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Abstract

Using the thermodynamic Bethe ansatz, we investigate the topological Kondo model, which describes 
a set of one-dimensional external wires, pertinently coupled to a central region hosting a set of Majorana 
bound states. After a short review of the Bethe ansatz solution, we study the system at finite temperature and 
derive its free energy for arbitrary (even and odd) number of external wires. We then analyse the ground 
state energy as a function of the number of external wires and of their couplings to the Majorana bound 
states. Then, we compute, both for small and large temperatures, the entropy of the Majorana degrees of 
freedom localized within the central region and connected to the external wires. Our exact computation of 
the impurity entropy provides evidence of the importance of fermion parity symmetry in the realization of 
the topological Kondo model. Finally, we also obtain the low-temperature behaviour of the specific heat 
of the Majorana bound states, which provides a signature of the non-Fermi-liquid nature of the strongly 
coupled fixed point.
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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1. Introduction

The possibility of faithfully simulating quantum low dimensional systems gives today the 
unique opportunity of testing against experiments predictions made by powerful methods – such 
as bosonization [1] (see also Schulz et al. in [2]), conformal field theory [3], integrable models 
and Bethe ansatz [4] – developed in theoretical investigations of strongly correlated condensed 
matter and spin systems. As a result, one may now confidently apply the above methods to newly 
engineered quantum systems relevant for the fabrication of quantum devices as well as for the 
realization, in an easily controllable setting, of new phases of matter such as the non-Fermi liq-
uid phases realized in Dirac materials [5] and in overscreened multichannel Kondo models [6]. 
Within the new models made accessible to theoretical investigations, great opportunities are of-
fered by the analysis of pertinent junctions of one dimensional systems such as ladders and star 
junctions [7–12].

Networks of one dimensional models attracted much attention over the past few years. In pi-
oneering works [13,14] a star junction of three quantum wires enclosing a magnetic flux was 
studied: modelling the wires as Tomonaga–Luttinger liquids (TLL), the authors of Ref. [13,
14] were able to show the existence of an attractive finite coupling fixed point, characteris-
tic of the geometry of the circuit. Later, a repulsive finite coupling fixed point was found in a 
T-junction of one dimensional Bose liquids [15]. Crossed TLL were also the subject of many 
investigations both analytical [16] and numerical [17]: these analyses pointed out that, in crossed 
TLLs, the junction induces behaviours similar to those arising from quantum Kondo impurities 
in condensed matter physics [18]. For what concerns the analysis of junctions of spin chains, in 
Ref. [19] it was argued that novel critical behaviours emerge when crossing at a point two spin 
1/2 Heisenberg models since, as a result of the crossing, some operators turn from irrelevant to 
marginal, leading to correlation functions exhibiting power law decays with non-universal expo-
nents. Star junctions of Josephson junction arrays were investigated in [20] with the result that a 
finite coupling fixed point was also emerging in these superconducting systems. With Majorana 
fermions [21] star junctions of quantum wires become very attractive since these geometries fa-
cilitate their braiding [22] allowing, at least in principle, for the engineering of quantum circuits 
relevant for the implementation of quantum protocols [23,24].

The very close relation between the phase diagram emerging from the investigation of net-
works of quantum one-dimensional systems (quantum spin chains and quantum wires, essen-
tially) and the one typical of multichannel Kondo models was established only very recently. In 
the two papers [25,26] it was shown that a star junction of three critical Ising models and a star 
junction of three XX models may be made equivalent to the two channel and the four channel 
over-screened Kondo model, respectively. To achieve their exact mapping, these authors used a 
generalization of the Jordan–Wigner transformation needed to satisfy the anticommutation rela-
tions between fermions located on different legs of the junction. For this purpose, one modifies 
the usual Jordan–Wigner transformation by the addition of an auxiliary space made – for a star 
junction of three spin chains – by three Klein factors, i.e. three real anti-commuting fields, lying 
at the inner boundary of each chain. As a result, in these realizations of the multichannel Kondo 
model, the central spin, with which the Jordan–Wigner fermions interact, is realized as a non-
local combination of three Klein factors. The Kondo effect occurring when bulk fermions scatter 
on a composite “spin” non-locally encoded by any number of Klein factors located at different 
space points provides a realization of the topological Kondo effect. Since one expects that an ex-
tended spin is less sensitive to noise and decoherence, it is generally believed that this realization 
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Fig. 1. Schematic representation of the device realizing the topological Kondo effect: Majorana edge modes of quantum 
wires are hosted on an s-wave superconductor, capacitively coupled with the ground. These modes are proximity-coupled 
with the external leads.

of Kondo models could “naturally” be much more robust than the one realized by other means 
(for example with quantum dots [27]).

In an effort to look for new experimental realization of a two-channel Kondo Model the au-
thors of [28,29] showed that, in pertinent circuit regimes, networks of quantum wires supporting 
edge Majorana modes [30] provide a first experimentally attainable realization of the so-called 
Topological Kondo effect. Subsequently, the spin dynamics [31], as well as the exact solution for 
finite number of electrons [32], was investigated. In realistic cases the topological Kondo effect 
may be realized in networks of quantum wires supporting edge Majorana modes. For instance, 
it takes place when a mesoscopic superconducting island, capacitively coupled with the ground, 
hosts a set of Majorana bound states, which may be the Majorana edge modes (MEMs) of a set 
of spin–orbit coupled nanowires (green in Fig. 1 in colour version) laying on this superconduc-
tor. Note that, in this realization, the MEMs always appear in pairs, localized at the opposite 
ends of the nanowire. As a result, the central region of a circuit realizing the topological Kondo 
effect contains always an even number of MEMs. Nevertheless, it is always possible to couple 
only an odd number of MEMs to external wires, thus leaving an odd number of Majorana modes 
decoupled from the rest of the system.

Coulomb interactions among the electrons within the external leads are not essential for the 
topological Kondo effect and will not be accounted for in the following. However, for the host 
superconducting region, they play an essential role, since they determine its charging energy Ec

[28,31]. We focus on the temperature regime T � Ec, which implies that, for all real processes, 
the number of electrons on the island is conserved. We emphasize that, at least at low temperature, 
the MEMs must be the only degrees of freedom in the central region which are involved in the 
dynamics. Under these conditions, the effective low-energy Hamiltonian describing the TKM is 
[28,29,33,34]

H = −i
h̄vF

2π

M∑
α=1

∫
dxψ†

α(x)∂xψα(x)

+
∑
α �=β

λαβγαγβψ†
α(0)ψβ(0) + i

∑
α �=β

hαβγαγβ (1)

and, manifestly, preserves fermion parity. Here ψα(x) are the (complex) Fermi fields describing 
electrons in the wires α = 1, . . . , M and satisfying canonical anticommutation relations{

ψα(x),ψβ(y)
}= 0

{
ψα(x),ψ

†
β(y)

}
= δα,βδ(x − y) , (2)

while the γα = γ †
α are Majorana fields constrained in a box connected with the wires and satis-

fying the Poisson algebra
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{
γα, γβ

}= 2δα,β . (3)

The symmetric matrix λα,β > 0 is the analogue of the coupling with the magnetic impurity in 
the usual Kondo problem. The couplings hα,β = hβ,α represent a direct interaction between only 
a pair of Majorana fermions and can be made exponentially small by considering the MEMs 
sufficiently separated in space [35]. This model coincides with the one studied in [32]. A related, 
yet different model, with real spinless fermions in the bulk, has been analysed in [36].

If M of the MEMs are coupled to the external wires, this set of MEMs may be regarded as a 
“Majorana spin”: in contrast to a conventional spin the “Majorana spin” is non-locally encoded 
in the spatially separated MEMs and governed by the orthogonal symmetry group SO(M). It has 
been found [28,29,33,34] that the topological Kondo model (TKM) provides a natural realization 
of the quantum critical point described by a Wess–Zumino–Witten–Novikov boundary conformal 
field theory [37–39,3] and support non-Fermi-liquid ground states.

In this paper, using the thermodynamic Bethe ansatz (TBA), we investigate the thermodynam-
ics of the TKM with an arbitrary number of wires M . For this purpose, we study a system with 
a thermodynamically large number of electrons in contact with a heat bath at temperature T and 
at fixed density and perform the thermodynamic limit as in (12). Our analysis allows to derive 
the free energy of the TKM for arbitrary number of external wires, to compute the ground state 
energy as a function of the number of wires and of their couplings to the Majorana modes, as 
well as the low temperature behaviour of the specific heat of the central region.

An outline of the structure of the paper and of our results is as follows: In Section 2 we review 
the exact solution of the TKM, as provided in [32].

In Section 3 we derive the exact free energy of the TKM made by M wires coupled with M
MEMs in the central region. Here, we write the TBA equations for both even and odd M . In 
Section 3.3 we obtain, in a closed form, the exact ground state energy shift due to the presence 
of the Majorana modes in the central region

E
(0)
J = E

(0)
J (λ,M) = i log

i

(

M+2
4(M−2)

+ i
(M−2)λ

)


(

3M−2
4(M−2)

− i
(M−2)λ

)


(

M+2
4(M−2)

− i
(M−2)λ

)


(

3M−2
4(M−2)

+ i
(M−2)λ

) (4)

as a function of the effective tunnelling strength λ between the wires.
In Section 4, we compute the entropy associated with the Majorana degrees of freedom lo-

calized in the central region both for T → 0 and T → ∞. This will provide us with the exact 
expression of the impurity entropy of the TKM, in these two relevant limits. As expected, for 
T → ∞, the computation of the entropies amounts to determine the dimension of the Hilbert 
space HJ (M) associated with the MEMs localized in the central region and coupled with the 
external wires of the circuit. We find:

dimHJ (M) = 2

⌊
M−1

2

⌋
, (5)

which summarizes Eqs. (58) and (67) for even and for odd values of M , respectively. Eq. (5)
shows that the dimension of the impurity Hilbert space of M wires for M odd equals the dimen-
sion of the Hilbert space of a system with M + 1 (even) wires. As a result, for T → ∞ and for 
any given M it is always possible to preserve fermion parity symmetry since [35] with an even 
number of Majorana modes one can always make the lowest-energy eigenstate of (1) an eigen-
state of the fermion number parity. As a result, the dimension HJ corresponds to the dimension 
of M Majorana modes projected to a definite fermion number parity sector. Remarkably, this re-
sult, stemming only from TBA, is consistent with the approach used in [32], where the projection 
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to a definite fermion parity sector was needed to ensure the equivalence of the TKM for specific 
values of M to multichannel Kondo and Coqblin–Schrieffer models.

For the analysis of the T → 0 limit of the impurity entropy, one should recall [40] that, in 
one-dimensional problems (or effectively one-dimensional, as in the present case) with bound-
aries or impurities, the general form of the logarithm of the partition function of a critical system 
of size L at temperature T behaves like

logZ ∼ πLT c

6
+ S(0) ; (6)

In Eq. (6), L � 1/T , c is the central charge and characterizes the conformal field theory describ-
ing the low-temperature critical point and S(0) = logg, where g is the “ground state degeneracy”, 
is a length-independent term which may appear without breaking conformal invariance. Remark-
ably, g is a universal quantity which can be a non-integer number for L → ∞. The computation 
of S(0) is given in Section 4 using the TBA in the limit T → 0 and yields:

S
(0)
J = log

√
M

2
(even M) , S

(0)
J = log

√
M (odd M) (7)

This expression summarizes Eqs. (60) and (69) and agrees with the conformal perturbation theory 
[40] predictions given, for any M , in [32].

Finally, we show in Section 5 that the system exhibits non-Fermi liquid behaviour at low tem-
peratures by computing the temperature dependence of the specific heat of the Majorana modes 
in the central region. We find that the power expansion exhibits a term proportional to T 2 M−2

M . 
We argue that the power 2(M − 2)/M originates only from the symmetry of the strong-coupling 
fixed point.

2. The Bethe ansatz solution

The diagonalization of (1) has been performed in [32] and it is based on the overall SO(M)

symmetry of the problem and on the results of [41] (see also [42]). The exact solution has been 
constructed using the general symmetry SO(M) and the equivalence of the cases with M = 3, 4, 6
wires to some impurity problems whose diagonalization had been performed earlier [43,44,6,45].

The Bethe Ansatz provides the exact quantized momenta {kn}n=1,...,N of the bulk electrons as 
a function of the solution of a set of nested Bethe ansatz equations. The energy is read from the 
eigenvalues of the transfer matrix [41] as:

E = vF h̄

2

N∑
j=1

kj = vF h̄

2iL

r1∑
j=1

log e2(x
(1)
j ) = 2EF

iπ

M

N

r1∑
j=1

log e2(x
(1)
j ) , (8)

where

pF = mvF = h̄πN

2LM
, EF = p2

F

2m
∝ 1

M2
, en(x) = x − in/2

x + in/2
(9)

and L is the length of each wire. The set of rapidities 
{
x

(1)
j

}
satisfies, for even number of 

branches M = 2K , the system of coupled algebraic equations (Bethe equations):
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[
e2

(
x

(1)
j

)]N =
∏r1

k=1 e2

(
x

(1)
j − x

(1)
k

)
∏r2

k=1 e1

(
x

(1)
j − x

(2)
k

)

1 =
∏rl

k=1 e2

(
x

(l)
j − x

(l)
k

)
∏rl−1

k=1 e1

(
x

(l)
j − x

(l−1)
k

)∏rl+1
k=1 e1

(
x

(l)
j − x

(l+1)
k

) 1 < l < K − 2

1 =
∏rK−2

k=1 e2

(
x

(K−2)
j − x

(K−2)
k

)∏rK−3
k=1 e−1

(
x

(K−2)
j − x

(K−3)
k

)
∏rK

k=1 e1

(
x

(K−2)
j − x

(K)
k

)∏rK−1
k=1 e1

(
x

(K−2)
j − x

(K−1)
k

)

e1

(
x

(K−1)
j − 1

λ

)
=

∏rK−1
k=1 e2

(
x

(K−1)
j − x

(K−1)
k

)
∏rK−2

k=1 e1

(
x

(K−1)
j − x

(K−2)
k

)

1 =
∏rK

k=1 e2

(
x

(K)
j − x

(K)
k

)
∏rK−1

k=1 e1

(
x

(K)
j − x

(K−1)
k

) . (10)

The set of integers r1, . . . , rK , denoting the number of roots in each level of the nested Bethe 
ansatz, defines a sector corresponding to given eigenvalues of the Cartan operators of the lie 
algebra DK , generating the group SO(M) with even M = 2K [41].

For an odd number of branches M = 2K +1, the energy is given again by (8), but the rapidities {
x

(1)
j

}
j=1,...,r1

solve now the system [41]:

[
e2

(
x

(1)
j

)]N
r2∏

k=1

e1

(
x

(1)
j − x

(2)
k

)
=

r1∏
k=1

e2

(
x

(1)
j − x

(1)
k

)
rl−1∏
k=1

e1

(
x

(l)
j − x

(l−1)
k

) rl+1∏
k=1

e1

(
x

(l)
j − x

(l+1)
k

)
=

rl∏
k=1

e2

(
x

(l)
j − x

(l)
k

)
1 < l < K

e1/2

(
x

(K)
j − 1

λ

) rK−1∏
k=1

e1

(
x

(K)
j − x

(K−1)
k

)
=

rK∏
k=1

e1

(
x

(K)
j − x

(K)
k

)
, (11)

associated this time with the non simply-laced BK algebra, generating the group SO(M) with 
odd M = 2K + 1. We refer to [25] for the Bethe equations of this model.

In the following section, we will use the notation and the results shown here to derive the 
thermodynamics of the TKM.

3. The thermodynamic Bethe ansatz

In this section, we study the temperature dependence of the free energy of the system by means 
of the thermodynamic Bethe ansatz, which will allow for considerably simpler exact expressions 
for the thermodynamic quantities when the system size is large. The thermodynamic limit is 
defined as:

N → ∞, L → ∞, N/L = const . (12)
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In this limit the roots of the system (10), are known to group into clusters of roots with the same 
real part and equally spaced imaginary parts, called “string” solutions of the Bethe equations.

3.1. Even number of branches: M = 2K

In this case, the roots at each level group are as follows:

{
x

(j)

n;α + i

2
(n − 2l + 1) : x(j)

n;α ∈ R, l = 1, . . . , n j = 1, . . . ,K

}
, (13)

in which the real number x(j)

n;α is the string “center”, i.e., the common real part of the solution, 
the index j denotes the level, the subscripts n and α denote the string index and the root index 
within the bound state.

The number of such clusters goes to infinity, while the spacing of the string centers goes to 
zero in the limit of infinite number of sites: therefore, a more convenient description is given in 
terms of densities of solutions. In particular, we will denote by ρ(j)

n the density of solutions of 
length n at the j -th level of the nesting and by ρ̃(j)

n the density of unoccupied levels (holes) for 
the same type of configurations.

We first substitute the form (13) for the solutions of the Bethe equations into (10), then we 
group the terms of the products in the RHS according to their real part (string center). Then, we 
multiply all the equations corresponding to the different roots in the same string among them 
and we consider −i times the logarithm of the resulting equation. The kernel associated with the 
“scattering” of an n-string and an m-string is (hat denotes Fourier transform):

Ân,m(ω) = coth
|ω|
2

(
e−|n−m| |ω|

2 − e−(n+m)
|ω|
2

)
. (14)

On the other hand, the logarithmic derivative of the function e1 produces the kernel s ∗ An,m, 
where the symbol ∗ denotes convolution

(f ∗ g) (x) =
∞∫

−∞
dyf (x − y)g(y) (15)

and

ŝ(ω) = 1

2 cosh ω
2

. (16)

The resulting density equations are:

2πρ̃
(j)
n (x) = δj,1 ((1 − δn,1)an−1 + an+1

)
(x) + δj,K−1 1

N
an

(
x − 1

λ

)

−
(
Mj,l ∗ Anm ∗ ρ(l)

m

)
(x) , (17)

in which there appear the function an(ω) = e−n
|ω|
2 and the K × K matrix
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M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 −s

−s 1
. . .

. . .
. . . −s

−s 1 −s −s

−s 1
−s 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(18)

encodes the structure of the DK algebra.
It is possible to write the free energy at temperature τ in the usual way as

F = E − τS , (19)

where S is the entropy of the whole system and is computed counting the number of states 
associated to a given root density as (sum over repeated indexes is implied):

S =
K∑

j=1

∞∑
m=1

∫
R

dx
[(

ρ
(j)
m + ρ̃

(j)
m

)
log

(
ρ

(j)
m + ρ̃

(j)
m

)
(x)

− ρ
(j)
m (x) logρ

(j)
m (x) − ρ̃

(j)
m (x) log ρ̃

(j)
m (x)

]
. (20)

The partition function will be dominated by the root configurations corresponding to the densi-
ties that make the free energy stationary in the thermodynamic limit. These can be selected by 
imposing the variation of (19) with respect to ρ(j)

n to be vanishing, also taking into account the 
constraint (17). Defining

eφ
(j)
n (x) ≡ ρ

(j)
n (x)

ρ̃
(j)
n (x)

, (21)

such configurations are characterized by the saddle point equations:

0 = δj,1C̄nm ∗ E(1)
m − T C̄nm ∗ L

(j)
−,m + T Mjl ∗ L

(l)
+,n (22)

with Ê(1)
n (ω) = an−1(ω)+an+1(ω)

iω
− 2πδ(ω) for n > 1, Ê(1)

1 (ω) = a2(ω)
iω

− πδ(ω) and L(j)
±,m(x) =

log
(

1 + e±φ
(j)
m (x)

)
. We have chosen to measure all the energies rescaled by 2EF

π
and defined the 

dimensionless temperature T = πkBτ
2EF

(kB is the Boltzmann constant). The matrix:

[
C̄
]
mn

=
[
A−1

]
mn

= δmn − ŝ(ω)
(
δm+1,n + δm−1,n

)
(23)

is the inverse of (14). The saddle point equations can be put in a more explicit form as (assume 
K ≥ 3):

φ
(j)
n (x) = 1

T
arctan

(
eπx

)
δj,1δn,2

− s ∗
[
L

(j)

−,n−1 + L
(j)

−,n+1 − L
(j−1)
+,n − L

(j+1)
+,n

]
(x) j < K − 2

φ(K−2)
n (x) = −s ∗

[
L

(K−2)
−,n−1 + L

(K−2)
−,n+1 − L

(K−3)
+,n − L

(K−1)
+,n − L

(K)
+,n

]
(x)

φ
(j)
n (x) = −s ∗

[
L

(j)

−,n−1 + L
(j)

−,n+1 − L
(K−2)
+,n

]
(x) j = K − 1,K . (24)

The case K = 2 (M = 4) is instead written as:
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φ(1)
n (x) = 1

T
arctan

(
eπx

)
δn,2 − s ∗

[
L

(1)
−,n−1 + L

(1)
−,n+1 − L

(2)
+,n

]
(x)

φ(2)
n (x) = −s ∗

[
L

(2)
−,n−1 + L

(2)
−,n+1 − L

(1)
+,n

]
(x) .

With the aid of these functions, it is now possible to write the free energy in a more compact 

way. It differs from the free energy of M uncoupled wires by terms which are O
(

1
N

)
, which can 

therefore be associated with the Majorana degrees of freedom in the central region and dubbed 
“junction” free energy. We write it as:

FJ = −T

∞∑
m=1

∫
R

dxam

(
x − 1

λ

)
L

(K−1)
+,m (x) . (25)

The latter expression contains an infinite sum over the string lengths m and is therefore not very 
convenient for numerical evaluation. Hence, we multiply the system (24) by the matrix Ã, i.e., 
the inverse of the matrix M defined in (18) and extract an equality for L(j)

+,m(x). In the case K = 2

the matrix Ã reads:

ˆ̃
A

1,1
(ω) = ˆ̃

A
2,2

(ω) = 2
1 + coshω

1 + 2 coshω

ˆ̃
A

1,2
(ω) = ˆ̃

A
2,1

(ω) = sinhω

sinh 3ω
2

. (26)

For higher K , one has the symmetric matrix:

for j, l < s − 1 : ˆ̃
A

j,l

= 2 cosh ω
2 cosh (K−1−max(j,l))ω

2

cosh (K−1)ω
2

sinh min(j,l)ω
2

sinh ω
2

ˆ̃
A

j,K−1
= ˆ̃

A
j,K

= cosh ω
2

cosh (K−1)ω
2

sinh jω
2

sinh ω
2

j < K − 1

ˆ̃
A

K−1,K

= 1

2 cosh
(

(K−1)ω
2

) sinh (K−2)ω
2

sinh ω
2

ˆ̃
A

K,K = ˆ̃
A

K−1,K−1 = 1 + 1

2 cosh
(

(K−1)ω
2

) sinh (K−2)ω
2

sinh ω
2

. (27)

This matrix has already appeared in [46] for the TBA associated to an integrable quantum field 
theory with Gl×Gm

Gl+m
symmetry, apart from an overall normalization. Substituting into (25), we 

obtain the final result for the junction free energy in a more compact form:

FJ (T ) = E
(0)
J − T

K∑
l=1

∫
R

dω

2π
eiω/λŝ (ω)

ˆ̃
A

K−1,l

(ω) L̂
(l)
−,1 (ω) , (28)

where

E
(0)
J =

∫
dω

e−|ω| sin ω
λ

2ω cosh (M−2)ω
4

− π

2
(29)
R
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is the Majorana contribution to the ground state energy (see also [47,45]). The case of K = 3
(M = 6) is the one considered in [32]. The formula (28) is valid for the topological Kondo with 
any even number of branches.

3.2. Odd number of branches: M = 2K + 1

We present now the thermodynamic Bethe ansatz for a system with an odd number of con-
curring branches. The case K = 1, i.e., three wires connected with three MEMs in the central 
region, is equivalent to the four-channel Kondo model [26]. Its Bethe equations and thermody-
namics have been studied in [44]. The case K = 2 is somewhat special, as there are only two 
levels present, and can be read in [32]. The right-hand side of the last of Eqs. (11) implies that, 
in the thermodynamic limit, the K-th level roots to group into “close” strings such as:{

x
(K)
n;α + i

4
(n − 2j + 1) : x

(K)
n;α ∈R, j = 1, . . . , n

}
. (30)

For all the other levels, the strings are of the “wide” type (13).
Once again, we substitute the form of the solutions (13) and (30) into (11), group the terms 

in the RHS according to their real part and multiply among them all the equations which show a 
root of the same string solution in the RHS. We then take the logarithm and multiply by −i and, 
when taking the thermodynamic limit, rewrite the resulting equations in terms of string densities 
as

2πρ̃
(j)
m (x) = δj,1 ((1 − δm,1)am−1 + am+1

)
(x) + δj,K

N
am/2

(
x − 1

λ

)

−
(
Mj,l ∗ A

(j,l)
m,n ∗ ρ(l)

n

)
(x) , (31)

with the matrices (in Fourier transform)

Â
j,l
m,n(ω) = Âm tj,l

tj
,
n tj,l

tl

(
ω

tj,l

)
(32)

and

M̂j,l (ω) = δj,l − ŝ1/tj,l

(
δj,l−1 + δj,l+1

)
, (33)

in which tj = 1 + δj,K represents the inverse length of the j -th root of the BK algebra and is 
equal to one for all the long roots and to 2 for the short root associated to the K-th node, while 
tj,l = max

(
tj , tl

)
and ŝx = ŝx(ω) = ŝ (xω).

The thermodynamics is not very different from the one for even number of wires, overall, and 
pass through the computation of the variation of the free energy (19) with respect to the string 
densities ρ(j)

m with the constraint (31). Here, however, the root length and the string length are not 
independent, hence we have a more complicated matrix in the equations for the sting densities, 
which implies that one will have more than one frequency appearing in the Fourier transform of 
(31). For this reason, we shall be rather pedantic in the subsequent exposition, even if similar 
results are already available in literature [43,48,46,44,25].

From the minimization of the free energy of the system at the effective temperature T (defined 
in Section 3.1) we obtain a saddle point condition for the function (21):

δj,1E(1) − T L
(j)
−,m + T Mj,l ∗ A

(j,l)
m,n ∗ L

(l)
+,n = 0 . (34)
m
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The resulting free energy is (the units and the dimensionless temperature have been defined in 
Section 3.1)

F = −T

∫
dx

[
δj,1 (s ∗ Am,2

)
(x) + δj,K 1

N
am

(
2

(
x − 1

λ

))]
L

(j)
+,m(x) , (35)

where the second term, subleading in the number of particles, represents the free energy of the 
MEMs located at the junction. This is a rather inconvenient expression, for we have an infinite 
sum over all the string lengths. In order to simplify it, we define the matrices:

Q̂
(j)±
mn (ω) = δm,n ± ŝ1/tj

(
δm,n−1 + δm,n+1

)
(36)

and following [46], we multiply the saddle equations above by the matrix Q(j)−
m,n and obtain

φ
(j)
m (x) = δj,1δm,K

1

T
arctan

(
eπx

)
− s ∗

[
L

(j)

−,m−1 + L
(j)

−,m+1 − L
(j−1)
+,m − L

(j+1)
−,m

]
(x) j < K − 1

φ(K−1)
m (x) = −s ∗

[
L

(K−1)
−,m−1 + L

(K−1)
−,m+1 − L

(K−2)
+,m

]
(x) +

[
s

s1/2
∗ Q

(K)+
2m,n ∗ L

(K)
+,n

]
(x)

φ
(K)
2m (x) = −s1/2 ∗

[
L

(K)
−,2m−1 + L

(K)
−,2m+1 − L

(K−1)
+,m

]
(x)

φ
(K)
2m−1 (x) = −s1/2 ∗

[
L

(K)
−,2m−2 + L

(K)
−,2m

]
(x) . (37)

We now consider the functions

ŷ(j) (ω) =
∑
m>0

âm/tj (ω) L̂
(j)
+,m(ω) (38)

and we multiply the system (34) on the left by the function am/tj and sum over m, obtaining:

δj,1

T
s ∗ E

(1)
1 − s1/tj ∗ am/tj ∗ L

(j)
−,m + ˆ̃

M
j,l

∗
(
y(l) − s1/2δ

j,K−1δl,KL
(K)
+,1

)
= 0 , (39)

with the matrix

ˆ̃
M

j,l

(ω) =
coth ω

2tj,l

coth ω
2tj

M̂j,l (ω) . (40)

The following step is to compute Ã = M̃−1, the inverse of the matrix (40), and solve for y(j). In 
particular

ˆ̃
A

j,l

(ω) = s
(

ω
2

)
s (ω)

fK(ω)

s (2 (K − max (j, l)) − 1)

sinh
(

min(j,l)ω
2

)
sinh

(
ω
2

)
ˆ̃
A

K,l

(ω) = fK(ω)
s
(

ω
2

)
s (ω)

sinh
(

lω
2

)
sinh

(
ω
2

)
ˆ̃
A

j,K

(ω) = fK(ω)

s
(

ω
2

) sinh
(

jω
2

)
sinh

(
ω
2

)
ˆ̃
A

K,K

(ω) = fK(ω)
sinh

(
Kω

2

)
sinh

(
ω
) , (41)
2
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with fK(ω) = cosh ω
4

cosh (2K−1)ω
4

(see also [46]). Now we substitute our findings into Eq. (35) and isolate 

the effective temperature dependence of the junction free energy:

FJ = E
(0)
J − T

K∑
l=1

∫
R

dωeiω/λ ˆ̃
A

K,l

(ω) ŝ1/tl (ω) L̂
(l)
−,1 (ω)

+ T

∫
dω

eiω/λ sinh (K−1)ω
2

2 cosh (2K−1)ω
4 sinh ω

2

L̂
(K)
+,1 (ω) , (42)

with the pseudoenergies φ(l)
m satisfying the system of Eqs. (37). The temperature-independent 

part of the junction free energy is:

E
(0)
J =

∫
R

dω
e−|ω| sin ω

λ

2ω cosh (M−2)ω
4

− π

2
, (43)

having substituted the definition (41).

3.3. The ground state energy

We have summarized the results for the shift of ground state energy due to the coupling of 
M ≥ 3 wires with the Majorana bound states in Eq. (4) which is of the same form of the impurity 
contribution in the Kondo effect (see e.g. [47]). This expression can be obtained for even and for 
odd M by making use of a standard integral representation of the logarithm of the 
-function 
[49] into the integral expressions (29) and (43).

When the coupling between legs λ goes to zero, the junction energy vanishes linearly in the 
coupling with the Majorana box

E
(0)
J (λ → 0,M) ∼ −λ (44)

with a coefficient which is independent of the number of legs. In Fig. 2, we show some example 
of (4) as a function of M and λ. It is interesting to note that the next non-vanishing order in the 
expansion is λ3, with coefficient 4+12M−3M2

48 depending on the number of branches.
In the strong coupling limit λ → ∞, the energy goes to a constant value as

E
(0)
J (λ → ∞,M) ∼ −π

2
+ 2

M − 2

(
ψ

(
3M − 2

4(M − 2)

)
− ψ

(
M + 2

4(M − 2)

))
1

λ
, (45)

with ψ being the logarithmic derivative of the 
 function. This quantity is monotonous in the 
coupling and is plotted in Fig. 3. Here, it should be noted that there exists a point at intermediate 
λ where the scaling with M changes.

4. The entropy of the Majorana edge modes

In this section, we compute the entropy at T → ∞ of the MEMs and determine the dimension 
of the Hilbert space HJ of the additional Majorana degrees of freedom localized at the concurring 
ends of the wires. We will compute the infinite-temperature limit of the entropy S(∞)

J of the 
central region by looking at the asymptotic behaviour of the free energy of the localized Majorana 
modes, which in this limit is indeed dominated by the entropy and goes as FJ(T → ∞) ∼
−T S

(∞) = −T log (dimHJ ).
J



64 F. Buccheri et al. / Nuclear Physics B 896 (2015) 52–79
Fig. 2. Left: ground state energy shift due to the coupling between legs and MEMs, as a function of the number of legs 
M , for λ = 0.1. Right: the same quantity as a function of λ for M between 3 (top line, red) and 11 (bottom line, purple). 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Ground state energy shift due to the coupling between the wires and the localized Majorana fermions as a function 
of λ for M between 3 (top line, red) and 11 (bottom line, purple). (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.)

In addition, we compute the entropy of the ground state for T = 0. The residual entropy found 
at zero temperature shows that the degrees of freedom introduced by the Majorana modes, are 
in a non-trivial superposition of degenerate states. We will obtain the entropy S(0)

J of the central 
region at T = 0 from the first-order temperature correction to the free energy [45]

FJ (T ) = E
(0)
J − T S

(0)
J + O

(
T 1+2 M−2

M

)
, (46)

which in turn is obtained by substituting the zero-temperature solutions to the TBA systems (24)
and (37).

Similarly to what was observed in [50,51], the systems (24) and (37) admit constant solutions 
[52,53] both when T → 0 and when T → ∞. These solutions satisfy a set of coupled algebraic 
equations which we call “asymptotic” TBA. These are a simplified version of the TBA equations: 
we introduce them in Section 4.1 for even M and in Section 4.4 for odd M . Remarkably, the so-
lution of this system can be parametrized in a similar way in the low- and in the high-temperature 
limits. Therefore, we will be able to study the high-temperature limit in Sections 4.2 and 4.5 for 
even and for odd number of wires, respectively. We will also be able to study the low-temperature 
limit in Sections 4.3 and 4.6, respectively for even and for odd values M . The following sections 
will be devoted to the analysis of the TBA equations for even and odd number of branches.
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4.1. The asymptotic TBA: even number of branches

Let us analyse the system (24): due to the boundedness of the source term, located in the 
equation for φ(1)

2 , the infinite temperature limit removes such term from the system. As a con-

sequence, a constant solution φ̄(j)
m appears. The presence of such solution, which only occurs in 

the limits of zero and at infinite temperature, greatly simplifies the analysis of the TBA equa-
tions. In fact, we plug such constant ansatz into (24) and rewrite the system in terms of the 
quantities

η̄
(j)
m ≡ e−φ̄

(j)
m , (47)

obtaining

(
η̄(1)

m

)2 =
(

1 + η̄
(1)
m−1

)(
1 + η̄

(1)
m+1

)
(

1 + 1/η̄
(2)
m

)
(
η̄

(j)
m

)2 =
(

1 + η̄
(j)

m−1

)(
1 + η̄

(j)

m+1

)
(

1 + 1/η̄
(j−1)
m

)(
1 + 1/η̄

(j+1)
m

)
(
η̄(K−2)

m

)2 =
(

1 + η̄
(K−2)
m−1

)(
1 + η̄

(K−2)
m+1

)
(

1 + 1/η̄
(K−3)
m

)(
1 + 1/η̄

(K−1)
m

)(
1 + 1/η̄

(K)
m

)
(
η̄(K−1)

m

)2 =
(
η̄(K)

m

)2 =
(

1 + η̄
(K)
m−1

)(
1 + η̄

(K)
m+1

)
(

1 + 1/η̄
(K−2)
m

) . (48)

It is implicit, here, that η̄(j)

0 for j = 1, . . . , K . The solution of this system corresponds to the 
asymptotic value of the solution of the TBA equations at x → −∞, when the source term disap-
pears.

On the other hand, when the temperature goes to zero, the positive-defined driving term di-
verges to +∞ for all the values of the argument. As a result, it is possible to substitute another 
rapidity-independent ansatz into the TBA equations and one obtains once again the system (48), 
this time with the boundary condition

η̄
(1)
2 = 0 (T → 0) , (49)

coming from the definition (47). On the contrary, at infinite temperature, since there are no di-
vergences that can force one order of solutions to vanish, we expect η̄(j)

n �= 0 for all values of j
and m. Therefore, the very same set of algebraic equations (48) holds in the two regimes, high 
and low temperature, yet these regimes are distinguished by the boundary conditions (49) only.

Once we have the asymptotic solutions at infinite or at zero temperature, we insert them into 
the formula for the free energy (28). Then the constant asymptotic solution factors out of the 
integral, and one obtains that the temperature dependence of the free energy is given by

FJ (T ) ∼ T

2

[
K−2∑

l logf
(l)
1 +

(
K

2
+ K − 2

2

)
logf

(K)
1

]
(M = 2K) , (50)
l=1
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in which there appear the filling fractions

f
(j)
m = 1

1 + η̄
(j)
m

= 1

1 + e−φ̄
(j)
m

. (51)

Note that (50) represents both the leading contribution to the free energy as T → ∞ and the 
first order correction in a low-temperature expansion. Of course, the asymptotic solutions for the 
f

(j)

1 s will be different in the two cases.
The solution to (48) is given in [53,52] by the expression:

f
(j)
m ≡ 1

1 + η̄
(j)
m

= 1 − Q
(j)

m−1Q
(j)

m+1(
Q

(j)
m

)2
. (52)

The quantities Q(j)
m are objects which only depend on the overall symmetry of the problem and 

satisfy [54] the system of equations(
Q

(j)
m

)2 − Q
(j)

m−1Q
(j)

m+1 = Q
(j+1)
m Q

(j−1)
m 0 < j < K − 2(

Q(K−2)
m

)2 − Q
(K−2)
m−1 Q

(K−2)
m+1 = Q(K)

m Q(K−1)
m Q(K−3)

m (53)(
Q(K−1)

m

)2 − Q
(K−1)
m−1 Q

(K−1)
m+1 = Q(K−2)

m

Q(K−1)
m = Q(K)

m (54)

with initial conditions

Q
(j)

1 =
(j−1)/2�∑

l=0

χωj −2l (yρ) 0 < j < K − 1

Q
(K−1)
1 = Q

(K)
1 = χωK−1(yρ) = χωK

(yρ) . (55)

It is understood that Q(0)
m = 1 for all m, as well as Q(j)

0 = 1 for all j .
The expressions above are written in terms of sums of characters χω of the corresponding Lie 

algebra representations, each built on a given highest weight ω described in [53]. Such characters 
are specialized to the point yρ, where ρ = ∑K

j=1 ωj is the Weyl vector, given by the sum of 

the fundamental weights 
{
ωj

}
j=1,...,K

. The complex number y = 2πi
g+l

is determined from the 
dual Coxeter number of the symmetry algebra (g = 2K − 2 for the DK algebra) and the positive 
integer l; the latter is the order at which the vanishing of the solution η̄(1)

l is imposed, as described 
below and in [53], and for the sake of definiteness it will be l = 2 in the low-temperature limit 
and l → ∞ in the high-temperature limit.

In order to compute the free energy, we solve for the fillings (51) using the system (48):

f
(j)

1 = Q
(j+1)

1 Q
(j−1)

1(
Q

(j)

1

)2
0 < j < K − 2

f
(K−2)
1 = Q

(K−3)
1 Q

(K−1)
1 Q

(K)
1(

Q
(K−2)

)2
1
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f
(K−1)
1 = f K

1 = Q
(K−2)
1(

Q
(K)
1

)2
. (56)

Here below, we specialize the solution to the two limiting cases. These are different only in the 
value of l, the formulas (55) and (53) holding for both the constant ansatz.

4.2. The high temperature limit

Analogously to the results for the spin-s Heisenberg spin chain and the multichannel Kondo 
model, we seek a rational solution to (48), which is non-vanishing for all the η̄(j)

m s. In particular, 
this is obtained when y → 0 (or l → ∞). Then the characters χω(yρ) appearing in (55) yield, by 
definition, the dimension of the representation of highest weight ω. In particular, we have:

χωj
(0) = dim(ωj ) =

(
2K

j

)
χωK

(0) = χωK−1(0) = dim(ωK−1) = dim(ωK) = 2K−1 . (57)

By inserting such a solution into (55) and the latter into (56) we obtain the asymptotic fillings, 
corresponding to the solution at high temperature of the TBA system. These are explicitly listed 
in Appendix A. By substituting these into (50) and evaluating it numerically for several values 
of M , we conclude that

dimHJ (M) = 2
M
2 −1 . (58)

Note that, for M = 4, (58) yields the impurity entropy of the 2-channel Kondo model, while, for 
M = 6, the formula reproduces the impurity entropy of the SU(4) Coqblin–Schrieffer model [45]
with impurity in the fundamental representation. These correspondences are possible only if the 
dimension dimHJ (M) is the dimension of M Majorana fermions projected to a definite fermion 
number parity sector. Indeed, four MEMs have a Hilbert space of dimension dimHM(4) = 4, 
while the Hilbert space of a localized spin-1/2 magnetic impurity, such as the one characterizing 
the two-channel Kondo model, only has dimension dimHJ (4) = 2. The same reasoning applies 
to the case M = 6, for which the Hilbert space HM(6) has dimension dimHM(6) = 4, corre-
sponding to the dimension of the Hilbert space of six MEMs of given fermion number parity.

4.3. The low temperature limit

As observed earlier, at T → 0 we need to solve (48) with the constraint (49). This is written 
in terms of the specialized characters of the irreducible representations of the DK algebra at the 
point iπ

K
ρ, which corresponds to the choice l = 2 in (55). These are provided in [54] as:

χω1

(
iπρ

K

)
= 1

sin π(K−1)
2K

sin π(2K−2)
2K

sin π
2K

χωK

(
iπρ

K

)
= χωK−1

(
iπρ

K

)
=

∏
1≤i<j≤K

sin π(2K+1−i−j)
2K

sin π(2K−i−j)
2K

. (59)

At this particular specialization, these three characters are enough [53] to determine the full 
solution recursively, thanks to the constraint (49), which implies the property Q(j) = 1, Q(j) = 0, 
2 3
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j = 1 < . . . , K , established in [53]. In fact, in (56), we only need the Q(j)

1 , j = 1 < . . . , K . If 

K > 3, we can specialize the first of (53) for j = 1 and, using Q(1)
1 = χω1

(
iπρ
K

)
, solve for Q(2)

1 . 
Analogously, we obtain recursively the results up to j = K − 2, which is most rapidly done by 
solving numerically the recurrence.

Finally, evaluating numerically the free energy (50) for several values of M , we conclude 
that the residual ground state entropy introduced by the interaction of the bulk fermions with the 
Majorana degrees of freedom is

S
(0)
J = log

√
M

2
, (60)

in agreement with the boundary conformal field theory results of [32].

4.4. The asymptotic TBA: odd number of branches

In the same way as for even M , the driving term disappears from the system (37) both in the 
high- and in the low-temperature limits. Therefore, the TBA system is reduced to:

(
η̄(1)

m

)2 =
(

1 + η̄
(1)
m−1

)(
1 + η̄

(1)
m+1

)
(

1 + 1/η̄
(2)
m

)
(
η̄

(j)
m

)2 =
(

1 + η̄
(j)

m−1

)(
1 + η̄

(j)

m+1

)
(

1 + 1/η̄
(j−1)
m

)(
1 + 1/η̄

(j+1)
m

) 1 < j < K − 1

(
η̄(K−1)

m

)2 =
(

1 + η̄
(K−1)
m−1

)(
1 + η̄

(K−1)
m+1

)
(

1 + 1/η̄
(K−2)
m

)(
1 + 1/η̄

(K)
2m

)2 (
1 + 1/η̄

(K)
2m−1

)(
1 + 1/η̄

(K)
2m+1

)
(
η̄

(K)
2m

)2 =
(

1 + η̄
(K)
2m−1

)(
1 + η̄

(K)
2m+1

)
(

1 + 1/η̄
(K−1)
m

)
(
η̄

(K)
2m−1

)2 =
(

1 + η̄
(K)
2m−2

)(
1 + η̄

(K)
2m

)
(61)

and the two regimes are distinguished by the fact that (49) has to be imposed at T = 0, while we 
have η̄(j)

m �= 0 for all 1 ≤ j ≤ K and all m ≥ 1 at T → ∞. Note that η̄(j)

0 for j = 1, . . . , K .
The solution to (61) is again given by (52), but now the Qs are solutions [54] of:

(
Q

(j)
m

)2 − Q
(j)

m−1Q
(j)

m+1 = Q
(j+1)
m Q

(j−1)
m 0 < j < K − 1(

Q(K−1)
m

)2 − Q
(K−1)
m−1 Q

(K−1)
m+1 = Q

(K)
2m Q(K−2)

m(
Q(K)

m

)2 − Q
(K)
m−1Q

(K)
m+1 = Q

(K−1)[
m
2

] Q
(K−1)[

m+1
2

] , (62)

with initial conditions given by
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Q
(j)

1 =
(j−1)/2�∑

l=0

χωj−2l

(
2πi

g + l
ρ

)
(0 < j < K) , Q

(K)
1 = χωK

(
2πi

g + l
ρ

)
, (63)

in which the dual Coxeter number is g = 2K − 1 for the BK algebra.
The solution to (62), in turn, is provided in [53]. In order to evaluate the free energy, all we 

will be needing are the expressions:

f
(1)
1 = Q

(2)
1(

Q
(1)
1

)2

f
(j)

1 = Q
(j−1)

1 Q
(j+1)

1(
Q

(j)

1

)2
1 < j < K − 1

f
(K−1)
1 = Q

(K−2)
1 Q

(K)
2(

Q
(K−1)
1

)2
=

Q
(K−2)
1

((
Q

(K)
1

)2 − Q
(K−1)
1

)
(
Q

(K−1)
1

)2

f
(K)
1 = Q

(K−1)
1(

Q
(K)
1

)2
, (64)

in which we note that only the K numbers Q(j)

1 appear and they can be read in (63) once spe-
cialized to a particular value of l. By using the definition (51) into the free energy (42), one 
obtains

FJ (T ) ∼ T

2

K∑
l=1

l logf
(l)
1 − T

K − 1

2
log

(
1 − f

(K)
1

)
(M = 2K + 1) (65)

for the junction free energy. This holds both as the leading order as T → ∞ and as the first order 
in a low-T expansion, provided the corresponding asymptotic fillings f (j)

1 are inserted.

4.5. The high temperature limit

We select the solution of (62) with y → 0 in the initial values (63). Then, the specialized 
characters become – by definition – equal to the dimension of the corresponding representation. 
In particular:

χωj
(0) = dimωj =

(
2K + 1

j

)
0 < j < K χωK

(0) = dimωK = 2K . (66)

Inserting such solutions into (64) we obtain the expressions listed in Appendix A. Plugging them 
into (65) and evaluating numerically for several values of (odd) M , we conclude that

dimHJ = 2
M−1

2 (67)

for all odd values of M (≥ 3).
For M = 3, the dimension of the Hilbert space of four Majorana fermions with projection 

on a given fermion number parity sector is dimHJ (3) = 2, the same as for a localized spin-1/2
impurity such as the one characterizing the four-channel Kondo model. A related example has 
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been addressed earlier in [55], who pointed out that, in a very similar setting, namely a junction 
of wires with three MEMs interacting among them, the Hamiltonian can be written in terms of 
Pauli matrices as well as in terms of operators satisfying (3). However, one expects to find incon-
sistency between the two operatorially equivalent formulations, in particular in the degeneracy 
of the spectrum. In fact, one can build a one-to-one correspondence between the Hilbert spaces 
only if the fermion number parity is considered.

4.6. The low temperature limit

As T → 0, we need to evaluate the solution of (61) with the constraint (49). Hence, we spe-
cialize the characters in (63) to the point 2πi

2K+1 , corresponding to l = 2 in the initial values (63). 
From the expressions:

χω1

(
π

2K + 1
ρ

)
= sin (2K−1)π

2K+1

sin (K−1/2)π
2K+1 sin π

2K+1

χωK

(
π

2K + 1
ρ

)
=

K∏
l=1

sin (2l−1)π
2K+1

sin (2l−1)π
2(2K+1)

(68)

and rewriting the constraint (49) as Q(j)

3 = 0, Q(j)

2 = 1 for 1 ≤ j < K and Q(K)
5 = 0, Q(K)

4 = 1
as in [53], we can solve recursively the system (62). Once again, this is most efficiently done 
numerically. Evaluating the free energy of the MEMs by the use of (64) into (65) for several 
values of M , we conclude that the ground state entropy produced by the topological Kondo term 
is

S
(0)
J = log

√
M , (69)

which shows that our thermodynamic Bethe ansatz agrees with the results of [32], obtained by 
boundary conformal field theory.

5. The specific heat of the Majorana edge modes

A signature of the non-Fermi liquid nature of the strongly coupled fixed point is given by 
the next term in the expansion (46). In this section, we shall see that it is indeed of order 

O
(
T 1+2 M−2

M

)
. As a consequence, the Majorana contribution to the specific heat behaves at low 

temperatures as

CJ = −T
∂2FJ

∂T 2
∼
(

T

TK

) 2(M−2)
M

, (70)

where the (dimensionless) Kondo temperature TK depends on the coupling between legs as

TK ∼ e
− π

λ(M−2) . (71)

A non-integer power is a strong and experimentally detectable signature of the presence of a 
non-Fermi liquid fixed point. In particular, it is related to the operator content of the conformal 
field theory describing the fixed point at strong coupling, as explained in [39].

The power we find is indeed the same as what derived from the conformal dimension of 
the leading irrelevant operator in the conformal perturbation theory of [31] around the strongly 
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coupled critical point. Therefore, we confirm such result from our Bethe ansatz computation. 
Also in this approach, it has its origin in the overall symmetry of the problem only, since what 
characterizes the Kondo model in the TBA equations, i.e., the functional form of the source term, 
disappears in the derivation of the Y -system. The latter is uniquely specified by the SO(M)2
symmetry of the model, and the periodicity of the associated TBA equations is all we have used 
to determine the power characterizing the temperature dependence of the specific heat as T → 0.

5.1. Even number of branches

Following [45,47], we focus on the rapidity regime x → −∞, which introduces the first tem-
perature corrections to the asymptotic values of the TBA functions. In fact, in this regime the 
source term is very small, being 2eπx , so that the ratio with the temperature in the denomina-
tor gives a finite result and the rapidity dependence appears in the solution. For intermediate and 
large positive values of the rapidity, instead, the solutions of the TBA equations quickly approach 
their asymptotic zero-temperature value. It is convenient, in this regime, to shift the rapidities as 
x = ξ + 1

π
logT , with T → 0.

Similarly to (47), we can define

η
(j)
m (ξ) = e

−φ
(j)
m

(
ξ+ 1

π
log T

)
(72)

and, starting from (24), we see that the η(j)
m s satisfy, for even M and at low temperature, the 

following TBA system

logη
(j)
n (ξ) = −2eπξ δj,1δn,2 + s ∗

[
L

(j)

−,n−1 + L
(j)

−,n+1 − L
(j−1)
+,n − L

(j+1)
+,n

]
(ξ)

j < K − 2

logη(K−2)
n (ξ) = s ∗

[
L

(K−2)
−,n−1 + L

(K−2)
−,n+1 − L

(K−3)
+,n − L

(K−1)
+,n − L

(K)
+,n

]
(ξ)

logη
(j)
n (ξ) = s ∗

[
L

(j)

−,n−1 + L
(j)

−,n+1 − L
(K−2)
+,n

]
(ξ) j = K − 1,K (73)

in which

L
(j)
∓,n (ξ) = log

(
1 +

(
η

(j)
m (ξ)

)±1
)

(74)

and the only temperature dependence is the one implicit in the definition (72). The case M =
2K = 4 is:

logη(1)
n (ξ) = −2eπξ δn,2 + s ∗

[
L

(1)
−,n−1 + L

(1)
−,n+1 − L

(2)
+,n

]
(ξ)

logη(2)
n (ξ) = s ∗

[
L

(2)
−,n−1 + L

(2)
−,n+1 − L

(1)
+,n

]
(ξ) .

We now look at the free energy (28) and shift the integration variable as above. In order to 
express the temperature in terms of the Kondo temperature (71), we need to rescale the integra-
tion variable as ξ → (M−2)ξ

π
, which brings its temperature dependence for T � TK into the form 

(M = 2K)

FJ (T ) ∝ −T

K∑
l=1

∫
dξ

2π
h(l)

(
ξ − log

T

TK

)
log

(
1 + η

(l)
1

(
(M − 2)ξ

π

))
. (75)
R
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In order to evaluate this expression, being the TBA equations (73) symmetric in the exchange 
K ↔ K − 1, one only needs the functions

ĥ(l)(ω) = sinh lωπ
2(M−2)

2 cosh πω
4 sinh πω

2(M−2)

ĥ(K−1)(ω) + ĥ(K)(ω) = sinh πω
4

2 cosh πω
4 sinh πω

2(M−2)

, (76)

which come directly from the definitions (16) and (27). The case M = 2K = 4 is again written 
as (75) with

ĥ(1)(ω) = 1

1 + 2 cosh πω
2

ĥ(2)(ω) = 2 cosh πω
4

1 + 2 cosh πω
2

. (77)

Having already isolated the term in the free energy which is linear in the temperature, originating 
from the asymptotic value of the functions η(j)

m s, we now concentrate on the following term, 
which in turn comes from the low-temperature dependence on the rapidity of these functions.

Being the source term exponential and given the relation s ∗ ebx ∝ ebx , a reasonable ansatz 
[56] is that, at low enough temperatures, the exponential behaviour of the source term is retained 
and we can assume the form

η
(j)
m (x) � η̄

(j)
m + c

(j)
m ebx , (78)

with η̄(j)
m being the already discussed asymptotic values. Under the ansatz (78), the free energy 

becomes

FJ (T ) ∝ −T log

√
M

2
−
(

T

TK

) b(M−2)
π

K∑
l=1

c
(l)
1

1 + η̄
(l)
1

∫
R

dξ

2π
h(l) (ξ) e

b(M−2)ξ
π , (79)

where the term linear in T has been computed in Section 4.1.
In order to fix the coefficient b, we note that from the TBA systems (73) a universal Y -system 

for the analytic continuation in the complex plane of the functions η(j)
m can be derived, as ex-

plained in [57]. Universality, in this context, means that the source term of the integral equations 
disappear, i.e., that only the SO(M)2 structure of the TBA is retained in the Y -system, while 
the source, characterizing the Kondo models, plays no role. We refer the reader to the original 
literature [57] for the explicit form of the SO(M)2 Y -system and just state here that its solutions 
have periodicity:

η
(j)
m (ξ + i(g + 2)) = η

(j)
m (ξ) g = M − 2 , (80)

which has been obtained in [58,59] for both even and odd M . It follows (see [60]) that they can 

be expanded in powers of the variable e
2πx
g+2 .

Substituting this expansion in the free energy (79) and using (70), we obtain that the specific 

heat of the MEMs vanishes at T → 0 as the power law 
(

T
TK

) 2(M−2)
M

.

For M = 4, 6, this value reproduces the results of [45] for the equivalent Coqblin–Schrieffer 
models.
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5.2. Odd number of branches

We repeat here the procedure for an odd number of branches. After the change of variable 
x = ξ + 1

π
logT we obtain, again at low temperatures and with the definitions (72) and (74), the 

TBA system

logη
(j)
m (ξ) = −2δj,1δm,Keπξ + s ∗

(
L

(j)

−,m−1 + L
(j)

−,m+1 − L
(j−1)
+,m − L

(j+1)
−,m

)
(ξ)

j < K − 1

logη(K−1)
m (ξ) = s ∗

(
L

(K−1)
−,m−1 + L

(K−1)
−,m+1 − L

(K−2)
+,m

)
(ξ)

−
(

s

s1/2
∗ Q

(K)+
2m,n ∗ L

(K)
+,n

)
(ξ)

logη
(K)
2m (ξ) = s1/2 ∗

(
L

(K)
−,2m−1 + L

(K)
−,2m+1 − L

(K−1)
+,m

)
(ξ)

logη
(K)
2m−1 (ξ) = s1/2 ∗

(
L

(K)
−,2m−2 + L

(K)
−,2m

)
(ξ) . (81)

The temperature dependence of the free energy for an odd number of legs and T � TK can 
then be rewritten as

FJ ∝ −T

K∑
l=1

∫
R

dξ

2π
h(l)

(
ξ − log

T

TK

)
log

(
1 + η

(l)
1

(
(M − 2)ξ

π

))

+ T

∫
R

dξ

2π
p(K)

(
ξ − log

T

TK

)
log

⎛
⎝1 + 1

η
(K)
1

(
(M−2)ξ

π

)
⎞
⎠ , (82)

with the functions:

ĥ(l)(ω) = sinh lπω
2(M−2)

cosh πω
4 sinh πω

2(M−2)

ĥ(K)(ω) = sinh π(M−1)ω
4(M−2)

cosh πω
4 sinh πω

2(M−2)

p̂(K)(ω) = sinh π(M−3)ω
4(M−2)

cosh πω
4 sinh πω

2(M−2)

(83)

having been obtained from (41) and (16).
As explained for even M , substituting the ansatz (78) into (82), the free energy turns into

FJ (T ) ∼ −T log
√

M −
(

T

TK

) (M−2)b
π [ K∑

l=1

c
(l)
1

1 + η̄
(l)
1

∫
R

dξ

2π
h(l) (ξ) e

b(M−2)ξ
π

+ c
(K)
1

η̄
(K)
1

(
1 + η̄

(K)
1

) ∫
R

dξ

2π
p(K) (ξ) e

b(M−2)ξ
π

]
, (84)

whose linear term has been determined in Section 4.4. This expression, using (70), proves that 
the specific heat vanishes as a power law of T → 0. The power itself is identified through the 
periodicity of the corresponding Y -system, as found in [58,59]:
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η
(j)
m (ξ + i(g + 2)) = η

(j)
m (ξ) g = M − 2 , (85)

which proves that the power law is just the one stated in (70) and, therefore, that the system at 
the strong coupling fixed point cannot be modeled by a Fermi liquid.

For M = 3, this agrees with the known results for the four-channel Kondo model. We note in 
passing that the determination of a the specific heat characteristic power through the periodic-
ity of the associated Y -system is, remarkably, more general than for the model considered. For 

instance, the formula CJ ∝
(

T
TK

) 2g
g+l

, which can be proved from the periodicity properties as-

sessed in [58] too, works in general for the classes of impurity models. In fact, for the l-channel 
Kondo model, the level of the Bethe ansatz is l, while the dual Coxeter number for su(2) is g = 2. 

Therefore CJ ∝
(

T
TK

) 4
2+l

, which is an elegant way of deriving an established result [43,56,39]. 
In the l-species su(N) Coqblin–Schrieffer model, the dual Coxeter number is g = N , hence the 

specific heat power law at low temperatures reads CJ ∝
(

T
TK

) 2N
N+l

, as obtained in [45].

6. Concluding remarks

We have used the thermodynamic Bethe ansatz to provide an exhaustive analysis of the ther-
modynamics of the topological Kondo model. This model describes physical situations where 
M external quantum wires concur in a central region, where the electrons interact with an ex-
tended “spin”, formed by spatially distant Majorana modes. The model has SO(M) symmetry. 
Our study provided the thermodynamics of this model for arbitrary M and a proof that this model 
represents a natural description of non-Fermi liquid quantum critical points associated with the 
SO(M)2 Wess–Zumino–Witten–Novikov boundary conformal field theory. Indeed, a key result 
of our work is the exact computation of the low temperature behaviour of the specific heat of the 
central region. We have found that

CJ ∼
(

T

TK

) 2(M−2)
M

,

where TK � e
− π

λ(M−2) is the Kondo temperature and argued that the non-integer power originates 
only from the symmetry of the strong-coupling fixed point.

We have derived the exact free energy of the topological Kondo model and provided, in a 
closed form, the exact ground state energy shift due to the presence of the Majorana edge modes 
localized in the central region as a function of the effective interaction between the fermions in 
the external wires and the localized modes.

We have computed the entropy associated to the Majorana degrees of freedom localized in the 
central region – the so-called impurity entropy – both for T → 0 and for T → ∞. Our analysis 
provided the exact asymptotic expressions of the impurity entropy of the topological Kondo 
model for arbitrary M .

For T → ∞, the computation of the entropy determines the dimension of the Hilbert space 
associated to the Majorana edge modes localized in the central region and connected to the 
external wires. We found that the dimension of the Hilbert space corresponds to the Hilbert space 
of 2 �M/2� Majorana modes with projection to a definite fermion parity sector. This shows that 
it is always possible to preserve, for any given M , fermion parity symmetry. Thus, conservation 
of the fermion number parity is an essential feature of the topological Kondo model.
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Despite the topological Kondo Hamiltonian having been derived as an effective low-
temperature model, at higher temperature, the topological Kondo effect is expected to survive as 
long as there are no processes breaking the fermion parity, e.g., single-electron tunnelling to or 
from the island, which become relevant.

Throughout this paper, we have assumed that the Majorana bound states in the central region 
were sufficiently separated in space so as to allow to neglect the direct coupling between pairs 
of Majorana modes. The inclusion of such terms should be an interesting extension of our work, 
since these terms are known to induce – for sufficiently low temperature – the M → M − 2
crossover between different non-Fermi liquid phases and could provide a signature of the pres-
ence of Majorana bound states in the central region.

Networks of quantum wires with Majorana edge modes realize the topological Kondo ef-
fect only when the superconducting central region is capacitively coupled with the ground [28,
29,33,34]; when the superconducting central region is floating, the system exhibits remarkable 
even–odd effect in the tunnelling conductance through the central region [30]. Both situations 
can be tested experimentally with present day technology, leading to the exciting possibility of 
an experimental test of exact results stemming from Bethe ansatz.

Ising spin chain realizations of the topological Kondo model have been also recently inves-
tigated in [36]. It was argued that this kind of system exhibits Fermi liquid behaviour at the 
strong-coupling fixed point when the number of legs is even, while it produces a non-Fermi 
liquid when the number of legs is odd. This feature, due to the reality of the fermions in the 
bulk, is manifest, e.g., in the low temperature behaviour of the specific heat and marks a differ-
ence with the model analysed in this paper, which reaches a non-Fermi liquid fixed point at low 
temperatures for all values of M .

Networks of XX chains could provide a basis for constructing alternative experimental real-
izations of the topological Kondo model investigated in this paper: their implementation could 
be realized in ultra-cold atom platforms and we think that it would be a very interesting line of 
future research to investigate feasibility and detection schemes in such setups.
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Appendix A. Some explicit expressions for the asymptotic filling fractions

For the sake of clarity, we provide below the expressions for the first-order fillings at high 
temperature, which are connected with the solution of the TBA equations through (51), and give 
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some more details on the low-temperature asymptotic fillings as well. These directly follow from 
the procedure explained in Section 4.

A.1. Even number of branches

At high temperature, as illustrated in the main text, we substitute the dimension of the funda-
mental highest-weight representations (57) into (55), thus obtaining all the Q(j)

1 for 1 ≤ j ≤ K . 

Then we consider the system (53) with m = 1, which allows to compute all the Q(j)

2 for 
1 ≤ j ≤ K . Without any further iteration, we are provided an asymptotic high-temperature solu-
tion for the filling fractions f (j)

1 by the use of (52). This solution is (56), which reads explicitly:

f
(1)
1 =

(2K
2

)
(2K

1

)2
= (2K)(2K − 1)

2(2K)2
= 2K − 1

4K

f
(j)

1 =
∑(j−2)/2�

l=0

( 2K
j−1−2l

)∑j/2�
l=0

( 2K
j+1−2l

)
(∑(j−1)/2�

l=0

( 2K
j−2l

))2
1 < j < K − 2

f
(K−2)
1 = 22(K−1)

∑(K−4)/2�
l=0

( 2K
K−3−2l

)
(∑(K−3)/2�

l=0

( 2K
K−2−2l

))2

f
(K−1)
1 = f

(K)
1 = 2−2(K−1)

(
2K

K − 2

)
. (A.1)

Note that these values provide the occupation at high temperature of the real solutions of the 
Bethe equations by the use of (21).

The low-temperature limit is greatly simplified by the condition Q(j)

2 = 1, Q(j)

3 = 0, j = 1 <

. . . , K , discussed in Section 4.3. In fact, we know Q(1)
1 from (55) and (59) and we can use it as 

an initial condition in order to start a numerical recursive solution of the system (53) with m = 1. 
In this way, we derive

Q
(2)
1 =

[
χω1

(
iπρ

K

)]2

− 1

Q
(3)
1 =

[
Q

(2)
1

]2 − 1

Q
(2)
1

. . . (A.2)

and so on for Q(4)
1 , . . . , until having determined Q(K−2)

1 . We perform this recursion numeri-

cally. We already know Q(K−1)
1 = Q

(K−1)
1 from (55) and (59). By plugging the solution of this 

recurrence into (52), we obtain the asymptotic filling fractions.

A.2. Odd number of branches

In the high-temperature limit, we have all the Q(j)

1 for 1 ≤ j ≤ K by substituting the di-
mension of the fundamental highest-weight representations (66) into (63). We now consider the 
system (62) with m = 1. This allows to compute all the Q(j)

2 for 1 ≤ j ≤ K . Without any further 

effort, we can already compute all the f (j) for 1 ≤ j ≤ K , by means of (52):
1
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f
(1)
1 =

(2K+1
2

)
(2K+1

1

)2
= 2K

2(2K + 1)

f
(j)

1 =
∑(j−2)/2�

l=0

( 2K+1
j−1−2l

)∑j/2�
l=0

( 2K+1
j+1−2l

)
(∑(j−1)/2�

l=0

(2K+1
j−2l

))2
1 < j < K − 1

f
(K−1)
1 = 22K −∑(K−2)/2�

l=0

( 2K+1
K−1−2l

)
(∑(K−2)/2�

l=0

( 2K+1
K−1−2l

))2

(K−3)/2�∑
l=0

(
2K + 1

K − 2 − 2l

)

f
(K)
1 = 2−2K

(K−2)/2�∑
l=0

(
2K + 1

K − 1 − 2l

)
. (A.3)

In the low-temperature asymptotic limit, we know Q(1)
1 by means of (63) and (68). More-

over, we know that Q(j)

2 = 1, Q(j)

3 = 0, j = 1 < . . . , K , as discussed in [58] and Section 4.3. 
We can then use the system (62) with m = 1 to set up a recurrence and determine numerically 
Q

(2)
1 , . . . , Q(K−1)

1 . The recurrence goes exactly as in the even-M case and starts as:

Q
(2)
1 =

[
χω1

(
2iπρ

2K + 1

)]2

− 1

Q
(3)
1 =

[
Q

(2)
1

]2 − 1

Q
(2)
1

. . . (A.4)

and so on. We already know Q(K)
1 , again from (63) and (68). We substitute the solution of the 

procedure into (52) and obtain the desired asymptotic filling fractions f (1)
1 , . . . , f (K)

1 .
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