
15 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

DriftLens: A Concept Drift Detection Tool / Greco, Salvatore; Vacchetti, Bartolomeo; Apiletti, Daniele; Cerquitelli, Tania. -
ELETTRONICO. - 27:(2024), pp. 806-809. (Intervento presentato al convegno Proceedings 27th International
Conference on Extending Database Technology (EDBT 2024) tenutosi a Paestum (IT) nel 25th March - 28th March,
2024).

Original

DriftLens: A Concept Drift Detection Tool

Publisher:

Published
DOI:

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2987323 since: 2024-03-26T15:51:24Z

Open proceedings

DriftLens: A Concept Drift Detection Tool
Salvatore Greco
Politecnico di Torino

Turin, Italy
salvatore_greco@polito.it

Bartolomeo Vacchetti
Politecnico di Torino

Turin, Italy
bartolomeo.vacchetti@polito.it

Daniele Apiletti
Politecnico di Torino

Turin, Italy
daniele.apiletti@polito.it

Tania Cerquitelli
Politecnico di Torino

Turin, Italy
tania.cerquitelli@polito.it

ABSTRACT
Concept drift refers to changes in data distribution over time that
can lead to performance degradation of deep learning systems.
Production models need to be continuously monitored for drift.
Detecting concept drift poses significant challenges for deep
classifiers working with unstructured data, especially when the
true labels for new samples are not available and the data has
high dimensionality. In such scenarios, drift detection must be
approached using unsupervised methods.

This paper presents the demo of a tool that uses an effective
unsupervised drift detection technique for deep classifiers on
unstructured data, namely DriftLens. The tool enables users to
i) experiment with different controlled drift patterns on multiple
preloaded text and image classifiers and ii) detect possible drifts
on new models and data streams. The recorded demo of the
tool, available at https://youtu.be/1R2igFhMD8U, shows how end
users can interact with DriftLens and use it to continuously
monitor models for concept and data drift.

1 INTRODUCTION
Concept drift refers to unpredictable changes in the underlying
distribution of data streams over time [15] caused by the dynamic
nature of real-world systems. When a model processes a data
stream that is subject to concept drift, performance degradation
can occur. Therefore, it is crucial to continuously monitor models
in production systems to recognize when this phenomenon oc-
curs and take action to restore the model’s original performance.

Detecting concept drift presents significant challenges in clas-
sification problems when the true labels for newly processed
samples are not available in the data stream, and therefore, only
the predicted values are available. In such scenarios, performance-
based drift detectors [1], which directly measure the performance
degradation of the model, i.e., the difference between the true
labels and the model predicted values, are not applicable due to
the lack of the true labels. Instead, unsupervised concept drift
detectors must be applied [10, 13].

Most unsupervised drift detection methods focus on examin-
ing the new data distributions or distances to identify possible
drifts [2, 3, 6, 7, 16, 22]. However, most of these techniques are
inaccurate or too complex for real-time drift detection [23]. These
limitations are even more pronounced with classifiers working
on unstructured data due to the high input dimensionality and
lack of a fixed data structure, such as columns.

© 2024 Copyright held by the owner/author(s). Published in Proceedings of the
27th International Conference on Extending Database Technology (EDBT), 25th
March-28th March, 2024, ISBN 978-3-89318-095-0 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

DriftLens [11] is an effective unsupervised drift detection
technique suitable for such scenarios. It is based on the distribu-
tion distances of embedding representations generated by deep
learning models on unstructured data. The distribution distances
are calculated between fixed-size windows of the new data stream
and a historical dataset called baseline. If the distribution dis-
tances exceed certain thresholds, drift is predicted. DriftLens
also performs a characterization of the drift by identifying the
labels most affected by the drift. Due to its low computational
complexity, it allows real-time drift monitoring. The main fea-
tures of the DriftLens methodology are summarized in §2.

This paper presents a demo of a tool based on the DriftLens
methodology (§3) that enables users to i) experiment with con-
cept drift detection on different text and image classifiers and
controlled drift patterns on a set of pre-uploaded use cases and
ii) detect possible drift in new models and datastream.

The code implementation is freely accessible1 to facilitate the
use of the tool. A recorded demo showing how users can interact
with the tool is also available at https://youtu.be/1R2igFhMD8U.

2 DRIFTLENS METHODOLOGY
DriftLens [11] is an unsupervised drift detection technique based
on distribution distances within the embedding representations
generated by deep learning models when working with unstruc-
tured data. It computes the distances between the baseline distri-
bution, i.e., the distribution of the embedding representation ex-
tracted from a historical dataset, and the embedding distribution
of new samples divided into fixed-size windows, as summarized
in Figure 1. Note that this technique is unsupervised and does
not require the true labels in the new data stream. Due to its
low complexity, it can perform drift detection in real-time. The
methodology includes an offline and an online phase. However,
the data modeling and distribution distances are calculated simi-
larly in both phases.

Data modeling. A given batch of data (i.e., the entire baseline
or a new window) is modeled by estimating the multivariate
normal distribution of the embedding vectors. Specifically, the
distribution is represented by the embeddings’ mean vector and
covariance matrix.

Distribution distance. The Frechét Inception Distance (FID)
score is used to compute the distance between two multivariate
normal distributions [9]. It is a real [0,∞] range value. The higher
the score, the greater the distance and the more likely the drift.

1GitHub repository: https://github.com/grecosalvatore/DriftLensDemo

Demonstration Paper

Series ISSN: 2367-2005 806 10.48786/edbt.2024.75

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2024.75

Figure 1: DriftLens architecture.

2.1 Offline phase
In the offline phase, DriftLens estimates the distributions of a
historical dataset, called baseline, which represents the concepts
that the model has learned during training. It then estimates
thresholds that discriminate between normal and abnormal (i.e.,
potential drift) distribution distances. For example, the baseline
and threshold datasets can be the training and test set, respec-
tively, or a set of data from the new data streamwhere it is known
that drift is not present. In our experiments, we used the train-
ing and test sets as baseline and threshold datasets. From these
datasets, the embedding representations and the predicted labels
are extracted using the deep learning model (Figure 1- 1○ and 2○).

Baseline distributionmodeling. The baseline dataset is used to
model what we call the per-batch and per-label multivariate nor-
mal distributions (Figure 1- 3○). The per-batch models the entire
vector distributions independently of the class label. The mean
and covariance are computed on the entire set of embeddings.
Instead, for the per-label, n normal distributions are estimated,
where n is the number of labels the model was trained on. Each
one is modeled by grouping the embeddings by predicted labels
and computing the mean and covariance of each label separately.

Threshold estimation. The threshold dataset is used to estimate
the distance thresholds (Figure 1- 4○). Thresholds are used in the
online phase to discriminate between normal and abnormal (i.e.,
potential drift) distribution distances. To compute the threshold, a
large number of windows are sampled from the threshold dataset.
The window size is the same as in the online phase. The distances
of the per-batch and the per-label distribution are then calculated
between the baseline and each window, and sorted in descending
order. The maximum value in this list of distances represents the
maximum distance of a set of samples considered without drift.
The idea behind this is that if a new value for the distribution
distance of a window exceeds the threshold value, this represents
a possible drift. For this reason, DriftLens calculates an overall
per-sbatch threshold, and a per-label threshold for each class.

2.2 Online phase
In the online phase, DriftLens analyzes the new data stream in
fixed-size windows. For each window, the process is similar to
the offline phase. Firstly, the embedding vectors and the predicted
labels are produced by the model (Figure 1- 5○). Secondly, the
per-batch and per-label distributions are modeled by computing
the mean and covariance of the embedding for the entire window

Figure 2: Controlled drift experiment configuration.

Table 1: Pre-uploaded use cases for controlled experiments.

Dataset Use Case Models F1 Description

Ag News (Text)
1.1 BERT 0.98 Task: Topic Classification.

Training Labels:World, Business, Sport
Drift: Science/Tech

1.2 DistillBERT 0.97
1.3 RoBERTa 0.98

20 News (Text)

2.1 BERT 0.88 Task: Topic Classification.
Training Labels: Technology,
Sale-Ads, Politics, Religion, Science
Drift: Recreation

2.2 DistillBERT 0.87
2.3 RoBERTa 0.88

Intel (Image)

3.1 VGG16 0.89 Task: Image Classification
Training Labels: Forest, Glacier,
Mountain, Building, Street
Drift: Sea

3.2 ViT 0.90

STL-10 (Image)

4.1 VGG16 0.82 Task: Image Classification
Training Labels: Airplane, Bird, Car,
Cat, Deer, Dog, Horse, Monkey, Ship
Drift: Truck

4.2 ViT 0.96

and the samples predicted for each label separately (Figure 6○).
Then, the per-batch and per-label distribution distances between
the embeddings of the current window and the baseline are com-
puted (Figure 1- 7○). Finally, if the distribution distances exceed
the threshold values, drift is predicted for the current window
(Figure 1- 8○).

The process is repeated for each window. A drift monitor
plots the distribution distances per-batch and per-labels separately
over time. When drift is predicted (i.e., the distribution distances
exceed the threshold values), it is indicated in the plot (see §3.2).

3 DRIFTLENS TOOL
The tool is a web application implemented in Flask [12] based
on the DriftLens methodology. The home page describes what
users can do and provides a link to detailed documentation of
the concept drift problem and the DriftLens methodology. Two
pages are available to launch the experiments. The first page en-
ables users to select a previously uploaded use case and generate
a data stream containing a controlled generated drift (§3.1). The
second page enables users to perform drift detection on their
own dataset and model (§3.3). In both scenarios, a drift monitor
indicates whether a drift is detected (§3.2).

3.1 Run controlled drift experiments
The first page enables users to select a pre-uploaded use case to
configure a controlled drift experiment, to which DriftLens will
be applied (Figure 2).

807

Pre-uploaded use cases. Table 1 summarizes all the available
use cases. Currently, the tool provides four pre-uploaded datasets:
Ag News [24] and 20 Newsgroups in NLP, Intel Image [17] and
STL-10 [4] in computer vision. For the NLP datasets, the BERT [5]
RoBERTa [14], and DistilBERT [18] models were trained. Instead,
for the compute vision datasets, the VGG16 [19] and Vision Trans-
former (ViT) [8] ones. As a result, the user can experiment with 10
possible use cases. We designed the following settings to simulate
drift. We used a subset of the dataset to train and test the models.
A part of the dataset is kept away to generate the windows in
the data stream (i.e., simulating new unseen data with a similar
distribution of the training). Drift is simulated by removing one
of the class labels during training and presenting such examples
later during the online phase.

For instance, use case 1.1 contains 120k samples in the training
and 7.6k in the test balance distributed across the 4 labels. From
the training and test, we removed all the samples related to the
Science/Tech label that will be used to simulate drift (32k). From
the training, we kept away 31k samples to generate the new data
streams. As a result, 60k samples from labelsWorld, Business, and
Sport were used for training and to model the baseline. 5.7k sam-
ples from the test belonging to the same labels were used to test
the model’s performance and estimate the threshold. The portion
of the dataset unused (31k) and the drifted samples are used to
generate the data streams for the controlled drift experiments.
The same approach applies to all the use cases. The offline phase
(§2.1) is already executed for all those use cases.

Data stream generation. For each use case, the user can gen-
erate a data stream by setting two parameters: the number of
windows and the window size. A data stream consisting of num-
ber of windows will be created, each composed of window size
samples. Due to the dimensionality constraints, the stream is gen-
erated by random sampling with replacement. In the generation
of the data stream, the user can simulate four types of scenarios
by setting other parameters specific to each pattern, as shown in
Figure 3:

• No Drift. None of the generated windows contain drifted
samples. This pattern simulates the arrival of windows
similar to the ones used during training.

• Sudden Drift. Concept drift occurs abruptly at a point in
time. The user can specify the starting window fromwhich
drift will occur and the severity (i.e., the percentage of
drifted samples in the windows).

• Incremental Drift. Concept drift occurs from a certain time
but slowly, continuously, and incrementally. The user can
specify the severity of the first drift occurrence and the
increment step of each successive window.

• Periodic Drift. The old and new concepts reoccur repeat-
edly after some time. The user can specify the starting
window from which the drift will occur, its duration, and
its severity.

Once the use case selection and the data stream configuration
are completed, the tool generates the data stream. Then, it starts
the online phase by opening the drift detection monitor (§3.2).

3.2 Drift detection monitor
The tool processes each data window in real-time using the
DriftLensmethodology. The drift monitor page shows the distri-
bution distances for the entire window (per-batch) and separately
per label in two charts (per-label). The charts are dynamically

Figure 3: Drift patterns in the controlled experiments.

Figure 4: Drift detection monitor.

updated once DriftLens has processed each window until the
end of the data stream. For each window, the tool executes steps
5○, 6○, 7○, and 8○ in Figure 1, and updates the charts accordingly.
Figure 4 shows an example of the drift monitor page for a data

stream generated with a periodic drift pattern. The above chart
shows the per-batch distribution distances for all the windows.
Instead, the bottom one shows the distances separately for each
label. The x-axis reports the timestamps and the window iden-
tifiers, while the distribution distances are in the y-axis. When
drift is detected (i.e., the distribution distance in a given window
is above the threshold), the area under the curve is filled, and a
warning is displayed in the x-tick of the charts.

The user can exploit the monitor to understand: i) when drift
occurs by looking at the windows in which drift was predicted;
ii) how concept drift occurs in terms of severity of the drift (i.e.,
the greater the distance, the higher the severity) and patterns
(i.e., if it is incremental, periodic, etc.); and iii) where by analyzing
the labels the most affected by drift. In this case, the user can
observe that drift occurs for the first time after 50 windows, with
high severity, and then reoccurs intermittently with non-drifted
windows. The label World is the most affected by drift, followed
by Business. Instead, the label Sports is negligibly impacted.

3.3 Run drift detection on user-provided data
The second page enables users to experiment with drift detection
on their data and models (Figure 5). To this end, users should
provide the embedding and predicted labels2 for the baseline and
threshold datasets (e.g., training and test set). Those datasets are
used to execute the offline phase of DriftLens.

Then, users should provide an order data stream and set the
window size parameter. The data stream is split into windows,

2The correct dataset format is specified in the repository.

808

Figure 5: Drift detection on user-provided data.

maintaining the order of the data. Finally, after setting the thresh-
old sensitivity, users can run online phase to perform drift de-
tection and understand if, where, and how drift occurs on their
data stream. The same drift monitor page is also open in this case
(3.2). In this way, users can verify if their models and data are
affected by drift.

4 CONCLUSION
This paper presents a tool based on the DriftLens methodol-
ogy to detect concept drift in text and image classifiers. The tool
enables users to i) experiment with pre-loaded use cases on con-
trolled drift scenarios and ii) detect the presence of drift in their
own data and models. The tool provides an effective real-time
drift monitoring page that shows when, how, and where drift
occurs in a data stream.

In future work, we would like to i) employ explainability tech-
niques for deep models on unstructured data [20, 21] to interpret
the reasons for change, and ii) address the adaptation problem
by enabling the annotation of subsamples of the new data with
human-in-the-loop and retraining the original model on the new
concepts.

ACKNOWLEDGMENTS
This work was partially supported by the European Union under the
Italian National Recovery and Resilience Plan (NRRP) of NextGenera-
tionEU, partnership on “Telecommunications of the Future” (PE00000001
- program “RESTART”); and the grant “National Centre for HPC, Big Data
and Quantum Computing,” CN000013 (approved under the M42C Call for
Proposals - Investment 1.4 - Notice“National Centers” - D.D. No. 3138 of
16.12.2021, admitted for funding by MUR Decree No. 1031 of 17.06.2022).

We would like to thank Francesco Ventura and Paolo Bethaz for their
valuable contributions and insightful discussions during the initial phase
of this project.

REFERENCES
[1] Firas Bayram, Bestoun S. Ahmed, and Andreas Kassler. 2022. From concept

drift to model degradation: An overview on performance-aware drift detectors.
Knowledge-Based Systems 245 (2022), 108632. https://doi.org/10.1016/j.knosys.
2022.108632

[2] Li Bu, Cesare Alippi, and Dongbin Zhao. 2018. A pdf-Free Change Detection
Test Based on Density Difference Estimation. IEEE Transactions on Neural
Networks and Learning Systems 29, 2 (2018), 324–334. https://doi.org/10.1109/
TNNLS.2016.2619909

[3] Tania Cerquitelli, Stefano Proto, Francesco Ventura, Daniele Apiletti, and
Elena Baralis. 2019. Towards a real-time unsupervised estimation of predictive

model degradation. In Proceedings of the International Workshop on Real-Time
Business Intelligence and Analytics, BIRTE 2019, Los Angeles, CA, USA, August
26, 2019. ACM, 5:1–5:6. https://doi.org/10.1145/3350489.3350494

[4] AdamCoates, AndrewNg, and Honglak Lee. 2011. An Analysis of Single-Layer
Networks in Unsupervised Feature Learning. Journal of Machine Learning
Research - Proceedings Track 15 (01 2011), 215–223.

[5] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019.
BERT: Pre-training of Deep Bidirectional Transformers for Language Under-
standing. In Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies,
Volume 1. Association for Computational Linguistics, Minneapolis, Minnesota.
https://doi.org/10.18653/v1/N19-1423

[6] Gregory Ditzler and Robi Polikar. 2011. Hellinger distance based drift detection
for nonstationary environments. In 2011 IEEE Symposium on Computational
Intelligence in Dynamic and Uncertain Environments (CIDUE). 41–48. https:
//doi.org/10.1109/CIDUE.2011.5948491

[7] Denis Moreira dos Reis, Peter Flach, Stan Matwin, and Gustavo Batista. 2016.
Fast Unsupervised Online Drift Detection Using Incremental Kolmogorov-
Smirnov Test. In Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD ’16). Association for Com-
puting Machinery, New York, NY, USA, 1545–1554. https://doi.org/10.1145/
2939672.2939836

[8] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn,
Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. 2020. An
Image is Worth 16x16 Words: Transformers for Image Recognition at Scale.
CoRR abs/2010.11929 (2020). https://arxiv.org/abs/2010.11929

[9] D.C Dowson and B.V Landau. 1982. The Fréchet distance between multivariate
normal distributions. Journal of Multivariate Analysis 12, 3 (1982), 450–455.
https://doi.org/10.1016/0047-259X(82)90077-X

[10] Rosana Noronha Gemaque, Albert França Josuá Costa, Rafael Giusti, and Eu-
landa Miranda dos Santos. 2020. An overview of unsupervised drift detection
methods. WIREs Data Mining and Knowledge Discovery 10, 6 (2020), e1381.
https://doi.org/10.1002/widm.1381

[11] Salvatore Greco and Tania Cerquitelli. 2021. Drift Lens: Real-time unsuper-
vised Concept Drift detection by evaluating per-label embedding distributions.
In 2021 International Conference on Data Mining Workshops (ICDMW). 341–349.
https://doi.org/10.1109/ICDMW53433.2021.00049

[12] Miguel Grinberg. 2018. Flask web development: developing web applications
with python. " O’Reilly Media, Inc.".

[13] Fabian Hinder, Valerie Vaquet, and Barbara Hammer. 2023. One or Two
Things We know about Concept Drift – A Survey on Monitoring Evolving
Environments. arXiv:cs.LG/2310.15826

[14] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi
Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov.
2019. RoBERTa: A Robustly Optimized BERT Pretraining Approach. CoRR
abs/1907.11692 (2019). arXiv:1907.11692 http://arxiv.org/abs/1907.11692

[15] Jie Lu, Anjin Liu, Fan Dong, Feng Gu, João Gama, and Guangquan Zhang. 2019.
Learning under Concept Drift: A Review. IEEE Transactions on Knowledge and
Data Engineering 31, 12 (2019). https://doi.org/10.1109/TKDE.2018.2876857

[16] Stephan Rabanser, Stephan Günnemann, and Zachary Lipton. 2019. Fail-
ing Loudly: An Empirical Study of Methods for Detecting Dataset Shift.
In Advances in Neural Information Processing Systems, Vol. 32. Curran As-
sociates, Inc. https://proceedings.neurips.cc/paper_files/paper/2019/file/
846c260d715e5b854ffad5f70a516c88-Paper.pdf

[17] Mohammad Rahimzadeh, Soroush Parvin, Elnaz Safi, and Mohammad Reza
Mohammadi. 2021. Wise-SrNet: A Novel Architecture for Enhancing Im-
age Classification by Learning Spatial Resolution of Feature Maps. CoRR
abs/2104.12294 (2021). arXiv:2104.12294 https://arxiv.org/abs/2104.12294

[18] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. 2020.
DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter.
arXiv:cs.CL/1910.01108

[19] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional
networks for large-scale image recognition. arXiv preprint arXiv:1409.1556
(2014).

[20] Francesco Ventura, Salvatore Greco, Daniele Apiletti, and Tania Cerquitelli.
2022. Trusting deep learning natural-language models via local and global
explanations. Knowledge and Information Systems (2022). https://doi.org/10.
1007/s10115-022-01690-9

[21] Francesco Ventura, Salvatore Greco, Daniele Apiletti, and Tania Cerquitelli.
2023. Explaining deep convolutional models by measuring the influence of
interpretable features in image classification. Data Mining and Knowledge
Discovery (2023), 1–58.

[22] Francesco Ventura, Stefano Proto, Daniele Apiletti, Tania Cerquitelli, Simone
Panicucci, Elena Baralis, Enrico Macii, and Alberto Macii. 2019. A New Unsu-
pervised Predictive-Model Self-Assessment Approach That SCALEs. In 2019
IEEE International Congress on Big Data, Milan, Italy, July 8-13, 2019. IEEE,
144–148. https://doi.org/10.1109/BIGDATACONGRESS.2019.00033

[23] Elias Werner, Nishant Kumar, Matthias Lieber, Sunna Torge, Stefan
Gumhold, and Wolfgang E. Nagel. 2023. Examining Computational Per-
formance of Unsupervised Concept Drift Detection: A Survey and Beyond.
arXiv:cs.LG/2304.08319

[24] Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. 2015. Character-level Con-
volutional Networks for Text Classification. In NIPS.

809

