POLITECNICO DI TORINO

Repository ISTITUZIONALE

Coherent Communication Over Multi Mode Fibers for Intra-Datacenter Ultra-High Speed Links

Original
Coherent Communication Over Multi Mode Fibers for Intra-Datacenter Ultra-High Speed Links / Rizzelli, Giuseppe; Ferrera, Pablo Torres; Forghieri, Fabrizio; Nespola, Antonello; Carena, Andrea; Gaudino, Roberto. - In: JOURNAL OF LIGHTWAVE TECHNOLOGY. - ISSN 0733-8724. - STAMPA. - 40:15(2022), pp. 5118-5127.
[10.1109/JLT.2022.3174422]

Availability:

This version is available at: 11583/2975401 since: 2023-01-31T08:52:41Z
Publisher:
IEEE

Published
DOI:10.1109/JLT.2022.3174422

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright
IEEE postprint/Author's Accepted Manuscript
©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.
(Article begins on next page)

Coherent Communication over Multi Mode Fibers for Intra-Datacenter Ultra-High Speed Links

Giuseppe Rizzelli, Pablo Torres Ferrera, Fabrizio Forghieri, Senior Member, IEEE, Antonello Nespola, Andrea Carena, Senior Member, IEEE and Roberto Gaudino, Senior Member, IEEE

Abstract

Multimode fibers (MMFs) links using vertical cavity surface-emitting lasers (VCSELs) are still the solution of choice for today's data center shorter distances thanks to their low cost and robustness. Currently, the market is moving towards 400G-capable systems using multiple lanes at 50 Gbps per lane, based on intensity modulation (IM) and direct detection (DD). A technology switch will probably be required to overcome the 100 Gbps per lane limit that will likely be the bottleneck of future IM-DD MMF-based links. In this manuscript we propose an intra-data center system based on coherent detection and MMF, analyzing experimentally and analytically the performance of polarization multiplexed coherent communication. We show that the advantages enabled by the coherent technology can be fully exploited in an MMF-based link when central launch is ensured. In particular, we study in detail the effect of lateral offsets introduced by the connectors at the interface between two MMF facets, in terms of net optical loss and signal-tonoise ratio (SNR) degradation. A statistical analysis is performed analytically exploiting a large database of OM3 and OM4 fibers modal delays and results are presented for various combinations of fiber length, type and number of MMF-to-MMF connections along the link. We show quantitative results on the maximum acceptable lateral offsets in the MMF connectors, highlighting that in practical conditions average offsets of up to $3 \mu \mathrm{~m}$ can be tolerable.

Index Terms-Coherent Detection, Multi Mode Fibers, Intra Data-Center Interconnection.

I. Introduction

IN intra-data center (IDC) interconnects, multimode fibers are largely deployed for distances up to 300 m since they enable using VCSEL-based transceivers at 850 nm , which have significantly lower costs than all other short reach options. However, VCSEL+MMF transmission, even with newer OM4 and OM5 grade fibers, have well-known maximum capacity limits due to multimodal dispersion [1], that make today transmission at more than $50 \mathrm{Gbit} / \mathrm{s}$ per wavelength over 300 m a difficult task. In fact, to date, transmission speed up to 28 Gbps per lane over 70 m and 100 m using OM3 and OM4 fibers is obtained by commercial solutions defined in Ethernet 100GBASE-SR4 and Fiber Channel (FC) 32GFC standards, that rely on Intensity Modulation and Direct Detection (IM-DD) using 25G-class devices, on-off keying (OOK) modulation and legacy fibers. Alternatives such as

[^0]400GBASE-SR8 and 400GBASE-SR4.2 enable $50 \mathrm{Gbps} / \lambda$ with PAM-4 modulation over 100 m of OM4 or 70 m of OM3 fiber. Moreover, recent works have demonstrated extended reach up to 250 m using short wavelength division multiplexing (SWDM) at $25 \mathrm{Gbps} / \lambda$ and 4 wavelengths (850, 880,910 , and 940 nm) on newly developed OM5 or wideband OM4 fibers, thus achieving 100G transmission at the cost of a completely renovated MMF fiber plant [2].
Capacity upgrade is even more difficult on older multimode fibers (OM2 and OM3), that are anyway still very common today in IDC for very high speed short reach optical interconnects. It would be in principle very interesting to upgrade achievable bit rates without having to change the installed MMF fibers. In fact, although the percentage of MMF optical lines is decreasing compared to SMF solutions, they are still being installed in numbers of more than 20 million per year [3] and represent 50% of the total for rates up to 100G and over 30% for rates up to 400 G [4]. The volumes of installed MMF ports in IDC is thus still huge, and it justifies research work towards enabling even higher bit rates. In two previous preliminary conference papers ([5] and [6]), we have thus investigated the possibility of using commercial coherent transceivers over MMF fibers (indicating the setup as "coherent-over-MMF" or Coh-MMF) showing, somehow unexpectedly, excellent performances up to 400 Gbps over 300 m OM3 multimode fibers. In the present paper, we largely expand our previous work from both a theoretical point of view, analyzing by a detailed numerical simulator the performance of Coh-MMF systems, and from an experimental point of view, showing a different set of measurements compared to those presented in [6].

Several previous papers have already discussed coherent detection for the future short reach IDC ecosystem when using standard single mode fibers (SMF), as an interesting option for transitioning from today IM-DD commercial solutions running at up to 100 G per wavelength to future coherent 400 G or even 800 G per wavelength, mostly given the remarkable improvement in sensitivity that coherent solutions can provide even in optically un-amplified solutions [7]. However, it is well known that all coherent transceivers are "natively" coupled to SMF fibers. For an usage extension to MMF, we thus proposed an SMF-MMF-SMF configuration, i.e. a solution in which standard SMF coherent transceivers are directly coupled to the MMF link. As already demonstrated [8]-[11], an SMF-MMFSMF transmission system works as a "quasi single-mode" one provided that the involved SMF and MMF fibers are centrally aligned. In this case, most of the optical power launched in
the transmitter (TX) SMF couples to the fundamental $\left(\mathrm{LP}_{01}\right)$ mode of the MMF and, at its output, to the receiver SMF. [9][11] already demonstrated coherent transmission over MMF up to 100 Gbps , showing that the "quasi-single mode operation" works well, even at extremely long distances such as the 200 km and 635 km reach shown respectively in [9] and [11], as long as the central launch conditions are preserved. Overall, a centrally aligned SMF-MMF-SMF system can have extra losses well below $2 d B$.

In a practical IDC environment, the MMF section itself can be made of several pieces of MMF interconnected through standard-grade connectors inside patch panels. At the transition between an SMF and an MMF, or at the interface between two MMFs, all the propagating modes couple to each other in a random way affected by the geometrical properties of the fiber facets. Moreover, slight misalignment between the fibers core can contribute to modes mixing unpredictably before coupling back to the fundamental LP_{01} mode of the last SMF fiber before the receiver (RX).

In this paper, we thus study the propagation of the modes in the SMF-MMF-SMF system, focusing mostly on estimating the maximum acceptable lateral offsets in MMF connectors. We show that in realistic datacenter conditions up to $3 \mu \mathrm{~m}$ average values of lateral offset can be tolerated in practical conditions. We calculate the coupling coefficients among the modes using the analytical model presented in [12] and we show that mode coupling changes the way the modal dispersion impact the propagating signal, because of a different excitation pattern. Thus, the overall transfer function changes due to the birefringence of the fiber and to the offset introduced by the connectors at the interface between two fibers. By using the model presented in [13], properly modified to include the effect of the birefringence experienced by each mode during transmission of a polarization multiplexed (PM) signal, we generate the transfer function of the system and then use it to compute the performance of a coherent detectionbased transmission system. The system performance are finally obtained through another analytical model [14] that assumes ideal equalization with an infinite number of taps, modified to take into account transmission on two polarizations.

Our results are of practical interest for IDC situations having a large installed MMF infrastructure, which could be upgraded to much higher bit rates by changing only the transceivers (from IM-DD to Coh-MMF) without substituting the MMF plant. Obviously, the cost saving due to MMF re-use is tradedoff by the significantly higher cost of coherent transceivers, but this techno-economic discussion is outside the scope of our paper. We just point out that coherent transceiver cost and power consumption is currently being tackled by the Optical Internetworking Forum (OIF) who created the 400GZR standard, defining specifications for low-cost pluggable coherent modules [15]. Future technological developments may in the short term bring cost, power consumption and size of 400 G coherent transceivers down to values comparable to their current IM-DD counterparts [16].

The remainder of this manuscript is organized as follows: in Section [II we introduce the full analytical model for the computation of the mode coupling coefficients, the overall
system transfer function and of the RX equalizer performance in an SMF-MMF-SMF-based coherent system. In Section III we present the results of the Monte-Carlo-based statistical analysis of the transmission performance of a $200 \mathrm{Gbit} / \mathrm{s}$ (25 GBaud) PM-16QAM Coh-MMF system varying fiber characteristics such as modal delay, birefringence, length and type (OM3 or OM4). We also consider a variable number of connectors along the optical fiber path, each introducing a variable offset distributed as a Rayleigh random variable with variable mean [17], [18]. In Section IV] we show the experimental results achieved with a real-time card running a 200 Gbit/s PM-16QAM modulated coherent communication over $296 m$ of OM3 MMF. Experiments have been performed for different offsets introduced by properly splicing two sections of MMF. Lastly, in Section ∇ we discuss the implications of the presented results and draw some conclusions.

II. A Simulative model for field-LEVEL propagation in SMF-MMF-SMF LINKS

The typical approach for IM-DD MMF links modeling is the one used by the Telecommunications Industry Association (TIA) for multimode fiber standards definition [20], where mode propagation inside an MMF and the coupling of modes at the connection between MMFs are numerically addressed considering the power distribution per mode group and their differential modal delay. In contrast, in SMF-MMFSMF systems it is necessary to develop a numerical model that considers each individual mode propagating in the fibers. The final goal of this section is to compute the resulting frequency transfer function between the LP_{01} launched in the TX SMF to the LP_{01} in the RX SMF (after passing through the link MMF). We anticipate that, since we are interested in polarization multiplexed quadrature-amplitude modulation (PM-QAM) transmission, we will have to consider, besides modal dispersion, also fiber birefringence and polarization effects so that our final goal is to find the frequency-resolved [2x2] Jones matrix of the full SMF-MMF-SMF link.

A. SMF-MMF-SMF system without MMF connectors

In this subsection we introduce a simplified analysis of our Coh-MMF system that will allow to grasp a first insight of the propagation behaviour of an SMF-MMF-SMF link. Here we intentionally neglect the problem of lateral offsets in connectors along the MMF fiber, an issue that will be treated in detail in the next Subsection. We consider that the signal generated by the coherent transmitter propagates over a very short SMF fiber pigtail (i.e. the one that is typically present inside commercial coherent transceivers), then it is coupled to the MMF link, where higher order modes above the LP_{01} fundamental mode are able to propagate as well, and finally is coupled back into the SMF pigtail inside the coherent receiver. We will show that the resulting end-to-end frequency transfer function seen by the coherent transceiver depends on i) the coupling between the modes at each fiber transition, ii) the different delays between MMF modes and iii) the birefringence seen by each mode in the MMF.

To take into account the differential modal delays in the MMF, we use the large database of measured modal delays presented in [21]. Moreover, we assume that, to a first order approximation, the modes belonging to the same mode group strongly couple to each other and have the same modal delay, while modes belonging to different mode groups only marginally couple, a reasonable assumption as shown in [22] unless the fiber is strongly bent or twisted. Finally, we also need to consider that each mode is actually a pair of orthogonal polarization modes that propagate with their own random birefringence, as we pictorially represent in Fig. 1 Due to all these propagation effects, we can then express the relation between the $\vec{E}_{i n}$ field of the LP_{01} of the first SMF fiber (i.e. the signal generated by the coherent TX) and the $\vec{E}_{\text {out }}$ field at the output of the last SMF section (i.e. the signal received by the coherent RX) as follows:

$$
\begin{equation*}
\vec{E}_{o u t}(t)=\sum_{m=0}^{M-1} \rho_{m}^{i n} \boldsymbol{J}_{m} \cdot \vec{E}_{i n}\left(t-\tau_{m}\right) \rho_{m}^{o u t} \tag{1}
\end{equation*}
$$

where M is the total number of modes of the MMF, m is the index of the m th mode of the MMF, $\rho_{m}^{i n}$ is the coupling coefficient between the LP_{01} mode of the input SMF and the m th mode of the MMF, $\rho_{m}^{o u t}$ is the coupling coefficient between the m th mode of the MMF and the LP_{01} of the output SMF, \boldsymbol{J} is the unitary random Jones matrix that takes into account "per mode" fiber birefringence and τ_{m} is the modal delay of the m th mode inside the MMF. Without loss of generality, and only to simplify the equations, we referred all delays and birefringence to those of the fundamental LP_{01} mode, therefore $\tau_{0}=0$. For all the coupling coefficients, we use the theory developed in [12], which allows to analytically obtain the $\rho_{m, k}$ coupling coefficients for generic lateral offsets in the fiber connections, under the assumption of infinitely parabolic refractive index profile in the MMF, by solving the overlap integral between the transverse field profile of the m th mode in the input fiber and the k th mode in the output fiber. In the following derivation, we consider a graded-index $50 \mu \mathrm{~m}$ core MMF.

Eq. (1) and its graphical representation in Fig. 11 highlight the key principle of operation of the proposed system, showing that if the $\rho_{m}^{i n}$ coefficients are all sufficiently smaller (in modulus) than $\rho_{0}^{\text {in }}$ and $\rho_{0}^{\text {out }}$ (as it actually happens for centrally aligned fibers) then the overall propagation in the SMF-MMFSMF resembles a "quasi-single mode" propagation where the transmitted $\vec{E}_{\text {in }}(t)$ is efficiently transmitted to $\vec{E}_{\text {out }}(t)$ and, most importantly, the modal delays appearing in Eq. (1) have much less impact than for MMF IM-DD system, as we show later.

Fig. 1: Scheme representing SMF-MMF-SMF propagation model (for a single MMF span) as in Eq. (1).

Eq. (1) thus allows to model propagation in a SMF-MMFSMF system, including generic lateral offsets in the SMFMMF and MMF-SMF transitions, using [12] for the coupling coefficients and [21] for the modal delays. By Fourier transforming Eq. (1), we conclude that the transmitted PM-QAM signal undergoes the following [2x2] frequency-dependent transfer function matrix:

$$
\begin{equation*}
\boldsymbol{H}(f)=\sum_{m=0}^{M-1} \rho_{m}^{i n} \boldsymbol{J}_{m} e^{-j 2 \pi f \tau_{m}} \rho_{m}^{o u t} \tag{2}
\end{equation*}
$$

From a system point of view, the received PM-QAM signal is thus attenuated, due to the fact that the ρ coefficients are all smaller than one, and frequency distorted, due to the resulting dependence on frequency that is evident in Eq. (2) and that is physically generated by the differential mode delays on the higher order modes and by the birefringence effects \boldsymbol{J}_{m}.

Finally, it can be shown that the matrix in Eq. (2) is in general not unitary (even if the \boldsymbol{J}_{m} "per mode" Jones matrixes are unitary) and thus an equivalent polarization dependent loss (PDL) is present in SMF-MMF-SMF propagation. Qualitatively, the resulting loss, PDL and spectral dependence increase when increasing lateral offset from an ideal central launching conditions. The quantitative analysis of this effect is one of the key goals of this paper and will be analyzed by simulation and experiments in the next Sect. III and IV.

Fig. 2: Setup of the Coh-MMF transmission system with SMF-MMF-SMF configuration. MMF: Multimode Fiber; SMF: Single Mode Fiber; C: Connector.

B. SMF-MMF-SMF system with MMF connectors

While the derivation in the previous section is sufficient for an SMF-MMF-SMF system made of a single MMF fiber without connectors inside it, and it allows to grasp the fundamental issues of SMF-MMF-SMF propagation for PM-QAM signals, it is actually not sufficient for a realistic MMF data center environment, where typically the MMF path is made of different MMF segments due to the presence of patch panels and connectors for an easy reconfiguration of the MMF link. The actual situation we will analyze in this Subsection is the one schematically shown in Fig. 2 with n connectors C_{n} and $N=n+1$ MMF segments. The connectors at the MMF-MMF interfaces typically have (small but relevant) lateral alignment offsets [17] so that the coupling coefficients $\rho_{m, k}$ from mode m at the output of an MMF span and mode k in the following MMF span depend on the lateral offset and must be properly computed. To do so, we can use again the analytical model presented in [12]. We thus developed a numerical propagation simulator taking into account all these effects and moreover assuming that:

1) modes inside different mode groups do not couple
2) modes inside the same mode group strongly and randomly couple but without power loss inside the mode
group, an effect that we model as a multi-mode birefringence using random unitary matrices.
3) modal delays can be assumed to be identical for all modes belonging to the same mode group and modeled as described in [21]
4) coupling between modes at the interface between two consecutive MMFs can be evaluated as introduced in [12].
We now focus on expressing the propagation of the modes from the input of one MMF segment to the input of the next one. To this end, we introduce the following vector to represent the $2 M$ fields at the input of the nth MMF segment (i.e. two fields on x and y polarization for each of the M MMF modes):

$$
\boldsymbol{E}_{n}^{M M F}(t)=\left[\begin{array}{c}
E_{0}^{x}(t) \tag{3}\\
E_{0}^{y}(t) \\
\hline \vdots \\
\hline E_{m}^{x}(t) \\
E_{m}^{y}(t) \\
\vdots \\
E_{m+N_{g}}^{x}(t) \\
E_{m+N_{g}}^{y}(t) \\
\hline \vdots \\
E_{M-1}^{x}(t) \\
E_{M-1}^{y}(t)
\end{array}\right] \quad \begin{gathered}
\text { mode group } 1 \\
\text { mode group } M_{g}
\end{gathered}
$$

where we have highlighted the separation in mode groups with different number of modes through horizontal lines, assuming the presence of M_{g} mode groups, each containing N_{g} modes (or actually $2 N_{g}$ after considering birefringence). For instance, the first mode group only contains the fundamental mode and thus $N_{1}=1$.

We can then express, moving to the frequency domain, the matrix transfer function from the MMF segment n to the next MMF segment $n+1$ as follows:

$$
\begin{equation*}
\boldsymbol{E}_{n+1}^{M M F}(f)=\boldsymbol{H}_{n}^{M M F}(f) \cdot \boldsymbol{E}_{n}^{M M F}(f) \tag{4}
\end{equation*}
$$

where (omitting the dependence on frequency f for notation simplicity):

$$
\begin{equation*}
\boldsymbol{H}_{n}^{M M F}=\boldsymbol{\rho}_{n \rightarrow n+1}^{M M F} \cdot \boldsymbol{D}_{n}^{M M F} \cdot \boldsymbol{J}_{n}^{M M F} \tag{5}
\end{equation*}
$$

We now explain the different component of this fundamental equation. The matrix $J_{n}^{M M F}$ takes into account the birefringenge and the mode coupling inside each mode group, and can be expressed as the [$2 M \times 2 M$] matrix in Fig. 3. where, for each mode group g, we have indicated the $\left[2 N_{g} \times 2 N_{g}\right.$] random unitary submatrices $R U_{2 N_{g} x 2 N_{g}}^{g}$ generated by the previously described "per mode" birefringence. For an MMF, the first mode group, indicated with index 0 , only contains the fundamental mode and gives rise to the $R U_{2 x 2}^{0}$ matrix. The same is true for the second mode group, while for instance two modes belong to the third mode group (index 2). In general, the submatrix for a generic mode group g has dimension [$2 N_{g} \times 2 N_{g}$], where N_{g} is the number of modes inside the g th mode group. We point out that the matrix in Fig. 3, even though composed of unitary submatrices on its diagonal, is in general not unitary, an observation that will be useful later on.

Fig. 3: $[2 M \mathrm{x} 2 M] \boldsymbol{J}_{n}^{M M F}$ matrix containing the $\left[2 N_{g} \times 2 N_{g}\right]$ random unitary submatrices for each mode group.

The matrix $\boldsymbol{D}_{n}^{M M F}$ in Eq. (5]) takes into account the modal delays, so that, in the frequency domain, it has the following diagonal structure:

$$
\boldsymbol{D}_{n}^{M M F}=\left[\begin{array}{cc|cc|cccc|c}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \tag{6}\\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\
\hline 0 & 0 & e_{2}^{n} & 0 & 0 & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & e_{2}^{n} & 0 & 0 & 0 & 0 & \cdots \\
\hline 0 & 0 & 0 & 0 & e_{3}^{n} & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & 0 & e_{3}^{n} & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & 0 & 0 & e_{3}^{n} & 0 & \cdots \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{3}^{n} & \cdots \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\
\vdots & \ddots
\end{array}\right]
$$

where $e_{g}^{n}=e^{-j 2 \pi f \tau_{g}^{n}}$ is the frequency dependent term for each mode group g propagating inside the nth MMF section with a differential delay τ_{g}^{n}.

Finally, the last matrix $\rho_{n \rightarrow n+1}^{M M F}$ in Eq. (5) models the coupling coefficients $\rho_{n \rightarrow n+1}^{m, k}$ between the mode m of the nth MMF and the mode k of the following MMF $n+1$ segment (taking also into account lateral offsets in the connectors) and can be expressed as:

When considering N consecutive MMF segments as in Fig. 1, we can then cascade Eq. (5) N times and evaluate the field at the end of the last MMF segment as:

$$
\begin{equation*}
\boldsymbol{E}_{N}^{M M F}=\boldsymbol{H}_{N}^{M M F} \cdots \boldsymbol{H}_{2}^{M M F} \cdot \boldsymbol{H}_{1}^{M M F} \cdot \boldsymbol{E}_{1}^{M M F} \tag{8}
\end{equation*}
$$

Finally, to obtain a global matrix transfer function for our SMF-MMF-SMF system, we still need to take into account the input SMF-MMF coupling and the output MMF-SMF coupling, expressing them as:

$$
\begin{align*}
& \boldsymbol{E}_{1}^{M M F}=\boldsymbol{\rho}_{S M F \rightarrow M M F} \cdot \boldsymbol{E}_{I N}^{S M F} \tag{9}\\
& \boldsymbol{E}_{O U T}^{S M F}=\boldsymbol{\rho}_{M M F \rightarrow S M F} \cdot \boldsymbol{E}_{N}^{M M F} \tag{10}
\end{align*}
$$

In Eqs. (9) and (10), the $\boldsymbol{\rho}_{M M F \rightarrow S M F}$ and $\boldsymbol{\rho}_{S M F \rightarrow M M F}$ factors represent the [$2 \times 2 N$] matrix of the coupling coefficients of all the modes of the last MMF to the LP_{01} mode of the output SMF, and the [2Nx2] matrix of the coupling coefficients of the LP_{01} mode of the input SMF to all the modes of the first MMF, respectively. When perfect alignment with no offset is ensured at both the SMF-MMF and MMF-SMF interfaces, as we assume in our analysis, these coupling coefficients are the same at the two transitions and the matrices can be expressed as transposed of each other as in Eq. (11).
$\boldsymbol{\rho}_{M M F \rightarrow S M F}=\boldsymbol{\rho}_{S M F \rightarrow M M F}^{T}=\left[\begin{array}{ccccccc}\rho_{0} & 0 & \rho_{1} & 0 & \cdots & \rho_{M-1} & 0 \\ 0 & \rho_{0} & 0 & \rho_{1} & \cdots & 0 & \rho_{M-1}\end{array}\right]$

In the end, considering the frequency dependent transfer function of the system due to the modal delays, the input to output relation of the Coh-MMF scheme can be obtained combining Eqs. (8), (9) and (10), leading to the following expression:

$$
\left[\begin{array}{l}
E^{x}(f) \tag{12}\\
E^{y}(f)
\end{array}\right]_{O U T}=\boldsymbol{H}_{T O T}(f) \cdot\left[\begin{array}{c}
E^{x}(f) \\
E^{y}(f)
\end{array}\right]_{I N}
$$

where $\boldsymbol{H}_{T O T}(f)$ is the overall [2x2] matrix frequency response of the SMF-MMF-SMF systems, and in particular it is the transfer function seen by the coherent transceiver which leads to distortions in the received PM-QAM signal. To numerically address the resulting system penalty, we developed a Matlab ${ }^{\circledR}$ simulator that can generate these matrices, discretizing the frequency axis over N_{f} values, so that $\boldsymbol{H}_{T O T}(f)$ actually contains a 3D matrix with $\left[2 \times 2 \times N_{f}\right]$ elements.

Taking advantage of a large dataset of fiber modal delays, which includes 16489 OM3 and 3772 OM4 fibers characterized for several values of lateral offsets from $0 \mu m$ to $25 \mu m$, we can analytically model a wide variety of Coh-MMF system configurations, varying also the number N of MMF-MMF connectors. The dataset was presented in [21] for SWDM wavelengths down to 850 nm and then transformed for coherent wavelengths around 1550 nm through the theoretical functions developed in [23], using the Sellmeier parameters of the fiber core and cladding to estimate the changes in mode groups with wavelength.

Once the transfer function of the specific fiber link is computed through the frequency-resolved equations presented in this Section we want to estimate the system sensitivity
penalty in $d B$ for a given PM-QAM optically un-amplified transmission system [7]. To avoid CPU-time consuming time domain simulation, we developed a fast and reliable tool for coherent transmission performance estimation that works on any possible end-to-end matrix transfer function $\boldsymbol{H}_{T O T}(f)$ in presence of additive Gaussian noise at the receiver. It assumes linearity in MMF field transmission (which is always true in the case of interest for this paper) and the typical digital signal processing (DSP) of any coherent receiver, including clock, polarization and carrier phase recovery, plus adaptive equalization at the end of the chain. Further details and validation of this model can be found in [24].

III. Monte-Carlo simulative analysis of coherent transmission over OM3 and OM4 fibers with CONNECTORS OFFSETS

The goal of this Section is to numerically evaluate the system power penalty due to the SMF-MMF-SMF link under different conditions. To this end, we use the simulation tool described in previous Sec. [II to perform an extensive analysis of dual-polarization 25 GBaud PM-16QAM (200 Gbit/s raw bit rate) coherent transmission over a generic SMF-MMF-SMF optical path. Monte-Carlo numerical simulations are run on 300 OM3- or OM4-based configurations, each one affected by 30 different randomly generated realizations of the Jones matrix for each mode, distributed uniformly according to the Haar measure. Moreover, a variable number N of equally spaced MMF connectors ranging from 0 to 4 is considered, so that all the resulting MMF sections have the same length. Thus, for a given number of connectors in the MMF optical path we have 9000 possible transfer functions of the optical channel. The 300 configurations are obtained by randomly selecting the fibers from the aforementioned fiber dataset and by randomly varying the connector radial offset according to a Rayleigh distribution with mean up to $3 \mu m$, which is shown in [19] to be a realistic assumption for installed MMF connectors. Moreover, we investigated Rayleigh distribution mean down to $1 \mu \mathrm{~m}$ to account for technological advancements that might have improved connectors quality in the recent years. In contrast, we assumed that the offset at the SMF-to-MMF and MMF-to-SMF transitions, respectively at the transmitter and receiver side, is considered equal to zero to ensure perfect central launch conditions, as it would be reasonable for a coherent transceiver engineered for Coh-MMF solutions.
For a given transmitted power and receiver noise, each of the 9000 cases results in an SNR value at the equalizer output that we compare against the SNR that we would get in a back-to-back (BtB) configuration without MMF in the system. The key metric is the system penalty in $d B$ on the SNR (due to the SMF-MMF-SMF propagation effect) which, as shown in [7] is directly related to the resulting power penalty in $d B$. Thus, in the following, we will show the $\Delta S N R$ parameter, defined as the difference between the SNR required by the Coh-MMF system to have a $B E R=10^{-2}$ and the SNR required in BtB at the same target BER. This target BER level, although higher than what is usually considered acceptable for short reach communications systems (in the order of $5 \cdot 10^{-5}$ for
power consumption limitations), has been chosen to compare analytical results with experimental results obtained by using a commercial coherent card equipped with a soft-decision FEC (see Section IV.) Moreover, the experiments show an increasing BER floor with the connector offset due to the stronger effect of modal dispersion, and a proper comparison at low BER would have been unfeasible (see Section IV and [25]).

We point out that two PM-QAM polarizations have (randomly) different performance depending on the specific realization of the Jones matrices, since the matrix $\boldsymbol{H}_{T O T}(f)$ described in previous Sect. Π is not unitary. Although system performance is driven by an intermediate SNR value, we consider the worst case scenario and will show the highest of the two resulting "per polarization" $\Delta S N R$. In order to quantify this polarization dependence, we will later present one graph showing the statistics of the resulting polarization dependent loss (PDL), calculated as difference (in $d B$) between the power $P_{R X}^{x}$ and $P_{R X}^{y}$ of the x and y PM-QAM received signals.

$$
\begin{equation*}
P D L_{d B}=\left.P_{R X}^{x}\right|_{d B m}-\left.P_{R X}^{y}\right|_{d B m} \tag{13}
\end{equation*}
$$

where:

$$
\begin{equation*}
P_{R X}^{x}=\int\left(\left|H^{x x}(f)\right|^{2}+\left|H^{x y}(f)\right|^{2}\right) \cdot \mathcal{G}_{T X}(f) d f \tag{14}
\end{equation*}
$$

and:

$$
\begin{equation*}
P_{R X}^{y}=\int\left(\left|H^{y x}(f)\right|^{2}+\left|H^{y y}(f)\right| "\right) \cdot \mathcal{G}_{T X}(f) d f \tag{15}
\end{equation*}
$$

where $H^{x x}(f), H^{x y}(f), H^{y x}(f)$ and $H^{y y}(f)$ are the four components of the [2x2] $\boldsymbol{H}_{T O T}(f)$ transfer function matrix and $\mathcal{G}_{T X}(f)$ is the power spectral density of the transmitted signal on each of the two PM components, which we assume in the following to be a square root raised cosine (SRRC) spectrum with 0.2 roll-off factor.

To understand the results coming from our numerical simulator, we start by showing in Fig. 430 realizations of the $H^{x x}(f)$ transfer function for one of the 300 configurations when no MMF connectors (Fig. 4a) or 4 MMF connectors (Fig. 4 b) are included in a 25 GBaud 220 m OM3-based CohMMF system. The offset distribution in the 4-connector case has a $3 \mu m$ mean value. The frequency response of the system

Fig. 4: 30 realizations of the $H^{x x}(f)$ transfer function for one of the 300 configurations of a 25 GBaud 220 m OM3-based Coh-MMF system with a) no MMF connectors or b) 4 MMF connectors.
does not have the usual low-pass profile, but rather a randomly frequency-dependent evolution. Moreover, Fig. 4b highlights a
large variation of the amplitude of the transfer function, with frequency dips stretching down to $-30 d B$. On the other hand in the ideal case with no connectors, the frequency response is much flatter and the total amplitude excursion among the 30 cases is limited to about $8 d B$. From this first numerical results it is evident that, apart from the random fluctuations, the transfer function are much more distorted and attenuated when the lateral offsets are present, leading to an increase in system penalty expressed through the $\Delta S N R$ metric.

Fig. 5: ICDF of the $\triangle S N R$ parameter for number of connectors from 0 (blue curve) to 4 (green curve) and for offset Rayleigh distribution mean of $1 \mu \mathrm{~m}$ (solid) and $3 \mu \mathrm{~m}$ (dashed).

In Fig. 5] we plot the results of a very large Monte-Carlo simulation of the 25 GBaud 220 m OM3-based Coh-MMF system, that we summarize showing the inverse cumulative distribution function (ICDF) of the $\Delta S N R$ parameter for number of connectors from 0 to 4 and for two values of the offset Rayleigh distribution mean, $1 \mu m$ (solid) and 3 μm (dashed). This graph leads to the first important system level conclusions in this paper, since it gives the statistical probability of a given level of system power penalty introduced by the distortion on $\boldsymbol{H}_{T O T}(f)$ for two different average offset per connector and for different number of connectors (from 0 to 4) in the MMF link.

As expected, an increasing number of connectors affects the total SNR penalty of the system to an extent that greatly depends on the offset distribution mean. For a low value of $1 \mu m$ mean, the $\Delta S N R$ is below $4.5 d B$ even when four connectors are present on the MMF path. When a high, but still possible, $3 \mu \mathrm{~m}$ mean value is considered, the tails of the ICDFs can reach much higher SNR penalty.

TABLE I: $\Delta S N R$ in $d B$ for 99% of the 9000 cases.

Connectors	Mean $=1 \mu m$	Mean $=2 \mu m$	Mean $=3 \mu m$
0	1.2	1.2	1.2
1	2.1	8.5	10.5
2	2.8	11	19.4
3	3.6	13.4	23.6
4	4.3	15.2	26

Table summarizes the system performance analysis in terms of SNR penalty, showing the value of the $\Delta S N R$ parameter for 99% cumulative probability (i.e. the level at
which the ICDF is equal to 0.01), for three mean values for the offset (1,2 and $3 \mu \mathrm{~m}$) and for different numbers of MMF connectors. The ICDF curves for a $2 \mu \mathrm{~m}$ offset mean are not shown in Fig. 5 for clarity. When the offset distribution mean is low (i.e. $1 \mu \mathrm{~m}$), the SNR degradation is very low, even for 4 connectors along the link. This is the first fundamental result of the paper, that shows that for offset with mean value of 1 μm the proposed system can actually work very well, as it will also be confirmed experimentally in the next Section. For higher offsets mean of 2 and $3 \mu m$, the penalty then increases significantly with the number of connectors.

We investigated on the nature of this SNR penalty $\Delta S N R$ and we saw that it is the result of two different contributions: the end-to-end optical power net loss due to the connectors being laterally displaced (i.e. the power loss that can be measured by a power meter between the two SMF pigtails), and the SNR degradation related to the transfer function specific features in frequency. To better investigate this last point, Fig. 6 shows the latter, i.e. the difference between the $\Delta S N R$ and the net loss calculated as the ratio between the total transmitted power to the total received power on the input and output SMF pigtails. We wanted to show this specific contribution to the system penalty since it represents the penalty generated by the receiver equalizer to compensate for the frequency un-flatness of the $\boldsymbol{H}_{\text {TOT }}(f)$ channel. Comparing Fig. 6 with the previous Fig. 5, it is evident that this "equalizer-induced" penalty is significantly lower than the $\Delta S N R$ penalty or, from another point of view, that a significant part of the $\Delta S N R$ penalty is simply due to a net power loss in the SMF-MMF-SMF system.

Table II shows this equalizer-induced SNR penalty, for variable numbers of connectors and Rayleigh mean in the 25 GBaud 220 m OM3-based system. For 99% of the cases, the Coh-MMF SNR penalty is always below $2 d B$ when the offset distribution mean is $1 \mu \mathrm{~m}$, regardless of the number of MMF connectors. However, it grows to about $19 d B$ in the worst simulated case of 4 connectors with a $3 \mu \mathrm{~m}$ Rayleigh mean.

Fig. 6: ICDF of the $\Delta S N R$ - Loss parameter in a 25 GBaud 220 m OM3-based Coh-MMF system for number of connectors from 0 to 4 and for offset Rayleigh distribution mean of $1 \mu m$ (solid) and $3 \mu m$ (dashed).

We now focus on giving an indication of the polarization dependent penalty, i.e. the fact that the $\triangle S N R$ shows two (randomly) different values on the two PM-QAM components.

TABLE II: $\Delta S N R-L o s s$ in $d B$ for 99% of the 9000 cases.

Connectors	Mean $=1 \mu m$	Mean $=2 \mu m$	Mean $=3 \mu m$
0	0.2	0.2	0.2
1	0.5	0.6	2.2
2	0.6	2.2	11.4
3	1.2	5.7	16.7
4	2	10.6	19.2

To quantify this effect for variable number of connectors and Rayleigh mean values in a 25 GBaud 220 m OM3-based Coh-MMF system, we show in Fig. 7 the ICDF of the PDL (defined as in Eq. (13)), focusing on the range of interest around 0.01 , that is the 99% of the simulated Coh-MMF cases. When the offset distribution mean is low ($1 \mu \mathrm{~m}$, solid curves) the performance on the two polarizations is comparable for up to 2 connectors, with less than $0.8 d B$ difference, whereas it is about $2 d B$ for 4 connectors. For a $3 \mu \mathrm{~m}$ mean (dashed curves) the effect of the connectors increases drastically, and the PDL increases up to $8 d B$ for 4 MMF connectors.

Fig. 7: ICDF of the PDL in a 25 GBaud 220 m OM3-based Coh-MMF system for number of connectors from 0 to 4 and for offset Rayleigh distribution mean of $1 \mu m$ (solid) and 3 μm (dashed).

The results depicted in Figs. 5,6 and 7 in terms of $\Delta S N R$, $\Delta S N R$ - Loss and PDL have also been obtained for OM4 fibers and for an overall link length of 300 m , showing negligible difference on a statistical basis. For comparison, Fig. 8 shows the ICDF of the $\Delta S N R-$ Loss parameter for the worst case of 4 connectors with $3 \mu m$ offset mean, for 220 m and 300 m OM3-based and for 220 m OM4-based links. This consistency of the results regardless of the fiber length and type can be explained by the previously described quasi-single mode type of operation that creates a sort of mode-filtering effect of the SMF at the receiver input, which effectively reduces the modal delays impact on the system.

For a more complete analysis, the 25 GBaud PM-16QAM configurations have also been simulated at a higher baudrate. Fig. 8 includes the results for the 50 GBaud (i.e. $400 \mathrm{Gbit} / \mathrm{s}$ raw bit rate) at 220 m OM3-based case with 4 connectors and $3 \mu \mathrm{~m}$ offset mean, showing negligible difference with the 25 GBaud cases in terms of $\Delta S N R$ penalty. All the other 50 GBaud configurations with varying number of connectors, length, fiber type and Rayleigh mean value also show no

Fig. 8: ICDF of the $\Delta S N R-$ Loss parameter for 4 connectors and $3 \mu \mathrm{~m}$ offset Rayleigh distribution mean for a 25 GBaud 220 m OM3 link (blue, dot), 25 GBaud 300 m OM3 link (red, square), 25 GBaud 220 m OM4 link (orange, cross), 50 GBaud 220 m OM3 link (purple, asterisk).
significant penalty with respect to the 25 GBaud counterparts.

IV. EXPERIMENTAL RESULTS

Our experimental setup emulates the configuration presented in Fig. 2 with $N=2$ sections of MMF and is depicted in Fig. 9. We used a coherent transceiver inside a commercial line card to transmit 200 Gbps net bitrate using PM-16QAM.

Fig. 9: Experimental setup of the 200G PM-16QAM CohMMF transmission system. MMF: Multimode Fiber; SMF: Single Mode Fiber; VOA: Variable Optical Attenuator.

Both the transmitter and the receiver are coupled to a short segment of standard SMF. In between, the fiber path is composed of the cascade of a 3 m OM3 MMF patchcord with a $50 \mu \mathrm{~m}$ core diameter and a 296 m long OM3 fiber spool. To study the effect of a misplaced MMF connector, two halves of the MMF patchcord have been fusion spliced together with the wanted lateral offset. The connection of the second half of the patchcord to the input of the OM3 fiber spool, as well as the transitions from SMF to MMF at the transmitter and from MMF to SMF at the receiver, are implemented through lab-grade mating sleeves to ensure central launch conditions without any additional offset on the optical path.

Fig. 10a shows the sensitivity curves of the 200G PM16QAM Coh-MMF system affected by a variable lateral offset at the fiber facet, compared to the back-to-back configuration with no MMF on the optical path. The results have been obtained through a real-time DSP. The effect of the long OM3 fiber when there is no lateral offset in the MMF patchcord (red curve) is negligible and the penalty with respect to the BtB condition is about $0.4 d B$ at $B E R=10^{-2}$. The sensitivity penalty increases slightly as the lateral offset is increased to 3

Fig. 10: Measured BER vs received optical power for different configurations of the 200G PM-16QAM system: back-to-back (black, circle), MMF patchcord with no offset and 296 m OM3 fiber (red, square), $3 \mu \mathrm{~m}$ offset and OM3 fiber (orange, dot), $6 \mu \mathrm{~m}$ offset and OM3 fiber (purple, plus sign). Inset: ICDF of the $\Delta S N R-L o s s$ in $d B$ for the 9000 considered cases for $3 \mu \mathrm{~m}$ (orange) and $6 \mu \mathrm{~m}$ (purple) fixed lateral offset.
μm and $6 \mu m$, i.e. moving the center of the facet of the second half of the MMF patchcord from the center along the bisector of the first quadrant of the other facet. A $3 \mu m$ offset splice (orange curve) introduces a small penalty of about $0.5 d B$. The sensitivity at $B E R=10^{-2}$ then decreases by $1.4 d B$ when the offset is $6 \mu \mathrm{~m}$. Fig. 10p shows that these experimentally observed values are in good agreement with simulations. The ICDFs of 9000 cases simulated with fixed lateral offset of 3 μm and $6 \mu m$ show that SNR penalties can reach up to 0.25 $d B$ and $1.6 d B$, respectively, at 99%.

In a 300 m short reach MMF-based system the attenuation on the useful signal would be about $0.3 d B$ due to the MMF fiber propagation (attenuation below $1 \mathrm{~dB} / \mathrm{km}$) and about $6.8 d B$ due to the connectors offset (from the comparison of Table \square and Π in the worst case of 4 connectors with a Rayleigh distribution with mean $3 \mu \mathrm{~m}$). Given the -27.8 dBm sensitivity at $B E R=10^{-2}$ shown in Fig. 10 for a 300 m 200G PM-16QAM system without offset and assuming a 0 $d B m$ transmitted optical power, we would have about $28 d B$ of power budget to accommodate the total SNR penalty made of the net optical loss and the equalization penalty due to the frequency dependence of the system transfer function.

Fig. 11: Normalized Fourier transform of the adaptive equalizer taps (component $W^{x x}$) for different values of the received optical power when the offset splice is a) $0 \mu m$, b) $3 \mu \mathrm{~m}$ and c) $6 \mu \mathrm{~m}$.

A second experimental campaign was performed using a typical off-line approach to be able to extract frequencydomain information from the equalizer. The transmitter is made of an ECL that generates a continuous wave signal at 1550 nm modulated by a Lithium-Niobate dual arm and dual polarization Mach-Zehnder external optical modulator (EOM)
operating in single-drive push-pull mode driven by a $64 G S / s$ arbitrary waveform generator (AWG) working as a four output digital-to-analog converter (DAC) to generate PM-QPSK at 32 GBaud. The input digital stream is a pseudorandom binary sequence (PRBS) of degree 15 . The coherent receiver is a commercial FIM24706 by Fujitsu with $22 G H z-3 d B$ bandwidth. The four electrical signals at the receiver output are acquired through a real time oscilloscope serving as an analog-to-digital converter (ADC) running at 100 GSamples $/ s$ and post-processed after proper downsampling at two samples per symbol through an off-line DSP routine in Matlab ${ }^{\circledR}$. The DSP at the transmitter and receiver side is implemented off-line, and includes typically used routines such as a Viterbi\&Viterbi algorithm for carrier phase recovery [26] and an adaptive equalizer with 2×2 butterfly-structured FIR filters [27]. The received optical power is varied through a variable optical attenuator (VOA) at the receiver input.

The increasing effect of the fiber birefringence with the lateral offset is confirmed by looking at the normalized Fourier transform of the adaptive equalizer taps w. The equalizer simultaneously compensates electrical bandwidth limitations, polarization rotations and frequency-dependent MMF transfer function when relevant. Inside the signal bandwidth, up to approximately half the baudrate, the equalizer approximately behaves as the inverse of the full system transfer function. Fig. 11 shows one of the four components (the $W^{x x}$ on the diagonal) of the butterfly FIR structure for different values of the received optical power, i.e. on the different points of the sensitivity curves. In Fig. 11a the nominal offset is 0 μm, thus the effect of the offset is negligible, the frequency dependence is small and the equalizer mainly performs a mild high-pass filtering to compensate for the optoelectronic bandwidth limitations (nearly symmetrical transfer function). As the offset increases to $3 \mu m$ and $6 \mu m$ (Fig. 11b and Fig. 11 , respectively) the MMF fiber delays become relevant and an increasing amount of power is transferred into higher order modes. As a result the frequency dependence becomes stronger and an asymmetric behavior between positive and negative frequencies can be observed, showing that this effect is not related to electrical components, but rather to the overall transfer function of the system being modified by the scrambled propagation of the modes inside the MMF, due to the presence of a lateral offset.

V. Discussion and Conclusion

Coherent technology will likely be the next leap in ultrahigh speed short-reach links such as intra-datacenter interconnects. In this optical communication segment MMF-based plants are still widespread and their reuse can contribute to an overall reduction of the cost of a technology switch. We have presented a statistical and experimental analysis of the coherent transmission performance over an SMF-MMF-SMF system. Assuming that the coherent transceiver specific for this application would be SMF-coupled and that central launch condition would be ensured at the interface between the SMF at the transmitter and the first section of MMF, we have focused our attention on the impact of lateral offset at the
transition from one MMF to another along the optical path, for instance at the points where patch panels are located inside the datacenter. To study modes propagation we have implemented an analytical tool that calculates the modes coupling coefficients at the interface between two fibers, and then developed a model that computes the resulting transfer function of the SMF-MMF-SMF system taking into account the effect of fiber birefringence on the modes, individually.

By using a large database of fiber modal delays and by randomly varying the birefringence per mode, we have analytically generated 9000 transfer functions for each system configuration, including a variable number of MMF-to-MMF connections and considering various link lengths, fiber types and baudrates. We have then developed an analytical model to obtain the SNR at the output of an adaptive equalizer, for each of the generated system frequency responses, without the need for lengthy time domain simulations based on the split-step Fourier method and bit error counting. The results have been obtained considering a polarization multiplexed 25 GBaud transmission based on 16QAM modulation. The statistical analysis of the results shows that, with respect to the BtB configuration, the Coh-MMF system penalty (the SNR penalty net of the optical power loss) at $B E R=10^{-2}$ for 99% of the simulated cases is negligible when the MMF connectors have a low offset distribution mean of $1 \mu \mathrm{~m}$. In this case up to 4 connectors can be tolerated with a penalty below $2 d B$. Poor quality connections, modeled through a high $3 \mu \mathrm{~m}$ offset distribution mean, result in a system penalty as high as 19.2 $d B$ when 4 connectors are present on the MMF path. We have also experimentally characterized a Coh-MMF system based on $296 m$ OM3 fiber, by offset splicing two pieces of MMF. The sensitivity results show an increasing penalty of about 0.5 $d B$ and $1.4 d B$ for $3 \mu m$ and $6 \mu m$ offset, respectively. On the other hand, when no offset is introduced, that is when central launch condition is ensured throughout the optical link, the penalty with respect to the BtB is only about $0.2 d B$.

To best of our knowledge, for the first time our findings highlight analytically and experimentally the advantages ensured by the coherent solution in the MMF-based intradatacenter scenario, and quantify the detrimental effect due to a lateral offset introduced by connectors. If we consider $2 d B$ penalty with respect to the back-to-back transmission, the Coh-MMF system can tolerate 4,2 or 1 MMF-to-MMF connectors, respectively for $1 \mu m, 2 \mu m$ and $3 \mu m$ offset Rayleigh mean distribution.

Acknowledgment

The Authors would like to thank Jose Castro and his team at Panduit for the fruitful technical discussions and for extending and allowing us to use their MMF statistical database to 1550 nm (described in [21] but for 850 nm).

This work was carried out under a research contract with Cisco Photonics. We also acknowledge the PhotoNext initiative at Politecnico di Torino (http://www.photonext.polito.it/) and its laboratory, where all experiments have been performed.

REFERENCES

[1] J. M. Castro, R. Pimpinella, B. Kose, P. Huang, A. Novick and B. Lane, "Modal-Chromatic Dispersion Interaction Effects for 850 nm VCSEL Channels at $100 \mathrm{~Gb} / \mathrm{s}$ per Wavelength," IEEE/OSA Journal of Lightwave Technology, vol. 39, no. 7, pp. 2067-2076, 1 April1, 2021.
[2] E. R. Parsons, R. Patterson, J. Young and P. F. Kolesar, "The Impact of Effective Modal Bandwidth on 100G SWDM Transmission Over 250 m OM5 and Left-Tilt OM4 Multimode Fibers," IEEE/OSA Journal of Lightwave Technology, vol. 36, no. 24, pp. 5841-5848, 15 Dec.15, 2018.
[3] D. Heckle, T. Irujo, R. Reid and R. Casteel. (2020). Fiber in the NOW: Trends and New Technologies Demanding Fiber Deployment. Presented at BICSI winter conference and exhibition. [Online]. Available: https://www.bicsi.org/uploadedfiles/PDFs/conference/ 2020/winter/GS_TUES_2.pdf (last accessed on Apr. 28, 2022).
[4] Jonathan King, "In Support of 200G MMF Ethernet PMDs," IEEE 802.3 Next-generation 200 Gb/s and 400 Gb/s MMF PHYs Study Group, Jan. 22, 2018. [Online]. Available: https://www.ieee802.org/3/ NGMMF/public/Jan18/young_NGMMF_01a_jan18.pdf (last accessed on Mar. 18, 2022).
[5] G. Rizzelli et al., "Experimental Demonstration of Coherent Transmission over MMF and of the Impact of Connectors Offset," 2020 22nd International Conference on Transparent Optical Networks (ICTON)
[6] G. Rizzelli, F. Forghieri and R. Gaudino, "Experimental Demonstration of Real-Time 400G Coherent Transmission Over 300m OM3 MMF," Optical Fiber Communication Conference (OFC), Paper W1G.2, 2022.
[7] G. Rizzelli, A. Nespola, S. Straullu, F. Forghieri and R. Gaudino, "Scaling Laws for Unamplified Coherent Transmission in Next-Generation Short-Reach and Access Networks," IEEE/OSA J. Lightwave Technol., vol. 39, no. 18, pp. 5805-5814, 2021.
[8] D. Donlagic and B. Culshaw, "Propagation of the fundamental mode in curved graded index multimode fiber and its application in sensor systems," IEEE/OSA J. Lightwave Technol., vol. 18, no. 3, 334-342, 2000.
[9] Zhengrong Tong, Qi Yang, Yiran Ma and W. Shieh, "21.4 Gb/s coherent optical OFDM transmission over 200 km multimode fiber," 2008 Joint Conference of the Opto-Electronics and Communications Conference and the Australian Conference on Optical Fibre Technology (OECC/ACOFT).
[10] Y. Ma, Y. Tang and W. Shieh, " $107 \mathrm{~Gb} / \mathrm{s}$ transmission over multimode fiber with coherent optical OFDM using center launching technique," 2009 35th European Conference on Optical Communication (ECOC).
[11] J. D. Downie, J. E. Hurley, D. V. Kuksenkov, C. M. Lynn, A. E. Korolev and V. N. Nazarov, "Transmission of $112 \mathrm{~Gb} / \mathrm{s}$ PM-QPSK signals over up to 635 km of multimode optical fiber," 2011 37th European Conference and Exhibition on Optical Communication (ECOC).
[12] A. Amphawan, F. Payne, D. O'Brien and N. Shah, "Derivation of an Analytical Expression for the Power Coupling Coefficient for Offset Launch Into Multimode Fiber," IEEE/OSA Journal of Lightwave Technology, vol. 28, no. 6, pp. 861-869, March 15, 2010, doi: 10.1109/JLT.2009.2034475.
[13] J. M. Castro, R. Pimpinella, B. Kose and B. Lane, "Investigation of the Interaction of Modal and Chromatic Dispersion in VCSEL-MMF Channels," Journal of Lightwave Technology, vol. 30, no. 15, pp. 25322541, Aug.1, 2012, doi: 10.1109/JLT.2012.2203351.
[14] Robert F.H. Fischer, "Linear Equalization," in Precoding and Signal Shaping for Digital Transmission, New York, NY, USA: WileyInterscience, 2002, ch. 2, sec. 2.2.4, pp. 35-43.
[15] The Optical Internetworking Forum, "Flex Coherent DWDM Transmission Framework Document," 2017. [Online]. Available: https://www.oiforum.com/wp-content/uploads/2019/01/ OIF-FD-FLEXCOH-DWDM-01.0-1.pdf (last accessed on Jan. 24, 2022).
[16] X. Zhou, R. Urata and H. Liu, "Beyond $1 \mathrm{~Tb} / \mathrm{s}$ Intra-Data Center Interconnect Technology: IM-DD OR Coherent?," in Journal of Lightwave Technology, vol. 38, no. 2, pp. 475-484, Jan. 2020.
[17] Petar Pepeljugoski et al.,"Development of System Specification for Laser-Optimized $50-\mu \mathrm{m}$ Multimode Fiber for Multigigabit ShortWavelength LANs," IEEE/OSA J. Lightwave Technol., vol. 21, no. 5, 1256-, 2003.
[18] Jonathan King, "Connector loss budgeting methodology for parallel multimode PMDs," IEEE P802.3ba 40Gb/s and 100Gb/s Ethernet Task Force Interim Meeting, May 15, 2008. [Online]. Available: https: |//www.ieee802.org/3/ba/public/may08/king_01_0508.pdf (last accessed on Jan. 24, 2022).
[19] Al Brunsting and Rick Pimpinella, "Lateral offsets for multimode fiber (MMF) connectors part 1," Panduit Corporation. Tinley Park, IL, USA, Dec. 13, 2004. [Online] Available: https://slidetodoc.com/lateral-offsets-for-multimode-fiber-mmf-connectors-part/. (last accessed on Mar. 18, 2022).
[20] P. Pepeljugoski, S. E. Golowich, A. J. Ritger, P. Kolesar and A. Risteski, "Modeling and simulation of next-generation multimode fiber links," IEEE/OSA Journal of Lightwave Technology, vol. 21, no. 5, pp. 12421255, May 2003, doi: 10.1109/JLT.2003.811320.
[21] P. Torres-Ferrera et al., "Statistical Analysis of 100 Gbps per Wavelength SWDM VCSEL-MMF Data Center Links on a Large Set of OM3 and OM4 Fibers," IEEE/OSA Journal of Lightwave Technology, doi: 10.1109/JLT.2021.3129455.
[22] Xiong, W., Hsu, C.W., Bromberg, Y. et al. "Complete polarization control in multimode fibers with polarization and mode coupling," Light. Sci. Appl., vol. 7, no. 54, 2018.
[23] J. M. Castro, R. J. Pimpinella, B. Kose, Y. Huang, A. Novick and B. Lane, "Spectral Dependence of Multimode Fiber Modal Bandwidth," 2018 Optical Fiber Communications Conference and Exposition (OFC), pp. 1-3.
[24] G. Rizzelli, P. Torres-Ferrera and R. Gaudino, "An Analytical Model for SNR Prediction in Coherent Systems after generic Jones Matrices," 2022, arXiv:2202.11692.
[25] Qiang Wang, Yang Yue, Xuan He, Andre Vovan, and Jon Anderson, "Accurate model to predict performance of coherent optical transponder for high baud rate and advanced modulation format," Opt. Express, vol. 26, no. 10, pp. 12970-12984, 2018.
[26] S. J. Savory, "Digital Coherent Optical Receivers: Algorithms and Subsystems," in Journal of Selected Topics in Quantum Electronics, vol. 16, no. 5, pp. 1164-1179, Sept.-Oct. 2010.
[27] K. Kikuchi, "Fundamentals of Coherent Optical Fiber Communications," IEEE/OSA Journal of Lightwave Technology, vol. 34, pp. 157179, 2016.

[^0]: G. Rizzelli is both with LINKS Foundation, Torino, Italy and the Department of Electronics and Telecommunications, Politecnico di Torino, Torino, e-mail: giuseppe.rizzelli@linksfoundation.com.
 P. Torres, A. Carena and R. Gaudino are with the Department of Electronics and Telecommunications, Politecnico di Torino, Torino, Italy.
 A. Nespola is with LINKS Foundation, Torino, Italy
 F. Forghieri is with CISCO Photonics Italy, Vimercate, Italy.

