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Abstract: Microwaves can safely and non-destructively illuminate and penetrate dielectric materials,
making them an attractive solution for various medical tasks, including detection, diagnosis, classifi-
cation, and monitoring. Their inherent electromagnetic properties, portability, cost-effectiveness, and
the growth in computing capabilities have encouraged the development of numerous microwave
sensing and imaging systems in the medical field, with the potential to complement or even replace
current gold-standard methods. This review aims to provide a comprehensive update on the latest
advances in medical applications of microwaves, particularly focusing on the near-field ones working
within the 1–15 GHz frequency range. It specifically examines significant strides in the development
of clinical devices for brain stroke diagnosis and classification, breast cancer screening, and continu-
ous blood glucose monitoring. The technical implementation and algorithmic aspects of prototypes
and devices are discussed in detail, including the transceiver systems, radiating elements (such as
antennas and sensors), and the imaging algorithms. Additionally, it provides an overview of other
promising cutting-edge microwave medical applications, such as knee injuries and colon polyps
detection, torso scanning and image-based monitoring of thermal therapy intervention. Finally, the
review discusses the challenges of achieving clinical engagement with microwave-based technologies
and explores future perspectives.

Keywords: biological tissues; blood glucose monitoring; breast imaging; dielectric measurements;
brain imaging; microwave sensing; image-guided intervention; knee injuries; medical imaging;
microwave imaging; stroke diagnosis; thermal ablation; torso scanning

1. Introduction

Microwave (MW) imaging and sensing entered the medical domain in the mid-1980s as
evidenced by the body of work presented by Larsen and Jacobi in [1]. Initially, the primary
focus was on non-invasive microwave dosimetry in biosystems. However, researchers
soon realized the broader potential for progress in diagnostic and therapeutic medicine by
harnessing the appealing advantages of MWs. These advantages include their non-ionizing
nature, effective tissue penetration capabilities, and sensitivity to dielectric contrasts within
the human body based on tissue type and specific pathological conditions.

The era of “clinical acceptance” began to take shape in the early 2000s [2], marked
by the development of initial equipment prototypes for selected applications on human
subjects, driven by the advancements in computing power and image reconstruction
algorithms. Additionally, the reduced cost and complexity of hardware components
have facilitated the miniaturization and integration into portable, wearable devices with
networking capabilities. A wide range of applications has been explored, typically working
across the frequency range from 1 GHz to 15 GHz, encompassing various biosensors for
ex vivo dielectric characterization of human cells or vital sign detection [3], also integrated
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in wearable sensing systems [4], skin tumor diagnosis [5], and blood glucose monitoring [6].
Image-based diagnosis and monitoring have been explored for breast cancer [7], axillary
lymph nodes [8], brain stroke [9], knee injuries [10], and thoracic diseases [11].

The collaboration between academia and industry has yielded significant milestones
in the development of operational MW imaging systems for breast screening and brain
stroke diagnosis and monitoring. The keen interest in these applications is driven by the
need to support the conventional clinical tools when encountering inherent constraints,
such as the use of harmful X-rays in mammography or brain computed tomography
(CT), as well as the high costs and bulky non-portable equipment for magnetic resonance
imaging (MRI) diagnosis. Moreover, these technologies require long examination times
and are not always available, especially in developing countries or rural areas. Notable
reports include a comprehensive review of breast screening clinical studies published
in [12] (2022) and an assessment of functional brain stroke scanners in [9] (2023), which
reviews the functional brain stroke detectors, highlighting recent validations on volunteers
and patients. While promising outcomes have emerged from these trials, aligning with
preliminary numerical studies and phantom tests, challenges remain due to inconsistencies
in the outcome descriptions (e.g., image quality metrics, clinical effectiveness assessment,
and differences in the trial populations). This heterogeneity hinders a fair comparison and
a complete understanding of the actual potential of these systems [12].

The path to establishing microwave (MW) technology in clinical settings has been
significantly longer compared to traditional imaging and sensing modalities due to several
factors. A critical concern for diagnostic imaging is maintaining adequate spatial resolution
for the intended application while ensuring sufficient tissue penetration. Generally, higher
frequencies offer better spatial resolution but at the cost of increased attenuation, resulting
in reduced penetration depth. Typically, the operational frequency for a given application is
chosen as a compromise between these two factors. For example, breast and brain imaging
have optimal working bands around 3 GHz and 1 GHz, respectively, providing resolution
in the order of centimeters. However, as noted in [2], additional factors can enhance spatial
resolution, such as multi-frequency and multi-view data acquisition approaches and the use
of an appropriate matching medium surrounding the sensing probes. Another significant
challenge lies in understanding and modeling the complex interaction between tissues
and electromagnetic (EM) radiation, usually addressed using simplified models due to
computational limitations. Despite the wealth of experimental data available on tissue
dielectric properties, recent works emphasize the crucial need for a unified database with a
standardized measurement procedure [13,14]. Nonetheless, unavoidable modeling errors
stemming from inter-individual variability significantly impact performance, particularly
in MW medical imaging.

Medical MW imaging applications exploit differences in the dielectric properties
of human tissues, specifically between healthy and diseased tissues, to produce distinct
responses to EM radiation. The sensing system, consisting in a set of transmitting and re-
ceiving probes surrounding the body, investigates the domain of imaging (DoI) by emitting
an incident electric field and capturing the resulting altered field. An inversion algorithm
then processes the measured data to reconstruct a dielectric profile of the scattering object.
Two primary challenges affect the inversion process: first, the non-linearity derived from
multiple scattering effects and the intrinsic relationship between the total internal field and
the dielectric contrast; second, the ill-posedness due to the compactness of the forward
scattering phenomenon, necessitating the use of some regularization schemes to stabilize
the solution. Common image reconstruction algorithms typically rely on pre-computed EM
models of the sensing scenario and use measured data in the form of frequency-domain
scattering signals or their time-domain transformations. The literature presents various
imaging strategies that can be categorized into three main groups. On the one hand, there
are direct inversion methods, based on linear models that neglect multiple scattering phe-
nomena within the DoI, often leveraging well-known approximations such as the Born or
Rytov approximations [15]. These methods reduce complexity and non-linearity, which
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is advantageous for quickly retrieving qualitative information about the shape and loca-
tion of a scatterer (i.e., an area of dielectric contrast compared to the reference scenario).
Similarly, radar-based methods can only identify and locate strong scatterers inside the
object under study and are commonly used in operational scanners addressing real-time
reconstruction [16]. Lastly, quantitative tomography is chosen when knowing the dielectric
properties value is crucial, such as for tissue type differentiation. Here, non-linear iterative
inversion procedures are employed relying on accurate EM modeling, which requires
greater computational resources and time. These methods address challenges associated
with the problem’s ill-posed nature, including issues like local minima solutions, increased
sensitivity to modeling errors, and dependence on the initial guess in the iteration process.
Integration of prior knowledge about the dielectric profile of the DoI into the imaging pro-
cess has been shown to enhance performance and effectiveness in clinical deployment [17].
It is worth noting that there is not a one-size-fits-all efficient imaging technique; the choice
depends on the experimental design, final application, available computational capability,
and targeted costs.

In terms of hardware design, the transceiver component is realized, aiming to maxi-
mize the sensitivity and dynamic range, which is crucial for detecting weak biological sig-
nals embedded in considerable environmental noise. Typically, a Vector Network Analyzer
(VNA) is employed to generate and gather MW signals and interfaces with mechanically
scanned setups (that use a low number of antennas physically moved for spatial sampling)
or electronically scanned multi-probe arrays. In the first case, a key point is the trade off
between a fast scanning and the accuracy in the antenna positioning. In the second case,
the scanning is performed with electro-mechanical or (faster) solid-state RF switches [18];
we do not have any antenna movement issue, but there are limitations in terms of switch
insertion loss, isolation, repeatability, and non-linearity. Recently, to overcome such limita-
tions in the RF frequency bands, in [19], intermediate frequency (IF) switching for efficient
multiplexing with several sensors has been proposed. The diagram in Figure 1 outlines
a general electronically scanned multi-probe system applied for brain imaging, where a
control unit collects the scattering parameters data (S) for each antenna pair (i,j) to retrieve
the image.

Figure 1. General scheme of an electronically scanned multi-probe system for brain imaging.

The design of antennas plays a crucial role in determining the detection capability of
MW medical imaging and it is directly related to practical operating parameters such as
frequency bandwidth, near-field radiation, manufacturing complexity, and costs. As MW
medical imaging devices mostly work in the near-field, further complex considerations
are involved. The literature review in [20] reports the antennas employed for inspecting
different body areas and pathologies. The authors highlight that working at lower frequen-
cies is preferable for imaging bulky tissues due to lower attenuation. Moreover, image
resolution can be enhanced by working in a larger frequency bandwidth, as well as using
more antennas. However, it is acknowledged that spatial resolution is ultimately governed
by the available signal-to-noise ratio (SNR); thus, increasing the number of sensors im-
plies that a larger dynamic range is required [2,21]. These considerations underscore the
complex balance required in antenna design to optimize performance while managing
practical constraints.
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This work aims to provide an overview of some of the most promising biomedical
applications of MW sensing and imaging. The goal is to discuss and compare various
systems settings and their effectiveness, presenting the latest achievements in the field, with
a focus on major results from clinical trials and promising technological trends. The selected
applications are characterized by near-field operation in the frequency band 1–15 GHz,
typically exploited for tissue inspection ranging from large areas of the body to the more
localized functions (e.g., blood sensing just beneath the skin surface). In Section 2, we
analyze current insights into human tissue dielectric properties. This section focuses on
reviewing the latest guidelines established by the research community for measuring and
reporting consistent data, and identifying existing reference databases. Sections 3 and 4 are
dedicated to breast and brain imaging applications, respectively. The most advanced
devices are reviewed and compared based on the technical behavior and capabilities
demonstrated in clinical trials on patients. In order to provide the reader with additional
guidance, Figure 2 classifies the main imaging algorithms cited in these sections.

Figure 2. Scheme depicting classes of MW imaging: direct inversion methods, radar-based methods
and quantitative tomography. The listed algorithms are common strategies applied in advanced
systems for breast and brain imaging and are reported together with the cited papers: Devaney [22]
(2005), Janjic et al. [23] (2023), Bertero et al. [24] (1998), Ghavami et al. [25] (2012), Preece et al. [26]
(2016), Bourqui et al. [27] (2012), Kibria et al. [28] (2019), Smith et al. [29] (2022), Meaney et al. [30]
(2007), Karadima et al. [31] (2023), Henriksson et al. [32] (2023).

Furthermore, blood glucose sensing, one of the most promising applications that has
not yet entered the market, is discussed in Section 5. Finally, the remaining cutting-edge
implementations of MW medical imaging are collected in Section 6. Conclusions and
perspectives of MW imaging and sensing in the medical field are drawn in Section 7.

2. Dielectric Characterization of Human Tissues

Biological tissues expose a high variability of dielectric properties (DPs) at MW fre-
quencies, meaning that their response to EM waves is different depending on the tissue type.
When an electric field E is applied to a dielectric material, it induces a total displacement
flux D:

D = εE, (1)

assuming an isotropic material, where ε is the complex permittivity characterizing the
material, whose real part refers to the capability to store energy, while the imaginary part
relates to the losses, which comprehends conductivity losses. The main factor determining
the dielectric dispersion characteristic (i.e., their dependence from frequency) is the water
content [33] such that drier tissues, e.g., skull and fat, exhibit a lower variation in frequency
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of their permittivity, while tissues with more water such as muscle, brain, and blood have a
high one. Diagnostic imaging aims to detect the DPs changes induced in the pathological
tissue, which in tumors is related to the increase in water molecules compared to the
healthy surrounding area. Since the early 1980s, many ex vivo dielectric studies have
investigated soft tissue tumors affecting, among others, breast, colon, kidney, liver, spleen,
lung, muscle and blood vessels [34–36], suggesting the feasibility of MW detection, even if,
as noted in [16], results were not always quantitatively consistent and the measurement
methodology did not take into account the complexity of the heterogeneous tissue. A
case in point is later research on breast tissues, underlying that normal DPs encompass a
broad range of values, depending on adipose and fibro-glandular tissue content, and only
the contrast between malignant and adipose-dominated healthy tissue is large, while it
significantly decreases with high fibroglandular densities [37,38].

The first dielectric investigations of biological tissues came in parallel with the arrival
of mobile phones and was initially required for dosimetry and evaluation of the influence
of EM exposure in humans. Nowadays, recent advances in biomedical MW techniques
need accurate knowledge of EM characteristics for building reliable physical and numerical
testing models, necessary to design and validate new MW imaging and sensing devices.

Various techniques exist to measure the dielectric properties of biological tissues. These
include transmission line, open-ended coaxial probe, and image-based techniques [39].
Among different methods, the open-ended coaxial probe is the most common one to
measure tissue properties in the operational frequency range of most MW applications [40].
It is a non-destructive technique, easily applicable both in vivo and ex vivo, with relatively
simple preparation of the tissue sample. Common practices of coaxial probe measurement
were reviewed and discussed in [40], where the authors addressed, among others, the
following topics:

• Description of the standard calibration procedure and related confounders (e.g., envi-
ronmental variables, VNA drift, and cable movement);

• The validation procedure with a known reference liquid;
• The uncertainty evaluation, usually based on the guidelines of the National Institute

of Standard and Technology (NIST) [41];
• A summary of the comparative studies with both in vivo and ex vivo measurements;
• The best practice measurement steps, with special considerations about the sensing

depth, the tissue heterogeneity, and the effect of temperature on tissue DPs.

Characterizing heterogeneous biological samples with a coaxial probe is an open chal-
lenge, which consists in sensing each tissue component separately with high accuracy: [42]
revealed that the radius and depth of a coaxial probe depend on the permittivity contrast
between different tissue components and are strictly related to the portion of tissue closest
to the inner conductor of the probe, finally demonstrating the possibility of numerically
modeling the sensing radius in different scenarios. A comprehensive summary of the DPs
derived in the literature for several types of tissue and malignant tumors is extracted in [39],
starting from the first review by Gabriel et al. (1996) [43], up to the recent achievements in
image-based dielectric estimation.

As emerged in many recent studies, there are two main reference databases available
online for body tissue DPs, the IFAC-CNR database [44] and IT’IS Foundation database [45],
both derived from Gabriel’s parametric models extracted from the first available collection
of measured tissue properties, dating back to 1996 [46,47]. However, as pointed out in [39],
later dielectric surveys only partially agreed with Gabriel’s modeling equations, depending
on the tissue and the frequency; principal inconsistencies were found for adipose tissue,
which may be explained by the variability of fat and water content in the sample. The
anisotropy of tissues, mostly studied for muscles, is also a key factor determining the EM
response and thus should be taken into account in future studies. Regarding the malignant
tissues, it was reported that there is a lack of data measured on real human tissues, a
primary issue to be addressed considering the high relevance for ongoing research on
diagnostic and monitoring applications. Furthermore, from the analysis in [39], we can
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observe systematic variations between in vivo and ex vivo data, ascribed from the majority
of the literature to dehydration, blocked blood perfusion, and temperature changes in the
excised tissue. At MW frequencies, the matter response is governed by polar molecules
oscillations [14]; thus, the water content is a well-established measurement confounder,
and generally the time between the excision and measurement, as well as the temperature
and environmental condition influence the hydration of the tissue [14,48–50]. The effect of
dehydration has been highlighted in [50] on porcine liver samples, reporting a variation
of 9% in permittivity after 35 min at a physiological temperature, non-negligible in MW
sensing applications; the authors suggested that predictive models should be investigated
to compensate for the effect of environmental variables, together with precautions in tissue
handling, such as air flow reduction.

As it is clear from the above, despite the abundance of literature, the comparison
across studies is not straightforward due to the variability of measurement conditions and
parameters, or even the lack of this information in reports. Recently, some groups put effort
in this regard, in drafting standard guidelines for regularizing DP measurement procedures
and data reporting.

The minimum information model for dielectric measurements of biological tissues
(MINDER) was defined in [13] in 2017 and includes essential confounders to account for and
metadata to be recorded to enable the analysis, comparison, and replication of published
data. Recently, a working team in the COST MyWAVE network published a complete
guideline with best-practices recommendations, that aims to standardize this branch of
research [14]. The authors pointed out major confounders that should be compensated for
in the measurements process, discussing in detail the role of tissue hydration, temperature
of the calibration load, and sample size. The work tracked the following steps in the
dielectric study process:

• Measurement setup (e.g., effects of cable movements on VNA settings, and probe use);
• Calibration;
• Sample characteristics;
• Measurement practices (e.g., repeating the measure several times is highly recommended);
• Data analysis, which comprises data fitting with mathematical equations and uncer-

tainty calculation (according to GUM document by the Joint Committee for Guides in
Metrology [51]);

• Data reporting methods, which satisfy EU directives, such as the FAIR guiding
principles [52], and promote open-access data collections.

As a starting point, to encourage the adoption of common guidelines in this branch
of research, ref. [14] proposes a custom data analysis software for automated filtering,
modeling (e.g., by means of Cole–Cole or Debye models [33]), and uncertainty calculation,
together with an open-source archive of dielectric and thermal properties, available online
at [53], where researchers can contribute, following a guided process for data loading.

Considering the challenges that have emerged from the state-of-the-art review, alterna-
tive techniques for human tissues DPs estimation may be considered; in particular, the latest
advancements in image-based methods have proven promising results, being intrinsically
suitable for in vivo employment. Some relevant methods are summarized in [39], which are
tomographic approaches based on electrical properties (EPT), electrical impedance (EIT), or
magnetic resonance electrical impedance (MREIT), and imaging methods combined with
artificial intelligence.

3. Breast Cancer Detection

Breast cancer stands as the most widespread malignancy among women worldwide.
According to the latest updates from the World Health Organization (WHO), 2.3 million
women received a diagnosis, with 685,000 deaths in 2020. Since the 1990s, survival rates
have improved due to the spreading of national screening programs, allowing earlier diag-
nosis and effective medical therapies. Nevertheless, the WHO persists in its commitment
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to reducing cancer mortality, cognizant that the gold standard mammographic screening
remains unfeasible in numerous countries [54].

3.1. Traditional Breast Imaging Techniques

The principal technologies in routine care are exhaustively discussed and compared
in the literature [55,56]; the following summarizes the main features:

• Mammography employs potentially harmful X-rays, so frequent repeats of the pro-
cedure are not recommended, while breast compression-induced pain in some cases
discourages women from attending screening programs (involving subjects aged > 40).
Among the unresolved issues, there are the low sensitivity (<70%) attested in high-
density breasts (usually younger aged women) with respect to 90% achieved in fat-
dominated tissues, and high-rate of false-positive recalls. Digital breast tomosynthesis
(DBT) partially solves the difficulties related to tissue overlap in dense breasts by
collecting 3-D multiple projections, but this implies additional radiation exposure.
Nevertheless, mammography provides high spatial resolution, and the performance
decreases only when the lesion size is smaller than 20 mm [57].

• Breast sonography, or ultrasound (US), exploits the acoustic impedance of soft tissues,
and it is sensitive to differences in fat, fibrous, and glandular components of the breast.
It offers a non-ionizing, low-cost tool for the investigation of symptomatic cases and
examination of dense breasts complementary to mammography, as well as real-time
image-based guidance during needle biopsy. Nevertheless, its role as a screening
method is debated due to its dependence on operator skill, long-time requirements,
and higher rates of false positives [58]. While recent advancements in US technology
have improved the achievable resolution and allow to automate the procedure, its
adoption in clinical practice remains to be fully established.

• MRI creates detailed images of soft tissues based on the relaxation properties of the
hydrogen atoms in the presence of a strong magnetic field and usually requires a
contrast agent. It is applied for the high-resolution assessment of diagnosed breast
lesions, for example, before surgery or to evaluate treatment response [55]. The
outcomes of recent tests in screening populations foster the choice of this technique for
high-risk patients, having higher sensitivity in finding neoplasms. However, its use is
constrained by high costs, long acquisition times, limited portability and availability,
together with the remaining doubts related to the high number of false detections [56].

3.2. Current Achievements and Drawbacks in Microwave Breast Imaging

MW imaging is proposed as an innovative modality within this context, being non-
ionizing and non-invasive, rapid, and cost-effective. Most current operational systems do
not require breast compression and have received favorable opinions regarding comfort
and ease of use. Nowadays, breast cancer screening and detection are recognized as the
most promising applications of MW imaging, where technological advantages perfectly fit
unsolved clinical needs. Nevertheless, after more than two decades of research efforts, the
difficult clinical acceptance inevitably poses questions about limitations and shortcomings
in the actual scientific understanding as demonstrated by newest interest in reviewing
various aspects of the state of the art [7,12,59–62].

The experimental dielectric characterization of breast tissues is documented in many
works, starting from 1984, and chronologically described in recent reviews [59,60]. Despite
the acknowledged methodological limitations of some studies and variability among the
published results, some relevant outcomes have been confirmed supporting the feasibility
of MW detection of cancerous breast masses. The first large-scale study from Lazebnik
et al. [37] derived the Cole–Cole model in the frequency range 0.5–20 GHz and estimated a
contrast of 10:1 between malignant and normal adipose-dominated tissues, which decreases
at 10% between malignant and normal glandular/fibroconnective tissues. The largest
measurement set collected in [63], with 509 samples data in the frequency range 0.5–8 GHz,
confirmed previous results and significantly higher properties of benign tumor tissue
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with respect to normal breast tissues, noting that the optimal frequency maximizing MW
sensitivity could be around 2.5 GHz, where the standard deviation of the parameters is
lower. In 2023, Canicattì et al. [64] validated a custom setup method based on open-ended
coaxial probe measurements up to 9 GHz, feasible for clinical analysis of excited tissues
immediately after biopsy, and provided dielectric values for cancer, fibroglandular, and
adipose tissue assessed with the histological gold standard. Recent advancements suggest
the use of magnetic nanoparticles to selectively improve dielectric contrast for pathological
tissues, promising to enhance the specificity of MW imaging [65].

The review in [7] chronologically summarizes the main findings in MW breast imag-
ing research. It encompasses simulation-based studies on phantom and clinical trials,
comparing image reconstruction methods and antennas, and offering a comprehensive
overview of progress and prospects in the field. Antenna sensors have a key role in MW
imaging systems, and recent advancements offer a wide choice in ultra-wideband (UWB)
antenna technology, characterized by high-speed data acquisition, low interference, and
cost-effectiveness [66]. The array geometry fits the breast shape, with the difficulty to
adapt at different breast sizes keeping good matching at the skin–antenna interface. The
capability to cover the entire breast volume, from the chest wall to the nipple with no
shadowed zones, is highly desirable. One possibility is using syntheticarrays, where a low
number of transmitters and receivers are mechanically moved to complete the surface scan,
which usually implies longer scan times [61]. On the other hand, hardware arrays, where
the antennas are fixed, are faster and avoid possible noise and artifacts due to antenna
movements, but their design depends on the antenna size and mutual coupling effects. The
use of a coupling medium (CM) is recommended to avoid strong reflections at the skin
interface, but its employment is a non-trivial decision in the design process, especially with
liquid CM, which also affects patients’ comfort.

In [12], Porter and O’Loughlin investigate the qualitative and quantitative metrics
employed to evaluate image quality, clinical effectiveness, and efficacy, aiming to lead
the way in standard guidelines and universally agreed definitions. The authors assert
that common image-based metrics should be integrated with objective parameters not
dependent on imaging resolution or the specific system. Among the most common param-
eters to measure the accuracy of diagnostic tests, sensitivity is the percentage of patients
correctly identified as having a tumor, while specificity is the proportion of tumor-free
cases accurately identified. It is noted that screening applications should target high sensi-
tivity, while an efficient diagnostic device should maximize its specificity, where the two
parameters usually have opposite trends. This relationship is represented through the area
under the receiver operating characteristic curve (AUC), ranging between 0 and 1 (ideal
case). Furthermore, many works evaluate diagnostic accuracy, but its definition is not
unique and depends on the context. Regarding the trial populations, ref. [12] underlines
the importance of homogeneity in the number of patients and their medical condition for
a fair evaluation; for example, the specificity can be effectively assessed only when the
asymptomatic population is properly represented, as expected in a real-world screening
campaign. Reimer and Pistorius in [62] expand the analysis of the methodologies for the
evaluation of the diagnostic performance with a scoping review which includes machine
learning (ML)-based diagnostic applications and critical inspection of a variety of image
quality metrics. The authors claim that overall image quality is determined by factors such
as spatial resolution, contrast, contrast resolution, noise levels, accuracy, and artifacts, all
of which should be assessed by standard metrics. For greater robustness, it is advisable
to appraise the overall intensity distribution within the DoI rather than individual pixel
values. In order to assess the actual potential of the modality in tumor detection, blinded
studies have particular relevance.

3.3. Microwave Breast Imaging Devices

This section revises the previous analysis conducted by O’Loughlin et al. in [61] by
incorporating the latest developments since 2018. This includes a focus on newly published
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results from clinical experiences and an exploration of the current strategies and focuses of
the companies active in this field. Table 1 compares the primary operating systems based
on their key technical feature: array type and geometry, antenna type, number of antennas,
operating frequency, coupling medium, imaging algorithm, and scan time. We remark that
for the array type, two cases are considered:synthetic, where a low number of transmitters
and receivers are mechanically moved to complete the surface scan, and hardware, where
the array is formed by fixed antennas. Moreover, the summary reports the sensitivity,
i.e., the percentage of patients correctly identified as having a tumor, obtained in the largest
trial relative to each device. Further details on each device are given in the following.

Table 1. Breast microwave imaging devices tested on human subjects. Images from [26,61,67–72].
The listed algorithms are classified in Figure 2.

D-C MammoWave TSAR MITS MARIA Wavelia SAFE
[73–75] [76–78] [27,79] [29,69] [26,80,81] [70,82] [23,71,83]

Array type synthetic synthetic synthetic hardware hardware synthetic synthetic

Geometry cylindrical cylindrical conformal planar hemispherical cylindrical cylindrical

Antenna monopole horn Vivaldi Vivaldi slot Vivaldi Vivaldi

No. of antennas 16 2 1 10 60 21 2

Frequency (GHz) 0.7–1.7 1–9 2.4–15 0.1–10 3–10 0.8–4 1–8

Coupling medium liquid no liquid no shell +
liquid

creamy
liquid shell

Algorithm tomography HP DAS TDS DAS TR-MUSIC LSM + FM

Scan-time (min) 2 7 30 0.25 0.17 15 7

Largest trial 400 103 8 15 389 24 115

Sensitivity (%) - 74 - - 47 87 63

The first human-tested system was pioneered by Prof. Meaney’s team at Dartmouth
College (D-C), Hanover, NH, USA in 2000 [73]. The device is a tomographic scanner
characterized by a cylindrical synthetic array of 16 transceivers (movable in the vertical
direction). In 2012, the group released an updated version of the 3-D tomographic scanner,
including a series of effective hardware innovations to enhance data quality; also, the first
large-scale trial in a medical facility with more than 400 exams has been documented [74].
Cross-plane multi-view measurements are collected, employing two interleaved sets of
eight antennas separately moved upright, suited to all breast sizes. The breast is immersed
in a glycerin–water coupling liquid. The authors note that multi-frequency acquisition
allows for flexible resolution adjustment for different breast densities. The image reconstruc-
tion takes less than 20 min, employing an original logarithmic version of Gauss–Newton
iterative reconstruction [30]. Overall, the system provides a resolution of around 1 cm
and a scan time of 2 min per breast. Although no statistical analysis was provided, two
relevant sample cases are analyzed: first, it confirms adequate sensitivity in detecting
invasive ductal carcinoma of size 1.2 × 1.3 × 1.0 (cm), while comparing counter-image of
the healthy breast, almost homogeneous; the second example demonstrates monitoring
capability during neoadjuvant chemotherapy (NCT) through six follow-up measurements,
using MRI at the beginning and end of the treatment period as the gold standard. In 2013,
the system was further tested for monitoring the progression of breast cancer response
to NCT in eight patients [75]. The evaluation of the mean conductivity in the DoI was
suggested as an effective approach to determine the level of response to the therapy [75]; in
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particular, at one month after the start of therapy, the value is statistically different between
the complete and incomplete (non)-responding patients. To the best of our knowledge,
there have been no recent publications of clinical trial results using this system.

The team of UBT s.r.l., Perugia, Italy, built a novel device for breast tumor detection,
called MammoWave, that recently received CE mark and ISO certification. It operates
using two antennas that rotate azimuthally in air at 10 transmitting positions, while still
retaining proper scanning speed [76]. Here, the images are conductivity-weighted dielectric
maps obtained via radar approach based on Huygens Principle (HP) [25]. Image feature
analysis, based on MW images’ parameters, quantifies non-uniform patterns to distinguish
breasts with no radiological findings (NF) from those with findings (WF); both benign and
malignant lesions are included, e.g., microcalcifications, cysts, and masses in the order of
tens of millimeters. The clinical dataset comprises a balanced group of 103 breasts, of which
there are 52 NF and 51 WF, where each group includes also dense breasts. Two methods of
features analysis are tested: using each single feature separately, an AUC between 0.65 and
0.69 is obtained; by utilizing an appropriate empirically derived combination of features,
the classification achieves a sensitivity of 74% (82% in dense breasts). Recently, the group
implemented an ML-based classification approach-based backscattered signals recognition
via support vector machine (SVM) with radial basis function [77]. A sensitivity of 84%
and specificity of 95% in detecting WF cases is reported on a cohort of 61 patients aged
between 20 and 80. We recall that the specificity is the proportion of tumor-free cases
accurately identified. It is noted that no image-based evidence is provided; thus, the
capability of localizing the actual lesion cannot be evaluated. A large-scale clinical trial
on 600 volunteers, the highest number up to date, is currently ongoing in a multi-center
collaboration project [78] and aims to assess imaging capabilities for breast lesions detection,
extending the investigation in [76]. Among possible limitations of the study, the accuracy
in positioning the breast in the cup depends on the medical operator only.

At the University of Calgary, AB, Canada, Prof. Fear and her team developed mono-
static UWB radar imaging technology, using the DAS-type algorithm, referred to as the
tissue sensing adaptive radar (TSAR) [27,79]. A single antenna is scanned around the breast
(with 3-D covering), positioned via laser-aided patient-specific surface recognition [84].
In [79], a prospective investigation on eight suspicious lesions demonstrated the capability
of clearly detecting the target area, obtaining consistent response even in the case of three
more complex cases of ductal carcinoma, where the sensitivity of MRI is limited. From
observation in [79], the possibility emerges of using the intensity threshold and left and
right breast image comparison to detect low but significant responses due to tissue inhomo-
geneity. The experience gained in the academic years also led to the creation of the company
Wave View Imaging devoted to the clinical development of fast and convenient imaging
technology for breast density assessment, screening, and treatment monitoring [85].

Prof. Fear and colleagues’ research activity also produced the microwave imaging
transmission system (MITS), with an innovative design more similar to MRI one, with
two five-probe planar arrays lightly compressing the breast opposite sides [29,69]. The
differential algorithm implements time delay spectroscopy (TDS) based on two scans at
the same separation distance, with and without the breast, resulting in low-resolution 2-D
images. Very fast multi-view acquisition allows completing the procedure within 10 min.
After consistency validation on phantom [29], a recent pilot study on 15 patients aimed at
monitoring early stage breast cancer development after surgery and radiation therapy (at
6 weeks, 1 and 2 years post-treatment), integrating traditional clinical timeline of scans.
Based on currently available data at baseline and 6 weeks scan, two fundamental results
were reported: consistency of the properties estimate of the untreated breast over time,
and a statistically significant increase in permittivity related to the treatment physiological
response (e.g., inflammation), which fades in later examinations after surgery in case of
positive outcomes [69].

Radar-based MW imaging systems MARIA was developed by Micrima Lt, Bristol,
UK, following research work at Bristol University, UK [26,80,81]. It has undergone rapid
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development through several device generations receiving CE marking; the latest 6th
generation trial was announced in 2024. Multi-static data collection is provided through
a 60-slot antennas-array electronically switched, fixed in a hemispherical shell which
is filled with liquid CM during the measurement. The method suggested to address
strong skin reflection in this configuration is based on the signal comparison between
two measurements at shifted angles, where only the tumor-related signal varies from
the point of view of each antenna pair. Results in [80] show consistent performance in
detecting both benign and malignant lesions in breast tissues, considering also dense
breasts, with a notable achievement of detecting lesions as small as 5 mm. In a population
of 225 patients, the overall sensitivity is 76%, similar in benign and malignant lesions.
The trial methodology remarkably includes blind and unblind radiologist assessments,
and analyzes influencing factors like menopausal status, breast density, and age groups.
According to the study in [81] on 389 patients, the largest to date with MARIA M6, 47%
of malignant lesions match with the reconstructed image intensity. The authors observe
that the information gathered from the deeper tissue and in the presence of small lesions
may be more attenuated. Worth noticing, Micrima Lt is introducing on the market a new
handheld, rapid, painless MW-based scanner for breast density analysis [86]. It is devoted
to complementing the traditional healthcare pathway by identifying a priori the most
suitable imaging technique for detecting cancer based on each patient’s breast tissue type,
avoiding useless exams and the costs of secondary tests.

The Wavelia system, developed by MVG Industries, Villejust, France, reported its first
in-human clinical investigation in 2021 [70] with the support of the University of Galway,
Ireland. Mechanical scanning of the breast is performed in a hemispherical hole with a
circular multi-probe array moving vertically at 2 mm steps, aided by optical breast contour
detection. Radar imaging is based on the time reversal TR-MUSIC algorithm [22] and data-
driven EM propagation speed estimation related to the percentage of fibroglandular tissue.
Results from a small-scale investigation (24 patients) in 2022 verified patient tolerance
and the feasibility of the imaging reconstruction, with an overall sensitivity of 87.5%
among different types of cancerous lesion. The patient is required to lay prone for about
15 min. Wavelia#2 implements notable evolution to the imaging procedure, accelerates
the processing and addresses the arrangement of different breast size, stabilization of the
matching medium properties, and extension of the sensing volume to the posterior breast,
a critical area often shadowed with traditional compression-based configurations [82].
The prototype is currently under testing on approximately 70 patients, while the team
in [82] preliminarily assessed the repeatability of tumor detection on realistic heterogeneous
breast phantoms, remarking the importance of pilot investigation steps in the validation
procedure. The image reliability relative to consecutive scans and exams in different days
is promising for future expectations.

Mitos Medikal Technologies A.S., Istanbul, Turkey, and the Istanbul Technical Univer-
sity, Turkey, developed the Scan and Find Early (SAFE) clinical device for breast screening,
now under the CE certification process [23,83], a mobile bistatic cylindrical system sampling
36 different angle positions, offering size-adjustable cups, and where matching is given by a
solid ceramic medium. The total scanning is performed in about 20 min [23]. A Supervised
ML method, namely Stochastic Gradient Descent (SGD) is implemented in the first step
to detect the presence of a lesion based on the scattering transmission parameters. For
the localization of anomalies, two qualitative 2-D algorithms are employed, i.e., the linear
sampling method (LSM) and Factorization Method (FM). In [71], the screening imaging
capability is validated on 115 patients, achieving 63% overall sensitivity, negatively affected
in small breast size as well as in benign lesions with respect to malignant ones. Sensitivity in
lower-density breasts increases up to 86%. The trial methodology involves trained medical
staff in non-blinded evaluation and the population presents diverse pathological cases
classified as benign, high-risk, or malignant. The smallest detected lesion is 6 mm, while
the average mass size is around 26 mm. In 2023, the validation was extended to ML-based
lesion classification [72]. In a study involving 113 patients with exclusively high-density
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breasts, an Adaptive Boosting model is proposed to distinguish backscattered signals
in pathological breasts. The model achieves a sensitivity of 79% and specificity of 77%;
moreover, SAFE misclassifies 25 out of 113 breasts (False Positive: 16, False Negative: 9),
thus achieving an accuracy of 78%. The authors note a slight improvement in performance
among younger patients, contrary to traditional mammography. However, this observation
requires confirmation in larger studies that consider both age and breast density collectively.
The authors state that nowadays, SAFE can detect lesions as small as 3 mm, with clinical
testing involving over 1000 patients, showcasing sensitivity and specificity values of 81%
and 83%, respectively [83].

Although the technology development seems to favor table-embedded designs, the
academic literature also proposes interesting wearable or handheld systems to be placed
on patients in the supine position [87,88], whose main focus is breast health monitoring.
Cost-effectiveness and portability are desirable features for the application; moreover, no
matching medium requirements and ease of breast surface contact appear to improve the
quality of collected data [88].

4. Brain Stroke Detection
4.1. Brain Stroke Diagnosis and Treatment

Brain stroke is a life-threatening disease estimated to affect one in four people in the
world’s adult population, with a higher burden in low-to-middle-income countries [89].
Lasting brain damage and disability may follow a stroke event, seriously impacting people’s
lives but also representing a significant financial strain on healthcare resources, arousing
a growing interest in the medical market for clinical diagnosis and treatment devices.
Current medical protocols for stroke care differ based on the stroke type. Approximately
85% of cases are ischemic strokes (IS), caused by a clot obstructing blood and oxygen
flow to the brain. The remaining cases are typically intracerebral hemorrhages (ICH),
which occur due to blood vessel leakage. Timely and accurate diagnosis followed by swift
transportation to a well-equipped medical facility is crucial, with guidelines recommending
neuroimaging evaluation using CT or MRI. Initial interventions for ICH focus on managing
intracranial blood pressure and eventually emergency surgery [90]. For IS cases with
small lesions and patients arriving promptly after symptom onset, treatment may involve
tissue plasminogen activator (tPA) to dissolve blood clots, with thrombectomy reserved for
severe conditions [91]. Clinicians refer to the “golden hour” following IS onset as a critical
period where prompt medical action significantly improves the survival rate and reduces
long-term complications [91]. Despite the well-documented clinical relevance, standard
imaging methods are plagued by issues such as time-consuming procedures and high
costs that limit their availability. Moreover, ongoing debates regard their effectiveness for
real-time treatment monitoring and follow-up, particularly when considering the ionizing
radiation risks associated with CT scans. These challenges within the diagnostic framework
encouraged the emergence of MW imaging as a promising solution.

MW-based devices, characterized by their portability and wearability, integrate ad-
vanced yet cost-effective technology capable of fast scanning and data processing. They
are suitable for repeated safe irradiation, which may complement current clinical pro-
tocols. Despite facing several hurdles and limitations in real-world applications, MW
imaging is now recognized as a valid candidate in the market of Mobile Stroke Units
(MSUs), specialized prehospital stroke services provided in ambulances to offer imme-
diate diagnoses, particularly in rural and underserved areas [92]. The competition with
portable CT and MRI equipment, which have been under assessment since the early 2000s
without achieving widespread use, primarily centers around the accuracy-to-cost ratio, a
critical consideration from both industry and medical standpoints. Furthermore, it is worth
noting that next-generation brain stroke diagnostics is exploring alternative technologies
such as electroencephalography (EEG), ultrasonography, and near-infrared spectroscopy
(NIRS) [93].
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A comprehensive review of MW-based systems for brain stroke imaging is provided
in [9] by Guo et al., which details recent progress in hardware and processing algorithms.
A crucial challenge in brain image is related to the complexity and inhomogeneity of the
head tissues. To address a favorable balance between penetration depth and resolution the
optimal frequency range is typically between 0.5–2 GHz [94]. Antenna design encompasses
free-space antennas, high permittivity ceramic-loaded rigid waveguide antennas, and on-
body matched antennas. Free-space antennas require strategies to mitigate strong reflected
signals and may not be suitable for clinical settings; however, some examples are provided,
such as the metamaterial-loaded wideband antenna proposed in [95]. Ceramic-loaded
waveguide antennas can be bulky due to their weight. On-body matched antennas, usually
immersed into a CM to improve penetration and reduce antenna size, face challenges such
as unstable phase centers and unidirectional radiation [9].

Both qualitative and quantitative imaging methods are reported in the literature. The
most suitable methods for real-time usage are radar-based methods but also ML-based
strategies. However, quantitative algorithms are valuable to provide information regarding
stroke type and tissue distribution. Differential imaging techniques, such as the approach
outlined in [96], offer effective methods for tracking stroke progression over time by
monitoring changes in dielectric properties.

4.2. Microwave Brain Stroke Imaging Devices

The academic community made a major contribution to the MW technology devel-
opment, giving rise to the first measurement prototypes, which explore a broad universe
of hardware and software solutions, depending mainly on the target application. At this
level, the preliminary experimental tests are usually conducted on realistic head phan-
toms, where the stroke-affected region can be represented with a similar dielectric body,
which may eventually expand within the brain [31,97–101]. The remaining of this section
reports, first, the more relevant academic devices that comprise both 2-D [31,102,103] and
3-D [96,104] configurations. Then the products realized by companies are detailed. Com-
pared to Section 3, here, we decided to provide additional insights into current academic
research, as the application of MWs to brain imaging is significantly more recent compared
to its use in breast imaging.

The research team based in Malaysia proposed a remarkable prototype which consists
in a portable 9-antennas switched-array system for ICH detection, tested on a realistic multi-
tissue phantom in [102]. The antennas work in free space, rotating at different angular
position at short-distance from the head. To deal with air–skin interface reflection, the
authors incorporated metamaterial in the antenna design to enhance the radiation efficiency.
By combining an updated version of the DAS imaging algorithm in [28], 2-D images were
promising in ICH early detection.

At the University of Genoa, Italy, an advanced multi-static system harnesses a circular
16-antenna array, and the imaging is addressed through a cutting-edge variable-exponent
Lebesgue-space regularization technique [103]. The transceivers feature slotted cavity-
backed bowtie antennas, tailored to operate within the frequency spectrum spanning
from 500 MHz to 2.5 GHz, and matched to the skin via polyethylene bags filled with
glycerin–water CM. The proposed quantitative imaging methodology leverages stepped
frequency data, dynamically refining the Lebesgue-space exponents through adaptive
adjustments following each inexact Newton iteration. In experimental validation, the
prototype demonstrates remarkable efficacy on simplified 2-D scenarios, notably discerning
cylindrical inclusions measuring 2 cm and 5.2 cm in diameter within a cylindrical tank.

The research team from King’s College London, UK, developed an experimental proto-
type for brain stroke detection and classification [31]. Their inversion strategy, implemented
via finite difference time domain (FDTD) solver, utilizes the distorted Born iterative method
combined with the two-step iterative shrinkage thresholding (DBIM-TwIST) algorithm to
address the inherent ill-posedness of the problem. Data acquisition is accomplished by a
ring-array of eight spear-shaped antennas deployed on multilayer phantoms with inclu-
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sions designed to emulate both ICH and IS conditions. While experimental reconstructions
in 3-D scenarios exhibit slightly reduced accuracy compared to 2-D tests, they yield greater
difference in dielectric estimation between the ICH and IS targets. Furthermore, in [105],
the research is centered on enhancing antenna performance through the incorporation of
a metasurface (MTS) impedance-matching layer. The MTS unit cell comprises a metallic
lattice based on the Jerusalem Cross, embedded between two high-dielectric substrates.
Numerical analysis indicates that the addition of MTS effectively mitigates undesirable
reflections at the skin interface and amplifies transmission within the working frequency
band 0.5–2.0 GHz used for brain imaging. This augmentation widens the distribution of
the E-field, resulting in improved signal coverage within the brain region. Experimen-
tal investigations conducted on a simplified homogeneous head phantom illustrate that
both tomographic DBIM-TwIST reconstructions and radar-based imaging exhibit superior
accuracy in target localization and reduced artifacts with the incorporation of MTS.

Recently, the research group from the University of Campania “Luigi Vanvitelli”, Italy,
reported advancements in a compact helmet-hold device called TES (subcranial ENcephalic
Temnograph) for real-time stroke monitoring [104]. This device employs a 16-element array
of miniaturized slot antennas operating in the 1–2 GHz frequency range. Each antenna is
individually controlled by a pneumatic mechanical system of micro-pistons that applies
a precise mechanical force to ensure proper contact with the skin and prevent antenna
movement. The MW system exploits differential scattering measurements (at different time
intervals) and the Incoherent MUSIC algorithm; 3-D image reconstruction is achieved by a
slice approach as a collection of 2-D pseudospectrums. Aiming to improve portability and
cost-effectiveness, the team integrated a custom RF circuit for multi-view multi-static matrix
data collection, enabling head scanning within four minutes. Experimental validation
conducted on a four-tissue head phantom showcases the device’s capability to detect
hemorrhagic inclusions as small as 16 ml in volume.

The Wavision research group from Politecnico di Torino, Italy, and the Institute
for the Electromagnetic Sensing of the Environment, National Research Council of Italy
(IREA-CNR) proposed a low-complexity scanner intended for brain stroke monitoring in
acute and post-acute phases. The first generation dates to 2020 [106], then newer upgrades
toward wearable and portable structure are testified in [96]. A 3-D array of 22 monopole
antennas is matched to the skin surface by a semi-flexible brick, connected to a 2-port VNA
via ad hoc electromechanical switching [96]. The entire acquisition is completed in about
six minutes, then a differential linear imaging algorithm, namely, the Truncated Singular
Value Decomposition (TSVD) [24], estimates in a few seconds the 3-D map of the dielectric
contrast variations. The apparatus was first tested on a homogeneous antropomorphic
head phantom, demonstrating the ability to localize and track mimicked stroke evolution in
both hemorrhagic and ischemic lesions [96], then further validation on custom multi-tissue
dynamic phantom was performed in [97,107]. Currently, the team effort is also headed
to raise the device compactness together with measurement robustness, incorporating an
off-the-shelf solid-state switching matrix [108].

Collaborative efforts among academia, industry, and medical institutions have cul-
minated in creating the first physical systems authorized for human testing. As far as we
know, three primary active devices are undergoing trials on patients. A detailed description
is provided below, and Table 2 compares their main characteristics. It is noted that only
one clinical trial in the table reports the value of accuracy achieved, that is, the percentage
of correct classifications among all the cases.
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Table 2. Brain microwave imaging devices tested on human subjects. Images from [109–111]. The
listed algorithms are classified in Figure 2.

Strokefinder MD100 EMTensor EMVision
[73–75] [32,112–114] [115]

Geometry conformal hemispherical ring

Antenna patch waveguide waveguide

No. of antennas 8 128 16

Frequency (GHz) 0.1–1.95 0.92–1.08 0.7–1.8

Coupling medium no gel liquid

Classification (C)/Imaging (I) C I C/I

Algorithm ML (CLAFIC) gradient-based iterative
algorithm custom data-driven algorithm

Scan-time (s) 45 2.5 -

Largest Trial 71 52 50

Accuracy (%) - - 98 (C)

Medfield Diagnostics AB, Göteborg, Sweden, founded after promising research at
Chalmers University of Technology, Göteborg, Sweden [116,117], developed a tool for
prehospital screening and triage support in the emergency department, to be used in the
ambulance or at the patient bed, in case of suspected stroke or traumatic brain injury. In the
preliminary publication in [116] (2014), the team developed the first system prototype with
optimized radiating array designs usable in the clinic. Supervised learning and a detection
algorithm based on the subspace classifier “CLAFIC” are employed. Two proof-of-concept
studies, on 20 and 25 patients, respectively, demonstrated promising performance, for
example, in the second case, a detection sensitivity of 90% was achieved for HS with a
specificity of 65% [116]. The latest device version is the Strokefinder MD 100, designed
for the classification of cerebral hemorrhage and ischemic stroke, both in the acute phase
and during thrombolytic treatment, and monitoring the early stage brain evolution [109].
It comprises eight antennas arranged in four pairs, encircling the patient’s head ensuring
optimal contact, and the measurement takes around 45 s [118]. In 2017, a clinical study
tested the Strokefinder MD 100 measurements combined with a diagnostic classification
algorithm for the differentiation of traumatic ICH patients and healthy control subjects [118].
The exploratory subset comprised 20 ICH cases, patients admitted for surgery for chronic
subdural hematomas of large size (mean volume of 112 mL), and 20 healthy control cases.
The analysis achieved 100% sensitivity and 75% specificity, i.e., all hematomas were detected
at the cost of 25% false positives. These results indicate the viability of the method for early
clinical diagnosis of traumatic brain injuries, although further investigation is needed for
acute ICH, which may have different dielectric characteristics and smaller sizes. In 2024, a
research team from Greece published the outcomes of a feasibility study for bedside use
of the Strokefinder MD 100 within realistic clinical protocols [119]. The study aimed to
evaluate the possibility of MW-based adjunctive support to patient emergency care with no
additional time with respect to the traditional clinical path. A total number of 71 patients
with suspected stroke after triage were recruited, and for almost 90% of this cohort, a
useful result was provided within 10 min, while the remaining failed due to system or
user errors. Moreover, the authors reported positive feedback from the medical staff.
Currently, Medfield is conducting a pilot study for deploying Strokefinder on ambulances
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in Australia and is further validating its effectiveness through open multi-center trials
aimed at verifying classification on a comprehensive dataset consisting of both pathological
and healthy patients [109,120].

EMTensor GmbH, Vienna, Austria, [110] and Dr. Semenov’s team at Keele University,
UK, and Carolinas Medical Center, Charlotte, NC, USA, have developed a tomographic
system for stroke detection. The company is targeting two main applications, i.e., bedside
brain imaging and in-ambulance early triage of stroke. Their second-generation system
is described in [121]. The inversion strategy uses FDTD simulated electric fields and
applies gradient-based minimization of a real-valued non-negative functional and standard
Tikhonov regularization. Experimental validation on phantom showed that the system was
clearly able to localize and describe the ICH and surrounding tissues’ dielectric properties.
A clinical prototype has been developed by integrating a multiport VNA in a portable,
space-saving packaging [112]. The measurement spherical chamber contains 177 ceramic-
loaded rectangular waveguide antennas distributed on different rings surrounding the
entire head volume, and controlled through a parallel architecture realized with custom-
built transceiver Printed Circuit Boards (PCBs) [122]. The experimental study in [122],
exploited the EMTensor measuring capabilities combined with an innovative 2-D non-linear
inversion strategy applied in Lebesgue space. The actual version EMTensor EMT BRIM
G3 scanner underwent the first pilot feasibility clinical study on 10 healthy volunteers and
30 real stroke patients, approved by the Ethical Committee of Upper Austria. Consecutive
days exams provided a total of 52 scans to analyze and compare with CT or MRI scans
as reference. The prompt use of the scanner on early stroke phase is guaranteed by the
fast acquisition time, less than 2.5 s for the operational frequency band 0.92–1.08 GHz,
and the compact wheeled device cart is easily moved to the patient bed. The authors
reported positive concordance with the gold standard, promising potential in detecting and
differentiate the lesion nature [113]. According to the latest updates to the system reported
in [32], the array has been reduced to 128 elements arranged in 4 rings, reducing the overall
power consumption. To ensure real-time image reconstruction, the company exploits a
cloud platform for extensive computational resources and advanced deep neural network
techniques, which are expected to improve the performance accuracy as the ongoing clinical
studies expand the data storage.

The brain scanner by EMVision, Sydney, Australia, is the product of over a decade
of research and development at The University of Queensland, Brisbane, Australia [111].
The technology developed in academia has been exploited to investigate several types of
radar, tomographic, or ML-based algorithms [115]. In addition, an alternative strategy
in [123] is based on a comparison of signals crossing lines while assuming symmetric
behavior of the 2-D imaging scenario. The simple, fast procedure does not require a priori
information of the healthy scenario, aiming to overcome common limitations in MWI such
as lack of knowledge of the internal tissue, variability among subjects, and computational
burden of some tomographic algorithm. Statistically significant experimental testing on
phantoms certified the possibility of accurately estimating ICH location and size, fostering
further investigation on 3-D implementations and other injuries [123]. The researchers
explored a 3-D flexible antenna array wearable as a cup in contact with the head, tested
for radar-based imaging on realistic phantom [124]. The EMVision commercial prototype
features a portable ultra light weight standalone headset to operate in the critical phases
of stroke care, i.e., pre-hospital diagnosis, support of clinical intervention, and bedside
monitoring. A recent report published in [115] details the main technological solution
pursued in the second version of the clinical prototype. The antenna array consists of a
single ring of 16 waveguide-type radiators which covers a slice of around 60 mm in the head
as the imaging domain. A thin silicon membrane contains the liquid matching medium,
and each transceiver is connected to a different port of a VNA, scanning a frequency
band between 0.7 and 1.8 GHz. The need for offline and in-line calibration is addressed
by implementing specific solutions involving homogeneous calibration phantoms and
differential signal analysis among consecutive measurements. The processing software
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completes consecutive tasks accomplished by different algorithms, including reflection
coefficient-based boundary detection, localization and classification of ICH and IS strokes
from mapping of the scattering signal to graphs, beamforming combined with tomography
and unsupervised ML for target focusing, and finally, the combined output of comple-
mentary algorithms is determined by the overlapping region of agreement. Overall, the
processing takes around 1 min, allowing quasi-real-time implementation. A trial conducted
on 50 patients (37 ischemic and 13 hemorrhagic) at the Princess Alexandra Hospital in
Brisbane, Australia, demonstrated the ability to localize the injured brain area with 80%
accuracy (in two-dimensional quadrant localization), and an overall accuracy of 98% in
stroke type differentiation.

5. Non-Invasive Glucose Monitoring
5.1. Diabetes and Blood Glucose Level Sensing: State of the Art

Diabetes is a chronic metabolic disorder marked by abnormal blood glucose levels
(BGLs), resulting from either insufficient insulin production or the ineffective use of insulin
by the body. Long-term effects involve significant damage to various body systems, partic-
ularly the nerves and blood vessels. According to the WHO, mortality rates from diabetes
have remained persistently high over the past two decades, with a notable increase in
lower-middle-income countries [125]. The normal fasting BGL range is 70–100 mg/dL, but
in diabetic patients, levels can exceed 200 mg/dL, requiring immediate medical attention.

Nowadays, the gold standard for measuring blood glucose is the invasive evaluation
of a drop of blood from the fingertip. Despite its high sensitivity and accuracy, this
method has significant drawbacks, including pain and risk of infections. As a result,
alternative solutions using minimally invasive or non-invasive sensors have been explored,
with some receiving commercialization authorization [126]. The application of greatest
interest is Continuous Glucose Monitoring (CGM), which is highly beneficial for self-
adjusting insulin dosage and also holds significant value for clinical applications [127]. The
most prevalent CGM technique is based on glucose-oxidase electrochemical sensors [128].
However, these sensors have drawbacks such as their limited lifespan (ranging from days
to months), a non-linear response within the biological range, and performance dependence
on enzyme availability on the electrode surface. Additionally, there is a response delay of
5 to 10 min due to the lag between sensed glucose concentration in the interstitial fluid
and the concentration in the blood, which is crucial for real-time decision-making [128]. To
evaluate the suitability of a CGM system, accuracy is a crucial parameter assessed using
various metrics. One such method is the mean absolute relative difference (MARD), which
represents the relative difference between the predicted data d(i)P and the ground truth (GT)

d(i)GT , obtained from standard procedures across a dataset of N measurements:

MARD =
1
N

N

∑
i=1

|d(i)P − d(i)GT |

d(i)GT

. (2)

Specific consensus criteria define the clinical acceptance range for CGM devices based on
error grids, such as the Clarke error grid (CEG) [129], shown in Figure 3. CEG regions have
the following meanings:

• Region A: measurements within 20% of the reference sensor, corresponding to clini-
cally valid treatment;

• Region B: values outside of 20% but not leading to inappropriate treatment;
• Region C: measurements that result in unnecessary treatment;
• Region D: measurements indicating dangerous failures to detect and treat;
• Region E: “erroneous treatment” zone, where measurements cause confusion between

the treatment of hypoglycemia and hyperglycemia.

Therefore, a diagnosis and treatment are considered clinically acceptable only if the
value falls within regions A and B.
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Figure 3. Clarke error grid analysis for glucose monitoring devices. Regions A and B correspond to
clinically valid treatment and uncritical treatment, respectively. Outside these areas, the detection is
considered clinically not acceptable. Image from [130].

The next generation of CGM devices is focused on EM-based sensing of blood dielectric
properties, which vary with glucose concentration. Techniques span the EM spectrum and
include impedance spectroscopy (radio waves), and MW sensing up to optical sensing
(nm waves) that still allows sufficient penetration to examine blood vessels beneath the
skin [130].

MW-based technology leverages the sensitivity of scattering parameters, namely, reflec-
tion coefficients (S11) and transmission coefficients (S21), to changes in blood permittivity
that are dependent on glucose levels. Two possible variables are observed: (1) the magnitude
of scattering parameters, and (2) the resonant frequency. Different estimation methods can
then be applied to determine the glucose level, such as model fitting [131] or more com-
plex ML-aided regression analysis [132,133]. For example, some studies exploit the linear
relationship between resonant frequency shifts and glucose concentration [131,134–136].
One significant advantage of MW sensing is better tissue penetration compared to optical
frequencies. Additionally, sensors are often fabricated using PCBs, which are cheaper than
optical sensors. However, the primary cost in current experimental systems stems from
VNA-based stimulus signal generation; thus, to make this technology viable for affordable
CGM devices for home use, alternative hardware solutions have been developed in [137,138].
The radar-driven sensing system in [139] is an example of a portable, cost-effective, and
low-power solution (the working principle is illustrated in Figure 4).

Figure 4. Scheme of the portable MW sensing system in [139].

One main challenge common to wearable monitoring applications is dealing with body
movements, which may lead to inconsistent results. For this reason, it is crucial to stabilize
the body area interfacing the sensor and implement specific designs immune to movements
and bending losses. Furthermore, the sensor must have high specificity for glucose level
variation rather than other similar compounds in the blood (e.g., fructose and galactose).
Highly sensitive sensors, such as split-ring resonators (SRR) and patches, are commonly
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used because of their capability to offer localized regions sensitive to biological capacitive
variations [132]. Combining two or more designs can enhance the sensitivity and reduce the
sensor’s size as demonstrated in [132,136,139,140]. The proposed spoof surface plasmon
polariton (SSPP) endfire sensor in [135] has low effective aperture and includes triangular
ground planes to suppress the sidelobes, resulting in a slow-wave characteristic. Ref. [136]
proposes a contact-based meander-line antenna sensor (CMS), where the combination
of a meander-shaped design with another structure aims to confine the fields, reducing
the leaky losses. According to [131,141], a high-quality factor and highly concentrated
fields in the sensing area improve the sensitivity. A whispering gallery resonator (WGR)
is adopted in [141] to amplify the dependency between the signal amplitude and glucose
levels. Finally, effective solutions to enhance robustness against noise and EM interference
can be non-reciprocal measurement [142] and dual frequency operation [131,133].

5.2. Microwave Sensors for Glucose Monitoring Tested on Humans

In this section, we report a more detailed description of the latest MW sensors tested
on humans (from 2020 onwards). We build on the reviews found in [130,137] and include
some novel products [132,133,138,140]. The selected systems are compared in Table 3,
which includes the main publication reference; the sensor type; the operational frequency
in GHz, which is a single resonance frequency, two values for dual-frequency applications,
or a frequency range; the observed sensed variables, that can be the amplitude and the
resonance frequency shift of S11 and S21 parameters; the range of glucose levels in mg/dL
tested in the measurements; the method employed to estimate glucose levels based on
the sensed variable; the number of subjects included in the trial population, categorized
as diabetic (D), non-diabetic (ND), or pre-diabetic (PD); the sensitivity, quantified as the
variation of the sensed variable (i.e., frequency shift, in MHz, or amplitude variation, in
dB) with a small change in glucose concentrations (1 mg/dL); and the accuracy, evaluated
using the MARD value according to Equation (2). Most sensors are designed for fingertip
placement [131,133,134,138,140], while two studies are tailored for arm sensing [135,136]
and another for pancreas sensing [140]. Usually, preliminary trials consist of controlled
monitoring during glucose tolerance tests lasting a few hours, with subjects ingesting
glucose following fasting periods. Standard devices for BGL measurement are employed
to assess the accuracy. Despite the studies being limited to small test populations and
controlled conditions (e.g., stable temperature and restrained physical movements), the
accuracy achieved is comparable to, or also superior to, that of the existing commercial
CGM devices [128]. Furthermore, some studies reported CEG analysis with 100% of
predictions falling within the clinically acceptable regions [132–134].

Table 3. Glucose level monitoring devices tested on human subjects.

Ref. Sensor Type Frequency
(GHz)

Sensed
Variables

Detection
Range

(mg/dL)

Estimation
Method

Trial
Population Sensitivity MARD

[131]
two cross-

shaped
resonator

5.5, 8.5 S21
freq. shift 89–262 linear

interpolation 11 ND 3.53, 3.58 MHz/
(mg/dL)

3%
(N = 6)

[134] microstrip
antenna 1.3 S11

freq. shift 60–400 linear
regression

75 ND, 50 PD,
125 D 11.4 MHz/(mg/dL) 4.20%

(N = 125)

[135] SSPP endfire
antenna 8–12 S11

freq. shift 75–150 not applied 5 ND 3.3 MHz/(mg/dL) -

[136] CMS 4.5–5
S11

amplitude +
freq. shift

50–280 not applied 5 ND 1.49 MHz/(mg/dL)
0.073 dB/(mg/dL) -
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Table 3. Cont.

Ref. Sensor Type Frequency
(GHz)

Sensed
Variables

Detection
Range

(mg/dL)

Estimation
Method

Trial
Population Sensitivity MARD

[138] not available 1.8–2.2 S11
freq. shift 100–250 3rd order

regression 43 ND, 1 D not available 7.8%
(N = 107)

[140] HSIS antenna 4.2 S11
amplitude 149–290 linear

regression 30 D
0.056 (before)
0.027 (after) *
db/(mg/dL)

7.34%
(N = 410)

[133]
two

monopole
slot antennas

3.67, 8.35 S11, S21
amplitude 20–500

feature extr. +
non-linear
regression

10 ND 0.0072 dB/
(mg/dL)

5.9%
(N = 750)

[132]
patch + split

ring
resonator

3.6 S11
amplitude 0–500 linear

regression 2 ND, 2 D 0.02 db/(mg/dL) 3.62–6.21%
(N = 3000)

* Two different regression equations are retrieved before and after food intake.

The novel devices not described in previous reviews are detailed below. Ref. [138]
presents an embedded fingertip measuring system for non-invasive CGM using an RF
one-port transceiver made of off-the-shelf elements. The system measures S11 and observes
the resonance frequency to extract a relationship with the glucose levels. The human test is
performed first on 43 healthy volunteers detecting glycemia five times at time intervals of
15 min. In 80% of the cases, a negative correlation is detected (according to Pearson’s metric),
demonstrating the feasibility of the method, although further investigation before deriving
a universal relationship is still needed. Furthermore, day-long monitoring is tested with a
diabetic patient, where glycemia levels vary approximately between 90 and 190 mg/dL.
The value of MARD for this patient is 7.8%, comparable with other commercial systems.

The work in [140] aims to design a home-diagnostic system embedded into a wearable
belt for sensing the pancreas zone, whose properties change during insulin secretion. It
measures the return loss at 4.20 GHz of an H-shaped patch antenna with an I-shaped slot
(HSIS). The integrated MW radar IC and RF transmitter substitute the VNA for a wearable
system feasible for measurement during and after various daily activities. An ML-based
linear regression algorithm predicts the glucose level, in particular, two different equations
are retrieved on data before and after food. In the human tests, a dataset from 150 diabetic
subjects is used for regression analysis, and a new set of 30 diabetic subjects is used for the
test, reaching 91.85% accuracy on the GT value from a commercial glucometer.

The device in [133] uses VNA signal generation and exploits two miniaturized UWB
antennas transmitting through the fingertip. A dual-band strategy merges low- and high-
frequency information from two working bands centered at 3.67 and 8.35 GHz, respectively.
The BGL intelligent monitoring is given through convolutional neural network (CNN)-
based features extraction and non-linear regression network, namely, the long short-term
memory (LSTM-R). Here, the input data, namely S11 and S21 magnitudes, are normalized
with the scattering parameters of water solution. Worthy of mention is the antenna’s
selective response to glucose being verified in comparison to other blood substances in
experiments with pig serum solution. Moreover, validation confirms the device’s robustness
to environmental interference, such as long-term evolution (LTE) and Wi-Fi signals. This
was anticipated, given the higher transmit power of the proposed device (0 dBm). The
human trial involves ten healthy volunteers subjected to 2 h oral glucose tolerance tests,
repeated three times. Each test provides a dataset of 25 measurements, partially used as a
training set. The estimation achieves high accuracy as demonstrated by a low MARD value
(5.9%); moreover, all the predictions belong to the clinically acceptable area of CEG. As
the training and test sets are derived from the same dataset, the relevance of validation is
somewhat constrained. However, the promising outcomes warrant further investigation.

Another example of ML-enhanced glucose sensing is provided in [132]. The device is
a compact resonator sensor that exhibits a high linear correlation between its measured
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response, i.e., the S11 resonance magnitude, and the interstitial glucose levels. The ML
algorithmic component detects sensor anomalies and employs LSTM networks to predict
glucose-level variations, of great interest for real-time response to threatening conditions in
diabetic patients. The sensor design combines an SRR and a loading patch, printed on a
flexible substrate with copper shielding for EM interference protection, featuring a highly
sensitive resonance around 3.6 GHz. The sensor’s selectivity to glucose concentration rather
than additional interstitial fluid ingredients is verified in liquid solutions. Human trials
involve two healthy subjects and two diabetic patients, monitored over eight days for three
hours each day, collecting 16,000 data points for each patient. Prior to each acquisition,
calibration is conducted to align the data with that of the reference commercial device
measurement. All recordings fall within the clinically acceptable CEG zones. Additionally,
the MARD and root mean square error (RMSE) values range from 3.62% to 6.21%, and from
5.17 to 7.78, respectively, across the four tested people.

As far as we know, currently, no MW-based glucose monitoring devices have received
FDA authorization. However, some companies are working on developing commercial so-
lutions, such as the smartwatch-embedded system by Afon Technology, Caldicot, UK [143],
and the ML-aided non-invasive device by Know Labs, Seattle, WA, USA [144].

6. Other Medical Applications

MW sensing technology holds promise for several other medical applications of clini-
cal relevance, at a more or less advanced stage of development. Notable examples include
diagnostics for skin cancer [145,146], and colorectal polyps [147], the detection of axillary
lymph nodes in breast cancer patients [8] and knee injuries [10]. Additionally, it has appli-
cations in monitoring lung and cardiovascular health [11,146,148], providing image-based
guidance for thermal treatments [149,150], and body implant (e.g., devices and prostheses)
sensing [151]. Despite ongoing research efforts, experimental tests for many of these applica-
tions are largely limited to preliminary trials on simplified phantoms. However, significant
review work has been conducted, compiling the results achieved so far, highlighting chal-
lenges and limitations, and proposing potential solutions. The following overview, based
on previous review papers, outlines some of the most promising applications.

Thermal therapy is widely used for treating various types of tumors and includes
two main applications. Hyperthermia aims to enhance the efficacy of chemotherapy
and radiotherapy by slightly raising the temperature (4–5 °C), which promotes vascular
perfusion [152]. Thermal ablation, on the other hand, induces tumor coagulation necrosis
by applying controlled high temperatures, up to 60 °C, offering several advantages over
more invasive surgical excision [153]. RF radiation and US are typical heating sources,
which can be applied externally for hyperthermia or through thin applicators inserted into
the body for ablation.

The use of image-guided intervention has been proven to drastically increase the
efficacy and safety of both treatments, i.e., hypertermia and thermal ablation, providing re-
liable real-time monitoring of heat distribution within the treated area and its surroundings,
which is crucial for concentrating the temperature increase on the tumor while preventing
damage to nearby healthy tissues. Despite extensive research into various imaging strate-
gies, an optimal solution has yet to be widely accepted [154]. MW imaging has recently
emerged as a promising candidate due to its EM compatibility with heating sources, real-
time capabilities, compact equipment and safe low-power radiation viable for prolonged
sessions. As discussed in Section 2, MW imaging relies on the temperature-dependent
EM properties of tissues, which are influenced by water content, even at extremely high
temperatures [155]. An initial proof-of-concept study demonstrated the feasibility of MW
imaging for thermal therapy through a 3-D simplified numerical test [156]. This was further
validated by experiments on bovine samples, which preliminarily assessed the capabil-
ity of the real-time detection of contrasts between ablated and healthy regions using a
single moving antenna measuring the reflection parameters and qualitative differential
image reconstruction based on the Born approximation and TSVD algorithm [157]. Key
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observations included potential secondary effects such as tissue deformation after ablation
and interference from the thermal applicator affecting the reconstruction. To enhance data
quality, optimizing antenna design is crucial. Slot-loaded antipodal Vivaldi antennas are
designed in [158] to operate between 600 MHz and 3 GHz, offering a compact design and
limited aperture size suitable for custom arrays that cover limited body areas, such as those
used in liver measurement. A complete system featuring an array of eight Vivaldi anten-
nas is designed for monitoring liver ablation, with in silico assessments detailed in [149].
Ref. [150] describes the use of UWB radar imaging in ablation therapy. Experiments with
liquid phantoms and three-dimensional DAS beamforming algorithms demonstrate the
ability to estimate quantitative temperature-induced changes in dielectric properties, based
on a priori database of tissue characteristics. A recent study in [159] assesses an innovative
strategy for combining in the same system “heating mode”, where power is supplied to
the antennas, and “monitoring mode”, where a network analyzer measures broadband
transmission coefficients (S21). Ex vivo MW ablation is performed on bovine liver with two
2.45 GHz directional antennas. Analysis of transient S21 spectra aims to predict ablation
zones, which are then compared to ground truth images. A linear regression model is
developed to map and predict ablation extents.

The deep penetration capabilities of MWs are attractive for diagnosing thoracic dis-
eases, including heart complications, steatotic liver, and pulmonary edema (water accumu-
lation in the lungs), which in turn is linked to further disorders, including COVID-19-related
complications [11,148]. Research on torso MW scanning has been systematically revised
in [11]. The state-of-the-art encompasses different sensing array configurations, from linear
bed-embedded architectures to circular arrays surrounding the upper body, air-matched
on body-matched, even in wearable applications. Antenna design targets low-frequency
operation within the optimal working range between 0.5 and 1.5 GHz, compactness, and
unidirectional behavior to ensure better image quality. For instance, the innovative com-
pact UWB cavity-backed dual-polarized antenna proposed in [160] is tested on a torso
phantom for centimetric-scale water inclusion imaging, demonstrating improved signal
penetration, hence a significant enhancement in the signal-to-mean-clutter ratio (SMCR) in
confocal image reconstructions. Additionally, ref. [11] highlights that, beyond established
radar and tomographic reconstruction techniques, research is advancing in classification
strategies based on ML and multivariate energy statistics methodologies, which leverage
the symmetry of the body to improve diagnostic accuracy.

Further studies have investigated MW-based respiratory monitoring, which is crucial
in intensive care units. In 2024, ref. [161] presented the first on-human experiment of
respiration tracking via MW wearable tomographic scanning of the lungs. The system
employs 16 compact antennas fixed on a belt worn around the torso. A ML-based Super-
vised Descent Method supports quantitative image reconstruction, reducing computing
demands. The remarkable results are expected to further improve with the integration of
more complex EM torso models into the network training and inversion algorithm.

An emerging research branch is dedicated to EM knee imaging, offering an affordable,
low-complexity and non-invasive alternative for early diagnosis or monitoring of knee
injuries (e.g., ligament tears and cartilage damage) that are prevalent among both the
youth and old population, with significant economic impact. Ref. [10] collects prelimi-
nary on-phantom experimental studies on knee imaging applications, outlining system
requirements and challenges to be addressed to advance MW technology toward clinical
translation. Despite the ability of MW methods to image soft tissue, the complexity of the
knee junction structure and its mobility pose significant challenges. The delay-multiply-and-
sum (DMAS) algorithm offers advantages in avoiding the poor injury detection capability
and clutter typical of traditional radar methods. At the same time, tomography has not yet
been used for knee imaging, despite its widespread validation in other medical applica-
tions. Future developments in both equipment and processing algorithms are expected to
address these challenges and ultimately establish MW imaging as a competitive solution
for diagnosing and preventing knee injuries.
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MW technology has been proposed as an alternative to traditional colonoscopy for the
detecting of colorectal cancer precursors or polyps. Traditional colonoscopy uses cameras
that have a limited field of view, leading to a high chance of undetected abnormalities.
The MiWEndo prototype, for instance, integrates MW imaging procedures (specifically,
a modified monofocusing algorithm) into traditional colonscopy. The prototype exploits
a cylindrical ring-shaped switchable array of miniaturized antennas that provide trans-
mission parameters at 7.6 GHz, enabling the detection of increased dielectric properties
associated with high-grade malignant polyps. An experimental study on fifteen ex vivo hu-
man colon specimens achieved an overall sensitivity of 100% and specificity of 87.43% [147].

7. Conclusions and Perspectives

This paper has provided an in-depth review of state-of-the-art MW imaging and
sensing systems for medical purposes, highlighting both relevant advancements and
persistent limitations across various applications. MW imaging has shown promising
outcomes in breast cancer screening and brain stroke diagnosis and monitoring, with
encouraging results emerging from clinical testing of the commercial products. Ongoing
large-scale clinical trials may shed some light on the actual potential of existing MW devices
in the near future. Moreover, the principle of MW sensing is appealing for continuous
glucose level monitoring, offering a cost-effective and non-invasive alternative to current
commercial systems. Further advancements in research are anticipated to enhance a variety
of recent applications, with the promising expectation of leveraging MW advantages to
complement their current medical potential.

Amid the dynamic evolution of MW technology, the research community suggests
several pivotal trends and recommendations to drive future advancements. Firstly, there
is a critical need to conduct systematic review and organize a comprehensive database
of biological tissue dielectric properties according to standardized guidelines, as existing
data may be susceptible to measurement inaccuracies and overlook confounding factors.
Moreover, the growing computational capacity and the emergence of quantum computers
offer promising opportunities to develop highly precise EM models and enhance solving
capabilities, that is crucial for quantitative tomography [2]. Several innovative strategies
show promise for improving imaging performance. Examples include multi-modality func-
tionalities [162–164] and the integration of a priori information from traditional imaging
modalities [17]. ML and deep learning techniques are being actively investigated for image
reconstruction, signal processing, and pathological status classification. These approaches
aim to fully exploit their potential as more clinical data become available. Moreover, ref. [2]
emphasizes the importance of leveraging advancements in wireless communications tech-
nology and industrial sensing systems to enhance data acquisition, reducing losses, mutual
coupling, and sensitivity limitations.

In conclusion, this paper clearly demonstrates, if it was necessary, that MW tech-
nology for medical detection applications can now be considered firmly committed to a
translation process. Indeed, advanced operational prototypes, developed from spin-off
companies stemming the academic research effort, have been increasingly engaged in
clinical assessments. Their recent promising results should enable to efficiently feed the
unavoidable technology–clinical “push–pull” required for introducing any new emerging
sensing modality in a medical radiology landscape already occupied by well-established
and, incidentally, constantly improving operative modalities. Such collaborative dialogue
will be essential to identify and focus on real medical needs and to achieve direct engage-
ment with medical staff for informed decision-making and effective implementation at an
acceptable overall healthcare cost [165].
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