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Abstract—Data augmentation is a widespread innovative tech-
nique in Artificial Intelligence: it aims at creating new synthetic
data given an existing real baseline, thus allowing to overcome the
issues arising from the lack of labelled data for proper training
of classification algorithms. Our paper focuses on how a common
data augmentation methodology, the Generative Adversarial
Networks (GANs), which is widespread for images and time-
series data, can be also applied to generate multivariate data.
We propose a novel scheme for GANs evaluation, based on
the performance of an explainable AI (XAI) algorithm and an
innovative definition of rule similarity. In particular, we will
consider an application dealing with the augmentation of Inertial
Movement Units (IMU) data for physical fatigue monitoring in
two age subgroups (under and over 40 years old) of the original
data. We will show how our innovative rule similarity metric
can drive the selection of the best fake dataset among a set of
different candidates, corresponding to different GAN training
runs.

Index Terms—Data augmentation, Generative Adversarial Net-
works, Explainable AI, Rule similarity

I. INTRODUCTION

Artificial Intelligence (AI) methodologies are spreading in
many socioeconomic fields today, including healthcare. In this
context, AI represents a promising tool for clinical decision
support systems (CDSS) in diagnostic/prognostic processes,
health status monitoring [1], drug discovery, public health
management and many other applications [2]. There are dif-
ferent actors involved in this effort towards the automation of
healthcare, ranging from AI experts who develop the method-
ologies to the clinicians/health systems that adopt the solutions
and, finally, to the patients. Smart solutions are offered thanks
to the Internet of Things and the advancements in deep
learning [3], but there is still need to open the “black box”,
thus allowing each actor to understand the logic behind the
algorithms. Moreover, errors on algorithmic predictions must

be avoided in healthcare, since it is a safety-critical context. As
a consequence, AI research is recently addressing its interests
on explainable AI (XAI), which consists in providing AI so-
lutions that are understandable even by non-expert users, also
in compliance with recent legislation [4], like the European
GDPR (https://gdpr.eu/tag/gdpr/). XAI is also an important
tool for error control. There are many different methods falling
under XAI definition today [5].However, developing accurate
XAI-based (and, more in general, AI-based) CDSS is often
affected by the quality of the available datasets, which are
usually incomplete or too complex and huge [6].

Data augmentation, whose aim is to create synthetic datasets
based on the available real data, represents a solution to this
issue.

In this work, we extend a common data augmentation
method for images and time series, i.e. the Generative Adver-
sarial Networks, to multivariate data and present an innovative
evaluation method for the obtained synthetic datasets, based
on the performance of a rule-based XAI algorithm (the Logic
Learning Machine) for a classification task and a new measure
of rule similarity.

II. RELATED WORK

Data augmentation is an emerging process aiming at the
creation of fake data based on samples of real data. There is a
variety of techniques that have been developed for different
kinds of healthcare data. Surely, the most common field
where data augmentation is successfully applied is biomedical
imaging: in this context, new fake images can be created by
modifying the geometry of the original ones or by adding
noise [7], [8]. However, this group of techniques tend to
generate synthetic images that have similar distributions to
the real ones: this is a limitation, since data augmentation
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is often used to improve machine/deep learning performance.
For this reason, another widespread technique is the use of
Generative Adversarial Networks (GANs) for different clinical
purposes [9]–[11]. GANs are also explored for time-series
augmentation. In [12] they are applied to create artificial raw
audio of cough to help respiratory disease diagnosis. In [13],
GANs for ECG and EEG signals classification are built using
Recurrent Neural Networks with LSTM hidden layers for both
generator and discriminator. Data augmentation techniques
based on GANs for multivariate data (among others) are
included in [14]. Moreover, in [15], corGAN aims to create
synthetic health record through a combination of convolutional
GANs e convolutional autoencoders; such system was tested
on MIMIC-III and UCI seizure epileptic recognition datasets
and is evaluated by comparing ML classification performance.
MedGAN is proposed in [16], being a combination of GANs
and autoencoders to create synthetic Electronic Health Records
items, in a privacy-preserving fashion: the evaluation is based
on distribution statistics, predictive modeling tasks and review
by experts.

In [17], a first evaluation of GAN results based on XAI
and rules validation through Fisher test is proposed for
the augmentation of small pulmonary syndromes monitoring
datasets. To the best of our knowledge, our paper contributes
to this field by combining in a systematic way GANs and
XAI tools (performance evaluation and rule similarity) for
the augmentation of wearable sensors data to detect physical
fatigue.

III. GENERATIVE ADVERSARIAL NETWORKS

Generative Adversarial Networks (GANs) have been in-
troduced with the purpose of generating new, synthetic data
(data augmentation) [18]. Starting from the distribution of the
training set and a noise distribution, they are able to generate
new never seen before data. They produce the whole output
all at once, differently from other types of generative models,
such as recurrent NNs that generate one element at a time.

The algorithmic principle at the basis of GANs training
relies on game theory. The game is posed between a generator
network and a discriminator network. The generator uses the
encoder–decoder scheme [19] to build artificial data. The
discriminator learns the boundary between real and synthetic
data. More specifically, the discriminator is trained to become
better at distinguishing real from synthetic data; the generator
learns to synthesize better data to fool the discriminator (for
this reason, the “adversarial” term).

In particular, we implemented a conditional GAN to take
into account the class labels, where both the generator and
discriminator are forced to generate new data subject to a
condition [20]. The condition is in the form of a one-hot-
encoded vector version of the classes:

• In the generator, we associate the noise to a particular
class;

• In the discriminator, we classify the samples as real or
fake based on real and fake data and their corresponding
labels.

Training the discriminator and generator in conditional
GANs is similar to training a discriminator and generator in
a simple GAN. The only difference is that both the generated
fake and real are conditioned with their corresponding one-
hot labels. Figure 1 shows the architecture of the implemented
conditional GAN [17].

Fig. 1: Conditional GAN scheme.

The optimization scheme of the training is formulated in
order to achieve, at convergence, a game equilibrium in which
the generator’s samples are indistinguishable from real data.

IV. LOGIC LEARNING MACHINE

Logic Learning Machine (LLM) is a supervised model
developed by Rulex [21], as the efficient implementation of
Switching Neural Networks [22].

Considering classification tasks, the LLM learns a ruleset,
made up of a number M of if-then rules rk, k = 1, . . . ,M ,
each predicting an output class label based on the logical
product of their conditions clk , lk = 1k, . . . , dk on input
features. Two performance metrics can be derived for each
rule, the covering C(rk) and the error E(rk), defined as
follows:

C(rk) =
TP (rk)

TP (rk) + FN(rk)
, E(rk) =

FP (rk)

TN(rk) + FP (rk)
, (1)

where TP (·), FP (·), TN(·), FN(·) are the confusion ma-
trix values obtained by classifying the samples with the rule.
Both covering and error are the basis to define feature ranking
and value ranking. Feature ranking orders the variables based
on a measure of their relevance in predicting the output class,
which depends on the covering and on the increase in the error
when a condition is removed from the rule (see Eq. 4 in [23]).
Value ranking instead individuates the intervals of values, for
each attribute, that impact more on the rules output class.

V. RULE SIMILARITY

Whenever it is applied on a dataset, a rule-based model
provides a set of rules. Rule similarity consists in defining
a measure able to express how much two rules are similar.
This can be done with either a semantic or a statistical
approach: in the first case, rule similarity is defined based on
the information contained into the rules, just like a human can
understand it; the latter approach is based on data instances
covered by the rule instead.

For sake of simplicity and intepretability, in this paper we
develop and adopt the semantic approach to build a measure of
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rule similarity for the LLM. Given two sets M1 and M2 of m1

and m2 rules produced by the LLM (the adopted notation is
the same as in Section IV), let us consider two rules rk ∈ M1

and rz ∈ M2. A condition in rk is clk , lk = 1k, . . . , dk,
and it is associated to a weight wlk , which is related to the
increase in the error of the rule due to the removal of its
condition clk . Moreover, such condition defines a domain Dlk

in the feature space, corresponding to an interval for ordinal
variables (or sets of values for nominal variables). Let us now
denote with |Dlk | the size of such domain, which is intended
as the Euclidean distance for ordinal variables (or cardinality
for categorical). Similarly, a condition ciz , iz = 1z, . . . , nz in
rule rz has a weight, wiz , and defines a domain Diz of size
|Diz |.

Being Xj the attribute associated to condition clk of rule ,
we now define the following binary quantity to express if the
attributes of conditions clk , ciz are the same or not:

β(Xj(clk , ciz )) =

{
1 if Xj(clk) = Xj(ciz )

0 if Xj(clk) ̸= Xj(ciz )
(2)

The similarity between the conditions clk , ciz takes into
account the overlapping of their domains and is then defined
as:

s(clk , ciz ) = β(Xj(clk , ciz )) ·
|Dlk ∩Diz |

max(|Dlk |, |Diz |)
(3)

being s(clk , ciz ) =0 if the attributes are not the same or the
domains do not overlap; if the conditions are identical, it will
be s(clk , ciz ) =1.

Based on this, the similarity between two rules is computed
as follows:

S(rk, rz) =

∑dk

lk=1

∑nz

iz=1 s(clk , ciz )(wlk + wiz )∑dk

lk=1 wlk +
∑nz

iz=1 wiz

(4)

Such equation provides the value S(rk, rz) ∈ [0, 1], being
S(rk, rz) = 0 if the rules do not contain any couple of
conditions so that s(clk , ciz ) >0 and a non-zero weight,
S(rk, rz) <1 if there is at least a different (or an additional)
condition and S(rk, rz) =1 if all the conditions in the two
rules are identical. Moreover, the value of S(rk, rz) can be
computed with respect to the same output value of the rules.

Just like the LLM, rule similarity is implemented in Rulex
platform too. For practical applications (as in the scope of this
work), it may be needed to compare two rulesets in terms of
rule similarity, by aggregating the values for different couples
of rules, as explained in the following Section V-A.

A. Similarity between rulesets

Considering two different rulesets M1 and M2, we want to
achieve a single value of rule similarity to compare them. Let
us suppose M0

1 and M0
2 being the subsets of the rulesets M1

and M2 respectively, referring to the output value y = 0 of
the rules. Similarly, we denote with M1

1 and M1
2 the subsets

for output class y = 1.

First of all, we compute the rule similarities as in Equation
V, thus obtaining all the comparisons between M0

1 and M0
2 ,

on the one hand, and between M1
1 and M1

2 on the other hand.
This procedure leads to two sets R0 and R1 of N0 and N1

non-zero rule similarities for output values y = 0 and y =
1 respectively. Then, we first compute the arithmetic means
S̄0 and S̄1 of the elements in R0 and R1, which provide a
single value for rule similarity in the corresponding output
class. Eventually, the similarity between rulesets M1 and M2

is computed again with the arithmetic mean as follows:

S̄(M1,M2) =
S̄0 + S̄1

2
(5)

Again, S̄(M1,M2) ∈ [0, 1].

VI. PROPOSED EVALUATION FRAMEWORK

The overall idea of our proposed XAI-based evaluation of
GANs is depicted in Fig. 2. Our purpose is to use explainable
models in order to evaluate and understand the behavior and
the potential of GANs for classification tasks. In particuar, we
adopt the LLM as the XAI model.

First, we perform a baseline assessment by training that
model on the real dataset, thus deriving the real ruleset. Then,
we perform N runs of data augmentation through GANs, by
leaving the parameters (number of epochs, number of hidden
layers, number of neurons per hidden layer, learning rate and
batch size) fixed at each iteration and by varying only the
random input noise to the generator. Hence, N fake datasets
are obtained. The next step involves the training of the XAI
model both on each generated fake dataset only and on the
combination of each fake dataset with the real data: hence, we
deal with N “fake rulesets” for the first case and N “real+fake
rulesets” for the latter. We then propose three testing scenarios
for these rulesets:

• Scenario 1: each “fake ruleset” tested on real data only;
• Scenario 2: each “real+fake ruleset” tested on the con-

catenation of real and fake data;
• Scenario 3: each “fake ruleset” tested on the concatena-

tion of real and fake data.
In literature, GANs are mainly used in Scenario 2, since

data augmentation simply represents a technique to improve
models performance. In our case, we introduce scenarios 1 and
3 to understand how GANs work and how they approximate
the distribution of the real data. Each scenario is evaluated
by measuring the corresponding ruleset’s classification per-
formance through two common metrics, i.e. accuracy and
F1-score. Using this approach, we are not interested in the
convergence of the training algorithm, but we focus on finding
the most appropriate augmented dataset generated by different
GAN runs via LLM. Moreover, for each GAN trial, we also
computed the Fréchet Inception Distance (FID) score [24] as
it is the standard measure of GANs results: lower FID values
mean better quality and diversification of the generated data.

Based on the metrics values resulting from the different
scenarios, we can select the best-performing one and compare
the corresponding rulesets with the real ruleset by computing
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Fig. 2: The proposed GAN evaluation scheme

the rule similarity as described in Sec. V. The results of
rule similarity can provide useful information about how data
augmentation influences the learning of the rules with respect
to the real baseline, thus allowing new knowledge extraction.

VII. APPLICATION AND RESULTS

A. Physical fatigue dataset

Our application use case deals with an open-source dataset
[25] on fatigue detection during the execution of a physical
task (Manual Material Handling [26]). Data were collected
through wearable Inertial Movement Units (IMUs) from 15
participants who were asked to perform the required task for
180 minutes and provide a fatigue level every 10 minutes using
the well-known Borg scale [27]. Fatigued state (class y = 1)
corresponds to RPE≥13, whereas lower values denote non-
fatigued (class y = 0). From sensors raw data, a list of features
is derived (see Table 2 in [26] for details).

The original 269 samples of the dataset were split into 161
samples corresponding to subjects with age ≤ 40 years old
(under 40 in the rest of the paper) and 108 samples for the
age > 40 years old group (over 40 in the rest of the paper). We
first applied the LLM model to such groups with a 70%/30%
for training and test set respectively: the classification results
on test set showed an accuracy of 0.63 and F1-score of 0.57
for under 40; for the over 40, the accuracy was 0.84 and F1-
score was 0.80. Hence, the under 40 LLM performance was
poor with respect to the other age group.

Therefore, we exploited the data augmentation through
GANs for creating wider (400 samples) and balanced in size
datasets for both the age groups.

B. GAN runs evaluation

For both under 40 and over 40 groups, the GAN training
was repeated for N = 10 times with the following parameters:

- Generator hidden layers sizes: 128, 64, 32, 1;
- Discriminator hidden layers sizes: 32, 64, 128;

- Batch size: 64;
- Epochs: 5000;
- Learning rate: 5e-5;
The obtained results for each run, in terms of accuracy and

F1-score (also denoted with F1 in the Tables), in the three
scenarios (as defined in section VI) are shown in Table I for
under 40 and Table II for over 40. Besides the metrics related
to the rulesets performance, we also show the values of FID
for each run (FID involves a comparison between real and fake
data distribution, hence it does not depend on the scenarios).

Scenario 1 Scenario 2 Scenario 3
Run Accuracy F1 Accuracy F1 Accuracy F1 FID
1 0.47 0.30 0.81 0.78 0.78 0.75 3654
2 0.49 0.45 0.77 0.76 0.76 0.79 9781
3 0.60 0.63 0.79 0.81 0.81 0.82 17019
4 0.62 0.61 0.66 0.60 0.77 0.77 4237
5 0.60 0.61 0.86 0.86 0.84 0.84 39580
6 0.58 0.61 0.83 0.83 0.83 0.83 118180
7 0.47 0.23 0.78 0.79 0.79 0.79 38513
8 0.53 0.48 0.75 0.74 0.80 0.79 41702
9 0.50 0 0.59 0.64 0.73 0.79 35786
10 0.58 0.54 0.80 0.78 0.80 0.81 8074

TABLE I: Results of GAN evaluation through LLM in under
40 group

Scenario 1 Scenario 2 Scenario 3
Run Accuracy F1 Accuracy F1 Accuracy F1 FID
1 0.45 0.15 0.68 0.68 0.77 0.74 2393
2 0.53 0.14 0.83 0.82 0.84 0.82 6918
3 0.64 0.69 0.90 0.89 0.88 0.89 8067
4 0.68 0.71 0.85 0.86 0.89 0.90 41279
5 0.58 0.67 0.84 0.85 0.86 0.87 6832
6 0.54 0.44 0.82 0.80 0.82 0.80 19413
7 0.55 0.65 0.82 0.81 0.83 0.84 10299
8 0.52 0.10 0.68 0.62 0.78 0.75 60261
9 0.64 0.58 0.85 0.85 0.88 0.88 833
10 0.66 0.65 0.85 0.87 0.88 0.89 3939

TABLE II: Results of GAN evaluation through LLM in over
40 group
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Observing the obtained values of FID, for both under and
over 40, we can infer that in this case we do not achieve
consistency between it and accuracy/F1-score metrics: the
lowest FID value does not correspond to their highest values.
However, there is concordance between the worst accuracy,
F1-score and highest FID for run 7 in all the three scenarios.

Focusing on accuracy and F1-score, the immediate consider-
ation following our results is that the evaluation in Scenario 1
does not work neither for under 40 nor for over 40 (low values
of accuracy and F1-score in all the runs): therefore, we can
not adopt the “fake LLM” rules to improve the performance
of the original rules on real datasets only. However, in general,
the performance metrics are sensitively higher for Scenario 2
and 3. Considering Scenario 2, the good results we obtained
suggest that we can merge real data with synthetic data to
improve the original performance of LLM, so we select it as
the best Scenario.

C. Rule similarity results

In order to assess which of the 10 fake datasets is the best
one, we applied the rule similarity (Section V) approach. In
particular, we computed the rule similarity between the real
ruleset and the rulesets obtained on real+fake data. Starting
from all the obtained non-zero similarities, we aggregated
them as explained in Section V-A. The final rule similarity
values S̄ for each couple of real and real+fake dataset are
reported in Table III.

Run Under 40 Over 40
1 0.17 0.19
2 0.29 0.43
3 0.24 0.17
4 0.20 0.41
5 0.21 0.26
6 0.22 0.40
7 0.12 0.30
8 0.16 0.24
9 0.22 0.27

10 0.21 0.30

TABLE III: Rule similarities S̄ for under 40 and over 40
groups. Each run individuates a fake dataset, which is com-
bined with the real one. The rule similarities are then computed
between the real dataset and each real+fake dataset.

Since we expect that the data augmentation approach might
be able to both reproduce quite similar data to the original and
also highlight different characteristics that may be important
for the analysis, we are interested in the two fake datasets that,
when concatenated with the real data, present, respectively, the
maximum and the minimum rule similarity with respect to the
real ruleset. Referring to Table III, they correspond to run 2
and run 7 for under 40, while run 2 and run 3 for over 40.

Since the obtained rule similarities are all lower than 0.50
for both age groups, and considering the good performance
metrics achieved (Tables I and II), we can infer that our
application of data augmentation to physical fatigue results
in new datasets containing quite different but performing
information.

In order to inspect the reasons behind the rule similarity
values, we report, as an example, the rulesets corresponding
to real over 40 data and real+fake data from run 2 for over
40, for which the rule similarity is the highest (S̄ =0.43). The
rules obtained with real data were the following:

1) if Hip.ACC.Mean > 3.961156 and Hip.yposture.Mean ≤
65.652682 and ‘back rotation position in sag plane’ ≤
11.700000 and Wrist.jerk.coefficient.of.variation ≤ 135.510000 and
Wrist.ACC.coefficient.of.variation ≤ 41.240000 then non-fatigued
(Ca = 0.944444)

2) if Ankle.xposture.Mean ≤ -5.042815 then non-fatigued (Ca =
0.138889)

3) if Hip.ACC.Mean ≤ 3.961156 then fatigued (Ca = 0.575000)
4) if Hip.yposture.Mean > 63.694615 and -5.555916 < An-

kle.xposture.Mean ≤ 4.061175 and Chest.jerk.coefficient.of.variation
> 79.195000 then fatigued (Ca = 0.525000)

5) if Hip.ACC.Mean ≤ 4.609755 and Wrist.jerk.coefficient.of.variation
> 107.135000 then fatigued (Ca = 0.425000)

In contrast, when we applied the LLM to the real data joined
with the data generated by GAN at run 2, we obtained the
following rules:

1) if Wrist.jerk.Mean > 13.284318 and Ankle.jerk.Mean > 40.381465
and ‘back rotation position in sag plane’ ≤ 9.685000 and
Hip.ACC.coefficient.of.variation ≤ 53.000000 then non-fatigued
(Ca = 0.695187)

2) if Hip.ACC.Mean > 4.083357 and Hip.yposture.Mean ≤ 67.313572
and Chest.zposture.Mean > 5.373362 and 1.309198 < ‘time bent’
≤ 10.230000 and ‘average back bent angle’ ≤ 30.528813 and
‘mean hip osicllation’ ≤ 0.216931 and ‘average vertical impact’
≤ 24.647082 and Wrist.jerk.coefficient.of.variation ≤ 135.510000
and Chest.yposture.coefficient.of.variation > 20.742683 then non-
fatigued (Ca = 0.684492)

3) if ‘average vertical impact’ ≤ 20.718409 and
Chest.jerk.coefficient.of.variation > 86.941708 and
Ankle.jerk.coefficient.of.variation ≤ 111.975000 and
Hip.yposture.coefficient.of.variation > 7.029767 and 18.205000
< Chest.yposture.coefficient.of.variation ≤ 87.535000 then
non-fatigued (Ca = 0.299465)

4) if ‘number of steps’ > 68.508728 and ‘average step time’ ≤ 0.882425
then non-fatigued (Ca = 0.101604)

5) if Wrist.jerk.Mean ≤ 13.342289 and Hip.ACC.Mean ≤ 4.767478
and Chest.jerk.Mean ≤ 17.961010 and Ankle.jerk.Mean
≤ 67.325729 and ‘mean hip osicllation’ > 0.060994 and
Hip.yposture.coefficient.of.variation ≤ 26.770000 then fatigued
(Ca = 0.704142)

6) if Hip.yposture.Mean > 65.506763 and Ankle.xposture.Mean > -
6.340669 and ‘mean hip osicllation’ ≤ 0.198853 and ‘back rotation
position in sag plane’ > 5.319703 then fatigued (Ca = 0.497041)

7) if Wrist.jerk.Mean ≤ 14.225740 and Chest.yposture.Mean ≤
63.875630 and ‘average back bent angle’ > 19.558336 then fatigued
(Ca = 0.313609)

8) if -32.848320 < Hip.xposture.Mean ≤ -17.684753 and An-
kle.ACC.Mean > 5.747455 then fatigued (Ca = 0.094675)

9) if Chest.ACC.Mean ≤ 2.328720 then fatigued (Ca = 0.041420)

Comparing the two rulesets, first it is possible to observe
that the augmentation process increases the number of gen-
erated rules (being 5 rules for real data only and 9 with
real+fake). The higher similarity is mostly related to features
that are shared in both rulesets: in detail, Hip.yposture.Mean
and Hip.ACC.Mean.

VIII. CONCLUSIONS

In this paper, we propose an explainable method, based on
the LLM algorithm, to understand and evaluate GAN-based
data augmentation and its advantages. Our approach extends
the typical usage of GANs, in which the data augmentation is
applied to outperform baseline results.
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We experiment our scheme in the context of physical fatigue
detection, showing how GANs can be adopted to generate two
subgroups of the original dataset, in our case based on the age
of the subjects, up to 40 or over 40 years old. After performing
different runs of GANs, we compare the obtained datasets
through LLM accuracy and F1-score in different scenarios;
then, an innovative measure of rule similarity is used to find the
best among different generated fake datasets and discovering
new knowledge.

Future works on the topic may include improvements in
GANs training phase, to reach better parameters, or improve-
ments to the architecture to fasten the process. Also, in this
paper, we considered scenario 2 (combination of fake and real
data) as the best option: then, another future direction will be
to investigate more on scenarios 1 and 3. Moreover, future
developments may involve the testing of different fake/real
sizes proportions, in order to assess how the system scales
with the size of the data.
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