBM Canada and SIAM Banff, Aha.
and Vancouver. Elsevier, pp. 287–326. http://dx.doi.org/10.1016/s0167-5060(08)
70356-x.

Gurobi Optimization, LLC, 2023. Gurobi Optimizer Reference Manual. URL https:
//www.gurobi.com.

Hansen, P., Mladenović, N., 2018. Variable neighborhood search. In: Handbook of
Heuristics. Springer International Publishing, pp. 759–787. http://dx.doi.org/10.
1007/978-3-319-07124-4_19.

Kolahan, F., Liang, M., 1998. An adaptive TS approach to JIT sequencing with variable
processing times and sequence-dependent setups. European J. Oper. Res. 109 (1),
142–159. http://dx.doi.org/10.1016/s0377-2217(97)00098-2.

Leonardi, S., Raz, D., 1997. Approximating total flow time on parallel machines. In:
Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing
- STOC '97. ACM Press, pp. 875–891. http://dx.doi.org/10.1145/258533.258562.

Liao, C.J., Cheng, C.C., 2007. A variable neighborhood search for minimizing single
machine weighted earliness and tardiness with common due date. Comput. Ind.
Eng. 52 (4), 404–413. http://dx.doi.org/10.1016/j.cie.2007.01.004.
12
Mladenović, N., Hansen, P., 1997. Variable neighborhood search. Comput. Oper. Res.
24 (11), 1097–1100. http://dx.doi.org/10.1016/s0305-0548(97)00031-2.

Mladenović, N., Todosijević, R., Urošević, D., 2016. Less is more: Basic variable
neighborhood search for minimum differential dispersion problem. Inform. Sci. 326,
160–171. http://dx.doi.org/10.1016/j.ins.2015.07.044.

Pinedo, M.L., 2008. Modeling and solving scheduling problems in practice. In:
Scheduling. Springer New York, New York, NY, pp. 427–454.

Radhakrishnan, S., Ventura, J.A., 2000. Simulated annealing for parallel ma-
chine scheduling with earliness-tardiness penalties and sequence-dependent set-
up times. Int. J. Prod. Res. 38 (10), 2233–2252. http://dx.doi.org/10.1080/
00207540050028070.

Santos, H.C., França, P.M., 1997. Scheduling with sequence-dependent setup times and
early-tardy penalties. IFAC Proc. Vol. 30 (19), 239–244. http://dx.doi.org/10.1016/
s1474-6670(17)42305-6.

Shabtay, D., 2012. The just-in-time scheduling problem in a flow-shop scheduling
system. European J. Oper. Res. 216 (3), 521–532. http://dx.doi.org/10.1016/j.ejor.
2011.07.053.

Thevenin, S., Zufferey, N., 2019. Learning variable neighborhood search for a schedul-
ing problem with time windows and rejections. Discrete Appl. Math. 261, 344–353.
http://dx.doi.org/10.1016/j.dam.2018.03.019.

Wang, S., Li, Y., 2014. Variable neighbourhood search and mathematical programming
for just-in-time job-shop scheduling problem. Math. Probl. Eng. 2014, 1–9. http:
//dx.doi.org/10.1155/2014/431325.

Xiong, F., Chu, M., Li, Z., Du, Y., Wang, L., 2021. Just-in-time scheduling for a
distributed concrete precast flow shop system. Comput. Oper. Res. 129, 105204.
http://dx.doi.org/10.1016/j.cor.2020.105204.

Zhu, Z., Heady, R.B., 2000. Minimizing the sum of earliness/tardiness in multi-machine
scheduling: a mixed integer programming approach. Comput. Ind. Eng. 38 (2),
297–305. http://dx.doi.org/10.1016/s0360-8352(00)00048-6.

http://dx.doi.org/10.1007/978-3-642-13800-3_2
http://dx.doi.org/10.1007/978-3-642-13800-3_2
http://dx.doi.org/10.1007/978-3-642-13800-3_2
http://dx.doi.org/10.1007/s10479-007-0284-z
http://dx.doi.org/10.1007/s10479-007-0284-z
http://dx.doi.org/10.1007/s10479-007-0284-z
http://dx.doi.org/10.1111/j.1468-0394.1984.tb00424.x
http://refhub.elsevier.com/S0305-0548(24)00106-0/sb13
http://refhub.elsevier.com/S0305-0548(24)00106-0/sb13
http://refhub.elsevier.com/S0305-0548(24)00106-0/sb13
http://refhub.elsevier.com/S0305-0548(24)00106-0/sb13
http://refhub.elsevier.com/S0305-0548(24)00106-0/sb13
http://dx.doi.org/10.1016/s0167-5060(08)70356-x
http://dx.doi.org/10.1016/s0167-5060(08)70356-x
http://dx.doi.org/10.1016/s0167-5060(08)70356-x
https://www.gurobi.com
https://www.gurobi.com
https://www.gurobi.com
http://dx.doi.org/10.1007/978-3-319-07124-4_19
http://dx.doi.org/10.1007/978-3-319-07124-4_19
http://dx.doi.org/10.1007/978-3-319-07124-4_19
http://dx.doi.org/10.1016/s0377-2217(97)00098-2
http://dx.doi.org/10.1145/258533.258562
http://dx.doi.org/10.1016/j.cie.2007.01.004
http://dx.doi.org/10.1016/s0305-0548(97)00031-2
http://dx.doi.org/10.1016/j.ins.2015.07.044
http://refhub.elsevier.com/S0305-0548(24)00106-0/sb22
http://refhub.elsevier.com/S0305-0548(24)00106-0/sb22
http://refhub.elsevier.com/S0305-0548(24)00106-0/sb22
http://dx.doi.org/10.1080/00207540050028070
http://dx.doi.org/10.1080/00207540050028070
http://dx.doi.org/10.1080/00207540050028070
http://dx.doi.org/10.1016/s1474-6670(17)42305-6
http://dx.doi.org/10.1016/s1474-6670(17)42305-6
http://dx.doi.org/10.1016/s1474-6670(17)42305-6
http://dx.doi.org/10.1016/j.ejor.2011.07.053
http://dx.doi.org/10.1016/j.ejor.2011.07.053
http://dx.doi.org/10.1016/j.ejor.2011.07.053
http://dx.doi.org/10.1016/j.dam.2018.03.019
http://dx.doi.org/10.1155/2014/431325
http://dx.doi.org/10.1155/2014/431325
http://dx.doi.org/10.1155/2014/431325
http://dx.doi.org/10.1016/j.cor.2020.105204
http://dx.doi.org/10.1016/s0360-8352(00)00048-6

	A reduced variable neighborhood search for the just in time job shop scheduling problem with sequence dependent setup times
	Introduction
	Paper contributions and limitations
	Paper organization

	Literature Review
	Mathematical Model
	Reduced variable neighborhood search
	Solution Representation
	Operators

	Computational Experiments
	Problem instance generation
	Operator performance analysis
	Numerical Results
	Small size instances
	Medium size instances
	Large size instances

	Conclusions
	CRediT authorship contribution statement
	Data availability
	Appendix. Detailed Results
	References

