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Abstract

The thesis presents research work exploring security and reliability in pervasive IoT
systems. At first, these topics are closely analyzed in relation to state-of-the-art
IoT technologies and infrastructures. Subsequently, two main fields of application
are investigated: Particulate Matter (PM) monitoring with low-cost light-scattering
sensors and secure intermittent computing (ImC) for energy harvesting systems.

Low-cost light-scattering PM sensors are often proposed as an IoT solution for
the creation of dense monitoring networks. These devices are a miniaturization of
traditional full-size optical particle counters (OPCs) and nephelometers. However,
due to intrinsic technological limitations, they are often considered to be unreliable
and imprecise. Multiple monitoring campaigns are conducted by placing a large
number of low-cost PM sensors at an official monitoring site in the city of Turin, Italy.
At first, the collected measurements are compared to the high-precision instruments
of the Metropolitan City of Turin, to understand the benefits that their integration into
the official monitoring network could provide. Secondly, a pipeline that performs
failure detection, filtering, and calibration of these sensors is presented and evaluated
on the collected data. Then, it is analyzed how the introduction of a duty cycle
in their operation affects measurement quality. Finally, an improved version of a
low-cost monitoring station is designed, together with the entire IoT infrastructure,
to transmit, store, and visualize the collected measurements. The infrastructure also
provides data validation functionalities by storing the hash of the collected data
inside a blockchain.

In the context of intermittent computing, instead, a secure checkpointing utility
is designed and tested on a target architecture supporting a Trusted Execution Envi-
ronment (TEE): ARM Truszone for Cortex-M. Differently from other state-of-the-art
approaches, the entire security chain of the platform is considered. This results
in a solution that is directly applicable without the need for custom or hardware



vi

non-available MCU features. The performance of the utility is compared with other
state-of-the-art works, by also evaluating the lifetime of the device.
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Chapter 1

Introduction

1.1 Pervasive computing and IoT

The term "ubiquitous computing" was first introduced by Mark Weiser in 1988
and further discussed in his 1991 article published in Scientific American [12].
Ubiquitous computing was described as the disappearance of silicon devices in the
environment, allowing people to use them unconsciously or without being aware of
their presence, while focusing on their goals and not on the information overhead of
the technology.

Additional terms, such as "Internet of Things (IoT)" and "pervasive computing",
were later introduced to highlight some of its aspects or technological characteristics.
The term "Internet of Things", which is most commonly used nowadays, refers to
physical objects that are embedded with sensors, software, and network connectivity,
allowing them to collect and share data [13]. In the context of this work, the term
"pervasive computing" is mainly intended as a synonym for IoT. Nonetheless, the
pervasive component is a fundamental aspect of the research contributions presented
in this work.

Even in the early work of Mark Weiser, problems such as information privacy and
security were already discussed. In the world of today, these problems are magnified
by the development and diffusion of IoT devices, which also introduced newer and
more complex challenges.
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1.2 State of the art

Pervasive computing is a complex and heterogeneous field. This section provides
a background on the state of the art in IoT and the current trends. The subject is
analyzed by focusing on orthogonal perspectives. First, reasons and applications
of IoT technology are introduced. Secondly, IoT is presented from an architectural
point of view, highlighting the different system components and the information flow
between them. Finally, the role of the different enabling technologies involved in
pervasive systems is discussed.

1.2.1 Motive and applications

Providing internet connectivity to physical objects allows the creation of a network
of smart devices that both monitor and interact with the environment in which they
are located. The objective of this computational approach is to improve the efficiency
of business processes, allow data-driven decision-making, reduce costs, and improve
customer experience [13]. Efficiency can be improved by constant and pervasive
monitoring of equipment, in order to identify faults and inefficiencies and reduce
downtime. Collected data can be analyzed to extract essential information and
define either short or long-term strategies to increase productivity and solve critical
challenges. Reducing costs, avoiding energy waste, and increasing sustainability are
all goals that IoT tries to achieve.

IoT technologies are exploited in a multitude of application fields [14]:

• Healthcare. Patient data is collected, stored, and analyzed in real-time to
assist doctors in medical diagnosis and reduce human error. The everyday
monitoring of biological signals via wearable devices has the potential for
earlier diagnostic and guidance of treatment [15].

• Smart Grids. The status of the electrical grid is monitored, transmitted, and
analyzed in real time. Smart and interconnected consumer appliances and stor-
age devices can be used for peak-shaving and dynamic grid optimizations [16].

• Transportation. Data from the transportation systems is used to develop
services for traffic control, traffic prediction, and emergency response. Route
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optimizations can achieve a reduction in fuel and energy consumption, lead-
ing to higher sustainability. Vehicle-to-vehicle and vehicle-to-infrastructure
communication increase safety and provide technological support for full-
autonomous vehicles [17].

• Smart Buildings. Via the constant monitoring of indoor environmental param-
eters, such as air pollutants, noise levels, and thermal and lighting conditions,
the well-being of occupants can be guaranteed [18]. The collected data can be
used to model and improve the energy efficiency of buildings.

• Smart Cities. Data collected by smart sensors is used to optimize and extend
public services. Examples are the management of car parking, street lighting,
waste collection, and noise level monitoring [19]. Monitoring of outdoor air
pollutants with low-cost sensors is also a common field of application.

• Agriculture. Common techniques in precision agriculture are intelligent soil
sensing for water optimization [20] and multi-spectral imaging of crop fields
for the detection and targeted intervention against insect infestations and plant
diseases [21]. IoT sensors and blockchain technology can also assure product
traceability and perform thermal monitoring of the supply chain process for
perishable items (cold chain) [22].

• Industry. Industrial IoT is used for improving worker safety, increasing
production uptime via predictive maintenance of machinery, helping to en-
sure regulatory compliance, and accelerating response times with real-time
collection and processing of operational data [23].

1.2.2 Architecture

IoT systems are usually organized according to a layered architecture, which follows
the flow of data and information. Even if the number of actual layers is dependent
on the adopted technologies and the specific use case, it is still possible to identify a
general structure. From the bottom up, the following layers are encountered:

IoT sensors The bottom layer of the architecture represents IoT sensors [24]. Typ-
ically, these are standalone devices or physical objects with added computational and
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connectivity capabilities. The computational element is constituted by a microcon-
troller or a single-board computer, depending on the required processing power. This
component is needed to manage sensors and actuators, which are used to collect data
and perform actions on the physical world. The collected data can be temporally
processed and stored on the device, to be finally transmitted to a cloud server or data
center. Power management is also of crucial importance for IoT devices, since they
cannot always rely on a connection to the power line. Either batteries or battery-less
energy harvesting solutions are utilized to overcome this limitation. In the latter case,
the power required for operation is extracted from the surrounding environment and
used without the support of long-term and high-capacity energy storage.

Sensor networks IoT sensors are often organized in sensor networks. Connectivity
is usually achieved via wireless technologies, but wired solutions are also present.
The former allows for more flexible deployments, in-movement operation, and
installation in remote or hard-to-reach locations. Low-power wide-area networks
(LPWAN) allow long-range wireless communication of sensors. Wireless local
area networks (WLANs) and personal area networks (WPANs) are used when
faster speeds are preferred over a longer transmission range. Ultra short-distance
communication technologies, such as RFID and NFC, are also common in IoT
systems. Star and mesh network topologies are the most common. Gateway devices
are usually positioned at the center of the star or positioned in one or more nodes,
providing communication to the central server infrastructure [24]. The multitude of
protocols and technologies will be further addressed in the following sections.

Communication layer The communication layer provides a connection between
sensor networks and a centralized server infrastructure. The communication tech-
nologies used in this layer depend on the type of sensor network and application
scenario. For example, in an industrial context, the communication layer can be
the LAN of the factory. In smart cities, instead, cellular technologies such as 5G
are very common [25]. In this case, the layer implements the radio access network
(RAN), which connects the end devices (e.g., IoT gateways) and the base radio
stations. Subsequently, the stations are wire-connected between them and to the core
network of the operator, allowing internet access. In edge computing approaches,
the communication layer can host computational resources to reduce service latency
and network load [26].
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Server infrastructure The data generated by IoT sensors requires a processing
infrastructure to extract useful information and provide valuable services. Cloud
infrastructures are the most common nowadays, where containerized applications
are seamlessly and dynamically deployed over a distributed network of hardware
components. The hosting and management of these infrastructures can be carried out
internally by an organization (private cloud) or outsourced to an external company
(public cloud). Hybrid approaches (hybrid cloud) are also possible. Cloud platforms
provide services to their users with different levels of abstraction over the underlying
architecture [27]. Infrastructure-as-a-service (IaaS) models only offer managed
hardware and virtualization technologies. Containers-as-a-service (CaaS) provides
a managed service for running a container orchestration platform and deploying
containerized applications. In platform-as-a-service (PaaS) models, all the tools to
develop, deploy, run, and manage apps are already included. Function-as-a-service
(FaaS) allows automatic scaling and execution of user-defined code functions in
response to events. Software-as-a-service (SaaS) is the highest abstraction layer,
where all software applications are already installed and managed for the user.

Software services IoT software platforms provide device management, multi-
tenancy support, data visualization, data storage, and event-based workflows via rule
engines. Subsequently, data mining and machine learning techniques are used to
extract value from the collected data. This allows to perform predictions, understand
trends, identify anomalies, achieve optimizations, and define data-driven strategies.

1.2.3 Technologies and trends

Research and technological innovation is being carried out at every level of the IoT
stack. This section discusses some of the most current technologies and trends in
the field of IoT. Topics are selected based on their relevance with the research work
that will be presented in this thesis, and according to the most popular articles in
the IEEE Internet of Things Journal [28]. They are presented in a bottom-up order,
following the structure of the IoT architecture introduced in Section 1.2.2.
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Intermittent computing (ImC)

Intermittent computing (ImC) systems are characterized by short periods of pro-
gram execution separated by reboots [29]. ImC devices are usually powered by
energy harvesters (EH), which extract energy from the surrounding environment.
The objective of ImC is to ensure the forward progress of the system’s operation.
Computation is generally performed according to the charge-operate-die cycle, which
is imposed by the lack of permanent and high-capacity energy storage. Capacitors
or super-capacitors are commonly used as temporary energy buffers. The objective
of this approach is to make IoT systems and sensor networks truly pervasive, alle-
viating maintenance costs, e.g., no battery replacement is required, and enabling
a deploy-and-forget approach. Removing the need for batteries further increases
the sustainability of these types of systems. Challenges in this field are ensuring
atomic execution, tracking time, saving peripheral state, avoiding data inconsisten-
cies, and allowing forward progress. Solutions are searched from either the software
or hardware point of view. The objective is to create an efficient mechanism for the
checkpoint and restoration of the device’s state, trying to minimize the additional
energy overhead. Non-volatile memory (NVM) technologies are of essential support
for the persistence of the device’s state between reboots.

Communication protocols

IoT introduces dedicated communication protocols at each level of the OSI and
TCP/IP models [24]. Adopting wireless technologies, these protocols are mainly
used to create sensor networks with different topologies, geographical extensions,
and communication speeds. Gateways operating in these networks interface these
specialized protocols and the traditional internet stack. Nonetheless, more general-
purpose technologies are still utilized for use cases without specialized requirements
or constraints.

Communication protocols for wireless sensor networks can be subdivided ac-
cording to the range of communication, which affects the geographical extension of
the networks that can be realized:

• Personal area networks (PANs)

• Local area networks (LANs)
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• Low-power wide-area networks (LPWAN)

Some of the most widespread communication protocols for PANs in IoT are:

• Zigbee. Zigbee is a wireless mesh network standard targeted at battery-
powered devices [30]. Tree and star network topologies are also supported
in addition to mesh. It is mainly used in the field of home automation and
utility metering. It is based on the IEEE 802.15.4 standard and uses unlicensed
ISM bands: 2.4GHz (global), 915Mhz (Americas), and 868Mhz (Europe). It
achieves a maximum transfer speed of 250 kbit/s (2.4GHz, 16 channels) at
the physical layer. The communication range is between 10 to 100 meters,
which increases up to 1 km if sub-gigahertz frequency bands are used [31].
Zigbee also adds a network and application layer on top of IEEE 802.15.4. At
the network layer, the Ad hoc On-Demand Distance Vector (AODV) routing
protocol is used. Three types of Zigbee devices are present: Zigbee Coor-
dinator (ZC), Zigbee Router (ZR), and Zigbee End Device (ZED). There is
only one ZC in each network, which stores all the network’s configuration and
acts as a bridge to other networks. ZRs can both route data to other devices
and accomplish application duties like ZEDs. ZEDs, unlike ZCs and ZRs, are
generally battery-powered and operated in sleep mode most of the time to save
power.

• Thread. Thread [32] is a networking protocol for low-power IoT systems,
built for IEEE 802.15.4 wireless mesh networks operating at 250 kbps in
the 2.4 GHz band [33, 34]. It uses 6LoWPAN and supports IPv6 addressing.
Thread can be used to realize self-healing mesh networks of hundreds of nodes,
where all devices are authenticated and communication is encrypted. To this
end, UDP is used for messaging between devices, while TCP is supported
for application-layer communications. Spread-spectrum techniques are also
used to mitigate interference. It is designed to enable long-term operation of
battery-powered devices that can sleep to reduce energy consumption. Nodes
can be either Routers or End Devices. Routers keep their transceiver on at
all times, being in charge of forwarding packets and enabling other nodes to
join. End Devices, instead, can power off their transceiver to reduce power,
don’t forward traffic, and primarily interact with a single Router. In some
conditions, End Devices can become Routers or vice versa. Each network has
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a self-elected Thread Leader and a Border Router to forward information to
non-Thread networks.

• Bluetooth low energy (BLE). BLE [35] utilizes the unlicensed 2.4 GHz ISM
band. The data rate at the physical layer is 1 Mb/s, and the coverage is in
the tens of meters range [36]. To reduce power consumption, all devices can
sleep when not transmitting data. BLE is typically used in wearable devices
(e.g., health and fitness trackers) [24]. Starting from the bottom, the protocol
stack is vertically divided into the controller and host portions. The former is
usually implemented on the Bluetooth module SoC, while the latter is managed
by the OS or bare metal firmware. Devices act as either clients or servers.
Servers expose attributes organized as key-value pairs that the client can act
on. In the host stack, this is implemented at the Attribute Protocol (ATT) layer.
Above it, the Generic Attribute Profile (GATT) layer defines high-level data
types based on attributes: characteristics, services, and descriptors. Finally,
the Generic Access Profile (GAP) layer defines the roles and operational
modes of BLE devices. Additional host protocols are the Security Manager
Protocol (SMP) and the Adaptation Protocol (L2CAP). SMP handles security
procedures (such as paring), while L2CAP acts as an intermediary between the
host and controller stacks. BLE also supports mesh networking but requires a
dedicated host stack.

At the LAN level, the most common protocol in IoT is Wi-Fi:

• Wi-Fi. The term Wi-Fi refers to a family of wireless network protocols
based on the based on the IEEE 802.11 family of standards [37]. It has
applications in homes, small offices, public places, and industrial environments
to provide Internet access to a multitude of different types of devices. The
Wi-Fi trademark is owned by the Wi-Fi Alliance [38], which controls the "Wi-
Fi Certified" logo. Wi-Fi is designed for seamless connectivity with Ethernet
(IEEE 802.3) [39]. Currently, supported radio bands are 2.4 gigahertz UHF, 5
gigahertz SHF, and 6 gigahertz SHF. These bands are further partitioned into
multiple channels. Wi-Fi 7, which is in the latest stages of development, has a
maximum channel bandwidth of 320 Mhz and supports up to 46 Gb/s of peak
data rate [40]. It is designed to reduce latency and jitter and to be suitable
for latency-sensitive applications. In addition, it adds multi-link operation,
enhanced QoS management, and multi-access point (AP) coordination.
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For what concerns LPWANs, common protocols are:

• LoRa/LoRaWAN. LoRa is a proprietary spread spectrum modulation tech-
nique derived from chirp spread spectrum (CSS) technology [41], currently
owned by Semtech. The LoRaWAN standard, maintained by the LoRa Al-
liance [42], defines a link layer protocol built on top of the LoRa physical
layer. LoRaWAN uses the license-free sub-gigahertz frequency bands, which
are indicated in the Regional Parameters specification. LoRaWAN uses a
star-of-stars network topology, where all devices communicate with a gateway
connected to a central server. LoRaWAN baud rates range from 0.3 kbps to 50
kbps. Communication is always bi-directional, and end-device classes (A, B,
or C) are defined to provide support for the downlink latency requirements of
the targeted use case.

• Sigfox. Sigfox [43] is LPWAN technology that uses D-BPSK (Differential
Binary Phase-Shift Keying) modulation, for which the message has a fixed
bandwidth of 100Hz [44]. It uses sub-gigahertz frequency bands: 868MHz and
915MHz for Europe and the U.S. region, respectively. Transmission speeds
reach 100 bps, and the range is tens of kilometers. Sigfox employs a star
topology, where devices are directly connected to a base station.

• Nb-IoT. Narrowband Internet of Things (NB-IoT) is a cellular technology
introduced in the 13th Release of the 3rd Generation Partnership Project
(3GPP) [45]. It requires a minimum bandwidth of 180 kHz, providing bi-
directional communication [46]. NB-IoT can be deployed either as a stan-
dalone carrier or inside the LTE spectrum. In the latter case, it is positioned in
the LTE carrier or in the guard band. Data rates are around 160–200 kbps for
the uplink and 160–250 kbps for the downlink [47]. For urban and suburban
environments, the range is 1-8 km and 25 km, respectively.

• LTE-M. LTE-M was introduced for devices that have limited capabilities
w.r.t. to the ones that support standard LTE [48]. The objective is to increase
coverage, support a large number of connected devices, and allow for long-
term battery operation, while maintaining latency below ten seconds. LTE-M
carriers, having a bandwidth of up to 20 MHz, are divided into a number
of narrowbands. Two categories of devices are defined: Cat. M1 and Cat.
M2. Cat. M1 devices have a bandwidth of 1.4 MHz, an uplink data rate of
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3 Mbps, and a downlink data rate of 1 Mbps. Cat. M2, instead, reaches 5
MHz of bandwidth, 7 Mbps uplink data rate, and 4 Mbps downlink data rate.
Communication is usually half-duplex, but full-duplex is also supported.

Specific network layer and routing protocols are also available:

• 6LoWPAN. 6LowPAN is an adaptation protocol between IPv6 and lower layer
technologies, typically IEEE 802.15.4 [36]. It targets resource-constrained
devices that utilize low-power and lossy links. The objective is to reduce the
size of the IP datagrams and remove redundant fields. This is achieved with a
compression and fragmentation mechanism.

• RPL. The IPv6 routing protocol for low-power and lossy networks (RPL) is
often used in IoT sensor networks [36]. It supports multipoint-to-point, point-
to-multipoint, and point-to-point multi-hop communications. Both global and
local repair mechanisms are also defined.

Similarly, new application layer protocols are also introduced:

• CoAP. The Constrained Application Protocol (CoAP) is an application layer
protocol for constrained networks and nodes, typical of IoT systems [49]. It is
based on the REST architectural style, and it is designed to work over UDP.
Its design starts from the standard web technologies: HTML, HTTP/REST,
and URIs. In CoAP, HTML can be easily replaced by specialized data formats,
depending on the application. For what concerns HTTP, it is too expensive in
terms of both code space and network usage. Differently from HTTP, CoAP
also needs to handle packet re-transmission, which is missing from UDP.
This problem is solved by introducing a four-byte binary header, followed
by a sequence of options, leading to a total size of 10 to 20 bytes for a
typical request. CoAP preserves four request methods from HTTP: GET, PUT,
POST, and DELETE. Response codes are also inherited from HTTP but are
encoded on a single byte. Resources are also still identified via URIs. Finally,
the realization of CoAP-HTTP intermediaries is possible without encoding
specific application knowledge.

• MQTT. MQTT [50] is an application layer protocol based on a publish-
subscribe pattern that is generally used on top of TCP. Clients can define
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topics that act as communication channels for sending messages. A client can
subscribe to one or more topics and receive messages that other clients publish
on them. A central broker is in charge of receiving and delivering messages
to all clients. Messages are also characterized by a Quality of Service (QoS)
parameter, which can be set to either zero, one, or two. Higher QoS values
increase the reliability of the message transmission but introduce additional
overhead. Messages are delivered either at most once (QoS=0), at least once
(QoS=1), or exactly once (QoS=2). The protocol can be either stateless or
stateful. In the latter case, both the broker and the clients maintain session
information. The broker also stores messages to be delivered to disconnected
clients.

5G technology

5G is the 5th generation standard for cellular network technology, developed by
3GPP [45]. In the IoT architecture presented in Section 1.2.2, it is usually positioned
at the communication layer and used to connect IoT gateways to cloud and edge
services [25]. It introduces the 5G New Radio (5G NR) [51] and its radio access
technology (RAT). 5G NR utilizes frequencies both below 6GHz and in the 20-100
GHz (millimeter wave). It uses Orthogonal frequency-division multiplexing (OFDM)
with scalable numerology, i.e., the possibility of adjusting sub-carrier spacing (SCS).
An increased number of antenna arrays is used to improve 3D beamforming and
multiple-input and multiple-output (MIMO) capabilities. One of the limitations of
5G is that millimeter wave propagation tends to be mostly in line-of-sight and can be
easily blocked objects.

Edge computing

The shift towards the prevalent adoption of mobile terminals and emerging Internet
of Things (IoT) technologies has put a toll on mobile and wireless networks. These
networks must overcome problems of low storage capacity, high energy consumption,
low bandwidth, and high latency of the connected devices [26]. The traditional
paradigm of a centralized cloud computing infrastructure cannot support real-time
applications and handle the increasing number of connected devices. As a solution,
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edge computing introduces the idea of moving computation and data storage closer
to the sources of data [52].

Multi-access Edge Computing (MEC), formerly known as Mobile Edge Com-
puting and standardized by the European Telecommunications Standards Institute
(ETSI) [53], is one of the most common strategies. It involves moving the afore-
mentioned resources within the radio access network (RAN). By adopting the MEC,
mobile network operators will also become application service providers. The main
characteristics of this approach are [54]:

• On-Premise. Services can run isolated from the rest of the network, providing
greater resilience.

• Proximity. Services are close to the data source and may have direct access to
the devices.

• Lower latency. Service proximity reduces latency to support real-time appli-
cations and helps in preventing traffic congestion.

• Location awareness Services are able to localize connected devices, opening
the possibility for newer business use cases.

• Network context information. Real-time network data can be used to offer
context-related user services.

MEC can support a variety of applications, such as smart vehicles, augmented reality,
content delivery and caching, smart building control, and real-time video analysis.

Digital twins

The idea of digital twins is the creation of a virtual counterpart of physical objects.
It requires the presence of three components: the physical object, the virtual twin,
and a mapping between the two [55]. Its implementation also requires bi-directional
communication between the two entities. The digital twin continuously adapts from
the data received from the physical object and returns feedback to optimize its
operations. In some cases, the design of the physical object and its virtual twin can
be carried out in parallel via data engineering.
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Digital Twin Networks (DTNs) are the next step in this approach. Multiple
physical-virtual twin pairs are introduced. In addition to the physical-to-virtual (P2V)
communication between the physical object and its virtual counterpart, physical-to-
physical (P2P) and virtual-to-virtual (P2V) connections are also introduced. This
results in the creation of an information-sharing network for real-time collaboration.

Key underlying technologies in this approach are cloud and edge computing,
which provide the resources and infrastructure for managing virtual objects and their
communication. Data processing techniques are also essential to manage the high
volume of multi-source high-noise information. The first step involves handling
missing values, redundancy, and conflicts. Subsequently, data fusion techniques
can be used to reduce dimensionality, to find physical objects with high similarity
(matching), and to integrate the experience of other physical objects (extension).

Examples of applications are the simulation of production processes, the pre-
diction of equipment failures, the analysis of network traffic, and the creation of a
virtual view of cities and transportation systems [55].

Blockchain

Blockchain is a shared, immutable ledger that facilitates the process of recording
transactions and tracking assets in a business network. An asset can be tangible
(a house, car, cash, land) or intangible (intellectual property, patents, copyrights,
branding) [56]. Smart contracts can also be stored in the blockchain, allowing
the execution of automatic rules and behaviors (e.g., performing payments when
agreed-upon conditions are met).

Single transactions are grouped together to form blocks. Each block contains
the cryptographic hash of the previous one, hence creating a chain. According to
an iterative process, each block confirms the integrity of the previous one until the
start of the chain is reached. The addition of a new block to the chain is controlled
by running a decentralized consensus algorithm, which prevents any central entity
from controlling the chain unless it gains control of more than 50% of the peers
participating in the network [57].

Examples of applications of blockchain technologies in IoT are freight trans-
portation, component tracking and compliance, and the logging of operational main-
tenance data [58].
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1.3 Security and reliability

Security and reliability are concepts that are orthogonal to the entire IoT architecture
and technology stack. Starting from literature studies, this section presents an
overview of security and reliability challenges in the field of IoT.

1.3.1 Security

Starting from the bottom of the IoT architecture, the first layer that is encountered is
the hardware devices. Ensuring their security is complicated by limitations in terms
of communication, computation, and storage capabilities. When considering highly
pervasive systems, such as ImCs, energy becomes an additional constraint. In these
scenarios, the device hardware can also be physically accessed by attackers [59].
Finally, security is often seen as an afterthought in the design of IoT devices [36].
Possible attacks can target vulnerabilities in the device’s software, exploit side chan-
nel information (electromagnetic signals, timing of operations, energy consumption),
add hardware trojans (modification to circuits), and tamper the device package to
extract keys, modify software, and reverse engineer patented designs.

To address these problems, some MCUs and CPUs in single-board computers
provide basic security features, such as secure boot, memory protection via OS-
manged memory protection units (MMUs) and memory management units (MPUs),
random number generators, and dedicated crypto units. However, the increasing
complexity of computing platforms introduces the need for execution environments
that are capable of isolating security-sensitive applications [60]. A common approach
is the use of Trusted Execution Environments (TEE), which enable the creation of
hardware-isolated areas where to securely run mutually distrusting applications. The
objective is to ensure confidentiality and integrity of data and code. The trusted
computing base (TCB) can rely entirely on hardware or a small software component.
TEEs are available for all use cases, from simple IoT devices to data center applica-
tions. Commercial examples of this are ARM Trustzone [61, 62], intel SGX [63],
and AMD-SEV [64].

By moving to the next layer, sensor networks and protocols are encountered.
Common attacks at this level are eavesdropping of communication, injection of
fraudulent traffic, and routing attacks. Examples of vulnerabilities are documented
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in [36]. In Zigbee, the discovery of cryptographic keys used for secure commu-
nication is a common attack vector. Acquiring this information is possible when
unsafe key-sharing mechanisms are adopted or via known plaintext attacks due to
the repeated encryption of the same control messages. BLE, instead, presents vul-
nerabilities in some of its device pairing procedures. 6LoWPAN can be affected by
attacks against the RPL protocol and border routers. Nodes in a LoRaWAN network
must all share the same keys to support multicast messages. Class B devices also
do not encrypt beacon messages, so they cannot distinguish between authentic and
malicious ones.

Cloud computing and edge computing are the most vulnerable technologies in
the communication and infrastructure layers. Cloud computing security is mostly
in the hands of third-party suppliers, which have to be trusted. In addition, vul-
nerabilities of shared hardware and virtualization technologies can break isolation
between software applications running in the same infrastructure [65]. Deployment
of computing services at the edge stresses the network management policy and
increases vulnerability from denial of service (DoS) attacks [26]. Physical access to
edge computing servers is also less protected than in traditional data centers.

1.3.2 Reliability

Reliability is a very general term when used in such a vast field as IoT. In this work,
we refer to the reliability of data and information during collection, transmission,
processing, and storage.

The increasing popularity of IoT technology has been fueled by cost-effective
sensing and monitoring solutions [66]. Low-cost sensors are often a miniaturization
of traditional full-size devices, which exploit the same fundamental technologies [2].
This process comes with some drawbacks, such as reduced accuracy and precision,
and increased possibility of faults and anomalies. This is worsened by the operating
condition of pervasive devices, which are often left unattended in remote locations
and subjected to the elements. Therefore, the reliability of sensor measurements be-
comes essential in safety-critical contexts, such as industrial environments, and when
making mission-critical data-driven decisions. Current works explore better sensor
designs, sometimes enabled by intelligent machine learning and computational-based
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techniques [67]. The development of effective sensor calibration models is also of
vital importance [68].

Reliability in data transmission, instead, is strongly correlated to the security
of the transmission protocols involved. It is essential that the integrity and the
authenticity of information are preserved in this phase. This is further discussed in
Section 1.3.1.

Data processing is often performed at the infrastructure layer, where more com-
putational power is available. When real-time intervention and corrections are
necessary, edge computing approaches can be adopted. Some simpler strategies
can also be deployed directly on IoT devices. A large amount of data is analyzed
to develop calibration models, refine anomaly detection techniques, and extract
information intelligence. While calibration models can be very specific to the field
of application, anomalies and anomaly detection techniques can be better classified.
Anomalies can be related to the monitored system, e.g., a production line, a piece
of equipment, or the IoT device itself. Point anomalies are characterized by a short
time duration, after which the system returns to its normal state. Contextual anoma-
lies, instead, are defined as the variation from the expected pattern of a time series.
Collective or pattern anomalies are a series of observations that are anomalous with
respect to the rest of the data [66]. Information intelligence, instead, is important for
the definition of business strategies and goals. To this end, reliable visualization and
representation of information are also essential aspects [69].

For what concerns the storage of reliable data and information, blockchain is one
of the main innovative technologies. This is due to the immutability of the stored
transactions and the decentralized control of the chain. Fraud and unauthorized
activity from mutually distrusting entities can be prevented, and greater transparency
can be achieved.

1.4 Thesis structure

This thesis presents and analyzes two different research projects spanning the entire
IoT stack. At each layer, different technologies and solutions are investigated.
Security and reliability aspects remain at the center of all the presented research, and
will be discussed in detail throughout this document.
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More in detail, Chapter 2 presents work on particulate matter monitoring using
low-cost light-scattering sensors. In this context, the reliability aspects consist in
evaluating and ensuring data quality. For what concerns security, an IoT infras-
tructure that provides integrity verification for sensor measurements is presented.
Chapter 3, instead, investigates security in intermittent computing systems. A utility
for secure checkpointing is implemented and evaluated. Finally, Chapter 4 discusses
the conclusions of the presented work.



Chapter 2

Low-cost particulate matter
monitoring

This chapter presents the research work conducted on particulate matter (PM) moni-
toring with low-cost light-scattering sensors.

2.1 Introduction

Particulate matter (PM) is an air pollutant with significant effects on human health.
PM is composed of microscopic particles suspended in the air that can penetrate
deeply into the respiratory system and enter the bloodstream. It can be responsible
for a series of health problems such as cardiovascular diseases, strokes, and lung
cancer [70]. It is estimated that outdoor air pollutants, also comprising PM, were
responsible for 4.2 million premature deaths in 2019 [71].

The chemical composition of PM can be varied, with major components being sul-
fates, nitrates, ammonia, sodium chloride, black carbon, mineral dust, and water [71].
PM is usually classified according to particle diameter. PM10, PM2.5, PM1.0, and
PM0.1 consider particles with a diameter lower than 10 µm3, 2.5 µm3, 1 µm3, and
0.1 µm3, respectively. Particle size is an important characteristic since it determines
where PM is able to deposit inside the human respiratory system [72, 73]. PM levels
are usually expressed as number or mass concentrations. For mass concentration,
µg/m3 is generally used.
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Monitoring of particulate matter is traditionally performed by environmental
agencies using networks of fixed stations. Official stations are highly regulated in
terms of their position, deployment density, and adopted monitoring equipment. This
approach provides highly precise and accurate measurements. However, due to their
size and the high cost of instrumentation, their deployments are quite sparse.

Low-cost light-scattering sensors are often presented as a possible solution to
this problem. These sensors are a miniaturization of traditional optical particle
counters (OPC) and nephelometers, which makes them suitable for IoT applications.
Due to their reduced cost, size, and power consumption, they could enable the
creation of much denser monitoring networks. In addition, they generally offer
higher sampling rates than traditional instruments. PM is sampled every few seconds,
whereas reference instruments may take several minutes or hours to provide a valid
measurement, depending on the adopted technology.

Despite their growing adoption, they are still considered to be unreliable, inac-
curate, and imprecise. One of the main reasons is that their measurement process
involves several approximations and assumptions. The most notable is about PM
composition, which determines the density and Refractive Index (RI) of the analyzed
particles. The limited percentage of detected particles and the reduced size ranges are
also known limitations of light-scattering technology, which are further accentuated
by the miniaturization process. Readings of low-cost light-scattering sensors can
also be greatly affected by high humidity levels. Finally, a connection to the power
line is still required for continuous operation, which is mostly due to the energy
consumption of the intake fan.

The main objective of this research work is to study and improve the reliability
of low-cost light-scattering sensors. Long-term monitoring campaigns are conducted
by placing a multitude of low-cost PM sensors near an official monitoring station in
the City of Turin, Italy. The data from both the sensors and the reference station is
collected and analyzed.

At first, the correlation and error between the sensors’ measurements and the
reference station are compared with the correlation and error between the reference
station and the other stations in the official network. The objective is to understand
whether the integration of low-cost sensors into the existing monitoring infrastructure
can provide additional benefits and insights.
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Secondly, the collected measurements are used to design a data processing
pipeline comprising multiple stages: fault detection, filtering, outlier removal, and
calibration. This approach is intended to increase reliability in large-scale deploy-
ments where the sensor data volume is too extensive for manual analysis.

Then, it is evaluated how a reduction of the power-on time of the light-scattering
sensors can affect measurement quality. The objective of this approach is to save
power and increase the lifetime of the devices. Different duty cycles are simulated
by resampling the collected data, and the information loss is analyzed w.r.t. both the
original signal and the official reference.

Finally, a backend infrastructure is created to support the transmission, storage,
visualization and retrieval of data generated by low-cost IoT sensors. Verification of
measurement integrity and authenticity is also provided via blockchain technology.

2.2 Background

This section starts by discussing the main technologies for PM monitoring. Then,
it presents the area under analysis, i.e., the Metropolitan City of Turin in Italy,
discussing pollution sources, seasonality trends, and its official monitoring infras-
tructure.

2.2.1 PM monitoring technologies

This section provides an overview of the main instrument technologies used for
particulate matter monitoring [74].

Gravimetric measurements

Gravimetric instruments derive the PM concentration in an air sample by measuring
the weight of its deposit on a filter. The air is drawn in via a vacuum pump and passes
through specifically designed inlets. The inlets must be able to collect air samples
that are representative of the monitored environment in terms of concentration and
size distribution of particles [75]. Inlets can also implement cut points for standard
particle sizes, such as PM10 and PM2.5 [76]. Particle size selection can also be
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accomplished in multiple stages by using cyclones and virtual impactors, which
exploit the inertia of the particles to achieve separation [75]. Maintaining a precise
and accurate flow rate is essential in these processes.

Finally, the sample is collected on the filter. Some instruments contain multiple
filter cartridges that are automatically swapped during sampling. Dirty filters are
then taken to a laboratory, where they are weighted according to standard procedures.
The weight difference from the initial clean filter provides the mass of the particulate,
which is then divided by the analyzed air volume to compute its concentration. The
collected PM sample can also be analyzed to derive its chemical composition.

The drawback of this approach is related to the cost of the instrumentation
and to the related operational and maintenance expenses. In addition, gravimetric
instruments cannot achieve high sampling frequencies due to the limited number of
available filters.

TEOM devices

These devices use a tapered element oscillating microbalances (TEOM) to automati-
cally and continuously weigh the PM sample [77, 78]. The filter is positioned on top
of a glass tube that is maintained in constant oscillation. The increasing weight of the
PM deposit is mathematically correlated to the oscillation frequency of the system,
which can be measured electronically. Since no filter conditioning is possible before
measurement, the air sample can be heated to remove humidity that would otherwise
contribute to the measured weight. The advantages of this approach are to increase
the sampling frequency and reduce manual operations.

Beta attenuation

Beta attenuation monitors use a different principle for measuring PM concentra-
tions [79, 80]. Instead of a single filter, a filter tape is used to collect the PM samples.
A low-energy radioactive source (e.g., carbon-14) generates a beta radiation that
is initially shined on an empty spot on the tape. A detector, i.e., a Geiger-Muller
counter, is positioned on the other side of the tape to measure radiation intensity.
The same process is repeated after collecting the PM sample at the same location on
the tape. The attenuation of beta radiation from an object is only dependent on its
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mass, and not on other factors such as chemical composition, optical properties, and
density. Consequently, the ratio between the two beta-ray counts is used to evaluate
the mass of the PM deposit. As for TEOM systems, a heater is used to remove
humidity from the air sample, since it would contribute to the total measured weight.
Also, in this case, the advantages consist in increasing the sampling frequency and
reducing manual intervention.

Light-scattering

Light-scattering technologies [81, 82] for counting particle concentrations have been
around for decades and used in full-size monitoring instruments. However, in the
past years, miniaturized versions of the same devices have become available for
IoT applications due to their low cost and low power consumption. Two different
sensor technologies are found: optical particle counters (OPCs) and nephelometers.
OPCs are able to detect single particles, while nephelometers analyze the entire
air sample as a whole. In both technologies, a laser beam is shined on the air
sample, and the intensity of the scattered light is measured at specific viewing angles
via photodetectors. Low-cost sensor manufacturers often do not disclose which
technology is adopted by their devices.

OPCs OPCs are able to count single particles by detecting light pulses generated
by their scattering. A calibration curve can be defined that correlates the intensity
of the pulse and the diameter of the particle. This is achieved by using a calibration
aerosol with known optical properties and particle size. The resulting curve also
depends on specific characteristics of the monitoring device, such as the wavelength
of the light source and the angle of observation. Using Mie theory, which describes
the scattering properties of perfectly spherical particles of known refractive index,
it is possible to analytically generate the calibration curves for a specific sensor
design [81]. This can help in understanding sensor behavior and also in finding
solutions that provide a monotonic relationship between the intensity of scattered
light and particle diameter, avoiding measurement ambiguity.

Particles are counted by assigning them to size bins, which are defined in terms
of particle diameter. The size of bins is chosen as a trade-off between the resolution
and uncertainty of the assignment. Larger bins are useful, for example, when
portions of the calibration curve are not monotonic: the size is chosen to include all
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ambiguous measurements in the same bin. Instead, the range of diameter for which
particles are detected is usually limited by costs. Detecting smaller particles requires
higher-quality optics and photodetectors.

The last step in the process requires the conversion of particle counts to standard
mass concentrations, e.g., PM1.0, PM2.5, and PM10. After a certain acquisition
time, which can be either predefined by the manufacturer or chosen by the user, the
particle count for each bin is obtained. By assuming spherical particles, the total
particle mass can be derived with the following formula (from [81, 83]):

PM = ρ ∑
i
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where ρ is the assumed density of particles, Ni is particle count for bin i and
Di is the geometric mean diameter for the bin [81]. Alternatively, [83] provides a
formula for computing a volume-weighted diameter:
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where UBi and LBi are, respectively, the upper and lower bound of the bin.
Finally, mass concentrations can be computed by dividing total particle mass by the
analyzed aerosol volume.

Nephelometers Nephelometers measure the intensity of the scattered light from
the entire air sample [81]. A wider range of angles is used for the measurement
w.r.t. OPCs. The intensity of the scattered light is compared with a reference mass
measurement to compute a calibration factor. This factor is used to convert the
measured intensity to the total particle mass, which can be divided by the analyzed
volume to compute standard mass concentrations.

Limitations These devices have multiple limitations, some depending on the
underlying technology, some related to the low-cost implementations. The calibration
of both OPCs and nephelometers is sensitive to the characteristics of the aerosol
used during the calibration procedure [81]. The aerosol can be either synthetic, such
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as polystyrene latex particles [84, 85], or representative of real-world sources, such
as cigarette smoke [86].

If the measured particles have a different Refractive Index (RI), it can greatly
affect the efficacy of calibration. In addition, the particle size distribution of the
analyzed aerosol plays an important role. In OPCs this is a problem if a significant
amount of particles is below the minimum detected size. For nephelometers, instead,
if the particle size distribution changes, the calibration coefficient that relates scatter
intensity and total particle mass must be corrected.

Low-cost OPCs only detect a small percentage of the particles in the air sample,
and the actual number is derived via statistics and extrapolations [87]. The count
density of large particles is also much lower than that of smaller ones. In order to
acquire enough data to estimate their number, the sensors should integrated over
long time intervals (hours or days). As a consequence, size fractions that include
bigger particles, such as PM4 and PM10, are not measured directly but derived from
PM1.0 and PM2.5 [86, 87]. Finally, when converting particle counts to particle mass,
OPCs assume particles to be spherical and of known density, which is not the case in
real-world scenarios.

Low-cost light-scattering sensors are negatively affected by high levels of humid-
ity [88–91]. Particles are subjected to hygroscopic growth, meaning that their size
increases due to water intake, resulting in an overestimation of particle mass. This
process also affects the value of their Refractive Index (RI). To avoid this problem,
high-precision devices heat the air sample before conducting the measurement [92].

Due to all this, some manufacturers declare the factory calibration precision
as a device-to-device variation [87], which indicates the deviation of an individual
low-cost sensor w.r.t. the average of a group of devices. This makes the calibration
precision independent from an individual reference.

Low-cost devices use a small fan to draw in the air sample. The need to power
these mechanical components requires a connection to the power line for high-
frequency PM monitoring. In addition, the fan speed can be subjected to variations,
affecting the airflow rate through the device and leading to inaccurate measurements.
Some low-cost sensors are able to monitor and correct the speed dynamically to
prevent this problem [84, 85]. Finally, due to the exposure to the elements, low-cost
sensors are also affected by possible faults and anomalies [93].
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Fig. 2.1 PM monitoring network of ARPA Piemonte in the Metropolitan City of Turin [1, 2].

2.2.2 Area under consideration

The area under consideration is the Metropolitan City of Turin [94] (formerly known
as the province of Turin), located in northern Italy in the Piedmont region. It is an
administrative division that comprises 312 municipalities with a total area of 6827
km2 and over 2 million inhabitants. Its capital is the City of Turin [95], which covers
an area of 132 km2 and has a population of 800.000. Being part of a metropolitan
city, it borders other large municipalities on the north, east, and west sides.

Official Monitoring Network

In Italy, the monitoring of air pollution is regulated by the legislative decree 155/2010,
which is an actuation of the European Directive 2008/50/EC. The directive defines
objectives for data quality, location, minimum number of sampling points, and mea-
surement methods. For what concerns particulate matter, only PM2.5 and PM10 are
considered by the directive. The reference method for sampling PM10 and PM2.5
concentrations is gravimetric measurements, according to the EN12341:2014 stan-
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dard. A member state can utilize other techniques only if it provides a demonstration
of equivalence that must be approved by the Commission.

In the Metropolitan City of Turin, the official air pollution monitoring net-
work [96] is managed by ARPA Piemonte [97], the regional agency for the protection
of the environment of the Piedmont region. The network of stations that measure
PM is shown in Figure 2.1. The stations are classified according to two parameters.
The first is the level of urbanization of the area in which they are located, which can
be either urban, suburban, or rural. The second is the prevalent source of pollution,
which can be either background or traffic [98]. This classification is highlighted in
Figure 2.1. The monitoring stations employ both gravimetric and beta attenuation
instruments. The former sample PM once per day, while the latter once per hour.
Measurements are accessible online [99], and air pollution reports are redacted for
each year [100].

PM sources and trends

In order to discuss this topic, it is important to make a distinction between primary
and secondary particulate [101]. Primary particulate is generated and directly emitted
into the atmosphere by its source. Secondary particulate, instead, is generated in the
atmosphere by chemical reactions from its precursors. In addition, due to transport
and diffusion phenomena, PM can also be emitted or generated in a different location
than the one of observation. For this reason, only considering emission sources does
not provide a complete picture.

ARPA Piemonte utilizes a technique of source apportionment [102] that allows
for the quantitative estimation of the contribution of the different PM sources, not
in terms of their emission but in terms of the overall resulting concentration in
the atmosphere. Source apportionment can be performed either via mathematical
modeling or analytically. In the first case, chemical and pollution transport models
are adopted [103, 104]. In the second, the chemical composition of the PM samples
is studied. Unfortunately, the main limitation of this latter approach is the difficulty
of assigning chemical profiles to a specific source, and therefore, it is often used as
validation of the former.

Studies conducted by ARPA Piemonte [105–107] identify vehicular traffic and
domestic heating as the main sources of PM10 in the Metropolitan City of Turin.
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In Turin, traffic and domestic heating contribute, respectively, 38% and 49% of the
total PM10 concentration (both primary and secondary) [108]. The rest is mainly
attributed to industry, agriculture, and farming.

The contribution of domestic heating to primary PM10 is mostly due to the
incineration of wood and pellet fuel. Sources are mostly located outside the urbanized
areas, where district heating is less common. Domestic heating is also responsible
for NOx (nitrogen oxide) emissions, which is a precursor of secondary particulate.
In this case, contributing fuels are not only wood and pellets but also methane.

Traffic is the main source of primary PM10 inside the municipality of Turin. This
is caused by exhaust emissions of vehicles, tire wear, and resuspension of particulate
depositions from the road surface. If secondary particulate is considered, traffic is
also the main contributor to NOx emissions in the city.

Diesel vehicles are often at the center of attention since they significantly con-
tribute both via direct emissions of particulate and, indirectly, via the production
of NOx [109]. This effect is mitigated in newer vehicles with the introduction of
the latest European Emission Standards [110], which enforce strict limitations on
vehicle emissions. In addition to the anti-particulate filter, technologies like Ad-Blue
are used in diesel vehicles to reduce their contribution to NOx. However, lots of older
diesel vehicles are still in use, for which the city imposes traffic restrictions [111].

The geographical properties of the area also influence the dispersion of PM.
The Metropolitan City of Turin is surrounded by mountains on the north and west
and by hills on the south and east, favoring air stagnation. In the winter period,
air circulation is also prevented by the meteorological phenomenon of thermal
inversion [112, 113]. Normally, temperature constantly decreases with increasing
altitude. Thermal inversion, instead, consists in the formation of a layer of warmer
air on top of the cold air, which prevents the dispersion of air pollutants.

Figure 2.2 represents daily averages PM2.5 measured at the station of Torino
Rubino for a period of over one year. The average concentration of the pollutant
starts increasing during autumn and remains high until spring. For the rest of the
year, PM2.5 concentrations are lower. This trend is mainly due to the combined
effect of thermal inversion and the use of domestic heating in colder months. Other
meteorological phenomena also affect the presence of PM. Figure 2.2 shows how
precipitation events always correspond to a reduction of PM levels. Wind is also
important in helping with the dispersion of pollutants. A typical wind of the area
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Fig. 2.2 Daily PM2.5, and precipitations, measured by the Torino-Rubino station [3].

under consideration is Fohn (or Foehn) [114–117], which also manifests during the
winter period. Its effects are strong wind (speed greater than 1.5 m/s), increasing
temperature, and low relative humidity (less than 40%).

2.3 Related works

Low-cost light-scattering sensors are often considered as a solution for increasing
the spatial and temporal granularity of PM measurements. Due to their power
efficiency and lower cost, they could be adopted for the creation of dense monitoring
networks. Multiple studies are conducted in the literature about low-cost PM sensors,
ranging from theoretical studies and laboratory evaluations to in-field performance
assessments.

In [82], a survey is conducted about the best practices in terms of calibration
models and metrics for data quality evaluation.

In [81], a physics-based approach is used to simulate low-cost light-scattering
sensors to study the limitations of the technology. The analysis shows that the quality
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of their measurements is affected by the optical properties of PM, such as light
absorption, particle size distribution, and high levels of relative humidity.

In [118], an evaluation is conducted in a laboratory-controlled environment
by placing sensors inside an acrylic glass chamber. Detection limits, linearity of
response, and precision are the chosen metrics for the analysis. The influence of PM
composition, particle size, relative humidity, and temperature is also considered.

Field evaluations are also common the the literature [88, 93, 119, 120, 83], where
the effectiveness of low-cost light-scattering sensors is studied by comparing them
with high-precision reference instruments.

In [88], a long-term field evaluation is carried out in the city of Bologna. The
sensors are compared to a high-precision light-scattering monitoring device, the
MetOne Profiler 212. The objective is to analyze the effects of seasonal variability,
time resolutions, and meteorological conditions. The study concludes that low-cost
PM sensors were mostly affected by high humidity levels and by the presence of
mineral dust, while still remaining extremely informative about air quality conditions.

In [93], a long-term evaluation, lasting more than one year, is conducted by
placing low-cost PM sensors from different manufacturers at multiple locations in
the city of Southampton, UK. Sensors were compared to monitoring stations present
in the area.

In [119], low-cost air quality monitoring stations were located at three different
official monitoring sites in Santiago, Chile. The quality of PM and relative humidity
measurements is evaluated. The effects of humidity on low-cost light-scattering
sensors are also studied.

In [120], low-cost light-scattering sensors are compared with the TEOM 1400a
gravimetric instrument. It is noticed that they overestimated PM2.5 concentrations,
requiring a dedicated calibration for the specific deployment environment, instead of
relying on the one provided by the manufacturer. Sensor failures were also common,
so multiple units of each sensor type were deployed.

Finally, in [83], low-cost light-scattering sensors are evaluated against high-
precision instruments adopting different technologies. A model for humidity correc-
tion is also introduced.
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Fig. 2.3 Low-cost monitoring station (originals design) with details of components [2].

2.4 Monitoring system

Two designs for a low-cost PM monitoring station were created, both integrating
low-cost light-scattering sensors. Multiple stations were built for each design and
used in different monitoring campaigns. This section describes the characteristics of
the stations and presents the monitoring campaigns.

2.4.1 Monitoring stations

Original design The first monitoring station design is shown in Figure 2.3. It
is the same that was used in earlier work [4]. The hardware is enclosed by a 3D
printed case, which is made in ABS plastic to better endure the elements. The case is
designed to allow the stacking of multiple stations, that can be secured via nuts and
bolts. The topmost station in the stack is covered by a roof-shaped element. Each
station is equipped with the following components:

• 4 Honeywell HPMA115S0-XX low-cost light-scattering PM sensors [86].

• DHT22 temperature and relative humidity sensor [121].

• Bosch BME280 pressure sensor [122].

• DS3231 Real Time Clock (RTC) module [123].
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• Raspberry Pi Zero W [124].

A small custom PCB is used to facilitate the interconnection of the different
components. The Raspberry Pi board, which is flashed with an open-source Linux
distribution, is in charge of managing all the installed hardware. It uses the RTC
module to retrieve the correct time after a possible power loss.

The components are divided into two separate enclosed areas. The biggest
contains the four PM sensors and provides openings on both sides for their inlets and
outlets. It was decided to use four PM sensors to have redundancy in the system in
case of sensor failure and to detect measurement anomalies. The smallest enclosed
area, instead, contains all the remaining components. It also provides an opening for
the temperature and relative humidity sensor.

The system stores the acquired measurements on the MicroSD card of the Rasp-
berry Pi. A new measurement file is created every day for each sensor. A dedicated
software program acquires data from the sensors and stores them in the appropriate
file. The program is configured to run continuously and to restart in case of crashes.
At certain time intervals, which can be configured, the board tries to connect to a
predefined Wi-Fi network. If the connection is successful, it synchronizes the RTC
via the remote Network Time Protocol (NTP) [125]. Subsequently, it uses the Unix
rsynch [126] utility to upload the new measurement files to a remote server. The
connection with the remote server is performed via the SSH protocol [127], which
also provides integrity and confidentiality to the transmitted information.

For what concerns the HPMA115S0-XX PM sensor, it provides measurements for
both PM10 and PM2.5. However, only PM2.5 concentrations are measured directly,
while PM10 is estimated from PM2.5 with a proprietary algorithm. The manufacturer
also does not specify whether the sensor acts as an OPC or a nephelometer. The
sensor’s datasheet provides the following information about the accuracy of PM2.5
readings:

• ± 15 µg/m3 from 0 µg/m3 to 100 µg/m3.

• ± 15% from 100 µg/m3 to 1000 µg/m3.

Unfortunately, these accuracy values are only valid at a temperature of 25◦C
± 5◦C. Also, operating conditions require that relative humidity stays between 0%
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(a) Exterior. (b) Internal hardware.

Fig. 2.4 Low-cost monitoring station (updated design) with details of components.

and 95% (non-condensing). However, the outdoor conditions in which the stations
are meant to be used are fairly different. In Turin, the temperature can go below
0◦C in winter and over 30◦C during summer. Heavy rains and condensing humidity
conditions are also common. Finally, the aerosol used for factory calibration is
cigarette smoke, which has characteristics that are different from those of the air in
an urban environment.

Updated design The second design for the low-cost monitoring station is shown
in Figure 2.4. The case, shown in Figure 2.4a, is 3D printed using ABS plastic to
better endure long-term outdoor deployments. It is possible to stack multiple stations
by sliding them on top of each other. The case also provides some lateral mounting
holes to secure the stations together. The topmost station in a stack can be covered
with a flat plastic panel. The case presents one main enclosed area where the internal
hardware, shown in Figure 2.4b, can be positioned. Each station is equipped with
the following components, which are connected to a custom PCB:

• 4 Honeywell HPMA115C0-003 low-cost light-scattering PM sensors [86].

• DHT22 temperature and relative humidity sensor [121].

• Bosch BMP280 pressure sensor [128].

• PA1010D GPS unit [129].

• DS3231 Real Time Clock (RTC) module [123].
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• Pycom LoPy4 [130] or FiPy [131] development modules.

• Pycom Expansion Board 3 [132].

The system can be managed by either the Pycom LoPy4 or the FiPy development
modules. They are both based on the ESP32 microcontroller and integrate Wi-
Fi (802.11 b/g/n at 2.4 GHz), Bluetooth (v4.2, BLE), SigFox, and LoRa. The
FiPy module also supports mobile connectivity through LTE Cat. M1 and NB-
IoT networks, providing a slot for a nano SIM. The modules are connected to
an expansion board that provides GPIO ports, LEDs, buttons, a USB port, and a
Micro-SD card slot.

As in the previous design, four low-cost light-scattering sensors are used. In
this case, however, the compact surface-mounted version of the sensor is chosen.
This newer model has both inlet and outlet on the same side, which facilitated the
design of the enclosure. In addition to PM2.5 and PM10, the sensor can also measure
PM1.0 and PM4.0. As for PM10, these values are only estimated from PM2.5 with a
proprietary algorithm. The manufacturer also does not specify whether the sensor
acts as an OPC or a nephelometer. The declared accuracy for PM2.5 is the same as
the full-size model:

• ± 15 µg/m3 from 0 µg/m3 to 100 µg/m3.

• ± 15% from 100 µg/m3 to 1000 µg/m3.

For the compact model, the datasheet also reports the accuracy for PM1.0, PM4.0,
and PM10:

• ± 25 µg/m3 from 0 µg/m3 to 100 µg/m3.

• ± 25% from 100 µg/m3 to 1000 µg/m3.

All these values are still measured at 25◦C ± 5◦C. Operating conditions still
require that relative humidity stays between 0% and 95% (non-condensing). Finally,
it is important to mention that PM1.0 and PM4.0 measurement collection was
disabled, since high-precision reference instruments were never available for these
size fractions.
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The DTH22 sensor and the GPS unit are both installed outside the case. The
reason for this decision is to prevent erroneous temperature readings due to the heat
coming from the hardware components, and to avoid interference of the GPS signal
when stacking multiple stations.

The FiPy and Lopy4 development boards run a customized version of Micropy-
thon [133]. Micropython is an implementation of the Python 3.x programming
language, which is optimized for resource-constrained microcontrollers. Therefore,
the device runs a Python interpreter, and the firmware can be programmed just by
uploading Python scripts.

The software developed for this project defines a separate interrupt for each
sensor, in order to allow for different sampling times. Interrupts are queued and
served according to the order of arrival, and, for this reason, interrupt routines must
be kept concise. The routines are in charge of retrieving the measurements from
the sensors to proceed with further processing. Sensor measurements can either be
stored on the MicroSD or transmitted via the different communication technologies
available on the device. In the context of this work, the devices are always connected
to a Wi-Fi network and transmit data to a central MQTT broker.

2.4.2 Monitoring campaigns

Multiple monitoring campaigns were conducted to collect real-world data with the
low-cost light-scattering PM sensors. Most of the work presented in this thesis is
focused on the second monitoring campaign and the crossroad deployment. However,
the other campaigns are still discussed for completeness.

First campaign

The first data acquisition campaign is the one described in earlier work [4]. The mon-
itoring system was composed of twelve low-cost monitoring stations that followed
the original design, as described in Section 2.4.1. The assembled system is shown in
Figure 2.6.

The low-cost system was positioned on top of the official ARPA monitoring
station of Torino Rubino, shown in Figure 2.5, near the inlets of official gravimetric
and beta attenuation instruments. The station of T. Rubino, located in a public park,
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Fig. 2.5 ARPA monitoring station of Torino Rubino [4].

Fig. 2.6 Assembled monitoring system (first design).
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is classified as a background urban station. Its position inside the Metropolitan City
of Turin is reported in Figure 2.1.

The experiment lasted for a period of 5 months, from October 2018 to February
2019. The low-cost light-scattering sensors were configured to sample PM2.5 and
PM10 every second, while temperature, humidity, and pressure measurements were
acquired every 3-4 seconds. The official data of the reference instruments was also
collected for the same period. The beta attenuation monitor samples PM2.5 and
PM10 every hour, while the gravimetric instrument only provides one measurement
per day. The dataset containing the collected data can be found at [134].

Second campaign

The second campaign was conducted with the same setup as the first one, but
fourteen low-cost stations were deployed instead of just twelve. The location of the
experiment was still the T. Rubino station. This campaign lasted for more than one
year, from October 10, 2020, to November 1, 2021. This allowed for the study of
the performance of the low-cost sensors by also taking into account the seasonality
of PM concentrations. The sampling frequency of both the low-cost and the official
sensors was the same as in the previous campaign. The dataset containing the
collected data can be found at [135].

Third campaign

The third campaign was again performed at T. Rubino, this time using the newer
design of the low-cost stations. Six stations were deployed for a period of seven
months, from November 2022 to May 2023. PM2.5 and PM10 were sampled every
second, while temperature, humidity, and atmospheric pressure every 2-5 seconds.
The sampling time of the official instruments was unchanged: one hour for the
beta-attenuation monitor and one day for the gravimetric device. The dataset1 of the
collected measurements can be found at [136].

1Currently, only an aggregated version of the dataset has been published.
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(a) Integration test. (b) Crossroad installation.

Fig. 2.7 Setup of crossroad experiment [5].

Crossroad experiment

The last monitoring campaign consisted in deploying two low-cost monitoring
stations (newer design) near two high-traffic areas in the City of Turin. The stations
were mounted on poles installed at the crossroads between Via Ventimiglia and two
other streets: Corso Spezia and Corso Maroncelli. They are integrated with a system
developed by Fondazione Links [137] for a project on autonomous driving. This is
done to provide power and internet access to the low-cost PM monitoring system.
Each station connects to a local Wi-Fi network to access a 5G gateway.

The experiment started in June 2023 and is still in progress. The sampling time of
the different sensors was configured as in the third campaign. However, the GPS was
also activated in this scenario. It provides latitude, longitude, and altitude information
every 60 seconds. The current objective of this measurement campaign is to ensure
the correct functionality of the system, together with the backend infrastructure,
which will be discussed in the following section.
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2.5 Data quality evaluation

This analysis evaluates the performance of low-cost PM sensors w.r.t. to official
high-precision instruments. The objective is to understand the benefits they can
provide if integrated into a preexisting official monitoring network. The study is
carried out on the data collected during the second monitoring campaign since an
entire year of measurements is available. Results of this work are published in [2].

2.5.1 Dataset

The dataset for this experiment is created starting from the data collected during the
second campaign, presented in Section 2.4.2, where fourteen low-cost monitoring
stations were positioned a official station T. Rubino for over one year. After an initial
data exploration phase, only the measurements collected from November 1, 2020, to
November 1, 2021, are included, to consider a period of exactly 12 months. For this
analysis, only the PM2.5 measurements of the 56 low-cost sensors are considered,
since the concentration of the other size fractions is not measured directly but only
estimated from PM2.5.

The data of all the other ARPA stations in the Metropolitan City of Turin was
also collected for the same period. It is composed of daily PM2.5 and PM10
measurements of the gravimetric and beta instruments, with the exception of T.
Rubino, where the beta sensor also provides hour concentrations. In order to allow
for comparisons, hour and day aggregations of PM2.5 measurements are computed
for each low-cost sensor.

2.5.2 Data exploration

A preliminary analysis is conducted by analyzing the behavior of the low-cost sensors
during the measurement campaign.

Faults and anomalies

The data of the 56 low-cost PM sensors is manually inspected to detect possible prob-
lems during device operation. The identified faults and anomalies are summarized
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Fig. 2.8 Faults and anomalies of sensors 14 (PM2.5), compared to the beta reference of T.
Rubino on day averages (left). Point anomalies of sensors 14 (PM2.5) with permanent faults
removed, compared to the beta reference of T. Rubino on hour averages (right) [3].

in Figure 2.8. A distinction can be made between permanent faults and temporary
anomalies. Two main types of permanent faults are observed. The first type is de-
vices getting stuck in the lower range of the measurement scale (0 or 1 µg/m3). The
second type is non-deterministic behavior, which is characterized by extremely noisy
or completely incorrect measurements. For what concerns temporary anomalies,
instead, they are usually point anomalies. In this case, the sensor provides incorrect
readings for a short period of time.

Since no issues were encountered during data logging or transmission, the reason
for permanent faults can be attributed to malfunctions in the optical components of
the sensor. For what concerns point anomalies, instead, they are usually characterized
by high-frequency changes, often impulsive, that are maintained for several minutes.
These can be attributed to elements getting stuck inside the sensor for a period of
time of random duration.

In conclusion, this analysis shows that ten sensors (18%) failed at the beginning
of the experiment, 33 sensors (59%) failed during the experiment, and 13 (23%)
worked correctly throughout the entire campaign.

Seasonality

Figure 2.9 depicts the seasonality of the low-cost sensors’ behavior. Pearson correla-
tion and relative error between the median of all working low-cost sensors (PM2.5)
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Fig. 2.9 Correlation (Pearson) and relative error between the median of all working low-cost
sensors (PM2.5) and the reference beta instrument of T. Rubino. Evaluation on day averages,
using a fourteen-day sliding window.

and the reference beta instrument of T. Rubino is computed throughout the year. The
evaluation is performed on day averages, considering a fourteen-day sliding window
to compute the two metrics. As can be seen, the correlation is higher during the
winter period and becomes lower during summer. The relative error, instead, has the
opposite behavior. This can be explained by the seasonality of PM2.5 concentrations
in the City of Turin (Figure 2.2), which are higher in winter and decreases in warmer
months. According to the sensor’s datasheet, the measurement accuracy is ± 15
µg/m3 for PM2.5 concentrations below 100 µg/m3. During summer, the measure-
ment error of the sensors becomes comparable with the values being measured, as
depicted in the curve or relative error. Therefore, the low-cost sensors are not able
to provide insightful information about changes in PM levels, leading to a lower
correlation with the reference.

2.5.3 Preprocessing

In order to evaluate the performance of the low-cost light-scattering PM sensors,
the data related to extensive sensor malfunction is removed. This is because, in a
real-world scenario, faulty sensors would be identified and replaced, and therefore,
they would not contribute to defining the data quality of the monitoring system.
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The median of all the low-cost sensors is computed for the entire measurement
period. For each sensor, its Pearson correlation with the sensors’ median is calculated.
If this value is lower than 0.8, the sensor is discarded. At the end of this step, 22
sensors are removed from the analysis.

Some of the remaining 34 sensors got stuck before the end of the monitoring
campaign, providing readings close to zero. Starting from the end of each sensor’s
time series, values are removed until the first measurement above the threshold of 2
µg/m3 is encountered. At this point, the median of all the remaining low-cost PM
sensors is computed again to generate a single time series representative of the entire
low-cost monitoring system.

2.5.4 Methodology

The objective of this analysis is to assess the benefits of integrating low-cost light-
scattering PM sensors in an official monitoring network composed of high-precision
reference instruments. Multiple analyses are carried out, starting from the compar-
ison of the official instrument inside the Metropolitan City of Turin, considering
devices positioned at different locations and measuring different size fractions. Then,
the low-cost PM2.5 measurements are compared with ones of the official instruments,
also for different size fractions, to understand in which scenario light-scattering de-
vices can provide additional information.

The metric that is chosen to compare two different monitoring instruments is the
Pearson correlation coefficient, evaluated on the whole year for daily measurements.
This is chosen because the compared instruments can be located at different locations
and can measure different size fractions. Since they are effectively monitoring
different quantities, it is not meaningful to estimate the error between two devices.
Instead, the correlation coefficient provides information on the capability of one
instrument to estimate the values of the other. This is useful for cases in which
the second instrument is not present. In the last step of the analysis, Root Mean
Squared Error (RMSE) is also used to evaluate the error between two devices when
calibrating one device to reproduce the measurements of the other. This error is
computed on the whole year and on daily averages, using a 30-day sliding window
with a one-day shift to select the calibration period. The calibration model of choice
is simple linear regression.
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The following comparisons are conducted:

1. Reference instruments at the same monitoring site:

• Correlation between gravimetric and beta attenuation devices.

• Correlation between PM2.5 and PM10.

2. Reference instruments at different urban sites (City of Turin):

• Correlation of PM2.5 measurements.

• Correlation of PM10 measurements.

• Correlation between PM2.5 and PM10.

3. T. Rubino and stations outside the City of Turin (reference instruments):

• Correlation of PM2.5 measurements.

• Correlation between PM2.5 and PM10.

4. Low-cost sensors and beta attenuation at T. Rubino.

Then, the results of all these evaluations are compared together to provide a
comprehensive picture of different findings. The RMSE analysis is conducted by
calibrating the PM2.5 reference instruments inside the City of Turin and the low-cost
sensors to target the reference instruments of T. Rubino. Finally, the precision and
accuracy of the low-cost sensors are evaluated against the T. Rubino reference across
the range of measured PM2.5 concentrations.

2.5.5 Analysis

Reference instruments at the same monitoring site

This section presents comparisons between reference instruments located at the same
monitoring site.
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Table 2.1 Correlation between gravimetric and beta attenuation instruments at the same
monitoring station [2].

Station PM size fraction Correlation

T. Rubino 10 0.984
T. Lingotto 10 0.987
T. Lingotto 2.5 0.989
Borgaro 10 0.990
Chieri 2.5 0.993
Settimo 10 0.990

Correlation between gravimetric and beta attenuation devices. Table 2.1 shows
the correlation between gravimetric and beta instruments located at the same station,
measuring the same PM size fractions. As it is possible to see, only a few stations in
the Metropolitan City of Turin are equipped with both instrument technologies. Since
high-precision devices measuring the same quantities are compared, it is expected
that they provide extremely correlated measurements. This is confirmed by the
results, which show correlations between 0.984 and 0.993 with an average of 0.989.
These values will be considered as a benchmark for the rest of the analysis.

Correlation between PM2.5 and PM10. Table 2.2 shows the correlation between
PM2.5 and PM10 reference instruments located at the same monitoring site. This
analysis can be useful in understanding whether it is possible to estimate PM2.5
from PM10 or vice versa, when only one size fraction is measured. As can be
seen, there are seven monitoring stations in the Metropolitan City of Turin providing
measurements for both size fractions. The first three stations that are listed, i.e.,
T. Rubino, T. Lingotto, and T. Rebaudengo, are urban stations inside the City of
Turin. The others belong to different municipalities in the Metropolitan City of Turin.
Settimo is an urban station, Chieri, Ivrea, and Boargaro are suburban stations, and
Ceresole is a rural station. For what concerns the results, most stations maintain a
high correlation between PM2.5 and PM10 measurements, even if lower than the
benchmark defined in the previous paragraph. The only outlier is Ceresole, for which
the correlation between the two size fractions is much lower. This can be explained
by the fact that this is a rural station residing in a natural park in the mountains,
where atmospheric conditions can be significantly different.
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Table 2.2 Correlation between PM2.5 and PM10 measurements collected at the same moni-
toring site [2].

Station PM2.5 Sensor
PM10 Sensor

Gravimetric β

T. Rubino β 0.943 0.948
T. Lingotto Gravimetric 0.986 0.972
T. Lingotto β 0.960 0.935
T. Rebaudengo β 0.939
Borgaro Gravimetric 0.981
Borgaro β 0.936 0.937
Ceresole β 0.875
Chieri β 0.951
Chieri Gravimetric 0.987
Ivrea Gravimetric 0.986 0.949
Settimo β 0.947 0.936
Settimo Gravimetric 0.975

Reference instruments at different urban sites (City of Turin)

In this section, the correlations between instruments located at different urban sites
inside the municipality of Turin are evaluated. The stations considered are T. Rubino,
T. Lingotto, T. Consolata, T. Grassi, and T. Rebaudengo. The first two are background
stations, while the others are traffic ones.

Correlation of PM2.5 measurements. The result of this evaluation is shown in
Table 2.3. The correlation between each pair of stations is computed. Comparisons
of instruments located in the same station are excluded, since they were already
discussed previously (see Table 2.1). Correlation is between 0.955 and 0.969 with
an average of 0.961, which is comparable with the results presented in Table 2.2
for different size concentrations measured at the same site. Table 2.4 presents the
average PM2.5 concentration measured by the same instruments over the entire
experiment campaign. Despite the good correlation, there are significant differences
in the average concentrations between the monitoring sites, which are accentuated
when comparing traffic and background stations. In fact, the traffic station of T.
Rebaudengo measured an average PM2.5 concentration 3.5 µg/m3 higher than the
other background sites.
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Table 2.3 Correlation between measurements of PM2.5 of urban monitoring stations inside
the City of Turin [2].

T. Rebaudengo
T. Lingotto (β )

T. Lingotto (β ) 0.967
T. Rubino (Gravimetric) 0.957

(β ) 0.956 0.969 0.955

Table 2.4 Yearly average PM2.5 concentration measured by urban monitoring stations inside
the City of Turin [2].

Station Average PM2.5 (µg/m3)

T. Rebaudengo (β ) 23.3
T. Lingotto (Gravimetric) 19.3
T. Lingotto (β ) 18.3
T. Rubino (β ) 19.8

Correlation of PM10 measurements. A similar analysis is also conducted for
PM10 measurements. The resulting correlations, shown in Table 2.5, are between
0.945 and 0.981, with an average of 0.964. The range of correlations is larger than
for PM2.5, mainly due to the presence of more stations monitoring PM10. The
average correlation, however, is very similar.

Correlation between PM2.5 and PM10. Table 2.6 shows the correlation between
measurements of PM2.5 and PM10 collected at different urban sites in the City of
Turin. The correlation is between 0.913 and 0.959, with an average of 0.933, which
is lower than what is found when comparing the same size fractions.

Table 2.5 Correlation between measurements of PM10 of urban monitoring stations inside
the City of Turin [2].

T. Rebaudengo (β )
T. Lingotto T. Lindotto (β ) 0.957

T. Grassi (Grav.) 0.954
T. Consolata (Grav.) 0.945 0.949 0.959

(Gravi.) 0.970 0.979 0.979 0.965
T. Rubino (β ) 0.976 0.946 0.976 0.977 0.949

T. Rubino (Grav.) 0.977 0.946 0.979 0.981 0.950
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Table 2.6 Correlation between measurements of PM2.5 and PM10 collected at different
urban sites inside the City of Turin [2].

PM10 Stations
PM2.5 Stations T. Rubino T. Rubino T. Consolata T. Grassi T. Lingotto T. Lingotto T. Rebaudengo

(Grav.) (β ) (Grav.) (Grav.) (Grav.) (β ) (β )
T. Rubino (β ) 0.944 0.943 0.952 0.935 0.919
T. Lingotto (β ) 0.921 0.913 0.930 0.920 0.914
T Lingotto (Grav.) 0.959 0.955 0.959 0.926 0.937
T. Rebaudengo (β ) 0.914 0.917 0.936 0.936 0.943 0.925

T. Rubino and stations outside the City of Turin (reference instruments)

In this section, the correlation between T. Rubino and other official monitoring
stations outside the City of Turin is evaluated. Due to the large number of mon-
itoring stations, only the PM2.5 beta attenuation instrument is considered for T.
Rubino. First, the comparison is performed on PM2.5 concentrations. Then, PM2.5
measurements at T. Rubino are correlated with PM10 measurements of the other
stations.

Correlation of PM2.5 measurements Table 2.7 shows the results of the compar-
ison between the PM2.5 concentrations measured by the reference devices. The
correlation is between 0.032 and 0.968, with an average of 0.846. Without con-
sidering the outlier represented by the rural station of Ceresole, which is situated
in a fairly different environment, the lowest correlation and the average would be,
respectively, 0.886 and 0.937. In any case, results are worse than what is obtained in
the comparison between PM2.5 measurements inside the City of Turin (shown in
Table 2.3): variance is higher, and the average correlation is lower.

Correlation between PM2.5 and PM10 The correlation between PM2.5 measured
at T. Rubino and PM10 measured in monitoring sites outside the municipality of
Turin is reported in Table 2.8. The correlation is between 0.095 and 0.941, with
an average of 0.769. The less correlated station is again Ceresole, whose PM10
measurements appear to be completely unrelated to PM2.5 concentrations at T.
Rubino. Results are significantly worse than the ones obtained by correlating PM2.5
and PM10 inside the City of Turin (Table 2.6). Similarly, correlations are also worse
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Table 2.7 Correlation of PM2.5 measurements between T. Rubino and monitoring sites
outside the municipality of Turin [2].

Station Sensor Correlation

Baldissero β 0.968
Borgaro Gravimetric 0.886
Borgaro β 0.960
Ceresole β 0.032
Chieri Gravimetric 0.910
Chieri β 0.949
Ivrea Gravimetric 0.925
Leini β 0.948
Settimo Gravimetric 0.941
Settimo β 0.944

than in the previous experiment, which compares PM2.5 measurements of T. Rubino
to PM2.5 measurements of stations outside Turin (Table 2.7).

Low-cost sensors and beta attenuation at T. Rubino

In this section, the low-cost light-scattering sensors positioned at T. Rubino are
compared with the beta attenuation instrument installed at the station. Table 2.9
presents the results. The sensors listed in the table are the ones that worked for
the entire measurement campaign. The median of the low-cost sensors, instead, is
computed considering the 34 sensors that are selected during the data preprocessing
phase described in Section 2.5.3. Since hour measurements are available from the
beta instrument of T. Rubino, correlations are computed using both day and hour
averages.

A strong correlation (higher than 0.9) is achieved on daily averages between the
light-scattering sensors and the reference. Instead, when considering hour averages,
the correlation drops below 0.9. However, it is interesting to notice that the correlation
of the eight light-scattering sensors with the median is not affected by the change in
sampling rate. Therefore, sensors still agree with each other on hour averages, but
not with the reference. This seems to indicate that the reduced correlation for hour
averages is a technological limitation of the sensors, and not due to imprecisions of
single devices. This conclusion can also be reached by observing the reduction in



48 Low-cost particulate matter monitoring

Table 2.8 Correlation between PM2.5 measured at T. Rubino and PM10 measured at moni-
toring sites outside the municipality of Turin [2].

Station Sensor Correlation

Baldissero β 0.793
Beinasco β 0.941
Borgaro Gravimetric 0.916
Borgaro β 0.908
Carmagnola Gravimetric 0.899
Ceresole β 0.095
Chieri β 0.925
Collegno Gravimetric 0.922
Druento Gravimetric 0.692
Ivrea Gravimetric 0.834
Ivrea β 0.909
Leini β 0.927
Oulx Gravimetric 0.168
Pinerolo β 0.783
Settimo Gravimetric 0.931
Settimo β 0.919
Susa Gravimetric 0.505
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Table 2.9 Correlation of between PM2.5 light-scattering sensors that worked for the entire
experiment and the T. Rubino reference [2].

Sensor ID
Day Hour

T. Rubino Median T. Rubino Median

25 0.954 0.997 0.881 0.995
29 0.920 0.935 0.824 0.920

145 0.890 0.885 0.811 0.882
147 0.932 0.975 0.854 0.959
156 0.953 0.987 0.871 0.975
158 0.939 0.983 0.858 0.973
167 0.914 0.979 0.854 0.976
211 0.916 0.975 0.843 0.967

Median 0.952 1.000 0.881 1.000

correlation between the median and the reference when moving from day to hour
averages.

Scatter plots of light-scattering sensors over the T. Rubino beta instrument are
shown in Figure 2.10 for both day and hour averages.

Summary

A summary of all the different analyses is reported in Figure 2.11 and in tabular form
in Table 2.10.

As expected, the highest correlation is between instruments of different tech-
nologies (beta and gravimetric), measuring the same PM size fraction at the same
monitoring site. For what concerns the correlation between PM10 and PM2.5 at
the same site, the variance is much greater between the different stations. This is
probably due to local phenomena and characteristics of the monitored location that
caused the ratio between the two size fractions to change during the monitoring
campaign. Therefore, even if, in some cases, a strong correlation is found, using
PM2.5 to estimate PM10 or vice versa can result in wrong assessments.

The correlation between instruments positioned in the same urban area, the City
of Turin, and measuring the same size fraction is very high. Nonetheless, it is lower
than the benchmark correlation given by reference instruments at the same location.
For PM10 there is more variance in the results, but this is due to the higher number of
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(a) Day averages. (b) Hour averages.

Fig. 2.10 Scatter plot of PM2.5 light-scattering sensor 25 over PM2.5 T. Rubino (µg/m3) [2].

instruments measuring this size fraction. When correlating PM10 and PM2.5 inside
the City of Turin, good results are still found, even if they are lower than correlations
between same size fractions. Instead, comparing sensors outside the City of Turin
with the station of T. Rubino leads to lower correlations and higher variance in the
results.

For what concerns low-cost light-scattering sensors, they achieve a good level of
correlation with the station of T. Rubino. However, they are below the benchmark
value of correlation between gravimetric and beta attenuation instruments in the same
location. Their performance is similar to the one of instruments located in the same
urban environment, also considering correlations between different size fractions.
Therefore, if other high-precision instruments are present in the same urban envi-
ronment, their usefulness is reduced when measuring daily averages. Nonetheless,
their contribution could be essential in places where official instruments are miss-
ing or very sparse. Finally, low-cost light-scattering sensors enable instantaneous
sampling, which is missing from most official monitoring sites. However, as shown
for hour averages, their correlation with the reference can decrease when increasing
the sampling frequency. Despite this, they could still provide interesting insights on
short-lived emission phenomena.
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Fig. 2.11 Mean, max, and average correlations for each analysis [2].

Table 2.10 Mean, max, and average correlations for each analysis [2].

Size and Location Mean Max Min

same size, same location 0.989 0.993 0.984
2.5 – 10, same location 0.952 0.987 0.875
2.5 – 2.5, within Turin 0.961 0.969 0.955
10 – 10, within Turin 0.964 0.981 0.945
2.5 – 10 within Turin 0.933 0.959 0.913
2.5 -2.5 outside Turin 0.846 0.968 0.032
2.5 – 10 outside Turin 0.769 0.941 0.095
2.5 -2.5, scatter 0.927 0.954 0.890



52 Low-cost particulate matter monitoring

RMSE analysis

In this section, the best performing low-cost PM sensor (sensor 25) and the official
instruments inside the City of Turin that measure PM2.5 are calibrated to target the
values produced by the PM2.5 beta attenuation device of T. Rubino. The capability
of the different calibrated instruments to predict the beta sensor at T. Rubino is
evaluated via RMSE and compared.

Starting from the dataset containing the daily measurement of the different
sensors, all days are removed for which at least one of them did not produce any
value. Data is not removed from all sensors if the missing values of one of the
sensors are exactly at the start or at the end of the measurement campaign. Then,
a simple linear regression is trained multiple times for each sensor, using a 30-day
rolling window with one-day shifts to select the training set. For each training model,
the sensor is calibrated for the entire period of the campaign, and its RMSE with T.
Rubino reference is computed.

The results are shown in Figure 2.12. Sensor 25 is compared with the beta
attenuation instruments of T. Lingotto and T.rebaudengo, and with the gravimetric
instrument of T. Lingotto. Data is missing at the beginning of the campaign for
the beta instrument of T. Lingotto, since this device was not available yet. The
graphs show that low-cost sensor 25 has an almost constant error with T. Rubino
independently of the calibration period, except during summer. This is in line
with what was observed in Section 2.5.2: low-cost sensor measurements during the
summer period are worse, since their error becomes comparable with the value being
measured, and this is reflected in the resulting calibration model.

The RMSE of the beta sensor of T. Lingotto is almost constant and lower than
the one of the light-scattering device. The same can also be said for the gravimetric
sensor at T. Lingotto; however, in this case, it seems to perform worse than the beta
sensor at the same location. The instrument of T. Rebaudengo is really close in
terms of error to sensor 25, but it is not affected by the calibration problems during
summer.

Finally, these images also show the importance of choosing the right training
period for the calibration model, since it can significantly affect the efficacy of the
resulting calibration.
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(a) T. Lingotto β and light-scattering sensor 25.

(b) T. Lingotto gravimetric and light-scattering sensor 25.

(c) T. Rebaudengo β and light-scattering sensor 25.

Fig. 2.12 RMSE (µg/m3) comparison between different instruments calibrated on T. Ru-
bino [2].
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Fig. 2.13 Precision and accuracy on hour averages of light-scattering sensor 25 over T.
Rubino beta [2].

Precision and accuracy of light-scattering sensors

Accuracy and precision of the calibrated and non-calibrated low-cost PM sensor 25
are computed w.r.t the beta attenuation instrument of T. Rubino on hour averages.
The results are shown in Figure 2.13. The sensor calibration is performed using
a simple linear regression model trained on the first 30 days of the measurement
campaign.

Accuracy is computed as the difference between the average reading of the sensor
for a certain value of the reference and the value of the reference itself. Precision,
instead, is computed as the standard deviation of the sensor’s readings for a specific
value of the reference. From the graphs, it can be seen that the calibration improves
both the accuracy and precision of the low-cost sensors for almost all values of the
reference. In addition, the calibrated sensor satisfies the accuracy declared on the
datasheet (± 15 µg/m3).

2.5.6 Conclusions

This analysis evaluates the performance of low-cost light-scattering PM sensors in
relation to other official instruments available in the Metropolitan City of Turin. The
objective is to understand the contribution that low-cost PM sensors can provide
when an official monitoring network is in place.
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Results show that, on day averages of PM2.5 concentrations, low-cost light-
scattering sensors have a correlation with high-precision beta instruments of the
station in which are located similar to the correlation of other official instruments
situated in the same urban environment, i.e., the City of Turin. Therefore, they can
be useful when the official monitoring sites are very sparse or missing.

Low-cost light-scattering sensors also have the benefit of providing higher fre-
quency sampling, which is not available for beta attenuation and gravimetric devices.
However, when the sampling rate is increased, they become less precise and accurate.
This is evaluated on hour averages, where they still reach a good correlation with
reference, even if it is significantly lower than for daily measurements. Finally, when
calibrated with a simple linear model, their accuracy on hour concentrations is in
line with what is specified by the manufacturer.

Calibration is also an interesting topic in the presented analysis. Selecting
the correct training period is essential to ensure the efficacy of the calibration.
Seasonality is a big factor in this: low-cost sensors are very noisy in summer due to
the high relative error with the reference, which leads to bad calibration models if
this period is used for training.

Future works should focus on evaluating their performance at higher sampling
rates, for example, using TEOM devices or high-precision light-scattering instru-
ments as reference. Low-cost sensors should also be evaluated on shorter time
intervals to better understand the effect of seasonality and meteorological changes.
Calibration models should be devised that take into account the sensitivity of low-
cost sensors to different environmental factors. Selection of calibration period,
duration, and re-calibration frequency, should all be further investigated. Fault and
anomaly detection techniques should be developed to automatically detect wrong
measurements and broken sensors.

Finally, different models of low-cost PM sensors, also from different manufac-
turers, should be evaluated. To this end, preliminary results on the third monitoring
campaign show improved performance of the light-scattering sensors w.r.t. the pre-
sented analysis. This could be due to the different technological implementation of
the low-cost PM sensors, or to the different environmental conditions to which they
were subjected during the experiment.
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2.6 Improving data quality

In this section, a data processing pipeline is introduced to improve the data quality
of low-cost light-scattering PM sensors. The objective of this work is to identify a
series of processing steps to be applied to the sensors’ readings to obtain accurate
measurements even in the presence of faults and anomalies. The process should
require as little human supervision as possible since, in real-world deployments, the
amount of data would be too large to be analyzed manually. In addition, algorithms
and models are chosen to preserve the explainability of the obtained results. In the
context of PM monitoring this is critical, since measurements could be used to define
air quality policies and urban development plans. Results of this work are published
in [3].

2.6.1 Dataset

The dataset is built starting from the data collected during the second monitoring
campaign, presented in Section 2.4.2, where fourteen low-cost monitoring stations
were positioned a official station T. Rubino for over one year, starting from October
10, 2020. For this analysis, only the PM2.5 measurements of the 56 low-cost light-
scattering sensors are considered, since the concentration of the other size fractions
is not measured directly but only estimated from PM2.5. Relative humidity readings
from the low-cost monitoring stations are also included in this work. Data from
low-cost sensors is not yet aggregated at this stage.

The hour PM2.5 measurements of the beta attenuation monitor of the ARPA
station of T. Rubino were also collected to be used as a reference. This instrument
does not provide reliable measurements below 4 µg/m3. Therefore, all readings
below this threshold are removed for this device.

2.6.2 Data exploration

This section discusses the calibration issues that this work tries to address and the
statistical properties of the collected data.
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Calibration issues

Previous work evaluated different calibration models for low-cost light-scattering
sensors [4]. It was concluded that Multivariate Linear Regression, selecting PM2.5
and relative humidity as independent variables, is an effective and relatively simple
choice to achieve this objective. The inclusion of humidity helps in mitigating
the negative effects that this quantity has on measurement accuracy, which were
discussed in Section 2.2.1. However, the effect of high relative humidity is not
linear [88, 90, 91], so the model cannot fully compensate for it.

Another observation is that, even if measurements related to permanent sensor
fault are removed, the presence of point anomalies in the training set leads to an
overcompensation of the correction performed by the resulting calibration model.
In fact, excessively small coefficients are often selected for PM2.5. This work
tries to address this limitation by removing outliers from the training set. This is
also supposed to lead to more robust calibration models, even in the presence of
occasional anomalies in the sensor’s readings.

For this analysis, the first three weeks of the data acquisition campaign, from
October 10 to October 31, 2020, are selected as training period. While a single
training period can affect the generality of the results, it helps in reducing the scope
and complexity of the overall evaluation. Being in autumn, the calibration is not
harmed by the issues that the sensors encounter during the summer months (see
Sections 2.5.2 and 2.5.5).

Data distribution

Literature indicates that PM concentrations often follow a log-normal distribu-
tion [138, 139]. This characteristic is also present in the data collected during
the calibration period, for both low-cost light-scattering sensors and the ARPA refer-
ence, as shown in Figure 2.14. This property is exploited by the processing pipeline
to filter and detect outliers, as will be presented in the following.
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Fig. 2.14 Distribution of hour averages of PM2.5 during first three weeks of the campaign
(calibration period) [3].

2.6.3 Proposed pipeline

The proposed pipeline is shown in Figure 2.15. The output of this process should
be calibrated and reliable sensor measurements, even in the presence of faults and
anomalies discussed in Section 2.5.2.

The first step is the detection and removal of measurements related to permanent
sensor faults. A simple failure detection algorithm is tuned and evaluated on the raw
readings of the low-cost PM sensors. In the second phase, different filters are tested to
mitigate the effects of sensor noise and point anomalies. Subsequently, a calibration
model is trained on hour averages of PM2.5 and relative humidity measurements of
the low-cost monitoring stations, automatically excluding outliers from the procedure.
The performance of the resulting per-sensor calibration is evaluated w.r.t the ARPA
reference. Finally, the median of the four calibrated low-cost PM sensors in each
station is used as the best estimator of PM2.5 concentrations, and compared to the
ARPA reference.

In the following of this section, each step in the pipeline is discussed in detail.

Failure detection

A simple algorithm is implemented to detect permanent low-cost PM sensor faults
characterized by reading getting stuck in the lower range of the measurement scale
(see Section 2.16). Figure 2.16 depicts the adopted approach. A rolling window is
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Fig. 2.15 Proposed data processing pipeline [3].
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Fig. 2.16 Fault detection algorithm [3].

used to select different sets of contiguous measurements. If the PM2.5 readings of
the sensor stay below the 2 µg/m3 threshold for the entire length of the window, the
sensor is marked as broken. This approach is applied to raw sensor measurements,
with the window shifting for every new data point that is acquired. The window
size, instead, is a tunable parameter of the algorithm. Tests are made using window
sizes ranging from 1 to 12 hours, to maximize the percentage of detected faults and
minimize false positives.

Filtering

The next step in the pipeline consists in filtering out point anomalies. As discussed in
Section 2.5.2, they are characterized by high-frequency noise and impulsive changes.
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Sometimes, these rapid and erroneous changes in the measured PM2.5 concentrations
can be maintained for multiple minutes. This behavior can be attributed to elements
getting stuck inside the sensors.

Filtering is performed on the raw per-second reading of the low-cost PM sensors,
after permanent faults are removed in the previous step. The performance of the
filters, instead, is evaluated on hour averages, to match the sampling frequency of
the T. Rubino reference.

Three different filters are tested:

• Low pass filter In order to ensure that the signal remains unchanged in the
bandpass, and to avoid alteration in the signal’s shape due to a stringent cut-off
band, an eighth-order Butterworth IIR filter is selected. The cut-off frequency
is chosen according to a previous work [140].

• Median filter This is chosen as a non-linear filter. The kernel size is also
defined according to a previous work [140].

• Z-score filter This filter is introduced to handle anomalies lasting for an
undefined period of time, probably due to elements getting stuck inside the
sensors. Due to their random duration, it is hard to define cut-off frequencies
and kernel sizes for the low-pass and median filters to correctly remove them.
The Z-score filter removes outliers based on the statistical distribution of
the sampled measurements. At first, the mean and standard deviation of the
sensor’s readings are computed. Then, the Z-score (z) of each data point
(x) is evaluated as its distance from the mean (µ), divided by the standard
deviation(σ ):

z =
x−µ

σ
(2.3)

In simple terms, its absolute value indicates how many standard deviations
a measurement is away from the sample mean. Filtering can be achieved by
setting a maximum threshold for the absolute value of the Z-score of the data
points. However, this process assumes that the measurements are normally
distributed. This is not the case, as discussed in Section 2.6.2, since they
follow a log-normal distribution. For this reason, the logarithm of the sensor’s
measurements is taken before applying the filter. To account for seasonality,



2.6 Improving data quality 61

the filter is separately applied to non-overlapping seven-day windows. A
z-score threshold of two is selected for this analysis.

Calibration model

Multivariate linear regression, using PM2.5 and relative humidity as independent
variables [4], is the calibration model chosen for this step. Training is performed
on data collected during the first three weeks of the measurement campaign, from
October 10th to October 31st, 2020. Both PM2.5 and relative humidity measurements
from the low-cost stations are aggregated to hour averages to match the granularity
of the reference instrument, i.e., the beta attenuation monitor of T. Rubino. The
calibrated model is then evaluated on the remaining part of the campaign. Both
training and test data come from the previous stages of the pipeline.

However, as discussed in Section 2.6.2, multivariate linear regression is affected
by the presence of outliers, in this case corresponding to point anomalies in the
low-cost PM2.5 measurements. Even if this aspect is already addressed in the
previous stages of the pipeline, during the training of the calibration model, which
is usually performed before deployment, the data from the reference instrument is
also available. This can be exploited to further improve outlier detection, excluding
anomalous data points from the training set and leading to a more reliable calibration
procedure. The objective of this approach is the automatic calibration of low-cost
PM sensors without the need for extensive human supervision. This is useful in
real-world scenarios, where the quantity of collected data is too high to be analyzed
manually.

The adopted approach is based on a Multivariate Gaussian Model (GM). This
model is fitted to the 2-dimensional data points of the training set, composed of
the low-cost PM2.5 measurements and the corresponding reference values. A one-
parameter probability distribution for the 2-dimensional data points can be defined
in function of the Mahalanobis distance from the sample mean:

dist(xi) =
√

(xi− xmean)Σ−1(xi− xmean)T (2.4)

where Σ is the covariance matrix of the multivariate Gaussian distribution. Intu-
itively, the farther a data point is from the sample mean, the lower is its probability
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of having been measured. Therefore, outliers can be removed by excluding data
points that are at a farther distance from the center of the distribution. Different
approaches can be used to select this distance. A simple approach is to exclude
a fixed percentage of the less probable (or more distant) data points. However,
this method poorly generalizes to the specific case of each sensor. Therefore, the
threshold is defined in terms of a probability. Given the distance of a datapoint xi,
the probability of measuring a value x at a greater distance is [141]:

p(x|dist(x)≥ dist(xi)) = e−(dist(xi)
2)/2 (2.5)

This formula provides a way to convert the distance of a data point from the
sample mean to its probability of having been measured. When the distance of each
data point is converted to a probability, filtering can be implemented by defining a
threshold.

However, as discussed in Section 2.6.2, the data distribution of both the sen-
sors’ data and the reference follows a log-normal distribution. Therefore, the hour
measurements of both the sensors and the reference residing in the training set
are fitted with a log-normal distribution using the scypi [142] software package
(scipy.stats.lognorm.fit). This allows for the estimation of the shift parameter of the
distribution, which can be used to perform a more precise transformation of the data
points to make them follow a Gaussian distribution:

normal = ln(lognormal− shi f t) (2.6)

The outlier detection process can now be applied to the transformed data. In order
to ensure the correctness of the log-normal-to-normal transformation, a normality
test can also be conducted on the transformed data. Finally, measurements can be
transformed back and used for the training of the Multivariate Linear Regression.

In the presented work, a probability threshold of 5% is used for all sensors.
In addition, before starting the calibration process, low-cost PM sensors with a
correlation with the reference lower than 0.65 during the training period are excluded.
The reason is that if a sensor is already broken during calibration, it should not be
considered for deployment.
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2.6.4 Results

This section presents the evaluation of every step in the proposed pipeline.

Failure detection

Six different window sizes are tested for the failure detection algorithm: 1, 2, 4,
8, and 12 hours. The algorithm is considered to be successful if the failure is
recognized in less than two weeks from the moment it manifests. Results are shown
in Tables 2.11 and 2.12. Accuracy, Precision, Recall, and F1-Score are evaluated as
follows:

accuracy =
TruePositives+TrueNegatives

Positives+Negatives
(2.7)

precision =
TruePositives

TruePositives+FalsePositives
(2.8)

recall =
TruePositives

TruePositives+FalseNegatives
(2.9)

F1score = 2× precision× recall
precision+ recall

(2.10)

As can be seen, smaller window sizes increase the probability of False Positives,
while large ones increase the probability of False Negatives. The 12-hour window is
selected as the best solution, since it provides better accuracy and precision with only
a small reduction in the recall. It is also important to note that the False Negatives
are mainly due to sensors consistently measuring highly noisy data before getting
stuck at the bottom of the measurement scale. Detecting these types of faults is more
difficult and would require a better understanding of the underlying cause.

Filtering

Filters are applied to the per-second data produced by the PM2.5 sensors. Their
performance is evaluated on hour averages w.r.t. to the T. Rubino reference using
multiple metrics: Root Mean Squared Error (RMSE), Mean Absolute Error (MAE),
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Table 2.11 Window size evaluation for failure detection: True Positives (TP), False Positives
(FP), False Negatives (FN), True Negatives (TN) [3].

Window size (hours) TP FP FN TN

2 28 13 7 8
3 31 7 9 9
4 32 5 9 10
8 32 3 10 11
12 32 0 11 13

Table 2.12 Window size evaluation for failure detection [3].

Window size (hours) Accuracy Precision Recall F1-Score

2 0,643 0,683 0,800 0,737
3 0,714 0,816 0,438 0,570
4 0,750 0,865 0,780 0,821
8 0,768 0,914 0,762 0,831

12 0,804 1,000 0,744 0,853

Person correlation (r2), and the percentage of improved/worsened measurements.
Results are shown in Table 2.13, where the metrics are averaged between all the
considered sensors. Among all, the Z-score filter achieves better performance in
terms of reduced RMSE and increased correlation. It was also tried in combination
with the median filter, which also achieved good performance, but the combined
result was not satisfactory. Therefore, the Z-score filter is the one selected to be used
in this step of the pipeline.

Table 2.13 Filter evaluation by comparing hour averages with T. Rubino. Metrics are averaged
between the different sensors [3].

Filter RMSE MAE r2 Improved Worsened
(µg/m3) (µg/m3) (%) (%)

Raw Data 18,642 13,226 0,810 - -
Low Pass Filter 18,724 13,268 0,808 1,160 0,553
Median Filter 18,558 13,162 0,812 0,592 0,178
Z-Score 18,042 13,176 0,822 2,161 2,151
Median + Z-Score 18,443 13,169 0,815 1,873 2,320
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Table 2.14 Comparison between different calibration models. Metrics are averaged between
sensors [3].

Calibration model RMSE MAE r2 R2

(µg/m3) (µg/m3)

PM + Hum 9,608 7,149 0,857 0,670
PM + Hum + GM 9,125 6,744 0,857 0,692
Filtered PM + Hum 9,185 6,960 0,865 0,677
Filtered PM + Hum + GM 8,976 6,681 0,866 0,700

Calibration

The calibration models are evaluated by excluding sensors exhibiting permanent
faults that were not detected during the failure detection phase. This is done to
independently assess the efficacy of the calibration. In any case, the combined
performance will be presented in the next section.

The base reference model is a Multivariate Linear Regression using PM2.5 and
humidity as independent variables (PM + Hum). The model is then evaluated on
Z-score filtered data (Filtered), used in both training and testing, and by removing
outliers from the training set via the Multivariate Gaussian Model (GM). These two
approaches are tested both separately and together. Results are shown in Table 2.14
and Figure 2.17.

Table 2.14 presents a global overview of the improvements that are achieved
over the reference model (PM + Hum). Metrics are averaged between sensors. It can
be seen that both approaches, if used independently, are able to reduce RMSE and
MAE, while also increasing correlation and the coefficient of determination (R2).
However, the combination of the two achieves the best result.

The violin plots in Figure 2.17 show that the proposed solution also helps in
limiting the variance of correlation and RMSE between the different sensors. This
highlights the efficacy of filtering and outlier removal (GM) in handling sensor
anomalies, leading to a more stable and resilient calibration.
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Fig. 2.17 RMSE and correlation distribution for each calibrated sensor (black dots). The
white lines represent the sensors’ average [3].

Overall evaluation

The overall evaluation of the pipeline is conducted by considering each low-cost
monitoring station as a whole. The median of the hour averages of the installed
PM2.5 sensors is taken for each station. This is done after each of the sensors has
been processed by the entire pipeline. Finally, the resulting PM2.5 measurement
time series of each station is compared to the reference. Similarly, base reference
time series are generated for each monitoring station as the median of their sensors,
which are calibrated using standard Multivariate Linear Regression.

Table 2.15 shows the average performance achieved by the different stations for
both the base reference (PM + HUM) and the proposed pipeline. As it can be seen,
the proposed approach manages to improve all metrics. In addition, thanks to the
four sensor redundancy, the resulting performance is equivalent or superior to what
is achieved by calibrating the single sensors (see Table 2.14).

By analyzing the box plots in Figure 2.18, it can be seen that variance in the
sensors’ performance is also reduced by the introduced pipeline. However, some bad-
performing stations are still present. This is due to faults and anomalies occurring for
more than two low-cost PM sensors in the same station, that are not identified and
corrected by the pipeline. Even if infrequent, these problems should be addressed in
future work.
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Table 2.15 Comparison between reference and proposed pipeline. Metrics are averaged
between stations [3].

Calibration model RMSE MAE r2 R2

(µg/m3) (µg/m3)

PM + Hum 9,006 6,757 0,858 0,654
PM + Hum + GM Filtered 8,462 6,241 0,868 0,725
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Fig. 2.18 RMSE and R2 distribution for the different monitoring stations: comparison
between reference and proposed pipeline [3].
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2.6.5 Conclusions

A data processing pipeline to improve the data quality of low-cost light-scattering
PM sensors is introduced. The objective of this solution is to define a series of
processing steps to apply to the sensors’ readings to obtain accurate measurements
even in the presence of faults and anomalies. The process should require as little
human supervision as possible since, in real deployment, the amount of collected
data can be too high to be analyzed manually. In this study, the measurements
collected during the second monitoring campaign, described in Section 2.4.2, are
used. The proposed solution also focuses on the explainability of the adopted models,
since transparency is essential in the context of air quality monitoring.

The pipeline is designed to achieve multiple objectives. At first, it detects and
removes permanent sensor failures via a simple threshold algorithm. Secondly,
high-frequency noise and point anomalies are removed by a carefully selected
filtering algorithm. In the subsequent step, calibration is performed by automatically
identifying and removing the remaining outliers in the training set. Finally, the
redundancy provided by the four low-cost PM sensors in each station is exploited by
taking their median.

Results show that the proposed approach is able to increase the reliability of
low-cost PM2.5 measurements across multiple metrics. In addition, the variance
in performance is reduced between both sensors and overall stations, showing the
efficacy of the solution in handling failures and anomalies.

Future works should further challenge the effectiveness and generality of the
proposed approach by testing on different calibration periods. In addition, the effects
of environmental conditions, especially the ones related to relative humidity, should
be carefully considered and better characterized in the calibration model. Studies
should also be performed in different scenarios, e.g., high-traffic areas, where the
statistical distribution of the data might change. Different models of low-cost PM
sensors, also from different manufacturers, should be considered. Finally, neural-
network-based models should also be tested and compared, even if they preclude the
explainability of the obtained results.
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2.7 Duty cycle evaluation

In this section, it is analyzed how the introduction of a duty cycle, with the objective
of reducing wear and power consumption, affects the measurement quality of low-
cost light-scattering sensors. Starting from the data collected during the second
monitoring campaign, presented in 2.4.2, sensor measurements are re-sampled by
simulating different duty cycles. The obtained signals are compared to both the
original ones and to the high-precision ARPA reference. Results are published in [6].

2.7.1 Dataset

The dataset contains the per-second measurements of the low-cost monitoring stations
during the first 6 months of the second monitoring campaign, described in 2.4.2. In
this campaign, fourteen low-cost monitoring stations were positioned at the official
station T. Rubino, in the City of Turin, Italy. Being a background location, PM levels
are not expected to change rapidly. For this analysis, only PM2.5 measurements are
considered, since the other size fractions are not measured directly but are estimated
from PM2.5. Low-cost relative humidity measurements are also included in the
dataset. The hour measurements of the high-precision beta attenuation monitor of
the ARPA station are collected for the same period.

2.7.2 Pre-processing

The first step is to remove faulty light-scattering sensors, since their presence would
conceal the effect of introducing a duty cycle. Hour averages of the PM2.5 mea-
surement of each low-cost sensor are computed, and compared with the ARPA
reference.

Only sensors with a correlation higher than 0.82 with the official instrument
are included in the analysis. This threshold provides a good trade-off between
the number of discarded sensors and the quality of the measurements. A visual
inspection is also carried out by plotting the hour averages of the measurements
against the reference, and looking for evident anomalies of faults. Sensors that did
not work properly, even for just a portion of the measurement campaign, are removed
from the analysis. From a total of 56 PM sensors, only 24 are selected.
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This work wants to analyze both raw and calibrated data. For this reason, a
Multivariate Linear Regression model, using both PM2.5 and relative humidity as
independent variables, is adopted for calibration. The model is trained on the hour
averages of the low-cost sensors’ measurements, targeting the ARPA reference. The
training set consists of the first two weeks of the measurement campaign.

The per-second PM2.5 measurements of the low-cost sensors are calibrated
using the trained model. However, this also requires having relative humidity
measurements for every second. Since the low-cost humidity sensors only provide
readings every 3-4 seconds, the missing measurements are filled using the last known
value.

Finally, all data corresponding to the training period is removed from the analysis.
In order to maintain a similar number of samples between the different months, the
entire month of October, containing the data used for training, is discarded.

2.7.3 Methodology

The per-second PM2.5 measurements of the low-cost PM sensors are re-sampled to
simulate the introduction of a duty cycle. The duty cycle and the length of its period
are selected as follows:

T = 2xseconds (2.11)

DC = 2yseconds/T (2.12)

By varying x and y, multiple combinations of duty cycles and period lengths are
selected. x is varied in the range [0, 10] to ensure that at least one sample is taken
every hour. y, instead, is varied in the range [0, x). This methodology for selecting
periods and duty cycles simulates exponential changes in the operating time of the
PM sensors. As a consequence, a broader exploration of the search space is achieved.

Finally, for each sensor and for each combination of duty cycle and period, the
hour averages are recomputed. The resulting measurement time series are compared
with the ARPA reference using both RMSE and Pearson correlation, and the results
are averaged between sensors. The analysis is carried out for both raw and calibrated
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Fig. 2.19 Correlation and RMSE with respect to the raw full data for different periods and
duty cycles [6].

data. The same evaluation is then repeated by partitioning the data according to the
different hours of the day and the different months.

As a final note, it is important to mention that the actual sensors require six
seconds after startup to provide reliable measurements. Therefore, the actual duty
cycle will be higher than the simulated one.

2.7.4 Results

Figure 2.19 reports the correlation and RMSE evaluated between the original and the
re-sampled sensor data, considering all the different combinations of period and duty
cycle. When increasing the period and reducing the duty cycle, the information loss
is clearly visible for both the considered metrics. However, even in the worst case, the
variations of correlation and RMSE are minimal (0.007 and 3µg/m3, respectively).

Figure 2.20 compares the re-sampled signals to the ARPA reference using the
same metrics. The trends remain the same, even if some exceptions are present. As
expected, the overall correlation and RMSE w.r.t the reference are lower than with the
original signal. However, their variation is reduced across the different combinations
of duty cycles and periods: the range of variation of the correlation decreases from
0.007 to 0.003, while the one of the RMSE from 3µg/m3 to about 0.2µg/m3. This
is probably due to the fact that the inaccuracy of the low-cost sensors conceals the
information loss induced by the duty cycles.
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Fig. 2.20 Correlation and RMSE of raw data with respect to the ARPA reference for different
periods and duty cycles [6].
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Fig. 2.21 Correlation and RMSE of calibrated data with respect to the ARPA reference for
different periods and duty cycle [6].

The situation remains similar after applying the calibration (Figure 2.21). Cali-
bration increases the overall accuracy, reducing RMSE, but does not affect precision,
since the correlation remains similar. Concerning the range of variation of correlation
and RMSE, there are no significant changes from the scenario without calibration.
Correlation varies by 0.003 between all the considered combinations of duty cycles
and period, while RMSE by 0.2µg/m3.

The second part of the analysis, instead, focuses on evaluating the effects of the
different duty cycles and periods during different months and hours of the day. The
objective is to understand whether a dynamic duty cycle schedule could be effective
in reducing power consumption while maintaining data quality. In fact, the speed
at which PM2.5 concentrations vary can be affected by the different environmental
conditions that are encountered during the day or the year (e.g., peak hour traffic and
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seasonal changes). These analyses are carried out using calibrated data and ARPA
as a reference.

Figure 2.22 shows that the effect of introducing a duty cycle is negligible w.r.t the
variation of correlation and RMSE during the day. In addition, it is possible to see
that correlation notably worse from midnight to 9 a.m.. This is probably due to the
harsher environmental conditions that are encountered, i.e., higher humidity levels
and lower temperatures. For what concerns RMSE, the increase in measurement
error in certain hours is consistent with the increase of PM2.5 levels during the same
hours.

Figure 2.23 shows the results of the analysis conducted over different months.
Also, in this case, the influence of the duty cycle is negligible w.r.t to the variation
in correlation and RMSE between the different months. The month of November
represents an outlier in terms of both correlation and error, probably due to the very
high humidity levels that were encountered.

2.7.5 Conclusion

In conclusion, results show that, even when the power-on time of the sensors is
substantially reduced by the introduction of a duty cycle, the effects on hour measure-
ment quality are negligible w.r.t. the original signal and the high precision reference.
This is also true when different months or hours of the day are separately considered.
In fact, the variation of correlation and error during the day and the year greatly
exceeds the imprecision added by the duty cycle operation.

Therefore, the study shows that the reduction of the sensor duty cycle can be a
viable solution to increase device lifetime, reduce maintenance costs, and limit power
consumption. This could result in wider and more manageable sensor deployments.

A limitation of this work is that it only considers a low-traffic environment. Future
works should validate the results presented in this study in high-traffic conditions.
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Fig. 2.22 Correlation and RMSE of calibrated data with respect to the ARPA reference for
different hours of the day [6].



2.7 Duty cycle evaluation 75

al
l

1_
2

2_
4

1_
4

4_
8

2_
8

1_
8

8_
16

4_
16

2_
16

1_
16

16
_3
2

8_
32

4_
32

2_
32

1_
32

32
_6
4

16
_6
4

8_
64

4_
64

2_
64

1_
64

64
_1
28

32
_1
28

16
_1
28

8_
12

8
4_
12

8
2_
12

8
1_
12

8
12

8_
25

6
64

_2
56

32
_2
56

16
_2
56

8_
25

6
4_
25

6
2_
25

6
1_
25

6
25

6_
51

2
12

8_
51

2
64

_5
12

32
_5
12

16
_5
12

8_
51

2
4_
51

2
2_
51

2
1_
51

2
51

2_
10

24
25

6_
10

24
12

8_
10

24
64

_1
02

4
32

_1
02

4
16

_1
02

4
8_
10

24
4_
10

24
2_
10

24
1_
10

24

Selected_Period

11
12

1
2

3
M
on

th

0.74

0.76

0.78

0.80

0.82

0.84

0.86

0.88

0.90

Correlation

al
l

1_
2

2_
4

1_
4

4_
8

2_
8

1_
8

8_
16

4_
16

2_
16

1_
16

16
_3

2
8_

32
4_

32
2_

32
1_

32
32

_6
4

16
_6

4
8_

64
4_

64
2_

64
1_

64
64

_1
28

32
_1

28
16

_1
28

8_
12

8
4_

12
8

2_
12

8
1_

12
8

12
8_

25
6

64
_2

56
32

_2
56

16
_2

56
8_

25
6

4_
25

6
2_

25
6

1_
25

6
25

6_
51

2
12

8_
51

2
64

_5
12

32
_5

12
16

_5
12

8_
51

2
4_

51
2

2_
51

2
1_

51
2

51
2_

10
24

25
6_

10
24

12
8_

10
24

64
_1

02
4

32
_1

02
4

16
_1

02
4

8_
10

24
4_

10
24

2_
10

24
1_

10
24

Selected_Period

11
12

1
2

3
M

on
th

9.0

9.5

10.0

10.5

11.0

11.5

12.0

RMSE (μg/m3)

Fig. 2.23 Correlation and RMSE of calibrated data with respect to the ARPA reference for
different months [6].
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2.8 Backend infrastructure

A backend infrastructure is created to support the transmission, storage, visualization,
and retrieval of data generated by the low-cost monitoring stations that implement
the new design (see Section 2.4.1). However, it can also be adapted to work with any
IoT device that is able to send data via the MQTT protocol. This section starts by
describing the base architecture. Then, it shows how it is customized and integrated
with external services for the crossroad experiment described in Section 2.4.2.

2.8.1 Architecture

Figure 2.24 depicts the backend architecture that is designed to support efficient data
collection, storage, visualization, and retrieval. All software services are deployed as
Docker [143] containers. Docker allows the creation of portable software applications
that can be easily deployed, managed, and replicated across various environments.

The low-cost monitoring stations send their measurements via MQTT messages
that are received by the MQTT Broker. A dedicated client connects to the broker
to receive and parse the messages of the stations. Subsequently, the extracted
measurements are inserted into the database. Software schedulers process and enrich
the stored information at regular intervals, by computing measurement averages and
by accessing external services (e.g., to retrieve meteorological data). The Web-API is
designed to support visualization and data analysis use cases, by providing endpoints
to query the stored measurements. Finally, a dashboarding application is configured
for real-time monitoring of the data sent by the low-cost stations.

Broker

The MQTT broker is in charge of receiving and delivering MQTT messages to all
connected clients. The MQTT protocol is described in Section 1.2.3. It operates
via a publish-subscribe pattern, where communication channels are represented by
topics of interest. Clients can define topics and publish messages on them. Messages
are then received by all the clients subscribed to the corresponding topics.

In this architecture, the low-cost monitoring stations use pre-defined topics to
publish the collected measurements. In order to reduce overhead, messages are
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Fig. 2.24 Backend architecture [7].

sent with a Quality of Service (QoS) level equal to zero. Therefore, there are no
guarantees on their delivery. Higher QoS levels could be used to transmit control
messages to and from the monitoring stations, but this functionality has not yet been
implemented.

Due to its simplicity and ease of configuration, Mosquitto [144] was selected as
the MQTT broker for this infrastructure. However, some limitations were encoun-
tered during development, mostly related to user management and authorization.

MQTT Client

An MQTT client, developed in Python [145] using the paho-mqtt library [146], con-
nects to the broker and retrieves the messages coming from the low-cost monitoring
stations. In order to achieve this, the client obtains information about the deployed
stations from the database and subscribes to their topics. When a measurement packet
is received, the client parses its content and inserts the contained measurements in
the database.

Database

The Database Management System (DBMS) adopted by the infrastructure is MySQL
[147]. Being a well-documented and established open-source solution, it was selected
to simplify the development process. However, time-series-oriented databases, such
as Timescale [148] and Influx DB [149], should also be evaluated in the future.
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MEASURE

PK,FK sensorId UNSIGNED SMALLINT
PK timestamp DATETIME(0)

data FLOAT

LOGICAL_SENSOR

PK sensorId UNSIGNED SMALLINT
FK boardId INTEGER
FK unitId INTEGER
N acqTime TIME
N description VARCHAR(256)

BOARD

PK boardId INTEGER
FK,N vendorModelId INTEGER
N serialNumber VARCHAR(60)

VENDOR_MODEL

PK modelId INTEGER (auto)
vendor VARCHAR(60)
model VARCHAR(60)

LOGICAL_PHYSICAL_CONNECTION

PK connectionId INTEGER(auto)
FK logicSensorId UNSIGNED SMALLINT
FK phSensorId INTEGER

timestamp DATETIME(0)
boardPin INTEGER

PHYSICAL _SENSOR

PK sensorId INTEGER
FK,N vendorModelId INTEGER
N serialNumber VARCHAR(60)
N firstUse DATETIME(0)
N description VARCHAR(256)

UNIT_OF_MEASURE

PK unitId INTEGER (auto)
quantityName VARCHAR(30)
unitOfMeasure VARCHAR(30)

BOARD_CONFIG

PK configId INTEGER (auto)
FK boardId INTEGER
FK paramId INTEGER

timestamp DATETIME(0)
paramValue VARCHAR(60)

PARAM_TYPE

PK paramId INTEGER (auto)
name VARCHAR(30)

N description VARCHAR(256)

EXPERIMENT

PK experimentId INTEGER (auto)
name VARCHAR(60)

N description VARCHAR(256)

BOARD_EXPERIMENT

PK boardExperimentId INTEGER (auto)
FK experimentId INTEGER
FK boardId INTEGER
N startTime DATETIME(0)
N endTime DATETIME(0)
FK,N locationId INTEGER

UNIQUE constraint on (boardId,
paramId, timestamp)

UNIQUE constraint on
(logicSensorId, timestamp)

BOARD_LOCATION

PK locationId INTEGER (auto)
locationName VARCHAR(30)

N latitude FLOAT
N longitude FLOAT
N altitude FLOAT

UNIQUE constraint on
(serialNumber)

Fig. 2.25 ER diagram of the database [7].

The database schema, reported in Figure 2.25 as an ER diagram, is designed
to support a general data-collection use case for IoT systems. The BOARD table
represents an IoT device containing multiple sensors. Each BOARD is characterized
by a serial number and a vendor, which is externally referenced via a foreign key
from the VENDOR_MODEL table. Each IoT device generates multiple time series
of measurements. These are represented by the LOGICAL_SENSOR table. This
table references the BOARD that generated the time series via a foreign key, and
contains additional properties such as the sampling frequency and the quantity being
measured. The measured quantity is described by the UNIT_OF_MEASURE table,
which is also referenced via a foreign key. Each UNIT_OF_MEASURE contains the
name of the measured quantity and the measurement unit in which it is expressed.

The MEASURE table is a fundamental component in the design. It is used to store
the single acquisitions of each LOGICAL_SENSOR. Each measurement is expressed
as a tuple in the format (sensorId, timestamp, data). The composite primary key of
the table is defined by the tuple (sensorId, timestamp). Due to its lower cardinality,
sensorId is selected as the first column in the composite key, providing a speedup
when filtering for this parameter.
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Since each single measurement results in an entry in the MEASURE table, it
is of great importance to reduce its size as much as possible to save disk space.
For this reason, sensorId is chosen to be an UNSIGNED_SMALL_INT, an data to
be expressed in single precision, occupying respectively two and four bytes. The
timestamp of the measurement, instead, is represented by a DATETIME data type
with no fractional part for seconds, occupying only five bytes. This data type also
does not execute timezone conversion before storage and retrieval, which is useful
since the entire infrastructure always expresses time in UTC. In total, only eleven
bytes are used to save each measurement. Unfortunately, this optimization results
in a limitation in terms of measurement precision, number of LOGICAL_SENSORs,
and sampling frequency. However, according to the use case, the size of the data
types can be changed.

The PHYSICAL_SENSOR table represents the sensor hardware that produces the
measurement time series described in the LOGICAL_SENSOR table. Among other
things, this table provides information about the age of the sensor via the firstUse
column. PHYSICAL_SENSORs and LOGICAL_SENSORs are related via the LOGI-
CAL_PHYSICAL_CONNECTION table. This allows for the representation of sensors
that measure multiple quantities and the tracking sensor replacements due to failures.
In case of replacement, the new sensor will act as the same LOGICAL_SENSOR(s).

The BOARD_CONFIG table is used to track the configuration of different board
parameters, represented by the PARAM_TYPE table. Instead, the EXPERIMENT,
BOARD_EXPERIMENT, and BOARD_LOCATION tables are used to track the usage
of the IoT devices across different measurement campaigns and deployments. To
express device movement, it is possible to keep the locationId unspecified in the
BOARD_EXPERIMENT table, and define logical sensors representing the time series
of device positions. These time series can coincide with the log of a GPS sensor, if
installed on the device.

Figure 2.26 shows the ER diagram of additional tables used to store data ag-
gregations. The FIVE_MIN_AVG_MEASURE and HOUR_AVG_MEASURE tables
contain measurements aggregated, respectively, over five minutes and one hour. In
addition to the average, the maximum, and the minimum, the standard deviation of
the aggregated data points can also be computed and stored. The identifier of the
aggregated time series (sensorId) is the same as for the original LOGICAL_SENSOR.
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VIEW_UPDATE

PK name VARCHAR(60)
lastUpdate DATETIME(0)

FIVE_MIN_AVG_MEASURE

PK,FK sensorId UNSIGNED SMALLINT
PK timestamp DATETIME(0)

avg FLOAT
max FLOAT
min FLOAT
std FLOAT

HOUR_AVG_MEASURE

PK,FK sensorId UNSIGNED SMALLINT
PK timestamp DATETIME(0)

avg FLOAT
max FLOAT
min FLOAT
std FLOAT

Fig. 2.26 ER diagram of aggregation tables [7].

Finally, the VIEW_UPDATE table records the time at which each aggregation table
was last updated.

Scheduler

Multiple schedulers are defined to carry out specific operations at regular time in-
tervals. These are implemented using the APScheduler [150] Python library. Their
main task is to continuously update the data aggregations that are stored in the
FIVE_MIN_AVG_MEASURE and HOUR_AVG_MEASURE tables. The aggregated
measurements are useful in reducing the load on the API and database when down-
loading historical data for analysis and visualization. From the VIEW_UPDATE
table, it is also possible to recompute past aggregations by changing the lastUpdate
field related to the aggregation table of interest, by setting it to an older timestamp.
All more recent aggregations will be recomputed and updated. Finally, schedulers
can be used to retrieve information from external sources, e.g., a weather API for
reference meteorological conditions.

Web API

The web API, implemented using Flask [151] Python library, allows external services
and users to access the information stored in the database. Endpoints are defined
to retrieve either raw or aggregated data. In addition, the API can perform specific
second level aggregations, adapt the format of the stored data to the designated



2.8 Backend infrastructure 81

visualization service, and limit the amount of measurements that can be queried in a
single invocation.

Dashboard

The dashboarding application utilized by the system is Grafana [152]. It is an
open-source tool for real-time data visualization and analytics. Grafana is used to
achieve two main objectives. The first is to monitor the data received from the IoT
devices, in order to understand whether there are problems related to data collection
or transmission. Condition-based rules can also be defined to trigger alarms for
system administrators. For this used case, Grafana is configured to query the database
directly.

The second objective is to provide data visualization to end users. Graphs
updating in real-time can be created and embedded in custom web applications. For
this use case, Grafana is configured to access ad-hoc API endpoints.

2.8.2 Crossroad experiment

The crossroad experiment is conducted within a project involving external partners.
Therefore, the architecture needs to be adapted for the specific use case, which
requires its integration with external services. The objective of this work is to
implement a proof-of-concept infrastructure that exploits blockchain technologies to
provide validation for the collected data. The main idea is to group measurements in
blocks, compute their hash values, and store the result inside a blockchain. Every
entity or end user that gets in possession of the data related to the experiment can
verify its validity by querying the blockchain. The overall architecture is shown in
Figure 2.27.

Low-cost monitoring stations measure PM2.5 concentration at various points of
interest. Every minute, an MQTT message containing the measurements is sent to
the broker via a 5G cellular network. An MQTT client subscribes to the relevant
topics on the broker to receive the measurements in real time, saving them in the
database. The measurements are made accessible to stakeholders through a Web
API.
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Fig. 2.27 Backend architecture for crossroad experiment [5].

A software application, acting as an intermediary for the blockchain, also sub-
scribes to the broker to receive real-time measurements. For each board, it concate-
nates the measurements received during the hour and calculates their hash. The hash
of the measurements, along with additional metadata, forms an hourly summary
packet. The hash of this summary packet is inserted into the blockchain. The sum-
mary packet is then sent via the MQTT broker to the MQTT client, which saves the
summary information in the database.

The user receiving the measurements and metadata through the Web-API can
reconstruct the summary packet and verify the presence of the hash in the blockchain.
To do this, a reference implementation of the verification client is provided. To check
the presence of the hash in the blockchain, a dedicated API is created.

Board messages

Every minute, each station sends an MQTT message containing the collected mea-
surements to the broker. The payload of the message is a JSON object structured as
shown in Listing 1.

The meaning of the fields is the following:

• block_ts is the timestamp at which the packet is sent, expressed in Unix time.

• board_id is the numerical identifier of the station.
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{
"block_ts": integer,
"board_id": integer,
"data": string

}

Listing 1 Payload of MQTT messages sent by stations.

Fig. 2.28 Binary format for measurement.

• data is the base64 encoding of the binary measurement packet.

The tuple (block_ts, board_id) is used to uniquely identify the binary measure-
ment packet. The binary measurement packet is composed by the concatenation of
measurements expressed in the binary format detailed in Figure 2.28.

All fields are formatted in network byte order (Big Endian) for compatibility
across different architectures. All fields are numeric and contain unsigned integers,
except for SensorType, which contains an ASCII character. The meaning of the fields
is the following:

• Unix Timestamp: measurement timestamp in Unix time.

• Sensor ID: identifier of the LOGICAL_SENSOR.

• Sensor type: identifies which is the quantity being measured and the respective
encoding.

• Measurement: measured value, encoded according to the measurement type to
be expressed as an unsigned integer.

The Sensor Type for each measured quantity is shown in Table 2.16. In addition,
the table shows the formulas that are used to convert measurements of different
Sensor Types into unsigned integer values.
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Table 2.16 Encoding for measured quantities.

Quantity Sensor Length Conversion Range Resolution Unit
Type (bytes) formula

Temperature ’T’ 2 (x+40)×100 -40 to 80 0.01 Celsius
Humidity ’H’ 2 x×100 0 to 100 0.01 %
PM2.5 ’P’ 2 x 0 to 10000 1 µg/m3

Pressure ’A’ 4 x×10000 300 to 1100 0.001 hPa
GPS coord. ’G’ 4 (x+180)×106 -180 to 180 10−6 Degrees

Summary packets

The Blockchain Intermediary creates a measurement file for each station by con-
catenating the data fields of all the board messages received in one hour. The
measurement file is only needed to create the summary packet, and then it is dis-
carded. The summary packet is sent to the MQTT client, which saves the stored
information inside the database. Finally, the hash of the summary packet is inserted
in the blockchain. The format of the summary packet created by the Blockchain
Intermediary is shown in Listing 2.

{
"created": <string_timestamp>,
"board_id": <station identifier>,
"timestamps": [ <array of block_ts> ],
"size": <size in bytes of file>,
"number": <number of payloads collected in the file>,
"ip": <IP address of board>,
"hash": <SHA-256 hash of file>

}

Listing 2 Summary packet

The meaning of the different fields is the following:

• created: the timestamp at which the summary packet is created.

• board_id: the identifier of the station that generated the board messages
included in the summary.
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• timestamps: the array of ordered block_ts fields from the board messages
included in the summary.

• size: the size in bytes of the measurement file.

• number: the number of board messages received from the station during one
hour.

• ip: the IP address of the station sending the board messages.

• hash: the hash of the measurement file.

Database tables

Figure 2.29 shows the changes that were made to the database tables to support
the measurement verification procedure via the blockchain. These allow for the
reconstruction of the board messages coming from a station and, subsequently, for
the computation of the hash of the measurement file related to each summary packet.
The obtained hash values are compared to the ones contained in the summary packets
received from the Blockchain Intermediary. Finally, the hash of each summary
packet can be computed to check its presence in the blockchain.

The PACKET_MEASURE table substitutes the MEASURE_TABLE by adding
information about the PACKET (board message) that contains the measurement and
the position of the measurement inside the packet. The PACKET table, instead,
represents a board message coming from a station. It references via foreign key the
BOARD table representing the station, and contains the timestamp at which the board
message is sent (block_ts).

The PACKET_SUMMARY table stores the the received summary packets. The
PACKET_CONNECTION table, instead, is used to link the PACKET_SUMMARY to
the contained PACKETs. This relation is not implemented via foreign key, because
board messages and summary packets can arrive in any order and at different times.
Therefore, PACKET_CONNECTION stores the timestamp of each board message
contained in the summary. The timestamp, together with the station identifier stored
in the PACKET_SUMMARY table, uniquely identifies the board message inside the
PACKET table. Finally, all PACKETs contained in the PACKET_SUMMARY can
be re-ordered using the packetPosition field stored in the PACKET_CONNECTION
table.
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PACKET

PK packetId BIGINT (auto)
FK boardId INTEGER

timestamp DATETIME(0)

PACKET_SUMMARY

PK packetId BIGINT (auto)
FK boardId INTEGER

created DATETIME(0)
ip VARCHAR(45)
sha256 VARCHAR(64)

PACKET_CONNECTION

PK packetConnectionId BIGINT(auto)
FK packetSummaryId BIGINT

timestamp DATETIME(0)
packetPosition INTEGER

UNIQUE constraint on
(boardId, created)

UNIQUE constraint on
(boardId, timestamp)

PACKET_MEASURE

PK measureId BIGINT (auto)
FK sensorId UNSIGNED SMALLINT

timestamp DATETIME(0)
data DOUBLE

FK packetId BIGINT
position UNSIGNED SMALLINT

UNIQUE constraint on
(packetId, position)

Fig. 2.29 ER diagram of tables for the crossoroad experiment [7].



Chapter 3

Security in Intermittent Computing
Systems

3.1 Introduction

Intermittent computing (ImC) is a computation paradigm for systems that operate by
using unreliable energy sources. More specifically, it involves checkpointing the state
of the system before power loss. It is often adopted by IoT sensors that are powered
via energy harvesters, which extract the required energy from the environment in
which they are located. The objective is to reach true pervasivity and scalability of
IoT deployments. Being often unattended and supporting limited security features,
ImC devices are an easy target for attackers.

This work presents a utility to securely save and restore the state of an ImC
device. The solution is implemented on a microcontroller (MCU) supporting ARM
TrustZone for Cortex-M, a Trusted Execution Environment (TEE) for low-power
MCUs. Finally, the utility is evaluated in terms of computational overhead and device
lifetime and compared to other state-of-the-art solutions. Results are published
in [11].
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3.2 Background

This section presents a background on concepts and technologies adopted in this
work.

3.2.1 Intermittent computing

Intermittent computing (ImC) systems are characterized by short periods of program
execution separated by reboots [29]. ImC devices are usually powered by energy
harvesters (EH), which extract energy from the surrounding environment. Typical
sources are solar radiation, wind, vibrations, and electromagnetic signals. Tempo-
rary energy storage solutions, such as capacitors and super-capacitors, are usually
preferred to traditional batteries. The reason for this choice is to increase device
lifetime and reduce the maintenance effort, enabling a deploy-and-forget approach.
In addition, batteries can be harmful to the surrounding environment if not properly
maintained.

Due to the lack of permanent and high-capacity energy storage, these devices
operate according to the cycle depicted in Figure 3.1. The device starts off with an
empty energy buffer, which is replenished by the harvesting circuit. When the buffer
is full, the system powers on to perform computation, draining the available energy.
Eventually, the device shuts off again, and the cycle restarts.

In this context, the objective of ImCs is to ensure the forward progress of compu-
tation. This requires preserving the volatile state of the device between power losses.
Different challenges are encountered, such as being able to track time, ensure atomic
execution of tasks, prevent wasted computation, and avoid data inconsistencies due
to uncompleted operations. Efficient intermittent computing solutions need to limit
the energy overhead required for the creation and restoration of checkpoints.

State-of-the-art

Solutions [8, 29] are investigated from either the software or hardware points of
view. From the hardware side, different non-volatile memory (NVM) technologies,
such as FRAM, STT-RAM, PLM, and RRAM, are exploited. Caching solutions
are introduced to reduce energy overhead related to frequent memory access. Non-
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Fig. 3.1 Charge-operated-dye cycle [8].

volatile processors (NVPs) and application-specific integrated circuits (ASICs) are
also being studied and developed. Finally, time-tracking solutions are implemented
by measuring the discharge time of dedicated capacitors.

From the software side, instead, the focus is on developing efficient techniques
to persist the state of the device, while maintaining atomicity and data consistency.
Apart from standard checkpoints, task-based execution models are common: the
software program is subdivided into atomic tasks whose execution does not exceed
the energy available in the capacitor. Information is then exchanged between con-
secutive tasks using non-volatile channels. Ad-hoc compiler techniques are adopted
to perform task subdivision, in order to reduce the overhead for the programmer.
Deciding when to checkpoint is also a common problem. Static approaches exploit
compiler optimization to identify possible checkpoint locations in the code. Dy-
namic solutions, instead, either perform checks on the remaining energy level or
use timers that are adjusted via a trial-and-error process. Approximate computing
solutions reduce the precision of the computation as a trade-off for energy-efficiency
gains [153].

Platforms

The main limitation of custom hardware solutions is that their development is of-
ten limited to only research prototypes. Therefore, it is unlikely that they reach
widespread adoption. However, some MCU platforms that support intermittent
computing features are available on the market. The MSP430FR family of micro-
controllers from Texas Instrument (TI) is the one that is most commonly used [29].
MSP430FR devices feature integrated FRAM memory and provide the Compute
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Fig. 3.2 TrustZone for Cortex-M isolation [9].

Through Power Loss (CPTL) [154] utility for persisting the state of CPU registers
and peripherals.

3.2.2 ARM TrustZone for Cortex-M

ARM TrustZone for Cortex-M [62] is a Trusted Execution Environment (TEE) [155]
for MCUs. It provides hardware isolation by dividing the memory of the device into
two worlds: secure (S) and non-secure (NS). Code residing in non-secure world can
only access non-secure memory, while code residing in secure world can access all
the memory of the device [156]. Figure 3.2 represents these concepts.

At boot, the flow of execution starts from the secure world, which configures
the TrustZone isolation before jumping to non-secure. Then, non-secure software
can access secure services, implemented as functions, via specific entry points.
Entry points are located in non-secure callable (NSC) memory, which is specifically
reserved for this functionality. Trusted Firmware-M [157] provides a reference
implementation of secure services.

The isolation provided by TrustZone is orthogonal to the one that is traditionally
achieved via memory protection units (MPUs), which are managed by privileged code
(e.g., Real-Time operating systems). In fact, privilege levels are usually available for
both worlds, and the MCU can be independently configured in each of them [158].
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Fig. 3.3 Example of software architecture with Trusted Firmware-M [9].

Consequently, TrustZone prevents attackers who gain access to privileged execution
from controlling the entire device. If this happens, secure world’s data and services
are still protected by the additional isolation. Finally, it also has the advantage
of reducing the size of the Trusted Computing Base (TCB), which only includes
secure-world software. These concepts are highlighted in Figure 3.3.

Implementation details

Two main components, residing in the Cortex-M core, are in charge of managing the
TrustZone isolation: the Implementation Defined Attribution Unit (IDAU) and the
Security Attribution Unit (SAU) [159]. The two units are used to specify the security
attribution (S, NS, or NSC) of address space regions. The IDAU configuration is
fixed in hardware by the MCU vendor, while the SAU can be programmed through
code. The SAU configuration is usually performed at boot in secure world. If the two
units specify a different security attribution for the same address space region, the
stricter prevails. IDAU and SAU also block non-secure code from accessing secure
regions. In all other cases, they mark the bus transaction with the security attribute
of the accessed region.
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In TrustZone systems, due to hardware design constraints, each peripheral is
mapped twice in the address space (aliasing) to reside in both secure and non-
secure regions, according to the default partition defined by the IDAU. Therefore,
peripherals must be individually configured to only accept secure or non-secure
transactions (not both). This configuration can only be carried out via secure code.
Memory peripherals, such as FLASH and SRAM, can also be split between the two
worlds. Access control is implemented by gates positioned in front of the peripherals,
which check the security attribute of the incoming transaction. The design of the
gates and of the hardware components for their configuration is left to MCU vendors.

Another problem that needs to be addressed is the presence of multiple bus
masters, such as DMA controllers. IDAU and the SAU, residing in the MCU core,
are bypassed by these hardware components. Therefore, they could easily be used to
access secure memory from non-secure world. One of the solutions is to exclusively
assign these masters to either secure or non-secure world. In this way, the issued
transactions are marked according to their security attribution and can be filtered by
the gates positioned in front of the peripherals.

3.3 State of the Art

Checkpointing solutions for ImC systems are extensively covered in the litera-
ture [160–166]. However, the security aspect is often overlooked. The work pre-
sented in [167] discusses security vulnerabilities related to checkpoints. The attacker
is assumed capable of reading the internal memory of the device, an MSP430FR.
This is achieved via an unprotected JTAG interface or by adopting sophisticated chip
probing techniques. Different attacks targeting the AES128 library of the system are
presented, leading to the retrieval of the secret key.

The Secure Intermittent Computing Protocol (SICP) [168, 169] acted as a starting
point for the work presented in this chapter. SICP guarantees the integrity and
freshness of checkpoints while also providing confidentiality to data specified by the
user. In addition, it ensures the atomicity of checkpointing operations to avoid leaving
the system in an undefined state. The protocol is implemented on an MSP430FR
microcontroller, using the available FRAM as checkpoint storage. The attacker
model allows to read and write the internal memory of the device. For this reason,
the secret key and the nonces of the checkpoint must be stored in tamper-free
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memory. However, tamper-free memory is not available on the device, and, instead,
it is simulated using Intellectual Property (IP) encapsulation. This security feature,
managed by the MPU, defines a memory section where the contained data can
only be accessed by the code executed from the section itself. In addition, the full
security chain of the platform is not considered in this work. For example, even in
the presence of tamper-free memory, an attacker with read and write capabilities on
the internal memory could modify the firmware to access or use the stored secrets.
Only secure boot or checkpointing services implemented inside tamper-free memory
could solve this problem.

Another interesting work is the one presented in [170], which exploits TrustZone
for Cortex-M to persist and secure the state of non-secure world. This is achieved
by copying the checkpoint inside FLASH memory residing in secure-world. Since
the attacker model does not allow to read and write the internal memory of the
device, the isolation provided by TrustZone protects the checkpoint from malicious
firmware running in non-secure world. However, a full checkpoint utility for saving
and restoring the state of non-secure world is not provided. In addition, FLASH
memory only endures a limited amount of erase cycles, greatly reducing the lifetime
of the system.

3.3.1 Contributions

This work addresses the combined limitation of previous works, proving the follow-
ing contributions:

• A complete checkpoint utility is implemented for a TrustZone-enabled MCU,
allowing for the saving of the state of secure world (non-secure world is
currently not checkpointed).

• TrustZone for Cortex-M is used to protect the checkpoint utility and the related
data from malicious firmware running in non-secure world.

• The full security chain of the target platform is considered, and no missing
hardware features are required.

• Device lifetime is preserved by using FRAM memory to store the checkpoints.
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Fig. 3.4 B-U585I-IOT02A Discovery kit [10].

3.4 Proposed solution

This section introduces the target platform, establishes a security objective, defines
the attacker model, and describes the implementation of the checkpoint utility.

3.4.1 Target platform

The target platform that is selected for this work is the STM32U5 MCU from
STMicroelectronics. Specifically, the solution is developed on the B-U585I-IOT02A
Discovery kit, which integrates an STM32U585AII6Q microcontroller. Figure 3.4
shows a picture of the board.

The MCU core is an ARM Cortex-M33 with 2 Mbytes of internal flash memory
divided into two banks, and 786 Kbytes of SRAM. In addition, the STM32U5 MCU
integrates several security features (only the ones relevant to this work are listed):
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• ARM TrustZone for Cortex-M.

• MPU for privilege-based memory isolation.

• Random Number Generator (RNG).

• AES module supporting AES-GCM with 256-bit key size.

• Secure AES module (SAES) for side channel protection and key sharing
features.

• Readout protection (RDP) configurable on three levels. This is used to disable
static board configuration (option bytes) and debug features, while also fixing
the boot entry point.

The 8 kB pages of the internal FLASH memory only endure 10.000 erase cycles,
with 256 kB for each bank that can reach 100.000. If one checkpoint per capacitor
discharge is considered, the internal FLASH cannot be used to save the device state
without harming the lifetime of the system. For this reason, an external FRAM
memory is connected to the board via the SPI interface. The memory chip that is
adopted is the Infineon CY15B102QN. It features a 40MHz SPI interface, 2MB of
storage, low-power modes, and can endure up to 1015 write cycles. However, as it
will be discussed later, the internal FLASH memory is still used to store the nonces
of the checkpoints, affecting the lifetime of the device.

3.4.2 Security objectives

This work wants to achieve the following security objectives:

• Information security: integrity, authenticity, and confidentiality of data stored
in checkpoints.

• Freshness: the creation of a new checkpoint invalidates the previous ones,
preventing replay attacks.

• Atomicity: the system cannot enter an undefined state due to a power loss
during checkpoint creation.

• Unclonability: checkpoint information cannot be used to clone the device.



96 Security in Intermittent Computing Systems

Similarly to the other state-of-the-art solutions, forward progress is not preserved
in the presence of an attacker.

3.4.3 Attacker model

The attacker is assumed to have physical access to the device, granting him the
following abilities:

• The attacker can start and stop the device by controlling the supplied power.

• The attacker can run malicious code in non-secure work.

• The attacker can read and write content on the external FRAM memory.

• The attacker can connect to unprotected debug ports.

The attacker is also subjected to the following limitations:

• The attacker cannot read the internal memory of the device (e.g., via expensive
chip-probing techniques).

• The attacker cannot run arbitrary code in secure world.

• Side channel attacks (e.g., differential power analysis) are not considered.

3.4.4 Implementation

This section describes the implementation of the secure checkpointing utility for
saving the state of secure world. The utility is provided as MIT-licensed open source
code [171].

3.4.5 Memory layout

A customized memory layout is created by modifying the linker script of the secure-
world image. The result is shown in Figure 3.5.
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Fig. 3.5 Custom memory layout, showing associated data (green), plaintext (red) and cipher-
text (orange) [11].

The structure of the FLASH memory attributed to secure world is changed by
reserving space for the FLASH_CKP area. This area is used to store the nonces of
the checkpoints. The size is set to 256 kB, because it is the maximum amount of
FLASH memory that can endure up to 100.000 erase cycles.

The structure of the data and bss sections is also modified. The data section,
initially stored in FLASH memory, is copied inside the SRAM at boot. It contains
the initialized global variables (both global and static) of the program. The data
section is now divided into different parts. data.drivers contains the variables used
by the drivers (HAL library) of the board. Since its content may be changed by the
checkpoint routine itself, driver_buf is created to backup its state. This prevents data
inconsistencies during checkpoint creation and restoration. data.conf, instead, stores
variables for which the programmer wants to preserve confidentiality. Variables can
be assigned to these areas via compiler attributes (__attribute__((section("name")))).
Instead, for third-party code or binary files, it is possible to place the variables of the
compiled object files into a specific section via the linker script.

A similar subdivision is also performed for the bss section, which contains unini-
tialized variables. Finally, the cryptobuf section stores the ciphertext of confidential
memory areas. The driver_buf area of both the data and bss sections is considered
confidential. The content of the stack, instead, is not encrypted. This is a limitation
of the current implementation.
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The external SPI memory is divided into two parts to store two checkpoints. This
is needed to prevent corruption of the previous checkpoint if a power loss occurs
during the creation of the new one.

Finally, Figure 3.5 shows the information block. This is a memory area that
resides in the first flash bank. The first 32 kB of the information block contains
system memory, which is an immutable section reserved for STMicroelectronics.
The device’s 256-bit Root Hardware Unique Key (RHUK) is stored in this section.
The key is not accessible from code, and it is wired directly into the SAES crypto
unit. The RHUK is only used to generate Derived Hardware Unique Keys (DHUKs),
which are the ones actually used for cryptographic operations. The key derivation
procedure is parametrized by the TrustZone attribution of the SAES module (secure
or non-secure) and the key utilization mode (normal, wrapped, shared).

3.4.6 Checkpoint utility

The checkpoint utility is constituted by two main operations: SAVE and RESTORE.
The former is in charge of creating and persisting the checkpoint, while the latter
is used to restore the state of the device. SAVE and RESTORE can be called from
both privileged and non-privileged software via system calls, making them always
run in privileged mode. Upon exception entry, the hardware saves the relevant CPU
registers on the stack, allowing SAVE to preserve the CPU state by only persisting
the stack. The SAVE routine can be called either periodically or just before a power
loss. Finally, when RESTORE finishes its operations, it simulates an exception exit
from the SAVE system call that created the checkpoint.

SAVE

The pseudocode of the save routine is shown in Algorithm 1. The first task that
is carried out by the routine is to copy the global and static variables used by the
device drivers (STM32 HAL Library). This is needed because SAVE uses the drivers
to perform its operations, and could checkpoint them in an undefined state. For this
reason, the data.drivers and bss.drivers sub-sections are copied in the respective
driver_buf s (1-2).
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Algorithm 1 SAVE [11]
1: driver_bu f.data← .data.drivers
2: driver_bu f.bss← .bss.drivers
3: IV ← generateIV ()
4: ad← .data
5: pt← driver_bu f.data|.data.con f
6: tag1,ct← AES_GCM(IV,ad, pt)
7: cryptobu f .append(ct)
8: ad← .bss
9: pt← driver_bu f.bss|.bss.con f

10: tag2,ct← AES_GCM(IV +1,ad, pt)
11: cryptobu f .append(ct)
12: ad← stack
13: tag3← AES_GCM(IV +2,ad)
14: tags← tag1|tag2|tag3
15: writeSPI(tags|.data|.bss|cryptobu f |stack,ckp)
16: writeFlash(IV,ckp)
17: if f irstNonceInNewPage() then
18: erasePreviousPage()
19: end if
20: ckp.toggleLocation()
21: f lash.setNextNonceSlot()

Then, the Random Number Generator (RNG) is used to generate the 96-bit
initialization vector (IV) for the cryptographic primitive (3), i.e., AES-GCM. This
value also acts as part of the nonce for the checkpoint to ensure freshness.

In the next steps, AES-GCM is called three times. The first invocation is used to
authenticate the data section, while also providing confidentiality to data.conf and
driver_buf (4-6). Information that only requires authentication is provided to the
primitive as associated data (ad). Confidential information, instead, constitutes the
plaintext (pt). The results of this operation are the authentication tag of the entire
data section and the ciphertext of its confidential sub-sections, which is stored in the
cryptobuf (7).

Similar operations are repeated for the bss section (8-11) and the stack (12-
13). For what concerns the stack, its content is currently only authenticated. IV is
increased at each invocation of the cryptographic primitive, since reusing the same
value breaks the security properties of AES-GCM.
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At this point, the checkpoint is stored on the external memory (14-15) at the
current checkpoint location (ckp). It is composed by the concatenation of the
three authentication tags, the non-confidential part of the data and bss sections, the
cryptobuf and the stack.

A 128-bit nonce is created by concatenating the 96-bit IV and the 32-bit address,
which identifies the location of the checkpoint on the external memory (ckp). Sub-
sequently, this value is written to FLASH, inside the FLASH_CKP region (16). As
soon as the nonce is saved, the older checkpoint is invalidated. Due to the limitations
of FLASH memory, nonces are not overwritten, since this would require the erasure
of the entire flash page, but they are appended one after the other. Obviously, only
the latest nonce is considered valid. It is important to note that including the address
of the checkpoint in the nonce does not require additional space, since the minimum
write size for the FLASH memory is 128 bits.

In the final steps, the routine checks whether the new nonce was written on a new
flash page (17-19). If this is the case, it erases the previous one. This maintains a
circular buffer to store the new nonces. Finally, the locations to store the next nonce
and the next checkpoint are updated (20-21).

Two important considerations are required. The first is that the MCU vendor does
not specify whether memory writes to FLASH memory are atomic. So, in case of a
power failure, it may be possible that the stored nonce is corrupted. However, this
does not represent a security vulnerability because it only results in the invalidation
of all checkpoints, requiring the system to restart the computation. Nonetheless, this
could impede forward progress during normal operations.

The second consideration is related to the use of a random number as IV, instead
of a simple counter. Using a counter would introduce a security vulnerability, because
the attacker can read the checkpoint stored on the external memory and stop the
computation before the nonce is written to flash. By restarting the devices multiple
times, the attacker could collect multiple AES-GCM messages generated with the
same IV. This information can be used to break the security properties of AES-GCM.

RESTORE

The pseudocode of the RESTORE routine is shown in Algorithm 2. The routine
starts by loading the key used to secure the checkpoints (checkpoint key) inside the
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Algorithm 2 RESTORE [11]

1: unwrapSecretKey(key)
2: IV,ckp← readFlash()
3: .data, .bss,cryptobu f ← readSPI()
4: ad← .data
5: ct← cryptobu f .at(driver_bu f.data|.data.con f )
6: tag1, pt← AES_GCM−1(IV,ad,ct)
7: driver_bu f.data|.data.con f ← pt
8: ad← .bss
9: ct← cryptobu f .at(driver_bu f.bss|.bss.con f )

10: tag2, pt← AES_GCM−1(IV,ad,ct)
11: driver_bu f.bss|.bss.con f ← pt
12: stack← readSPI()
13: ad← stack
14: tag3← AES_GCM−1(IV,stack)
15: tags← readSPI()
16: if tags! = tag1|tag2|tag3 then
17: abort()
18: end if
19: .data.drivers← driver_bu f.data
20: .bss.drivers← driver_bu f.bss
21: if f irstNonceInNewPage() then
22: erasePreviousPage()
23: end if
24: ckp.toggleLocation()
25: f lash.setNextNonceSlot()

AES module (1). This operation is also performed at the first boot of the device,
since the key is also needed by the SAVE routine. The checkpoint key is normally
stored as a global variable inside the software image of secure world, after being
encrypted with the DHUK. The SAES unit, configured in shared mode, performs
both key decryption and loading.

The next step is to retrieve the most recent nonce from FLASH memory (2). The
first 128 bits of each FLASH page inside FLASH_CKP are read to identify which is
the page that contains it. Then, a binary search is conducted inside the page to find
the latest nonce.

The cryptobuf and the non-confidential parts of the data and bss sections are
read from external memory and restored (3). The cryptobuf is decrypted, and the
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obtained plaintext is stored at its original location (4-11). This includes confidential
information from both the data and bss sections. The authentication tags for both
sections are also computed. Similarly, the stack is restored from external memory,
and its authentication tag is generated (12-14).

The three authentication tags are compared with the ones stored on the external
memory, to see whether the checkpoint was modified (15-18). Subsequently, the
driver buffers are copied inside their original locations (19-20). At this point, if the
nonce of the restored checkpoint is in a newly created flash page, the routine checks
if the previous page was erased (21-23). If this is not the case, e.g., for a power loss
during the SAVE routine, it is erased. Finally, the locations to store the next nonce
and the next checkpoint are updated (24-25).

3.4.7 Security chain

The security of the device relies on the RHUK, which is stored in system memory
(flash bank 1). This is the reason why the attacker model excludes the possibility
of reading and writing the internal memory of the device. If this was allowed, the
RHUK and the encrypted checkpoint key could be extracted. Then, the checkpoint
key could be decrypted and used to access the confidential information stored in
the checkpoints. In any case, due to the high cost of the instrumentation required to
perform chip-probing attacks, this assumption can be considered reasonable.

The second step is to provide isolation between the secure and non-secure worlds.
TrustZone is set up in two phases. The first requires the configuration of option bytes,
which are stored in the information block (first flash bank) and can be accessed via
debug features. Once they are configured, debug access must be prevented by setting
the Readout Protection (RDP) level to two. This also disables debug access to the
firmware. In the second phase, the device boots in secure world, and the secure
firmware finalizes the configuration of Trustzone.

At this point, malicious non-secure software is isolated from secure word. This
provides integrity, authenticity, and confidentiality of both data and software residing
in secure world. This includes the checkpoint key, which is also encrypted, and the
nonces. Checkpoints are secured and stored on the external SPI memory by the
SAVE routine. Since both the key and the nonces are protected, the authenticity,
integrity, confidentiality, and freshness of checkpoints are ensured.
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Finally, the SPI interface connected to the external memory can be assigned to
secure world to make it inaccessible from non-secure software. Secure boot services
could also be configured, but they would increase the energy overhead required
during startup.

3.5 Evaluation

In this section, the checkpoint utility is evaluated in terms of device lifetime and
computational overhead.

3.5.1 Lifetime evaluation

Device lifetime is an important aspect for intermittent computing systems, since their
objective is to achieve a deploy-and-forget operational paradigm. In this work, this
is addressed by using external FRAM memory to store the checkpoints. Differently
for FLASH, this memory technology is not so severely limited in terms of wear,
allowing it to reach a much higher number of write cycles. However, in the proposed
solution, internal FLASH is still used to store nonces, which reduces the lifetime of
the device. By considering a nonce buffer of 256 kB, which is the maximum FLASH
size that can sustain up to 100.000 erasures, a 128-bit nonce, and one checkpoint per
second, the lifespan of the device can reach 52 years.

3.5.2 Overhead evaluation

The objective of this evaluation is to measure the overhead introduced by the creation
and restoration of checkpoints. This is important because the energy used by SAVE
and RESTORE is subtracted from the domain application.

As a first step, the total time overhead of each routine is measured. This is
done by varying the memory size of the secure application that is checkpointed.
The test is repeated two times, first by considering the data of the application as
non-confidential, then by making it entirely confidential. In the second step, instead,
the contribution of each operation inside the routine is separately evaluated, in order
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Fig. 3.6 Comparison of SAVE and RESTORE overhead when varying application size and
introducing confidentiality [11].

to understand which are the most demanding ones. Also, in this case, both the
non-confidential and fully confidential scenarios are tested.

The overhead is measured in terms of clock cycles, which are also converted
to milliseconds given the 160 MHz clock frequency of the MCU. To achieve this,
the DWT cycle counter is read before and after the monitored operation. Then, a
message containing the difference is sent via the UART interface. Measurements are
repeated for a minimum of ten times and then averaged.

Figure 3.6 shows the results of the first evaluation. The memory size of the
domain application is simulated by an array of variable sizes placed inside the
bss section. A null memory size indicates the overhead for saving the state of the
checkpoint utility itself. It can be seen that the overhead increases linearly with
application size. In addition, adding confidentiality reduces the performance of
both routines. This is due to the design characteristics of AEG-GCM, which is
slower when the data needs to be encrypted instead of only authenticated. SAVE
also appears to be slower than RESTORE.
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Table 3.1 Benchmark of SAVE [11].

Operation Cycles Time (ms)

Authenticated encryption 51777 (103745) 3,236 (6,484)
Copy drivers 11366 0,710
Write nonce 20409 (20408) 1,276
IV generation 451 0,028
Page erase* 274 0,017
SPI R/W 245883 (245884) 15,368
Others 275 (277) 0,017
Total 330435 (382405) 20,652 (23,9)

Table 3.2 Benchmark of RESTORE [11].

Operation Cycles Time (ms)

Authenticated encryption 52077 (104044) 3,255 (6,503)
Copy drivers 11325 0,708
Decrypt key 2697 0,169
Read nonce 586 0,037
Page erase* 274 0,017
SPI R/W 200677 (200675) 12,542
Others 378 (334) 0,024 (0,021)
Total 268014 (319935) 16,751 (19,996)

The contribution of the single operations to the overhead of the routines is shown
in Figures 3.1 and 3.2. The evaluations are performed considering an application
size of 2kB. Values inside round brackets refer to the full-confidential scenario. It is
important to mention that page erase operations are performed only when the page is
completely filled with nonces. Therefore, their contribution is divided by the number
of nonces that fit on a page, i.e., 512. Results show that the main contributions to the
overhead are external memory access and authenticated encryption. A significant
overhead also comes from copying the device drivers, but this is probably due to
poor code optimization.

The main difference between the overhead of the two routines is given by external
memory access and the programming of the nonce in FLASH (for the SAVE routine).
For what concerns the effect of confidentiality, the only significant difference is
given by the cryptographic primitive.
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State-of-the-art comparison

It is interesting to compare the results obtained with those achieved by the SICP
protocol on the MSP430FR. When providing no security and considering check-
points with sizes ranging from 468 to 3198 bytes, the MSP430 takes less than one
millisecond to perform both save and restore. Since variables are stored in FRAM,
which is non-volatile, they don’t need to be copied to another memory. The small
overhead, instead, is probably due to saving the state of the peripherals and CPU
registers. This is achieved via the CTPL utility provided by Texas Instruments.

When authentication is introduced, the overhead reaches 20-73 ms, which is
similar to what is obtained in this work. However, the MSP430 does not have to
perform a memory copy since it only computes and saves the authentication tag. If
the contribution of SPI R/W operation is removed from the results achieved in this
work, the STM32 hardware shows better performance.

When full confidentiality is introduced, the SICP overhead becomes of 68-380
ms. This is due to the additional cryptographic operations and the need to save both
the ciphertext and the restored plaintext in memory.

As a final note, it is important to understand that time is not the best metric for
the evaluation of the performance of these implementations. In fact, ImC systems
are constrained in terms of energy. Therefore, the best solution is not the fastest
but the one that requires less energy. In the presented scenario, the SM32U5 MCU
runs at a frequency of 160 MHz, against the 8 MHz of the MSP430FR. This for sure
leads to higher power consumption and wasted clock cycles while waiting for SPI
and cryptographic operations to complete. Therefore, future work should focus on
evaluating and comparing the efficiency of the proposed solution via power analysis.

3.6 Conclusions

Starting from the works on the SICP protocol [168, 169], a secure intermittent
computing solution is developed for the ARM Cortex-M platform. TrustZone for
Cortex-M is used to enforce isolation between a non-secure world, containing
potentially vulnerable software, and secure work, containing trusted services, among
which the checkpoint utility itself.
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In order to guarantee the device’s lifetime, an external SPI FRAM memory is
used to store the checkpoints. This mitigates problems related to the wear of the
internal FLASH memory. A small portion of the internal FLASH is still used to store
nonces, which are needed to prevent the replay of older checkpoints. Fortunately,
this only has a limited impact on the lifetime of the device.

The overhead introduced by the utility is evaluated and compared with the
SICP implementation, reaching similar performance. Benchmarks also show that
communication to the external memory and cryptographic operations provide the
biggest contribution to the overhead.

The main limitation of this work is that checkpointing of non-secure world is not
currently supported. Confidentiality is also not provided for the content of the stack.
In addition, due to the fragmentation created by dynamic memory allocations, the
state of the heap is not persisted. Similarly, the state of device peripherals is also not
checkpointed. Future works will address these limitations, while also focusing on
testing the power efficiency of the secure checkpoint utility in real use case scenarios.



Chapter 4

Conclusions

The work presented in this thesis investigates security and reliability in pervasive
computing systems. Two main fields of application are considered: low-cost Par-
ticulate Matter (PM) monitoring with low-cost light-scattering sensors and secure
intermittent computing (ImC) for energy harvesting devices. In the context of PM
monitoring, the reliability aspect consists in evaluating and ensuring data quality.
The security aspect, instead, is explored by designing an IoT infrastructure that
provides integrity and authenticity verification of sensor measurements. For what
concerns ImC systems, security is investigated by developing a software utility for
the creation, restoration, and protection of checkpoints.

PM monitoring

Low-cost light-scattering sensors are often proposed as a solution for the creation of
dense monitoring networks. However, due to intrinsic technological limitations, their
measurements are often unreliable and imprecise. Multiple measurement campaigns
are conducted by placing a multitude of these devices at an official monitoring site
in the city of Turin, in Italy.

At first, data quality is evaluated by comparing them to the official monitoring
network of fixed stations of the Metropolitan City of Turin. It is concluded that,
for daily PM2.5 measurements, they have a correlation with the high-precision
monitoring instruments at the same monitoring site, similar to the correlation between
the different urban sites in the same area. Therefore, in this context, they provide
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additional benefits if high-precision instruments are absent or very sparse. In addition,
they are also evaluated on hour measurements, highlighting a loss of correlation at
higher sampling rates.

A data processing pipeline that performs failure detection, filtering, and cali-
bration of low-cost PM sensors is proposed and evaluated. Results show that data
quality is improved with respect to the reference, considering multiple metrics.

The effect of introducing a duty cycle for low-cost PM sensor operation is
analyzed in terms of measurement quality. Results show that, in a non-traffic area,
the sampling frequency can be greatly reduced without affecting measurement quality
w.r.t. to the official reference.

An IoT infrastructure for data transmission, storage, and visualization is devel-
oped. It also provides verification of measurement integrity and authenticity, by
storing the hash of blocks of measurements inside a blockchain.

Secure ImC

A checkpointing utility for secure intermittent computing is realized, considering the
entire security chain of the target platform and exploiting ARM Trustzone for Cortex-
M functionalities. TrustZone is used to enforce isolation between a non-secure world,
containing potentially vulnerable software, and secure work, containing trusted
services, among which the checkpoint utility itself. In order to guarantee the device’s
lifetime, an external SPI FRAM memory is used to store the checkpoints. This
mitigates problems related to the wear of the internal FLASH memory.

The overhead introduced by the utility is evaluated against the state-of-the-art,
reaching comparable performance. Benchmarks also show that communication to
the external memory and cryptographic operations provide the biggest contribution
to the overhead. Limitations are still present, such as the lack of support for saving
the state of non-secure world, and will be addressed in future works.
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