US 20230296960A1

a2y Patent Application Publication o) Pub. No.: US 2023/0296960 A1

a9y United States

FISCHER et al.

43) Pub. Date: Sep. 21, 2023

(54) NONLINEAR OPTICAL SYSTEM AND Related U.S. Application Data
METHOD FOR OPTICAL INFORMATION (60) Provisional application No. 63/051,435, filed on Jul.
PROCESSING
14, 2020.
(71) ApplicamS:{g@?&};‘éggérslgligl%glfQ%% Publication Classification
QUEBEC (CA); GOTTFRIED (1) Int. CI.
WILHELM LEIBNIZ GO2F 1735 (2006.01)
UNIVERSITAT HANNOVER, GOSE 1/02 (2006.01)
HANNOVER (DE) (52) US. ClL
CPC ....ccvue GO2F 1/353 (2013.01); GOGE 1/02
(72) Inventors: BENNET FISCHER, MONTREAL (2013.01)
(CA); PIOTR ROZTOCKI,
LONGUEUIL (CA); MARIO 67 ABSTRACT
CHEMNITZ, JENA (DE); CRISTINA An optical information processing system comprising a
RIMOLDI, TORINO (IT); nonlinear element selected in relation to input optical pulses
BENJAMIN MACLELLAN, to initiate nonlinear optical frequency conversion and a
STIRLING (CA); LUIS ROMERO detection unit, the nonlinear element receiving encoded
CORTES, ALJARAQUE (ES); information input in form of pulsed light, pulsed light from
MICHAEL KUES, HANNOVER the nonlinear element being read-out by the detection unit
(DE); JOSE AZANA, MONTREAL for spectro-temporal feature extraction, and the readout
(CA); YOANN JESTIN, MONTREAL being used to train the system on a specific target to obtain
(CA); ROBERTO MORANDOTTI, a task-specific output or re-directed to the nonlinear element
MONTREAL (CA) to obtain an input-dependent output, yielding processed
information comprising selective positions in an output of
(21)  Appl. No.: 18/014,871 the system. A method for training an optical system com-
_ prises, for each individual optical input information, reading
(22) PCT Filed: Jul. 14, 2021 specific optical amplitude or phase features from specific
(86) PCT No.: PCT/CA2021/050972 output bins pf the system in time or frequency, We.lgl.lt%ng
and evaluating the specific features towards optimizing
§ 371 (c)(1), user-defined fitness function to identify, classify, or fit the
(2) Date: Jan. 6, 2023 input information.
200
7{00 {0 < .;’0
!' ''''' ) [t D R— e ) "ll ——————————————————— ':
( | Encoded Optical == Tunable Temporal Nonlinear Optical | | i
! Signal Splitter Element ! }
: | ' ! S|
! ' p._- Processing Stage ! ’ =
! L | Tunable S|
____________________________ =
| | : ; Spectral-Temporal |-»{ = |1
| [ ) l : 3|1
i | 5’- i Detection 21
| | ¢ | |
| | ‘ : 5 |£|
! ! Control Unit : {
| ! - | i
i Input Stage L Learning Stage i Readout Stage |
________________________ e
\‘ \\‘
7 3
— Optical Signals 200 400
--—> Electric Signals




US 2023/0296960 A1

Sep. 21,2023 Sheet 1 of 5§

Patent Application Publication

S|eubiS ou0d|g <----

4 00¢ sleubig [eondp <—
“ﬂ......-...mmmm nopesy M. ......... obeig buwes] lm.......m&m.ﬂ.:mm_ .....m
| | | I
| . o 1 > Jlun 104u09 | |
I = ! I ! I |
e f ! _ Yy _ |
I @ [ ¢ g5 [ _
& o319 g | | |
| = || |piodwa)-[ejoadg |« e ———— e — 1 i |
| w., 9|qeun] _ L _ _
1HE ! obieg buissanold —a | |
IE “ — "
| | wewey |, | jepds < pubs ||
| | [eando JesuljuoN lelodwa| sjqeun| o leando papoau3 |
I I p—— I p————— Sp— | pp—— I P ——— I Gp—— J

/ v / /
0f s oc a0/




US 2023/0296960 A1

\v/oili ——F A

pu3

Jun 00

Bumes uinjoy

sbuiyeg abuey) OLa|\ SjenjeAd
A

Sep. 21, 2023 Sheet 2 of 5§

Patent Application Publication

]
| | uonoelag lelodws |
-leJ}0adg sjgeun|

$
Jayids
[elodwa| 8|qeun|

(s )

~~0r

Q ~-7N



US 2023/0296960 A1

Sep. 21, 2023 Sheet 3 of 5§

Patent Application Publication

/o ——— s SOUDJIMS AR JO JOQUINN
9 G y € Z } 0
|(S8yoIms SA110B 0U) 80UBIBIRY o v ¢
1 UORELEA YOUMS
o —— s OljeJ Jamod 193
} 60 80 L0 90 G0 ¥0 €0 0 10 0
& . —X
& == == !W - \\\\\\ww\\\\\ == = A ———— e ©
IR
—— T T8 — Beq x|
II{ Jeaur] -~ ejeQoouaiaey ol
VE ==L Oljel JaMod 188
} 60 80 L'0 90 g0 70 €0 20 10 0
l..f}.llli‘lo/
T T - S S - 9
X
H 114 Jeaul] — Eleq x
)14 Jeaui] --——-  ejeq souslajBy o

10
¢0
€0
0

¢0
v
90
80

X Q© ¥ N ©
O O O O
B) Jomod [eando

n

Runyisusg)sae

S

p—
Qo
|

(.

1amod [eando

p—
Qo
<

~—

(



US 2023/0296960 A1

Sep. 21,2023 Sheet 4 of 5

Patent Application Publication

7 payoesy]
WINWIUIN

uonounj 1s09)
9ZIWIUIW 0}
18)j14 1snlpy

7 ———

~-(3) A (1) i
Buiuiel] wJopad %w%m_ma_ Buiuiel] wioyod Buiuiel] wiopad
1 p 1 1
soinjea N soinjes sainjes
}99]109 }99]109 J99]109
i i $
(Jenoedg Jo [elodws) “B'a) uoljebedo.d uonebedo.d
13} Indjno ajqeun| 1B3UIUON Je3UIJUON
i L !
uonouny 1809 -
+_ N__ 1 |sopdg-osind snipy ﬂ 2
UOIJRWLIOJU| Pap0IUT Uoljewoju| papoou3| juonewoju| papoous
CIYEAEN CIYEREN CITEREN
@< (es ) <>
Buiurel| Indno suiuo Buutes| induj suuo| | Buiuies] sunwo
9 8se) g 9sen \/ 9589




US 2023/0296960 A1

Sep. 21, 2023 Sheet 5 of 5§

Patent Application Publication

(06/€) %0°9 :(Bunsay) suonealyisse|osiw
bunse |

(004/¥) %0'¥ :(Buturen) suoneoiyisseosiul
Buiures |




US 2023/0296960 Al

NONLINEAR OPTICAL SYSTEM AND
METHOD FOR OPTICAL INFORMATION
PROCESSING

FIELD OF THE INVENTION

[0001] The present invention relates to optical information
processing. More specifically, the present disclosure is con-
cerned with a nonlinear optical system and method for
optical information processing.

BACKGROUND OF THE INVENTION

[0002] Although current optical detection and manipula-
tion methods of optical pulses and pulse sequences, for
applications such as signal processing, telecommunications
and sensing for example, are well developed, emerging
applications such as high-bandwidth processing and pico-
femto-second scale measurement still typically depend on
bulky, expensive, resource inefficient hardware and software
methods. For instance, achieving high-bandwidth detection
of optical pulses still requires expensive high-bandwidth
infrastructures, typically of the GHz-scale, and high-com-
putational powers.

[0003] All-optical-based methods used for high band-
widths (THz) and in turn detection or processing speeds, low
power consumption, potentially even fully passive operation
require multiple active components and thus suffer from
insufficient wall-plug efficiencies and lack versatility with
task-specific operation unsuited towards multiple applica-
tions such as wavelength-conversion, de-multiplexing,
channel equalization, or correlation/pattern recognition for
example. Machine learning methods for the classification,
prediction and processing of speech, pictures, and sensor
data generally rely on software-based approaches and are
still limited by resource efficiency and signal bandwidth.

[0004] Thus, currently, ultrafast high bandwidth electron-
ics (over 70 GHz) and complex optical multiplexing meth-
ods are available to reach data rates in a range between about
10s and about 100s Thit/s. Optical approaches for real-time
and ultrafast (in the femtosecond range), temporal pulse
detection and processing that are based on nonlinear optical
effects such as four-wave mixing (FWM) in different media
or tapped delay line systems mainly relying on traditional
telecommunication procedures and protocols. For instance,
tapped delay lines are used for channel equalization and
bit-stream correlation tasks as they are relevant for increased
data spring up.

[0005] Research on optical machine learning, such as
neuromorphic photonics for example, is going on to more
efficiently process data optically. For example, photonic
implementations are designed in a way that emulates brain-
like behavior, allowing picture or vowel/speech recognition
for example. A recurrent neural network, or reservoir com-
puting, is used to design a physical implementation of a
given task: nonlinear optical elements such as electro-optic
modulators perform a nonlinear transformation on input data
points, the data being generally electro-optically encoded,
and thus achieve a linear separation in a higher dimension.
In a physical implementation of deep learning architectures
such as feed-forward networks, a direct implementation of a
neural network architecture was developed on a chip or with
diffractive elements to perform vowel or picture recognition
tasks, respectively.
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[0006] On the one hand, classical processing methods
using high-bandwidth electronics above 70 GHz require
recently developed, cutting-edge systems which are limited
in availability, expensive and thus not accessible at large
scale. Additionally, using electronics implies a trade-off
between measurement duration, detection bandwidth and
detection sensitivity. On the other hand, optical schemes
usually operate at very low speed/sampling rate, as exem-
plified in current temporal pulse measurement systems, and
require complex and slow algorithms, for example for pulse
reconstruction. Moreover, these concepts usually rely on
opticalelectronic and electro-optic conversion steps, and the
high speeds and bandwidths available using light are thus
limited by—optic bottleneck limits.* Furthermore, current
optical processing schemes, such as current feed-forward
optical neural network concepts, including using machine
learning techniques for the experimental design, are gener-
ally highly customized in relation to a given specific task or
a given type of input, and thus lack versatility. A discrepancy
between the designed and observed performance of the
system, referred to as the component imprecision, is typi-
cally observed. Specifically, the reported accuracy of sys-
tems performing classification tasks are as low as -50% and
in general lower than expected from simulations and prior
error analysis, as design considerations arising from simu-
lated designs fail to fully account for system inconsistencies
such as noise, crosstalk, or used samples for instance. This
in turn results in lack of convergence in terms of failing to
find a global or local minimum for the desired target
function, and of robustness, ultimately of a limited predic-
tion quality. Highly complex architectures, consisting of
either hundreds of elements or specifically designed com-
ponents, in which the component imprecision plays an
increased, are used. The degree of customization during the
design and fabrication steps is a barrier to processing speeds
and mass availability. Lastly, most of the optical implemen-
tations still suffer from additional bottlenecks such as elec-
tro-optic signal conversion for encoding information, which
ultimately limits processing speeds to GHz rates or less, or
require a full read out the system information, thereby
necessitating high spectral resolution and bandwidth at the
detection side; moreover, they are largely application-spe-
cific, still lacking the demonstration of highly versatile task
operation, besides different bench-marking tasks, in a single
platform moreover, they are largely application-specific, still
lacking the demonstration of highly versatile task operation,
besides different bench-marking tasks, in a single platform.
[0007] There is still a need in the art for a nonlinear optical
system and method for optical information processing.

SUMMARY OF THE INVENTION

[0008] More specifically, in accordance with the present
invention, there is provided an optical information process-
ing system, comprising a nonlinear element selected in
relation to input optical pulses to initiate higher harmonic
generation and a detection unit; the nonlinear element
receiving encoded information input in form of pulsed light,
pulsed light from the nonlinear element being read-out by
the detection unit for spectro-temporal feature extraction,
the readout being one of: i) used to train the system on a
specific target to obtain a task-specific output and ii) re-
directed to the nonlinear element to obtain an input-depen-
dent output; yielding processed information comprising
selective positions in an output of the system.
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[0009] There is further provided a method for training an
optical system; the method comprising for each individual
optical input information, reading specific optical amplitude
or phase features from specific output bins of the system in
time or frequency, weighting and evaluating the specific
features towards optimizing user-defined fitness function to
identify, classify, or fit the input information.

[0010] There is further provided an optical information
processing method, comprising processing information
input in form of pulsed light in a nonlinear element, and
reading out for spectro-temporal feature extraction.

[0011] Other objects, advantages and features of the pres-
ent invention will become more apparent upon reading of
the following non-restrictive description of specific embodi-
ments thereof, given by way of example only with reference
to the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0012] In the appended drawings:

[0013] FIG. 1 is a schematic view of a system according
to an embodiment of an aspect of the present disclosure;
[0014] FIG. 2Ais a flowchart of a method according to an
embodiment of an aspect of the present disclosure;

[0015] FIG. 2B shows experimental encoded information
used for classification according to an embodiment of an
aspect of the present disclosure;

[0016] FIG. 3A shows optical power as a function of set
input power ratio, for a reference with 0 active switches
(dashed line), and for returned optimum switch settings with
3 active switches (full line);

[0017] FIG. 3B shows optical power as a function of set
input power ratio, for the reference (dashed line), and for
returned optimum switch settings with 5 active switches
(full line); and

[0018] FIG. 3C shows an analysis for a fixed wavelength
window of 5.5 nm as a function of the number of active
switches;

[0019] FIG. 0.4 is a flowchart of a method according to an
embodiment of an aspect of the present disclosure;

[0020] FIG. 5A shows the results of the training of the
IRIS nonlinear classification using a stand-alone configura-
tion in Case A of FIG. 4; and

[0021] FIG. 5B shows the results of the system testing of
the IRIS nonlinear classification using a stand-alone con-
figuration in Case A of FIG. 4.

DESCRIPTION OF ILLUSTRATIVE
EMBODIMENTS

[0022] The present invention is illustrated in further
details by the following non-limiting examples.

[0023] An optical information processing system accord-
ing to an embodiment of an aspect of the present disclosure
as illustrated in FIG. 1 generally comprises an encoding unit
100 (input stage), a processing unit 200 (processing stage),
and a measurement unit 60 (readout stage 400), and gener-
ates processed information comprising selective positions in
an output of the system.

[0024] The encoding unit 100 encodes information on an
optical signal from an optical source. The input optical
signal may be a sensor signal, image signal, optical ranging
signal, optical tomography signal, telecom signal, or infor-
mation carrying optical pulse series. The input optical pulses
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are femtosecond pulses, of a time duration in a range
between about 1 fs and about 10000 fs and a spectral
bandwidth below 100 nm.

[0025] The processing unit 200 comprises a nonlinear
optical element 30 selected in relation to the input optical
pulses to initiate higher harmonic generation, such as second
harmonics generation, sum frequency generation, difference
frequency generation, for example, by one of a cascade of
ones of four-wave mixing, soliton fission, dispersive wave
generation, modulation instabilities, cross-phase modula-
tion, and self-phase modulation, for example.

[0026] The nonlinear optical element 30 receives encoded
information input in form of pulsed light. The nonlinear
optical element 30 may comprise highly-nonlinear fibers,
dispersion-shifted fibers, highly-doped fibers, soft-glass
fibers, liquid-core fibers, hollow-core fibers, photonic crystal

fibers, and chip-integrated nonlinear waveguides for
example.
[0027] The measurement unit 60 comprises a tunable

spectral and/or temporal detector, such as an optical spectral
analyzer; a dispersive optical element coupled to a detector,
a dispersive optical element coupled to a detector array; and
an interferometric spectro-temporal pulse retrieval device,
for example.

[0028] In an embodiment, the system comprises an addi-
tional tunable spectral routing element 20 processing the
input optical signals, such as a tunable temporal splitter for
example as illustrated in FIGS. 1 and 2, before the nonlinear
optical element 30, for a random change of the settings; the
processed information comprises a selective readout of the
system output, i. e. specific features after selection of
specific positions in the output as will be described herein-
below and referred to as elective readout (see FIG. 1 and
FIGS. 2A, detection unit 60, arrow S) as will be described
hereinbelow.

[0029] In an embodiment, the processing unit is electri-
cally interfaced to a computer or microprocessor (control
unit 50) and the settings are adaptively changed based on the
readout through feedback-control system (see 1 and FIGS.
2A, arrow D), as will be described hereinbelow.

[0030] The tunable spectral routing element 20 comprises
reconfigurable optical elements selected to achieve an
adjustable range of functions and operations for a range of
signal processing tasks, such as for example logic opera-
tions, regression tasks or signal correlation, through the
nonlinear element 30 in the processing unit. The tunable
spectral routing element may be a multi-channel wavelength
division multiplexer with variable attenuators; a dispersive
element coupled to a micro-electro-mechanical-system, a
dispersive element coupled to a spatial light modulator, a
dispersive element coupled to a complex spatial filter;
waveguide-based filters, such as Bragg-grating arrays,
Fabry-Perot cavities or microresonator cascades. The tun-
able spectral routing element 20 may be a tunable temporal
splitter comprising on-chip cascaded MachZehnder interfer-
ometers as illustrated hereinbelow, or frequency-dependent
phase masks for example.

[0031] The resulting signal detected by the tunable-spec-
tral temporal detector 60 may be used by a control unit 50
(Learning stage 300). The system may be trained on a given
target (arrow S in FIGS. 1 and 2A) in supervised training, by
randomly changing the voltage settings of the temporal
pulse splitter 30 and the frequency or wavelength bins of the
detector 60; or by changing current settings, or phase values
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in case the processing unit uses phase masks, of the temporal
splitter 30, and voltages, currents, or time as settings of the
detector 60 in case an optical gate is implemented, for
example.

[0032] The resulting signal detected by the tunable-spec-
tral temporal detector 60 may also be re-directed to the
processing unit to obtain an input-dependent system output
(arrow D in FIGS. 1 and 2A), with an adaptive change of
settings of the system, by changing the voltage settings of
the switches in the on-chip MachZehnder interferometers of
the tunable temporal splitter for example.

[0033] The system may also be operated in a stand-alone
mode. An optical signal, of a pulse duration in a range
between about 30 fs and about 10 ps for example and
spectral widths of at most 100 nm, and Gaussian, Lorentzian
or sech-squared spectral envelope shape for example, is
injected from a pulsed laser source, and information is
encoded on the optical signal temporally or spectrally via
phase or amplitude masking with a tunable spectral filter or
a tunable temporal splitter as described hereinabove for
example. The tunable temporal splitter may be an interfer-
ometer-based pulse splitter for example. The nonlinear opti-
cal element may be a highly nonlinear fiber or nonlinear
waveguide. The tunable spectral and/or temporal detector
may be an optical spectrum analyzer, a dispersive fiber
coupled to an ultrafast photodiode, or a dispersive imaging
system. The control unit 50 may be a computer or a
Microprocessor.

[0034] The encoded optical signal is modified into mul-
tiple coherent copies with adjustable relative powers using
optical switches in the tunable temporal splitter or using a
complex phase mask on the optical signal at the encoding
stage. The nonlinear and dispersion-induced interactions of
the input signal with the pulse multiple coherent copies
occur in the nonlinear optical element, thereby processing
the input signal in a complex but deterministic way. The
nonlinear and dispersion-induced interactions may comprise
nonlinear frequency mixing, dispersive broadening, among
others, of the pulses.

[0035] Then signal readout takes place in the tunable
spectral and/or temporal detector 60 (See FIG. 1). The
detector may comprise a physically tunable element such as
a temporal or spectral filter, or software-based processors
using digital filters or software-based neural networks for
example.

[0036] For the system to be trained to converge on a
specific operation such as classification, regression or clus-
tering, the signal from the readout stage is sent to the control
unit (arrow S in FIGS. 1 and 2). The system may be trained
either in the encoding stage (feed-forward type 1), or during
linear processing (feed-forward type 11, FIG. 4, Case B), or
during tunable detection (random reservoir type, FIG. 4,
Cases A and C), or any combination of these methods (A, B,
C,Aand B, B and C, Aand C and A, B and C). The detected
signal is evaluated by a task-specific metric or loss function
in a supervised learning method. Alternatively, unsupervised
or reinforcement learning techniques, or a combination
thereof, may be used. Training may further comprise opti-
mization techniques such as evolutionary optimization in
order to improve convergence.

[0037] Once the system is trained for the specific task, the
detection is done in a fully passive way, in absence of active
electro-optic modulation and the control unit is no longer
required.
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[0038] FIG. 2B shows an example of experimental
encoded information used for classification. Two pulses with
a 1 ps temporal separation enter the tunable temporal splitter.
During training, the pulse ratio is altered between 0, where
the second pulse is full power, and 1, where the first pulse
is full power.

[0039] The system can thus be trained for a range of
specific tasks, and is re-configurable. The detection stage
can be implemented to resolve one or multiple degrees-of-
freedom including frequency, time, etc., and can thus pro-
vide a means for multi-input all-optical data processing.
[0040] FIG. 3 show experimental results. As in the
example of FIG. 2B, two input pulses separated by 1 ps were
used, with the aim of improving the detection sensitivity,
defined as the ability to distinguish between different input
pulse ratios. For training, the power ratio of the two pulses
was linearly changed between 0 and 100%:either only the
second pulse (FIG. 2B, Top) or only the first pulse (FIG. 2B,
Bottom) or two pulses with varied ratios (FIG. 2B, Middle).
As the pulse power ratios are thus changed, different non-
linear interactions in the nonlinear optical element, which
was a highly nonlinear fiber in this case, take place, resulting
in correspondingly different output signal spectrum from the
fiber, which was in this case a supercontinuum.

[0041] This output signal was measured for all input
power ratios using a spectral filter and photodetector. This
may also be achieved using a scanning optical spectrum
analyzer and software filtering. The detected signal, in this
case an optical power measurement, was evaluated and its
variation across the set input power ratio values was
observed. The distribution of this signal determines how
easily it can then be mapped back to the original target
variable of pulse power ratio, effectively demonstrating a
classification/regression operation. The processing unit may
be trained towards specific target operations by iteratively
changing the encoding mask, and/or the temporal splitting
and/or spectral filtering following the fiber, in order to
minimize the detected signal distribution, and hence the
classification or regression error, measured as a loss func-
tion, or, equivalently, to maximize a reward function. The
training iterations may be mediated by brute-force, by
example by parametric optimization, or by guided
approaches such as for example genetic algorithms, and/or
error back-propagation for example.

[0042] With a linear regression training as an example,
different operation regimes can be obtained depending on
the number of switches considered for the training (see FIG.
3). In each case of FIGS. 3A and 3B, the obtained results are
compared to a reference case where only the power ratio
changes and the tunable temporal splitter is turned off. The
reference case corresponds to detecting the two input pulses
without the temporal splitter while using the same spectral
filtering bandwidth and detection method. FIG. 3A shows
the optical power as a function of the set input power ratio,
for the reference when all switches are set to short path thus
with 0 active switches (dashed line), and for returned
optimum switch settings with 3 active switches (solid line),
from a method that returns the highest slope with the same
algebraic sign. FIG. 3B shows the optical power as a
function of the set input power ratio, for the reference
(dashed line), and for returned optimum switch settings with
5 active switches (solid line), from a method which returns
the highest slope with the opposite algebraic sign by signal
inversion.
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[0043] Two operation regimes of particular interest could
thus be achieved. Firstly, the detection sensitivity, defined as
the rate of output signal change as a function of input power
ratio, can be increased while maintaining a negative slope,
compared to the reference case as shown in FIG. 3A.
Secondly, FIG. 3B shows the detection sensitivity can be
increased with a positive slope demonstrating effective
signal inversion. In both operation regimes, the monotonic
behavior is maintained, which is a mandatory condition for
distinguishability, meaning that no power ratio shows the
same power value. The optimal temporal splitting settings,
obtained through learning as discussed hereinabove FIGS. 1
and 2A, allow in both cases an increase in detection sensi-
tivity, as evidenced by the higher linear regression slope
compared to the reference case. Thus, for example, higher
classification accuracy is achieved, as it is then easier to
separate different input classes by measuring different
power, voltage or current values. In case of other tasks such
as correlation or regression, an inverted response can be
contemplated. Moreover, as shown in FIG. 3C, when using
the tunable temporal splitter, in this example an interferom-
eter-based pulse splitter, an increase in detection sensitivity
depending on the number of splitting units used was
obtained, allowing for further control over the operations.

[0044] As mentioned hereinabove, the system may also be
used for stand-alone operation by making use of temporal or
spectral encoding before the nonlinear element. FIGS. 4 and
5 show an example for a nonlinear classification task using
the IRIS flower classification benchmark for the identifica-
tion of IRIS plant species on the basis of plant attribute
measurements. FIG. 4 shows different training configura-
tions: offline-training, using for example the extreme-learn-
ing machine paradigm (Case A); online input training (as for
pulse-splitter results in FIG. 3 for example) (Case B), and
online output training (as used for the readout in FIG. 5 for
example) (Case C). The presented invention is not limited to
one case and a combination can be employed.

[0045] In all cases, the nonlinear element receives
encoded information input in form of pulsed light, which is
subsequently read-out for spectro-temporal feature extrac-
tion. Training of the system to a user-defined task may be
performed in the different configurations. In offline-training
configuration (Case A in FIG. 4), the system output is
electronically recorded and post-processed digitally by opti-
mization using genetic algorithm or swarm algorithm for
example, or machine-learning using backpropagation, gra-
dient descent, reinforcement learning for example, in order
to retrieve an input-specific system response. In online input
training (Case B in FIG. 4), a tunable temporal pulse splitter
is used between the input and the nonlinear medium, the
signal output is electronically evaluated and fed back to the
tunable temporal splitter for improving feature distinguish-
ability. In online output training configuration (Case C in
FIG. 4), a tunable spectral and/or temporal filter is used after
nonlinear propagation in the nonlinear element and opti-
mized in order to extract output features and improve their
discrimination. The method and system of the present inven-
tion are not limited to one of the presented training con-
figurations and a combination thereof may be used.

[0046] FIG. 5 illustrates nonlinear classification IRIS
using the stand-alone offline-training configuration as out-
lined in Case A of FIG. 4. FIG. 5A shows the results of the
training and FIG. 5B shows results of system testing. The
spectral readout output bins, one per class, are determined
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by an optimization algorithm. The four features of each
orchid blossom are encoded into the spectral phase of the
input pulse. Subsequently, the pulse-splitter was used only in
a passive, pass-through setting and training was performed
on a digital computer with 100 training samples. As result of
the training three different wavelength bins were identified
as spectral regions of highest input distinguishability,
namely a wavelength bin class centered at 1371.2 nm, a
wavelength bin class centered at 1507.9 nm and a wave-
length bin class centered at 1621.6 nm, each having a 0.4 nm
bandwidth. The location of the bins can be randomly dis-
tributed and weighted, or obtained using optimization algo-
rithms. FIG. 5A shows the output class predictions of the
system versus the targeted class labels after the system
training on the three best wavelength bins, featuring an
accuracy of 96%. FIG. 5B shows the output class predictions
of the system versus the targeted class labels after the
optimized wavelengths bins and weights were applied to 50
test samples, yielding a classification accuracy of 94%.
Afterwards, the selected spectral features of interest were
recorded in three different wavelength bins, one per class,
but not limited to one bin per class, centered at 1371.2 nm,
1507.9 nm and 1621.6 nm, respectively, 0.4 nm bandwidth
each. The location of the bins can be randomly distributed,
or obtained using algorithms.

[0047] As people in the art will now be in a position to
appreciate, the system and method as illustrated in the
present disclosure achieve robust and all-optical signal pro-
cessing of encoded optical inputs of multiple degrees of
freedom, such as frequency, time, phase etc., in absence of
task-specific conditions.

[0048] The system outputs selective read out thus reducing
requirements for high spectral resolution and bandwidth at
the detection side. In the method for training the optical
system, for each individual optical input information, spe-
cific optical amplitude or phase features are read out from
specific output bins of the system in time or frequency,
weighted, and evaluated towards minimizing, or maximiz-
ing, user-defined cost function or system penalty, i.e. fitness
function or system reward, in order to identify, classify, or fit
the input information. The weights are determined through
learning algorithms, such as linear regression, ridge regres-
sion, gradient decent, error back propagation, or optimiza-
tion algorithms. The evaluation error/gain may be found
using statistical metrics, such as mean square error, infor-
mation entropy, number of misclassifications. The number
and specific positions of the output bins in time and/or
frequency may be selected randomly, or found iteratively
through parametric search algorithms; evolutionary optimi-
zation algorithms; or software-based artificial neural net-
works.

[0049] The method may be applied to a tunable routing
system (Case C, FIG. 4). For a selected number of output
bins at pre-defined locations and read-out weights, the
system may be trained via variable temporal amplitude
splitting and phase control of the encoded input pulse, using
a measurement monitor at the system output and a process-
ing unit for feedback control (Case B, FIG. 4); in the control
weights for the temporal splitting, ratios and phase values
are determined through learning algorithms, such as linear
regression, ridge regression, gradient decent, error back
propagation, or optimization algorithms; the evaluation
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error/gain may be found using statistical metrics, such as
mean square error, information entropy, number of misclas-
sifications.

[0050] For a selected number of output bins at pre-defined
locations and read-out weights, the system may be trained
via variable spectral phase and/or amplitude masking of the
encoded input pulse, using a measurement monitor at the
system output and the processing unit for feedback control;
the control weights for the spectral amplitude and phase
filter settings are determined through learning algorithms,
such as linear regression, ridge regression, gradient decent,
error back propagation, or optimization algorithms; the
evaluation error/gain may be found using statistical metrics,
such as mean square error, information entropy, number of
misclassifications.

[0051] Specific features in the output are obtained using
optimization or machine-learning.

[0052] A single system, allowing reconfigurability to per-
form different tasks, is provided.

[0053] In addition, the present system may be transferred
onto a single chip using complementary-metaloxide-semi-
conductor (CMOS) compatible materials, processes and
operation voltages, for inexpensive, low power consuming,
mass-producible optical signal processors.

[0054] Due to high versatility, the system and method can
be used to increase the detection sensitivity in applications
such as optical spectroscopy, or applications in the field of
telecommunications as a tool in optically assisted signal
processing for signal regeneration, optical logic operations
such as inversion, or optical correlation/classification tasks
for example, with a high bit rate and in a passive manner. In
addition, the proposed system allows to characterize the
dispersion of optical transmission lines, for applications in
digital signal processing techniques in current telecommu-
nications systems for example.

[0055] Furthermore, the present system and method can
perform the aforementioned tasks without being specifically
designed for specific tasks.

[0056] The present method may be combined with tradi-
tional machine learning techniques, and the system can
perform the preprocessing of data in order to reduce the
complexity of input signal, by dimensionality reduction, and
after detection the processed information can be provided
directly to other functional devices, such as providing an
optical sensor signal directly to an actuator for example, or
transferred to classical, software-based or physical, machine
learning architectures such as feed forward or recurrent
neural networks.

[0057] The scope of the claims should not be limited by
the embodiments set forth in the examples but should be
given the broadest interpretation consistent with the descrip-
tion as a whole.

1. An optical information processing system, comprising
a nonlinear element selected in relation to input optical
pulses to initiate nonlinear optical frequency conversion and
a detection unit; the nonlinear element receiving encoded
information input in form of pulsed light, pulsed light from
the nonlinear element being read-out by the detection unit
for spectro-temporal feature extraction, the readout being
one of: i) used to train the system on a specific target to
obtain a task-specific output and ii) re-directed to the non-
linear element to obtain an input-dependent output; yielding
processed information comprising selective positions in an
output of the system.
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2. The system of claim 1, comprising a tunable spectral
routing element before the nonlinear element, for a random
change of settings of the system.

3. The system of claim 1, comprising a tunable spectral
routing processing the input optical pulses element before
the nonlinear element, and a control unit for an adaptive
change of settings of the system based on the readout
through feedback-control.

4. The system of claim 1, wherein the input optical pulses
have a time duration in a range between 1 fs and and 10000
fs and a spectral bandwidth below 100 nm.

5. The system of claim 1, wherein the input optical signals
are ones of: sensor signals, image signals, optical ranging
signals, optical tomography signals, telecom signals, and
information carrying optical pulse series.

6. The system of claim 1, comprising an encoding unit,
said encoding unit encoding information on the input optical
signal.

7. The system of claim 1, wherein the nonlinear element
is selected in relation to input optical pulses to initiate
nonlinear optical effect by one or a cascade of ones of:
four-wave mixing, soliton fission, dispersive wave genera-
tion, modulation instabilities, cross-phase modulation and
self-phase modulation.

8. The system of claim 1, wherein the nonlinear element
comprises at least one of: highly nonlinear fibers, disper-
sion-shifted fibers; doped fibers, oftglass fibers, liquid-core
fibers, hollow-core fibers, photonic crystal fibers and chip-
integrated nonlinear waveguides.

9. The system of claim 1, wherein the detection unit
comprises a tunable-spectral temporal detector.

10. The system of claim 1, the detection unit comprises a
tunable-spectral temporal detector, wherein said detector is
interfaced to a computer for online read-out and further
processing.

11. The system of claim 1, comprising a tunable spectral
routing element before the nonlinear element, wherein the
routing unit is one of: a tunable spectral routing element, a
tunable temporal routing unit and a spectro-temporal routing
unit.

12. (canceled)

13. (canceled)

14. (canceled)

15. The system of claim 1, comprising a tunable spectro-
temporal routing element before the nonlinear element,
wherein the routing unit is optically connected to the detec-
tion unit and electrically interfaced to a computer for feed-
back-control.

16. (canceled)

17. The system of claim 1, comprising a tunable temporal
splitter before the nonlinear element for one of: information
encoding and input pulse processing, and the tunable tem-
poral splitter is interfaced to a computer for feed-back
control according to the readout.

18. (canceled)

19. (canceled)

20. The system of claim 1, comprising one of: a temporal,
spectral, and spectro-temporal phase and/or amplitude filter
unit before the nonlinear element for information encoding
or input signal processing, and the filter unit is interfaced to
a computer for feed-back control according to the readout.

21. The system of claim 1, interfaced to a computer for
feed-back control according to the readout.
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22. The system of claim 1, interfaced to a computer for
feed-back control according to the readout, by one of
machine-learning and optimization.

23. The system of claim 1, comprising a nonlinear ele-
ment, a tunable spectral, temporal, or spectro-temporal unit,
and a feedback circuit from the nonlinear element output
that controls the tunable spectral, temporal, or spectro-
temporal unit.

24. (canceled)

25. An optical information processing method, compris-
ing processing information input in form of pulsed light in
a nonlinear element, and reading out for spectro-temporal
feature extraction.

26. The method of claim 25, comprising training to a
user-defined task by at least one of: i) recording an output
and optimizing or machine-learning to retrieve an input-
specific response, in offline-training configuration; ii) using
a tunable temporal pulse splitter between the input and the
nonlinear element, evaluating an output and feeding back to
the tunable temporal splitter for improving feature distin-
guishability, in offline-training; iii) using a tunable spectral
and/or temporal filter after the nonlinear element and opti-
mizing to extract output features and improve discrimina-
tion, in online output training.

27. The system of claim 1, wherein the nonlinear element
is selected in relation to the input optical pulses to initiate a
cascade of one of: four-wave mixing, soliton fission, dis-
persive wave generation, modulation instabilities, cross-
phase modulation, and self-phase modulation.

#* #* #* #* #*
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