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A special subset of two-terminal elements providing pinched hysteresis loops in the voltage-current plane with the lobe area
increasing with the frequency is analysed. These devices are identified as non-memristive systems and the sufficient condition
for their hysteresis loop to be pinched at the origin is derived. It turns out that the analysed behaviour can be observed only for
just one concrete initial state of the device. This knowledge is conclusive for understanding why such devices cannot be regarded

as memristors.

1. Introduction

The hysteresis loop pinched at the v—i (voltage-current) origin
is the most widely known fingerprint of the ideal memristor
introduced by L. Chua in 1971 [1] and also of the more general
memristive systems [2], today referred to as the extended
memristors [3].

In [4], L. Chua introduces a frequently cited terse thesis
“If it’s pinched, it's a memristor”. Such a hyperbole reflects the
fact that many devices, behaving as a resistor whose resistance
depends on the state of associated dynamical networks,
comply with the classical definition of the memristive system
[2]. Examples are given in [5-7], where the circuits containing
conventional nonlinear devices and linear accumulating ele-
ments are described which generate pinched hysteresis loops.

On the other hand, the above thesis can be a source of
misunderstanding, particularly when insisting on its literal
sense. The paper [8] presents a number of models of systems
that, even if they are not of memristive nature, generate
pinched hysteresis loops. The results from [8] are analysed
in [9], claiming that the hysteresis loops of the memristive
system must provide pinching at the v—i origin regardless of
the parameters of the driving signal and the initial state of the
system. It is argued in [9] that since the systems from [8] do
not conform to all these conditions, their hysteretic behaviour

cannot be interpreted as a manifestation of the memristive
effect.

Other examples of non-memristive systems providing
pinched hysteresis phenomena are given in [10], namely,
the nonlinear inductor with a linear resistor in series and
the nonlinear capacitor with a parallel linear resistor. These
reactive elements are studied with quadratic nonlinearities
and under sinusoidal excitation. It is demonstrated that
the hysteresis loops are pinched at the v-i origin for all
amplitudes and all frequencies of the driving signal and that
their areas increase proportionally with the frequency, which
violates the well-known fingerprint of diminishing hysteresis
when the frequency tends to infinity [2]. That is why this
phenomenon is referred to in [10] as “pinched hysteresis with
inverse-memristor frequency characteristics”. It is concluded
therein that the existence of the pinched hysteresis loop is not
the sufficient condition for identifying a memristor and that it
is important to clearly identify what exactly the memristor is
and in what sense it differs from other nonlinear systems. In
the paper [11] the corresponding elements are already called
the inverse memristors.

To illustrate the inconsistency of today’s understanding of
what is/is not a memristor, let us mention that, in contrast
to memristors and memristive systems introduced in 1971
[1] and 1974 [2], the current classification of memristors
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recognizes ideal, ideal generic, generic, and extended mem-
ristors [3]. In addition, the so-called second- or higher-
order memristors [15] or the above inverse memristors [11]
are also discussed. The possible confusion can be amplified
by the frequently used notation of the memristor as the
fourth fundamental circuit element [1]. Does it mean that
all the above devices called memristors are the fundamental
elements?

The question of the so-called new circuit elements, which
can be considered as fundamental, is related to Chua’s concept
of predictive modelling [12]. The term predictive means the
model’s ability to predict the behaviour of the modelled
subject in various modes of its operation. Chua showed that
such models can be built from the predictive models of
fundamental circuit elements organized in Chua’s table [12].
Their models are in the form of unambiguous constitutive
relations, which do not depend on the way the element
interacts with the surroundings and on the initial state of
the element. Each candidate for a “new element” should be
put to the test whether it can or cannot be replaced with a
combination of existing elements from Chuas table. If yes,
then it is surely NOT a new element.

It is well known that the hysteresis loops of memristive
systems [2] are also governed by other regularities, which
should be taken into account when determining the type
of the two-terminal device producing the hysteresis. For
example, the ideal memristor driven by a signal modelled by
an odd function of time must generate the odd-symmetric
loops [16] whereas the loops of the extended memristors
can be of both type I and type II (crossing type, CT, and
non-crossing type, NCT) with a general order of touching
at the v-i origin [17]. All memristive systems without any
exceptions exhibit the fingerprint of a gradual [2] or sudden
[18] disappearance of the hysteresis if the frequency of applied
voltage or current increases above a certain limit, whereas
the regularity of this disappearance depends on the concrete
characteristics of the memristor [19]. The rule of homothety
for ideal memristors, which is published in [20, 21], implies
the rule of the quadratic increase in the loop area with
increasing frequency if the memristor is driven by a charge
or flux waveform of a fixed level.

This study suggests a methodology of identifying the
devices exhibiting v-i pinched hysteresis loops that cannot
be classified as memristors or memristive systems, or, more
generally, as new fundamental circuit elements. In the first
step, the classical definitions of the memristor and memristive
system are confronted with the current classification of these
devices from the point of view of Chua’s concept of predictive
modelling [12]. This approach will help in clarifying whether
the analysed device is a fundamental circuit element. As
a demonstration, the devices with the inverse-memristor
frequency characteristics are analysed. A more general class
of nonlinear inductors and capacitors with the “inverse-
memristor pinched hysteresis” than those in [10] is identified.
The differences with regard to the loops of the memristive
systems are highlighted, and the mechanism explaining why
the loop area increases with increasing frequency is revealed.
All these new pieces of knowledge can be used for a correct
identification of the so-called inverse memristors.
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2. Fundamental Elements, Memristors, and
Memristive Systems

As follows from a comparison of the original and current
classification of memristors and memristive systems in Fig-
ures 1(a) and 1(b), the latter is governed by the thesis “If it’s
pinched, it’s a memristor”.

Figure 1 illustrates the well-known fact that the notation
“memristive system” disappeared in the new classification,
and the terms “memristor” and “memristive system” defined
in [1, 2] were replaced by “ideal memristor” and “extended
memristor”. In addition, two new intermediate categories,
namely, “ideal generic memristor” and “generic memristor”,
were introduced [3]. It is important to stress the conflict
hidden in the new classification, when some elements are
called memristors, but concurrently they are not fundamental
elements. Since the ideal generic memristors and ideal mem-
ristors introduced in [1] are equivalent in terms of their v-i
behaviour [15], they can be considered as the fundamental
circuit elements with the (-1, -1) coordinates in Chua’s table
of Higher-Order Elements [22] or the equivalent storeyed
structure [23] in Figures 2(a) and 2(b). However, this is
not generally true for the generic and extended memristors.
The above conflict may give rise to endeavours to introduce
additional new circuit elements and denote them as various
kinds of memristor.

It is important to define the memristor as a fundamental
circuit element from Chua’s table, which contains the ele-
ments from the well-known Chua’s quadrangle and also from
Wang’s triangular table [24]. Then the respective conclusions
may be acceptable to a wide community of researchers
independently of what they prefer, whether Wang’s triangle
or Chua’s quadrangle.

The ideal generic memristors as fundamental elements in
Figure 1(b) can be defined via their well-known port and state
equations [3].

Current-controlled ideal generic memristor:

v =Ry (x)1,
dx . (1)
I = f(x)i

Voltage-controlled ideal generic memristor:

i=Gy(x),

dx @

E:g(x)v

Here v, i, x, Ry, Gy, f(), and g() are memristor volt-
age, current, and state variable, state-dependent memris-
tance and memductance, and generally nonlinear piecewise-
differentiable functions.

For f(x) = 1 or g(x) = 1, the state variable x is the charge
or flux for (1) or (2), and the above definitions then model
the original memristors from [1], currently classified as ideal
memristors:
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memristive systems extended memristors

generic memristors

——=  fundamental elements

ideal generic memristors

memristors ideal memristors

(a) (b)

FIGURE 1: (a) Original classification of memristors as a special case of memristive systems according to [1, 2]; (b) current classification
according to [3]: there are no memristive systems, only memristors; however, not all of them are the fundamental elements.
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FIGURE 2: (a) Fragment of Chua’s table of fundamental Higher-Order Elements (HOEs) with (a, ) coordinates: (0,0) - resistor, (-1,0) -
inductor, (0,-1) - capacitor, (-1,-1) - memristor, (-2,-1) - meminductor, (-1,-2) - memcapacitor; (b) fragment of equivalent storeyed structure.
TIF = time integral of flux, TIQ = time integral of charge. For details see [12, 13].

Current-controlled ideal memristor: Voltage-controlled ideal memristor:
v =Ry (q)i, i=Gpyl(e)v,
dq . ®) de (4)

a ! ar '



It can be concluded that the ideal and ideal generic mem-
ristors as fundamental elements can be defined via their
memristance or memductance versus state map, where the
state can be either the charge, flux, or some other state
variable which is linked to the above “natural” state variables
as described in [3, 25]. The equivalent well-known character-
istics are the charge-flux constitutive relations [3].
Current-controlled ideal or ideal generic memristor:

¢=9(9) )
Voltage-controlled ideal or ideal generic memristor:
1=4(¢) (6)

Differentiating (5) and (6) with respect to charge and flux
yields the port equations (3) and (4).

All memristive systems from Figure 1(a), which cover all
the extended memristors from Figure 1(b) according to the
current classification, are modelled as follows [3]:

Current-controlled extended memristor:

v=Ry (x,0)1,

RM (X, 0) #: 00, (7)
% =f(x,1)
Voltage-controlled extended memristor:
i=Gy (xv)v,
GM (X, 0) # 00, (8)
d
d—j =g(xv)

The bold symbols represent the vector variables or functions;
thus the memristance or memductance can be generally
modulated by a vector of states.

Definitions (1)-(8) can be conclusive in identifying
whether the analysed circuit element is or is not a memristor
or memristive system: If the model of this element cannot be
written in any of the forms (1)-(8), then it cannot be classified
as any memristor from the group in Figure 1(b).

This procedure is definite and thus more conclusive than
deducing the type of the element from some limited number
of its fingerprints that should hold simultaneously [26].

It is worth noting that the element is surely not a
memristor as fundamental element if its model can be built
up from models of the fundamental “no- (-1,-1)” elements
in Chuas table or the storeyed structure. For example, it is
obvious from Figure 2 that the so-called 2"4-order memristor
introduced in [15] via a constitutive relation between the
integral of flux (TIF) and integral of charge (TIQ) is in
fact a (-2, -2) element. Similarly, the 3" order memristor,
described in [15], is a (-3, —3) element, and other elements
defined in [15], namely, the 27 _order memcapacitor and
meminductor, are classical (-2, -3) and (-3, -2) elements [14].
From this point of view, it is not advisable to denote such
elements as some kinds of memristors, memcapacitors, or
meminductors.

Mathematical Problems in Engineering

3. Inverse Memristors

Notwithstanding that a different notation is used below than
in [10], the current-controlled and voltage-controlled inverse
memristors are defined therein via the following equations:

di
v=ai+ ciid—; ©9)
i=av+ vad_: (10)

Here v, i are the terminal voltage and current, and g;, ¢;, a,, ¢,
are real parameters.

It is obvious that the models (1), (2) cannot be arranged
to agree with any of the definitions (1)-(8) of memristors.

It is shown in [10] that (9) (or (10)) represents a series
connection of a linear resistor and a nonlinear inductor with
quadratic flux-current characteristic (or a parallel connection
of a linear resistor and a nonlinear capacitor with quadratic
charge-voltage characteristic). The proof consists in rewriting
(9) and (10) into the forms

1

Cod, N
v=Ri+ (p @), JORE (1)

. d 1,
i=Gv+ pr (@), q) = 2cvv (12)

Equations of magnetic flux ¢(i) and electric charge g(v)
describe the constitutive relations, i.e., predictive models of
nonlinear inductor and capacitor. According to (11) or (12),
the inductor is in series with a linear resistor whose resistance
is R; = a;, or the capacitor is in parallel with a linear resistor
whose conductance is G; = a,. That is why (9) and (10),
which define the so-called inverse memristor in [10], do not
describe new circuit elements. Because of the unambiguous
identification of their subparts as the resistor and inductor
(or capacitor) from Chua’s table, one cannot denote it as a
memristor. Just two problems should be resolved: Why such
non-memristive elements can produce v-i pinched hysteretic
loops, and why the loop area increases with increasing
frequency.

4. Pinched (v, i) Behaviour of
Nonlinear Inductors

It is well known that the inductor with a linear current-
flux constitutive relation, driven by a sinusoidal voltage or
current, generates the (v, i) Lissajous curves as circles (or
ellipses), with the drawing point circling around the origin
of the coordinates. The nonlinear inductor generates higher
harmonic components in the spectrum of the response,
which is manifested as a distortion of the Lissajous pattern.
The aim is to find a class of such nonlinear characteristics of
the inductors that produce patterns passing through the v-i
origin.

Consider the current-controlled inductor as fundamental
(-1,0) element from Chua’s table with a nonlinear flux (¢) -
current (i) constitutive relation

p=¢@). (13)
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Since the dual case of the flux—controlled inductor leads to
analogous conclusions, it will not be analysed herein.
The terminal voltage of the inductor is

V_dtﬁ(i)_d@(i)ﬂ
Codt di

d, . di
a0 ()
where the symbol Ld(i) denotes the differential inductance as
a function of current.

Let the inductor be driven via a sinusoidal current
source with the amplitude I, repeating period T, and angular
frequency w = 2m/T":

i(t) = Isin(wt). (15)
Then, according to (14), the terminal voltage is
v(t) = TwL® [I sin (wt)] cos (wt) (16)

As the sufficient condition for the hysteresis loop to be
pinched at the origin, the voltage and current waveforms
must simultaneously intersect the zero levels at the time
instants + = 0 and t = T/2. Such a condition can, with the
help of (16), be expressed in a simple form as

14(0) = 0. 7)

Recall that the condition (17) means that the slope of the
constitutive relation (13) at the origin is zero. Such a condition
is fulfilled, for example, by the inductor with a quadratic
constitutive relation, considered in [10]. The condition (17) of
loop pinching at the origin is given explicitly by the nonlinear
characteristic of the inductor. This condition does not depend
on the parameters of the signal, here on its amplitude and
the repeating frequency. It also follows from (15) and (16)
that although the current swing is frequency-independent,
the voltage swing is directly proportional to the frequency;
thus the area of the corresponding v-i hysteresis loop will also
increase proportionally with the frequency.

It can be derived from (16) that, regardless of the type of
the constitutive relation (13) or the characteristic L%(i), the
voltage must fulfil the following rules:

v(t) = —v(g —t),

v(T—t)z—v(§+t>, (18)

T
re[ol].
2

It follows from (18) that

T S R

This means that the voltage waveform intersects the zero level
also at time instants when the current waveform achieves its
local maximum and minimum.

The impact of the symmetry (18) of the response (16) on
the v—i hysteresis loop is illustrated in Figure 3. It is obvious

that, in contrast to the passive memristor, the lobes of the loop
must be located in all four quadrants of the v—i plane. The
lobe fori > 0 (or i < 0) is enantiomorphic with respect to the
axis of the current, and its shape depends on the nonlinear
characteristic of the inductor ¢(i) for i > 0 (ori < 0). It can
also be readily proved that the potential symmetries of this
characteristic, namely, ¢(-i) = -¢(i) or ¢(-i) = ¢(i), would
result in hysteresis loops that would also be symmetric with
respect to the vertical axis of the voltage. It is also interesting
that both of the above cases would lead to the same loops but
of opposite orientations.

An analysis of the type of the loop, i.e., whether it is the
(non) crossing type and what is the order of touching the
loop arms at the origin, can be done via a methodology from
[16], which compares higher-order derivatives of voltages and
currents at the time instants 0 and 7/2, when these signals
intersect the zero levels. This analysis reveals that the loops,
generated by nonlinear inductors which fulfil the condition
(17), can be of both the CT and NCT types and that the
order of touching is related to the lowest order of nonzero
derivative of the characteristic ¢(i) with respect to current
for i = 0. For the “nonsymmetric” characteristics ¢(i) with
possible discontinuous higher-order derivatives for i = 0 (see
the example in Figure 3), the lobes on the right and on the left
of the voltage axis can exhibit different orders of touching.

In order to mimic the definition (1) of current-controlled
inverse memristor, Figure 4 demonstrates the superposition
of the v-i characteristics of the inductor of type (17) and
the linear resistor. It is obvious that if the resistance is high
enough, the resulting characteristic of the series connection
of these elements will be located only in the first and third
quadrants of the v—i space. Then it can resemble the pinched
hysteresis loop of the passive memristor. However, there are
conclusive signs of non-memristive behaviour: for increasing
frequency, however, the vertical (voltage) dimension of the
loop in Figure 4(a) increases, and, starting from a certain fre-
quency, the lobes of the loop in Figure 4(b) may also appear in
other quadrants. In addition, the loop directions in Figure 4
demonstrate the noncrossing property at the (v,i) origin,
which cannot occur in circuits with ideal memristors. As
one other difference from the behaviour of ideal memristors,
obvious from Figure 3, the pinched hysteresis loop does not
provide the odd symmetry if the flux-current characteristic
of the inductor is asymmetric.

As follows from Figure 4(b), similar effects can also be
obtained via a nonlinear resistor in series with the inductor
considered. Then the pinched hysteresis loops may also be
asymmetric, resembling the behaviour of general extended
memristors.

Figure 5 demonstrates the “inverse-memristor” frequen-
cy dependence of the hysteresis studied in Section 6: The lobe
area increases with the frequency.

The series connection of a resistor R and the inductor
with the nonlinear constitutive relation (13) and with the
property (17) can be described by the following relation
between terminal voltage and current:

v=Ri+

09 (i) di . ood s di
- i 20
5 4 Ri+ L (i) o (20)
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h]

FIGURE 3: Nonlinear inductor with zero differential inductance for i = 0 driven by a sinusoidal 1 mA/1kHz current, with the characteristic
o(i) = k,i® fori > 0and (i) = k,i® fori < 0,k, = 1 Wb/mA, k, = 1 Wb/nA. The principle of generating (a) voltage waveform, (b) hysteresis

loop pinched at the v-i origin.

-1 mA l/

L
—

()

(®)

FIGURE 4: Graphical composition of the v—i characteristics of nonlinear inductor with the characteristic ¢(i) = ki, k = 1 Wb/mA, driven by
a sinusoidal 1 mA/1kHz current, and linear 100 Q resistor (a). The result is a v—i hysteresis loop, which corresponds to the series connection
of these elements, reminiscent of the pinched hysteresis loop of a passive memristor (b).

Comparing (20) with the definition of the current-controlled
inverse memristor (9) leads to the conclusion that (9) defines
a series connection of a linear resistor with the resistance R =
a; and a nonlinear inductor whose differential inductance
LY = giis directly proportional to the inductor current.
However, as follows from the above analysis, it is only a special
case of a more general R-L circuit (R linear and L nonlinear),
which can produce the v-i pinched hysteresis loops.

It is essential to emphasize that the mechanism of
generating the pinched hysteresis loops in Figure 3 works
only for such an initial state of the inductor which cor-
responds to the initial position of the operating point
on the nonlinear characteristic ¢(i) with zero differential
inductance. For any other initial states, where the condition
(17) does not hold, the pinched hysteresis effect does not
appear.
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FIGURE 5: Pinched hysteresis loops generated by nonlinear inductor
with asymmetric characteristic (i) = k1i3 fori > 0 and (i) = kzi5
fori < 0,k; = 1 Wb/mA, k, = 1 Wb/nA in series with 100 Q resistor,
driven by a sinusoidal 1 mA current. The loop area is increasing when
the frequency increases from 1kHz to 10kHz. For f = 10kHz,
the loops occupy 3 quadrants of (v,i) plane, resembling an active
memristive system.

5. Pinched (v, i) Behaviour of
Nonlinear Capacitors

A similar analysis to that for the inductor from Section 4 can
also be done for nonlinear capacitors.

Consider a voltage-controlled capacitor with nonlinear
voltage (v) — charge (g) constitutive relation

q=qv). (21)
Since the current is a derivative of the charge, then

i_dZI(V)_dfl(V)@
S odt dv o dt

=C% (v) % (22)

where the symbol Cd(v) denotes the differential capacitance
as a function of voltage.
When driving the capacitor by a sinusoidal voltage

v(t) = Vsin (wt), (23)
the current will, according to (22), be
i(t) = VwC? [V sin (wt)] cos (wt) . (24)

The procedure from Section 4 leads to the sufficient condition
for the existence of the hysteresis loop pinched at the v-i
origin

c(0) = 0. (25)

Since the mathematical models of the hysteretic behaviour
of the inductor (13) - (17) and capacitor (21) - (25) are

dual, all the conclusions from Section 4 can also be used
for the capacitor after a reciprocal v-i replacement. That
means, among other things, that the hysteresis loop located
in the first and third v-i quadrants (see Figure 4(b)) can be
generated via a parallel connection of a nonlinear capacitor
with C? = ¢,v, which provides the property (25), and a proper
resistor with R = 1/a,. This knowledge is in agreement with
the conclusion from [10].

6. Pinched Hysteresis with “Inverse-Memristor
Frequency Characteristics”

Consider the pinched hysteresis loop generated by nonlinear
inductor with differential inductance Ld(i) in series with the
linear resistor R in Figure 4(b). Denote the areas enclosed by
the loops located in the quadrants fori > 0 andi < 0 as S,
and S,. They can be evaluated as follows [27]:

72 gi T2 gy
S, = —dt = — i —dt,
! J vt L Vit
T T (26)
di dv
S = —dt = - ’—dt.
’ JT/Z Yt JT/zldt

After substituting (20) into the formula v di/dt in (26)
and considering the current excitation (15), the arrangement
yields the results

s
S, = wl? J ¢ (Isin ) cos’a da,
' (27)

m
S, = wl? J ¢ (~Isina) cos’a da
0

Note that the loop areas do not depend on the resistance R.
It confirms the expectable fact that the areas of the hysteresis
loops in Figures 4(a) and 4(b) are identical.

It is evident that the loop areas (27) are directly propor-
tional to the frequency w.

Similar computations can be done for the loops generated
by a nonlinear capacitor with differential capacitance Cd(v)
in parallel with the linear resistor R, driven by the sinusoidal
voltage (23), as discussed in Section 5. The corresponding
loop areas are now

s
S, = —wV? J c? (V sin &) cos’a dax,
i (28)
S, = —wV? J c? (-V sin @) cos”a dag;
0

thus they also increase with increasing frequency.

Figure 6 illustrates how this rule of frequency dependence
of the loop area can be easily deduced from the position of the
element in the storeyed structure.

The variables v (voltage), i (current), Y (time integral of
voltage = flux ¢), and i""" (time integral of current = charge
q) are four nodal points of a part of the storeyed structure in
Figure 6 containing the studied nonlinear inductor and also
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FIGURE 6: Analysis of the frequency dependence of the area of pinched hysteresis loop of the so-called inverse memristor driven by (a) current
(the predictive model is a nonlinear inductor) and (b) voltage (the predictive model is a nonlinear capacitor). A similar analysis can be done

for the loop area of classical ideal memristor [14].

capacitor. The nonlinear inductor with flux-current constitu-
tive relation, which can produce the pinched hysteresis loops
according to Figure 4(a), represents a link between the nodes
i and vV (red dashed line in Figure 6(a)). Consider that
this inductor is driven by a sinusoidal current as indicated
in Figure 6(a). Then, as a consequence of the unambiguous
nonlinear flux-current constitutive relation, the inductor flux
waveform will be a distorted version of the current waveform.
The flux is reflected to the node v via time differentiation
(see the red dashed line in Figure 6(a)), which amplifies the
signal with the first power ' of the increasing frequency.
As a result, if the frequency of the driving current and thus
also the flux frequency increase, then the amplitude of the
voltage response increases proportionally, and the lobe area of
the v-i corresponding pinched hysteresis loop also increases
proportionally to the first power of frequency.

A similar analysis can be done for the nonlinear capacitor,
which is a part of the voltage-controlled inverse memristor,
with the nonlinear constitutive relation between voltage and
charge, the latter being the time integral of the current. This

element occupies the diagonal between the nodes v and i
in the storeyed structure in Figure 6(b). When driving this
capacitor by a sinusoidal voltage, the charge waveform does
not keep the sinusoidal form, but its frequency follows the
repeating frequency of the excitation, and the current wave-
form is amplified proportionally to the increasing frequency.
As a result, the area of the pinched hysteresis lobe is also
directly proportional to the frequency.

7. Conclusions

Observations from this study can be summarized into
the following paragraphs. (Only conclusions concerning
the current-controlled inductors and voltage-controlled
capacitors are given below; dual propositions hold for
flux—controlled inductors and charge-controlled capacitors.)

(1) Nonlinear inductors and capacitors with unambigu-
ous constitutive relations (13) and (21) generate ordi-
nary Lissajous v—i curves, which may degenerate
into hysteresis loops pinched at the v—i origin under
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conditions (17) and (25), i.e., if the characteristics
exhibit zero differential inductance/capacitance at the
initial pointi = 0 and v = 0.

(2) When driving the inductor and capacitor from Para-
graph (1) via a sinusoidal current and voltage, then
its voltage and current (i.e., the response) exhibit a
special symmetry. As a consequence, the response
shows additional zero level crossings at time instants
when the driving signal is not zero. From this narrow
point of view, the inductor and capacitor from Para-
graph (1) manifest themselves as an active memristor
([3], see “coincident zero-crossing memristor finger-
print”), even if it is an accumulating element.

(3) As a consequence of the symmetry of the responses
trom Paragraph (2), the v—i pinched hysteresis loops
are symmetric with respect to the axis of the driving
signal, and they are located in all four quadrants.
In contrast to the memristor, however, this fact is
not related to a potential activity of the elements
generating the loops.

(4) The loop symmetry from Paragraph (3) can be vio-
lated by adding a resistor in series with the inductor or
in parallel to the capacitor from Paragraph (1). Such
a resistor does not influence the effect of pinching
the loop at the origin and does not modify the loop
area. This procedure can place the hysteresis loop into
the first and third quadrants. However, this does not
say anything about the passivity or activity of the
composed element.

(5) The hysteresis loop from Paragraph (3) is proportion-
ally expanding along the axis of the driving signal
when the frequency is increasing, and so is the loop
area.

(6) The hysteresis loops from Paragraphs (1) and (3) can
be of both CT and NCT [17], with various orders
of touching at the v—i origin. These parameters are
determined by nonlinear constitutive relations of the
inductor/capacitor.

(7) The existence of the pinched hysteresis loop of non-
linear inductor and capacitor from Paragraph (1) is
subject to exciting the element from the zero initial
state i = 0 and v = 0, where its constitutive relation
exhibits zero differential inductance and capacitance.
For any other initial state where this condition is not
tulfilled the pinched loop according to Paragraphs (1)
and (3) will not be observable.

The last paragraph in particular expresses an essential dif-
ference in the hysteretic effects of nonlinear inductors and
capacitors (the loop is pinched only for concrete initial
states) and memristors (the pinched loop is their general
fingerprint).
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