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Abstract This paper proposes a multi—period location—allocation problem
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which the improvement of service accessibility through the planning horizon is
appropriately addressed. Unlike previous research, the proposed model modi-
fies the allocation pattern to prevent unacceptable deterioration of the acces-
sibility criterion. In addition, the problem is formulated as a covering model in
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The uncertainty in demands within each time period is captured by adopting
a distributionally robust approach. The model is then applied to a real case
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1 Introduction

An aging revolution is taking place world—wide. Increased longevity is one of
the most important success of our era but it also raises a challenge for health
systems that are put under the pressure to reform their care organization to
be sustainable for an aging society. These increased expectations should be
reconciled with the limited resources available. In 2012, people aged 60 years
and more were 0.8 billion, 11% of the world population. By 2030 they will
number 1.4 billion and will represent up 17% of the world population. By
2050, this number will rise up to 22% [37]. In addition, increased urbanization
and migration will result in older people living alone. Each country will need
a comprehensive approach to make the necessary transformation and to meet
the challenge.

Improving services for older people entails to consider each component of
care system as, for instance, specialized clinics, home care services, and nursing
homes.

The impact of the aging society will fall predominantly on the long—term
care sector requiring appropriate re—design of the long—term care services, in-
cluding supported self-care, home-based and, especially, home nurses. This
paper is motivated by the real problem of creating an efficient nursing home
network to satisfy the elderly care demands in emerging countries. In particu-
lar, we shall focus on the Middle East considering Iran. In the last years, the
Iranian society has experienced an exceptional increase of life expectancy: in
1960 this index was around 44 years against 73 years in 2012. It is supposed
that even greater thresholds could be achieved with a widespread provision of
public health care services in which all age groups are served equitably, includ-
ing the elderly population (people aged 60 and over). The need of designing an
efficient long—term care network is a quite new requirement in Iran, that for
tradition, is a family—centered society. If in the past the idea of moving elderly
family members to nursing home has always been disapproved, in recent years
this trend has been inverted due to social changes, increased socio—economic
difficulties and the opportunity to receive more professional care.

The problem of designing an efficient nursing home network has a strategic
nature and involves decisions that have an impact over an extended planning
horizon. The limited financial resources are typically spread over a time horizon
making the adoption of a myopic policy, that ignores the inherent dynamic
nature of the problem, highly inefficient. On the contrary, a long-sighted view,
can be vital for the system financial survival.

To address this issue, in this paper, we propose a multi—period location
model that incorporates the dynamic evolution of the system throughout the
planning horizon; with the provision of new financial resources, new facili-
ties can be located and additional demand can be gradually satisfied. To this
aim, in consecutive periods, newly established facilities are located and the
assignment pattern is improved assigning all previously covered demands to
closer facilities, if possible. In general, by applying this incremental approach,
the distance between covered demands and facilities sequentially reduces over
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time and the accessibility (perceived as an important service level) is improved
over the entire planning horizon. Indeed, in presence of finite financial resources
the system can fall, relatively easily and quickly, into very poor service levels,
especially when the demand variability is high.

To the best of our knowledge, there is not any previous research on loca-
tion literature addressing the strategic design of the nursing home network.
In addition, although there is a vast literature on multi—period location mod-
els, only [1,3] address the important issue of satisfying the demands in an
incremental fashion, whereas the variability of the demand of service, along
the horizon, has been typically neglected [14,23]. This poses a challenge, since
the determination of the optimal location of facilities at the beginning of the
horizon should be made before the actual amount of demand is available.

In this paper, we deal with this issue by adopting a distributionally robust
approach. We consider a general case in which only the mean and the deviation
of the stochastic demands over each time period are known. Moreover, we
opt for a risk—averse view point, considering the service levels as probabilistic
constraints to be satisfied with a given reliability level [8,10,11]. We point
out that there is a strong background on applying the chance constrained
approach for strategic planning in the health care sector, supported by its risk—
averse characteristic [7,16]. As a risk—averse approach, the chance constrained
paradigm allows the decision maker to capture the demand uncertainty and to
exclude the more risky situations depending on the aversion level. Compared
with risk-neutral approach ([14,23]), in which only the expected values are
considered, the risk—averse framework takes also the deviations of the uncertain
parameters into account.

Another distinctive feature of the proposed model is the incorporation
of the elasticity of the demand with respect to the distance traveled by the
users (distance—elasticity of demand). There is a general consensus on the
elasticity of demand in the health care sector [34,35]. The explicit consideration
of the distance—elasticity of the demand enables the managers to gain valuable
information about the participation level for care services, supporting in a more
realistic fashion the decisions of upgrading or extending the facilities in the
long—term.

To address the elasticity of demands, we define a user—specific distance
threshold reflecting the preferences of users to access the service. This thresh-
old is different from the manager—specific threshold which is related to the
covering nature of the problem and represents the manager’s preferences.

The main contributions of the proposed model are as follows:

(1) The model proposes a multi—period framework in which demand nodes are
incrementally served.

(2) Unlike previous related research [1,3], the proposed model modifies the
allocation pattern to prevent unacceptable deterioration of the accessibility
criterion. In addition, the problem is formulated as a covering model in which
the capacity of facilities is also considered.

(3) The uncertainty in demands within each time period is captured by adopt-
ing a distributionally robust chance constrained approach. In addition, the
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model also incorporates the distance—elasticity of demands.

The rest of the paper is organized as follows: Section 2 presents a brief
review on existing relevant literature. Section 3 describes the problem and
presents a stochastic formulation along with its deterministic equivalent coun-
terpart. Section 4 presents the real case study and shows the improvements
achievable when implementing the recommendations provided by the model
in terms of location—allocation configuration in the nursing home network in
Shiraz city. Finally, conclusions and findings are reported in Section 5.

2 Literature Review

There is a vast literature on the development of single period location—allocation
models in the health care context [6,7,19,20]. Many existing researches have
shown the advantage deriving from the adoption of a multi—period program-
ming framework, when compared with a single period one, to deal with strate-
gic location—allocation decisions. In particular, there is a wide literature on
the application of multi—period location models for the public service sector
[28,30] and, especially, in the health care field [4].

Nevertheless, there are only a few papers in the literature addressing multi—
period location—allocation models at the presence of stochasticity [21]. Among
them, we refer to a recent work of Markovic et al. [21]. Recognizing the sparse-
ness of literature, the authors presented a multi—period model to locate a set of
flow—capturing facilities aimed at intercepting the stochastic traffic flows with
evasive behavior. The proposed model allows the adjustment of facility loca-
tions over different time periods. A Lagrangian relaxation heuristic is proposed
and tested on two road networks.

Adopting a risk-neutral approach, Albareda—Sambola et al. proposed a
multi—period location—allocation model under cost uncertainty [2]. They con-
sidered two alternative strategies, including the scenario-dependent case in
which the decision locations are made gradually with the evolution of ran-
domness over the planning horizon and the scenario—independent case, where
the locations decisions are made in an a priori fashion at the beginning of the
horizon. For the scenario—dependent strategy, they presented a multi-stage
stochastic location model while for the a priori case, a two—stage model is
defined.

In another paper, Nickel et al. presented a multi—period model for the
facility location problem in supply chain, where demands and interest rates
are affected by uncertainty and represented by a set of scenarios [27]. The
problem is formulated as a multi—stage stochastic model in which the objective
is expressed as the maximization of the total benefit and the achieved service
level.

Hernandez et al. ([18]) studied a multi-period mathematical model for the
prison selection problem in which the demands are represented as stochastic
parameters. The model determines the location and the size of new facili-
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ties for each time period and the capacity upgrade for both existing and new
prisons over the planning horizon. The objective function minimizes the open-
ing and expansion costs, the costs of transferring the convicted inmates from
the court to their assigned prison, and the cost of overpopulation in prisons
which is, indeed, a penalty term. In order to address the accessibility issue,
the objective function accounts for the closeness of the inmate’s prison to
the court which facilitates the frequent visit of inmates and their families. To
incorporate the uncertainty in demands, the authors applied a scenario tree
generation approach and then solved the resulted model using a branch—-and-
cluster coordination method. As a case study, the Chilean prison system has
been considered.

To get the reader familiar with the main issues arising in the health care
sector, in the following we review those researches addressing the location—
allocation planning of health care facilities.

In [33], a mathematical model for designing a network of long —term care
facilities is presented. To reflect the patient’s preference, the model imposes
the closest assignment property in which patients are assigned to the nearest
open facility. They also recognized the changes in the demand pattern and
suggested developing a multi—period model in which the variation of demand
through different periods is captured.

In [36], Zahiri et al. proposed a multi—period location model for an organ
transplant problem in which the uncertainty in input data (cost) is handled
by using a robust probabilistic programming approach. They also extended
the model to a bi—objective one in which the minimization of total traveled
time is considered, underlining the importance of dealing with distance—based
measures even when the allocation is not directly done between pair of facilities
and users, but between pair of facilities.

Benneyan et al. [5] proposed a location—allocation model, as well as its ex-
tended multi-period counterpart, to address the fluctuation of demands over
time, for Veterans Health Administration facilities. They considered the ob-
jective function as a weighted sum of conflicting criteria, including travel time,
unoccupied capacity, and uncovered demands.

In [26], Ndiaye and Alfares presented a multi-period location—allocation
model for the establishment of seasonal health care facilities serving tran-
sient populations. The objective function minimizes the sum of opening and
operating costs as well as the total traveled distance. The adoption of the
multi-period framework enables the managers to handle the seasonal variabil-
ity in operating costs and demands. Although the coverage issue has not been
considered in the model, improvement of the accessibility is obtained by the
incorporation of a distance threshold.

Rodriguez—Verjan et al. proposed in [29] a multi—period location—allocation
model for home care services to minimize the total cost in a multiple resource
system. What distinguishes the paper from other works is the modelization
of some peculiarities of health care systems, like the authorization, different
resources, pathologies and their evolution in time.



6 S. Khodaparasti et al.

In [17], Ghaderi and Jabalameli presented a multi-period location model
considering budget constraint on investment during each period. The objec-
tive function minimizes the total travel and operating costs. Both fixed and
operating costs for located facilities and constructed links over each period
time are considered. As a case study, they also presented an application of the
model in the health sector.

Two different two—stage stochastic programming models for multi—period
hospital network planning are presented in [14,23]. The uncertainty in de-
mand and supply is captured using different scenarios embedded in a two—
stage stochastic framework. In the first model, the allocation decisions are
postponed in the second stage, when the uncertainty realizes, whereas in the
second model both location and allocation decisions can be taken in the first
stage.

In [31], a multi-period location—allocation model for emergency blood sup-
ply scheduling problem was presented. A set of temporary blood facilities are
located and assigned to the blood donors such that the total cost is minimized.
The cost function is expressed as the total cost of transporting blood from
blood facilities to the center as well as the cost of relocating blood facilities
within consecutive periods. In addition, the total amount of unmet demands
is penalized in the objective function. A coverage distance is imposed limiting
the allocation of blood donors to blood facilities within the coverage radius.
The number of available blood facilities over the planning horizon is fixed
and a demand coverage constraint is imposed to guarantee the satisfaction
of a specified percentage of demands. Enhanced with a Lagrangian relaxation
solution approach, the model was implemented on a case study.

In arecent paper, Correia and Melo ([15]) proposed a multi—period location
model in which the sensitivity of customers to delivery lead times has been in-
corporated. The novelty of the model comes from differentiating the customers
who make the most contribution to the company’s profit— and that should be
responded on time—, from the others, for whom a maximum allowed delay is
considered. Meanwhile, a subset of time periods over the planning horizon is
specified in which strategical decisions such as the opening of new facilities,
the closure of the existing ones, and the capacity acquisition decisions for new
facilities are made. The tactical decisions about the distribution of services to
customers can be made in any time period. Some additional assumptions, like
considering different capacity levels for the facilities sited at potential loca-
tions or limiting the number of times that the customers are responded with
delay over the planning horizon, are also considered.

The most significant contribution of the reviewed literature relies on mod-
eling features of health care problems which had not been addressed before.
Despite their undeniable novelty, there are still some potential gaps to be
filled. For instance, none of the aforementioned models addresses the impor-
tance and the possibility of improving accessibility and service level through
the planning horizon. Neglecting the modification of the allocation pattern,
when there is such a possibility, may result in an overestimate of the system
performance. To partially address this issue, Albareda—Sambola et al. ([1])
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proposed a multi—period incremental location model to serve demands incre-
mentally over a discrete planning horizon. Later on, Albareda—Sambola et al.
introduced, in [3], three different multi—period incremental location models,
differing in the definition of variables and presented some computational com-
parisons.

To the best of the authors’ knowledge, the aforementioned papers are the
only existing ones addressing incremental demand serving and budget limita-
tion in a multi-period location problem. Although both contributions recog-
nize that the allocation pattern might change through different time epochs,
they do not address its negative results nor provide a solution for that. In
addition, service levels were not considered.

Moreover, all the aforementioned studies, more or less, recognize the stochas-
tic nature of problems in health care [5,17,29,33], but only a few of them deal
with uncertainty [14,23,36].

In addition, they share the same idea of minimizing the total cost or/and
total traveled distance without considering the importance of the coverage
concept in public health sector. It is notable that covering a particular demand
node within the manager—specific distance threshold does not necessarily mean
that all citizens of that zone (or at least a significant portion of them) will
refer to the assigned facility, unless the preferences of the users in some way
are incorporated. Hence, it might be impossible to come up with a single
distance threshold in which both user and manager preferences are taken into
consideration. In addition to the manager—specific distance threshold, which is
related to the covering nature of the model, a user—specific distance threshold
can be defined reflecting the user preferences. This also facilitates the injection
of distance—elasticity of demands.

Our paper tries to address these important issues, only partially investi-
gated in the scientific literature.

3 Problem description and mathematical formulation

The nursing homes problem can be modeled as a covering location—allocation
model in which a finite number of demand nodes (population centers) should
be served by a number of facilities (nursing homes). Allocation of demand
nodes to facilities is carried out by taking into account a (manager—specific)
distance threshold, D, which prevents the assignment of demands to distant
facilities, representing the covering nature of the model. The location of facili-
ties is chosen from a set of prespecified potential sites. The assumptions of the
proposed model are as follows:

— A demand zone is satisfied provided that a nursing home is located within
the manager—specific distance threshold.

— Whenever a demand zone is satisfied, its demand should be also fulfilled
in the subsequent periods.

— Each demand node must be served by at most one facility during any time
period (single assignment property).
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— Due to budget restrictions, at any time period, a limited number of nursing
homes can be established.

— Once a nursing home is opened in a time period, it should be kept open
for all subsequent periods.

— Each nursing home can host only a limited number of people which is fixed
over all periods.

Using the multi—period framework, with the establishment of new facil-
ities, some demand nodes, which were not covered during previous periods,
might be served. To investigate the possibility of enhancing the service levels,
the reassignment to farther facilities is prevented for all subsequent periods,
whereas previously covered demands can be only reassigned to closer facilities.
Hence, throughout the planning horizon, the distance between demands and
facilities is sequentially reduced. In general, this strategy helps to improve the
accessibility criterion over consecutive periods.

In order to address the distance—elasticity of demands, we introduce an-
other distance threshold, denoted by D, which represents the preferences of
users. Then, we define the "correction function", which is a function depen-
dent on the user—specific threshold that estimates the expected portion of the
demands from a population center that actually refers to the assigned facil-
ity. Obviously, all the people living in a covered population center will not
necessarily refer to the facility assigned to. Hence, it is reasonable to have an
estimation about the real value of referred demands.

In deterministic strategic planning, uncertainty is usually ignored and un-
certain quantities are typically replaced by a single value forecast. While this
approach could be accepted for single period problems, it is not realistic in
multi-period problems where the horizon may span fifteen years. In these
cases, a wrong decision may have serious consequences for many years, caus-
ing a deterioration of the system performance. Given the long-term nature
of the problem, even forecasting the demand is difficult for the presence of
unforeseen fluctuations in the population as well as inaccurate predictions of
death rates. In our model, therefore, we explicitly account for uncertainty in
the demand.

There are different approaches to deal with uncertainty: robust and worst—
case methods often provide very conservative solutions. Chance constrained
programming explicitly limits the probability of constraints violations. Since
the main goal of the model is to ensure the provision of the service, we for-
mulate the nursing homes problem as a probabilistic model with chance con-
straints.

In particular, our model includes, for each time period, a probabilistic con-
straint assuring that the stochastic demand can be covered by the opened
nursing homes with a given probability value. This, in turn, enables the con-
straint to be violated with an acceptable violation probability, which is the
risk the decision maker is willing to bear.

Since very often the assumption of full knowledge of the distribution of the
random parameters fails, the uncertain demands are represented as random
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variables with unknown probability distribution function, but known expected
value and variance. Under this assumptions, we formulate a distributionally
robust problem, in which the nursing home network is designed to minimize
the total number of uncovered demand points, while the chance constraints on
the capacity of each nursing home are formulated considering any distribution
with the given mean and variance. This approach is especially beneficial for
cases in which scant information about nursing homes demand is available.

3.1 The multi—period probabilistic location-allocation model
The following notation is used in the model formulation:

Sets and indices:

I : set of demand nodes indexed by ¢

J : set of potential facility sites indexed by j

H ={0,1,...,T} : set of time periods indexed by ¢ (time period 0 represents
a dummy period)

Input Data and Parameters:

d;; : shortest distance from demand node 7 to facility j

D : maximum acceptable service distance from the decision maker’s point of
view,

D : maximum acceptable service distance from the user’s point of view, (ﬁ <
D)

a;; : element of the covering matrix equal to 1 if d;; < D and to 0 otherwise

hit(w) : random demand generated at node ¢ during period ¢

Aij © correction function, A;; = (1 — d'g ) po, where pg is the participation prob-
ability when travel distance is negligible and d;j = min(d;;, D)

Q; : maximum amount of capacity for facility j

« : risk level

p¢ : maximum number of facilities to be opened at period ¢

Decision Variables:

S 1 if demand node i is allocated to facility j during period ¢
) 0 otherwise

~_ J Lif a facility is located at site j during period ¢
Yit =\ 0 otherwise

Considering the above notation, the mathematical formulation of the pro-
posed multi-period probabilistic location—allocation model (M PLM) can be
expressed as follows:
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T
min: YN (1= @) (1)
t=1 il jed
s.t.
xijtgaijyjt V’L'GI, VjEJ,tzl,...,T (2)
injtSZa:ij(Hl) Viel, t=1,...,T -1 (3)
JjE€J jeJ

Zdijxij(t+1) S D(l — injt) + Zdijxijt VZ S I, t= 1, e ,T -1

JjeJ jeJ jeJ

(4)
wg <1 Viel t=1,...,T (5)
JjeJ

P<Z>\ijhit(w)xijt 7ijjt § 0> Z l—«o VJ S J, t= 1,...,T (6)
el

Yit <Yjeyy VIEJ, t=1,...,T -1 (7)
Z(yj(tﬂ)*yjt)éptﬂ t=0,...,T—1 (8)
jeJ

;0 €40,1} Viel, Vjed t=1,....,T (9)
Yyio=0 VjeJ (10)
yir€{0,1} VjeJ t=1,....T (11)

The objective function (1) minimizes the number of times that a demand
node is not covered during the time horizon. Constraints (2) state that each
demand node can be assigned only to open facilities which are within the
distance threshold D. The elderly are not the only users of the system and
the maximum acceptable service distance D was incorporated into the model
not only for the sake of the residents of the nursing homes but their visitors
and families too. In practice, the stay in nursing homes is more about years to
days or months and families frequently travel to the nursing homes. Looking
for possible ways to improve the accessibility of the systems, we came with
the idea of imposing a maximum acceptable service distance, as a common
idea in location—allocation literature. With the improvement of accessibility,
the families are encouraged to go to the nursing homes more frequently which,
in turn, has positive effects on the elderly’s life as well. To be accessible, the
daily nursing homes should not require traveling more than 5 or 6 km per
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day. This is a common idea which has been addressed in the public facility
location context; for instance, in [18], the closeness of the prisons assigned to
the prisoners with their families is taken into account.

Constraints (3) state that whenever a demand is covered, it should be
covered for all upcoming periods. The next set of restrictions in (4) imply
that, for each period, any previously covered demand is reallocated to a closer
facility if possible; otherwise, the demand is covered by the same previous
facility. Restrictions (5) state that each demand node, at any period, is served
by at most one facility. The probabilistic capacity constraints in (6) ensure
that the probability of not exceeding the capacity of each candidate facility,
during each period, should be greater than or equal to a prespecified reliability
level 1 — . It is worthwhile remarking that period-dependent capacities could
be easily incorporated into the model by simply replacing Q; with @;;. In our
case study (see Section 4), based on the instructions imposed by the law to
the governmental organization, the capacity of the nursing homes is fixed, and
cannot be upgraded over the planning horizon.

Note that the term A;;h;:(w) indicates the number of residents at demand
node i who would, if assigned, effectively use the facility j during period ¢
considering the distance—elasticity measure (see also [24,35]).

Constraints in (7) state that once a facility is located, it should remain
open for all the subsequent periods.

Restrictions (8) impose a limit on the maximum number of newly estab-
lished facilities at any period. Note that Z?:l(yj(t—s-l) — y;¢) indicates the
number of newly established facilities in period ¢ 4 1 and y;o represents the
variable corresponding to the dummy period 0 which its value is set to zero.
Finally, restrictions (9) - (11) define the nature of decision variables. We should
mention that, based on the application at hand some modifications might be
made on the model. For instance, the single assignment property can be miti-
gated allowing to split the demands of a node over different facilities reflecting
the users’ preferences. This can be easily incorporated by relaxing the binary
variables z;;¢, leading to a more tractable problem. It is worthwhile mention-
ing that the users’ preferences are incorporated into the model through the
elasticity of the demands, and that, very often, the single assignment property
is required by managers willing to allocate the cumulative demands of each
demand zone to a single facility.

We should remark that different attitudes (egalitarian and utilitarian) may
be considered in any health care model. The egalitarian approach considers
an equal weight for different target demand points, whereas the utilitarian
one focuses on high populated demand zones. The current assumptions of the
model reflects an egalitarian approach, covering as much zones as possible,
along the horizon, regardless of the variability of the demands in each zone. The
utilitarian approach could be implemented incorporating into the objective
function the expected demand, as usual in the maximal covering literature.
Since the proposed model was motivated by a real case study, the objective
function reflects the decision makers’ preferences, and focuses on covering as
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many areas as possible. This was also motivated by the fact that there is not
a significant difference among demand levels over different areas.

3.2 The deterministic equivalent formulation

We show that the problem M PLM actually admits an explicit conic reformu-
lation, which can then be conveniently solved using an outer approximation
technique.

Let assume that the random demand value h;(w) follows an arbitrary
distribution function but its mean (u;) and its variance (02) are known.
Specifically, we show that for any a value within (0, 1), the distributionally

robust chance constraint

inf P ( Z )\ijhit(w)xijt — ijjt S O) Z 1-— « (12)

hit (W)~ (pit,02,) el

is equivalent to the convex second-order cone constraint [9,13]

Ba fojtﬁfjt — Qj Y5t + Zﬂzjt i <0, Vield t=1,....,T (13)
\ el el

~ _ A _ _ 11—«
where fi;50 = Aijltie, Gije = Xijoi, and By = ==,

o
In fact, we can rewrite (12) as

inf POFigo>21—a (14)
h¢~(h,T)

where hy is the vector of (hu, hat = Py, —ijjt)T and Xj; denotes the
vector (Alj Tjty A2j Tajts o 5 A1) |1ty 1). In a similar way, hand T repre-
sents the vector of expected values and the covariance matrix associated with
h¢. From now on, for the sake of simplicity, we denote hy and xj¢ by h and X,
respectively.

Let assume that h = h 4+ T'¢ z, where p, = 0, 02 = I, and T'¢ is the full-rank
factorization matrix such that o?(h) = Ty T¢?. The following two cases are
possible.

1. T¢T % # 0. In this case, we have

. 1
sup P(hTi < O> = sup P(ZT rs’x>-h >~<> = 5 (15)
h;~(h,T) z~(0,I) I+¢

where ¢ = inf ; LT %> hix |2]|* (The last equity holds based on Theorem
9 in [22]).

(a) If hx > 0, then by taking z = 0, we can obtain the infimum ¢2 = 0.
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(b) If hx < 0, then the problem is expressed as determining the squared

distance from the origin of the hyperplane {z |z I’T %x=-h x} which

(hx)?
XTTTR "

is solved by taking ¢ =
So we have

, { 0 xTh>0
q- = T h? %7
o (X7 B) h=<0

>

>

which represents a closedfform expression for ¢2. Hence, the constraint

n (14) holds iff 1+ —— < a. The last equation holds iff %xTh < 0 and

(xTh)?2 > (%7 h) 129 which is equivalent to (13).

2. T'¢T % = 0. In this case, we simply conclude that X' I'X = 0 which results
in

inf P(hTiSO):J,HiTﬁgo (16)
h~(h,T")

Considering X' I' x = 0, the equivalency of (12) and (13) is obtained.

By replacing restrictions (6) with (13) in M PLM, we come up with an integer
non-linear deterministic equivalent formulation named as (NDM PLM). To
solve the model, a linearization of the model could be applied (as shown in
Subsection 6.1 in Appendix) and then off-the shelf software such as CPLEX
could be used.

Although, in theory, a linearized problem is computationally more attrac-
tive, in practice, the solution of the linearized MIP model, even for medium size
problems, can be significantly time—consuming. In fact, the linearized model
involves 3 |I| |J| (|H|-1)(|I|41) more constraints and || |.J| (|H|—1)([I]+1)
more binary variables than the nonlinear model.

Considering the special structure of the model, we can show that its continuous
relaxation is convex.

Lemma 1 The function Fj(x,y) = \/Ba Dier utgwt QjYjt+D s Mije Tije

18 convez.
Proof: We can rewrite Fj; as Z(x) — Q; Yt + > _;c; flije Tije in which Z(x) =
\/ﬂa Y ic1 T3y 05y, or equivalently, Z(x) = \/x o 62 xT. As Qjy;: and

> icr fije Tij are linear terms, it suffices to show the convexity of Z(x). Since
Ba 62 defines a semidefinite positive matrix, there is a Cholesky decomposition
for it as 8, 6% = L LT. Hence, we can rewrite Z as Z = Vx L LT xT =|| x L |,
where || . || is the Euclidean norm.

Assume x1, X2 as two arbitrary vectors and A € (0,1). We have

| (Ax1 + (1= N)xg) L [|<[ Axa L[| + [ (1 = A)xz L ||
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A= L[+ =N [ x2 L.

and the proof is complete.

Therefore, we may apply the outer approximation algorithm (AOA) on NDMPLM
to obtain the global optimal solution ([32]).

4 Case Study

4.1 Case study description and input data

In this section, we apply the proposed model on a real case study for the
nursing home network design problem in Shiraz city, the sixth most populous
city in Iran and the capital of Fars province. The model has been implemented
in AIMMS 4.1 and solved by AOA [12]. The experiments were executed on a
laptop Intel core i7 with a 2.7 GHz processor and 4 GB RAM. The average
solution time, for all experiments, was less than 50 seconds.

For the current case study, an extended planning horizon including three
periods from 2015 to 2025 has been considered.

Currently, seven nursing homes provide the residents with elderly care ser-
vices such as rehabilitation, education, and welfare services [39]. Nursing homes
are allowed to admit at most seventy recipients. The municipality of Shiraz,
including nine municipal zones, is divided into 76 population centers, based
on postal divisions [38]. Each population center represents a demand node in
this study.

In addition to the location of the seven existing nursing homes, 17 more
candidate locations have been considered. This enables the managers to site
new facilities as well as relocating the existing ones, if necessary.

Tables 9, 10, and 11 in Appendix, show the location coordinates of all the
population centers and the candidate facility locations. See also Fig. 1.
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< " s B Demand node
’ M ' A Existing nursinghome
N N Potential location
1 S Municipal zone

Fig. 1 Spatial distribution of demand nodes and the locations of nursing homes in Shiraz
city

To estimate the Shiraz population, we applied the population projection
data extracted from the UN population projection reports [40]. To estimate
the elderly population during different years, we set the fertility rate based on
the medium fertility rate scenario, introduced by the Population Division of
the Department of Economic and Social Affairs of the United Nations [25].

Analyzing the statistical reports published by the Shiraz municipality [38],
from 2006 to 2009, we found approximately an identical trend for popula-
tion distribution of each municipal zone over different periods. The estimated
demand at each demand zone was considered as its expected value and the
variance was set to 0.2 of the expected value. We also assumed that the demand
of each municipal zone is uniformly distributed among its nodes.

Table 1 shows the elderly population at any municipal zone for the next years.

Table 1 Estimated elderly population

Municipal zone Elderly population during different years

2015 2020 2025
1 17096 21743 27840
2 17695 22505 28817
3 16188 20589 26363
4 17889 22751 29132
5 12778 16251 20809
6 13823 17581 22511
7 12772 16244 20799
8 5029 6396 8190
9 9843 12519 16029

The Euclidean distance was used to measure the travel distance between de-
mand nodes and the nursing homes sites (see Subsection 6.2 in Appendix).
Other characteristics of the problem are summarized in Table 2.
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Table 2 Case study inputs

1| |J| T t=1 t=2 t=3 o D D Q

6 24 3 2 3 5 0.05 5 5 70

4.2 Results and findings

Fig. 2 represents the optimal location of nursing homes, obtained by solving
the model with @ = 0.05. The circles around the optimal locations 3,13, 19,
and 23 represent the considered coverage radius.

~
. A Nursing home established in period 1
AN ) ) A Nursing home established in period 2
-t N\ SN 4 Nursing home established in period 3
. .As ', \

Fig. 2 Spatial distribution of optimal nursing homes’ locations during each period

In addition, Table 3 shows the optimal location of active nursing homes for
different periods.

Table 3 The optimal nursing homes’ sites

Nursing home Time period
number t=1 t=2 t=3

location3 * *
location5 *
location6 * * *
location12 * * *
location13 *
location18 * *
location19 *
location20 *
location23 * *

*

location24
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Based on the obtained results in Table 3, only three out of seven existing nurs-
ing homes are present in the optimal solutions. This shows that the current
configuration of system can be improved by relocating nursing homes 1, 2, 4,
and 7.

By calculating the distance between nodes and their assigned facility, we ob-
served that the distance traveled by all covered demands is gradually decreas-
ing through the planning horizon or at least is constant. The mean distance
traveled by the residences is equal to 2.69, 2.61, and 2.02 kilometers with a
deviation of 1.51, 1.27, and 1.12 kilometers, along the periods 1, 2, and 3, re-
spectively (see Table 12 in Appendix). All demand nodes during periods 2 and
3 are covered and the number of uncovered nodes within the first period is
limited to 9, including nodes 1, 2, 6, 27, 28, 29, 31, 57, and 58.

Table 4 classifies the nodes based on the relative improvement in the traveled
distance within four categories. The relative improvement in the accessibility
criterion, s(i,t), for each covered node i over each period ¢, is calculated as
follows.

> jes dijija—1) — i dijTijt
> jes diTije-1)

s(i,t) = ,t=23.

Table 4 Classifying covered nodes based on the relative improvement in accessibility cri-
terion

Relative accessibility Time period

improvement t=2 t=3

s(i, 1) < 25% 19,30,40,41,71,73 13,17, 25,41, 43,47, 48, 57, 59, 62, 66, 63
25% < s(i,t) < 50% 7,9,10,32,45,67,76 1,7,12,14,19, 44,46, 56,58, 70
50% < s(i,t) < 75% 8,11,23,24,25 3,5,6,8,18,20,26,60,61,65

s(i, t) > 75% 21,22 45,64

The first row in Table 4 represents the index of demand nodes with up to 25%
improvement in the accessibility criterion over periods 2 and 3. The second row
shows the nodes with at least 25% and at most 50% improvement in s(i,t). In
a similar way, other rows present similar results for higher values of s(i,t).
The maximum relative improvement in the accessibility criterion was, respec-
tively, about 91% and 92% for demand nodes 21, 22 and 45, 64 over periods
1 —2 and 2 — 3 (last row in Table 4). Obviously, the traveled distance of the
demand nodes not reported in Table 4 does not change over different periods.
Since we are addressing the multi—period service level based location problem
in a coverage context, it can be possible that some demand nodes are not
satisfied at the end of the planning horizon. Such demands can be assigned
to the closest open facility provided that the facility capacity is increased or
some external resources are available to serve unsatisfied demands.

Of course, the coverage radius strongly influences the system behavior (Fig.
3). By increasing the distance threshold values from 5 to 6 kilometers, it is
possible to double the coverage, but nasty results are obtained for very narrow
coverage radius values.
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Fig. 3 Coverage versus distance threshold

We also investigated how the changes in the risk level « affects the coverage
performance. Clearly, when the risk level is low, or equivalently, a high reliabil-
ity level is required, the probabilistic capacity constraints (6) are tight, since
the demands of covered nodes should be within the capacity of facilities with
a high probability. In order to satisfy the capacity constraints, less demand
nodes might be covered. On the contrary, when the decision—maker accepts
higher risk levels, and lower reliability level are required, it is more likely that
the capacity constraints (6) are violated so the number of uncovered nodes
decreases and we are able to cover more demand points.

For the case with a distance threshold equal to 5 and a risk level of 0.01, the
number of uncovered nodes over all periods is 13, but by increasing the risk
level to 0.08, for the same distance threshold, the number of uncovered nodes
decreases to 9 which shows about 31% improvement in the objective function.

Table 5 Sensitivity analysis with respect to «, po

a PO D Obj. Expected satisfied
demands

0.10 0.90 9 9 609
0.10 095 9 9 644
0.02 090 5 611
0.02 095 5 642

As another experiment, we have evaluated the impact of the participation
probability pg. For example as a result of advertising programs, this probability
can increase, determining a higher participation level in the health program.
Based on our observations, by a 5% increase in the participation probability
(from 0.90 to 0.95), the expected amount of satisfied demands increased up
to 6% (5%) for risk level equal to 0.10 (0.02) and distance coverage of 9 (5)
kilometers. See Table 5.
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As a final consideration, the role of constraints in (6) in improving the
accessibility performance has been assessed by comparing the model solution
with and without these set of constraints.

Although the objective function value in both cases is equal, about 27% of
covered demands during periods 2 and 39% of covered demands in period 3
experience up to 93% increase in the traveled distance.

4.3 Current system evaluation

We have also carried out a set of experiments to provide some managerial
insights about the current system performance. Specifically, we have consid-
ered the operational scenario that the managers are not strongly motivated to
upgrade the system by adding more facilities, probably due to financial crisis,
and instead, are interested to run the system with only the existing nursing
homes. This requires keeping all the seven existing nursing homes active and
banning the establishment of new facilities over the whole planning horizon.
This in the mathematical model (1) - (11) can be expressed by imposing the
additional set of constraints

yj1—1:0,j:1,...,7

and solving the problem with p; =7, po = p3 = 0.

Note that this new set of constraints in combination with (7) require the activa-
tion of existing nursing homes over all periods. The resulting model turned out
to be infeasible due to the violation in the probabilistic capacity constraints
(6). This supports the claim that the system should definitely be equipped
with more facilities to address the increasing demand. Of course the capacity
constraints are the most challenging constraints of the model and the managers
might be willing to evaluate a capacity expansion, while keeping the current
configuration of the facilities. To investigate this possibility, we removed the
capacity constraints (6) from the aforementioned augmented model and eval-
uated the coverage performance of system. Although in this case the problem
is feasible, 24 demand nodes will not be covered over different periods showing
that even in the absence of capacity constraints, with the current configuration
of nursing homes, not all the demand areas can be covered. Interestingly, the
latter results in terms of coverage performance are still 54% worse than the
results reported in Table 5 for the case with capacity constraints (6).

Finally, we investigated the multi—period behavior of the model assuming that
the system upgrade is allowed from the second time period with ps =1, pg = 2
and that the first period is run with all the currently existing facilities (p = 7).
Again, the latter assumption requires adding a set of constraints to the model.
The optimal objective value is 12 in which 9, 1, and 2 zones are not covered over
periods 1, 2, and 3, respectively, while the optimal objective value obtained
by our model was 9 in which only 9 zones are not covered in the first period
and all the demands are covered over the next periods. This again support
our initial claim that the current configuration of facilities is not optimal and
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even after upgrading the system, some demand nodes will never be covered.
This will encourage the managers to modify the current system configuration
and to relocate some facilities. Although the relocation of strategic facilities
is costly and may involve unwanted consequences, it will improve the system
performance.

4.4 Probabilistic versus deterministic and time-invariant model

In order to validate the probabilistic model, we have compared it with its de-
terministic counterpart, obtained by replacing the random variables with their
expected value in constraints (6). Table 6 shows the resulting optimal sites.
We observed that the assignment pattern associated with the deterministic
model will result in the infeasibility of the problem at the presence of uncer-
tainty. This shows the importance of incorporating the deviation of demands
and adopting a probabilistic approach and provide evidence for the superiority
of a risk—averse perspective over risk—neutral ones.

Table 6 The optimal nursing homes’ sites for the deterministic model

Nursing home Time period
number t=1 t=2 t=3

location2 * *
location’ *
location6 * * s
location9 *
location12 * *
location14 x
location17 * * *
location21 X
location23 * *

*

location24

Apart from that, we also evaluated the left-hand side of the reliability con-
straints (6) obtained by the solution (&;;¢,9;+) of the deterministic model ex-
pressed as

P(Z)\ijhit(w)im < Qjﬁjt) =Fe(Qj9jt), ViedJ t=1,..,T
iel

where @ =3, Aijhit(w)Zij¢ is a normally distributed random variable with
the cumulative distribution function Fg(.) and &;;; and §;; are the optimal
values of the deterministic model. As shown in Table 7, for some constraints,
the probability of not exceeding the capacity is low and, considering a relia-
bility level of 0.95 (corresponding to the risk level of a equal to 0.05), it is five
times below the minimum required value. This cases are highlighted in bold
in Table 7. This, again, supports our previous claim about the necessity of
incorporating the stochasticity of uncertain parameters into the model.

We also investigated the importance of considering the temporal depen-
dency of the stochastic demand.
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Table 7 The reliability level of the deterministic model

Nursing home Time period
number t=1 t=2 t=3
location2 - 0.99 0.82
location5 - - 1
location6 0.99 0.59 0.94
location9 - - 1
location12 - 1 1
location14 - - 1
location17 0.84 0.69 0.99
location21 - - 1
location23 - 1 1
location24 - - 1

A comparison between the coverage performance resulting from the pro-
posed model and the same model, where the mean and the variance of the
demand are considered constant over time (stochastic time-invariant demand
model), is presented in Fig. 4.

a=fy=FProposed mode

sy Time-independent
demands

Numberof covered demands

2010 2015 2020 2025

Time interval

Fig. 4 Stochastic time-invariant demand model versus the proposed model

The proposed model outperforms the stochastic time-invariant demand
model, in terms of coverage performance. In particular, in the first period, the
latter model overestimates the coverage performance by 14%.

4.5 Monte Carlo simulation

The last part of this section is devoted to a Monte Carlo simulation investigat-
ing the validity of the proposed model with respect to the probabilistic chance
constraints (13). The simulation results are expected to provide informative
insights about the effectiveness of the proposed risk—averse approach, allowing
to test how frequently the demand can be expected to exceed the capacity.
To run the simulation, for each pair of candidate location j and period time
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t in (13), and corresponding to each uncertain demand h;;(w), ¢ € I, we gen-
erated 50000 different random values h;;s drawn from the normal distribution
N (¢, 04¢) where each random value represents a scenario indexed by s. To val-
idate the results of the stochastic model, the assignment and location variables
x;j: and y;; were set to their optimal values, and the frequency of violation
in constraints Ziel )\ij hits — ijjt <0, jeJt=1,..,T,s =1,..,50000
for different risk level values was calculated. Performing this procedure, we
observed that for risk level values o € {0.01,0.02, ...,0.07}, all the constraints
over all scenarios are satisfied, or equivalently, the frequency of violation is
zero. These results are expected since lower risk levels are more conservative
and it is more unlikely to experience any violation. The results of simulation
for bigger values of « are reported in Table 8.

Table 8 The probability of violation in the Monte Carlo simulation

o t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0.08 e 0
2 - - 0 - - 0 - - - - 0 - - - - - 000 - - -,y - -
3 - - 0 - - 0 - - - - 0 0 - 0 0 - 0 - - - 0 - 0 0

o

30 - - 00 0 - - - - - 0 - - 0 - - 0009 - - 0 - 0 0

0.2 1 - = < < <0 - - - - L . . . . <

0.3 T

A few violations are experienced which are still less than the risk level. Since
this violations are related to the candidate facilities 17 and 18, by adding
other facilities to the network, possibly near the neighborhood of facility 17,
the violation would be eliminated.

5 Conclusion

In this paper, we proposed a multi—period model for the nursing homes facility
location problem. The multi—period perspective was adopted for handling the
budget constraints as well as the fluctuation of demands over time.

The improvement of the accessibility performance was followed by the dynamic
modification of the assignment pattern, if possible, while the deterioration of
service level was strictly prohibited over the planning horizon.

We also discussed about the possibility of incorporating both the prefer-
ences of users and managers within a covering framework. This enabled us to
address the elasticity of demands, based on the distance parameter, as well.
The imprecise nature of demands was tackled by applying a probabilistically
constrained approach on the capacity constraints to satisfy with a given prob-
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ability. Additionally, the deterministic equivalent formulation of the model
as well as its linearized counterpart were introduced. The model was imple-
mented on a real case study for nursing home location planning problem in
Shiraz city, Iran. The analysis of the results provided us with important man-
agerial insights about the current configuration of nursing home facilities and
the possibility of improving the current performance.

It is mentionable that although we developed the model for nursing home
planning network, it can also be applied for other strategic location decisions
arising in the public sector. Extending the proposed model to address the issue
of fairness will be interesting as a future research topic. This can be investi-
gated through the division of demand nodes into different subsets (categories)
based on their characteristics and special needs for health services. Hence,
the incorporation of different constraints or the definition of other objectives
specified for each demand category could be possible. For instance, an option
could be the division of demand zones based on their geographical locations
into marginal and non-marginal zones and the problem could be modeled
as a bi—objective problem by adding another objective which minimizes the
amount of uncovered demands associated with marginal zones over all periods.
In addition, different coverage radii or types of facilities for zones in which the
access to health care services is limited could be introduced.

6 Appendix
6.1 Linearization

Since the term under the square root in Eq. (13) is non-negative, if ) J;; fiij¢ 7550 <
Qjyjt, we can rewrite it as follows:

2 2
( Ba Zx?jt 51-2]-,5) < (ijjt - Zﬂijt -Tijt) vied t=1,...,T
\/ icl el

(17)
which can be simplified in Eq. (18):
Z Ba&?jt Tijt — Q? yjt + 2Q; Z fijtTijiY e
i€l el
_ZZﬂijtﬂkjtxijtxkjt <0 V] S J, t= ].,...,T (18)
i€l kel

We introduce the auxiliary variables z;;; and w;y;; denoting the bilinear terms
xijt Yy and x5 Ty in (18) , respectively. The set of constraints (19) - (27) are
also added to obtain a set of equivalent linear constraints for their non-linear
counterparts in (18):

Z 5a6i2jt Tijt — Q? Yt +2Q; Z flijezije — Z Z fije gt Wirge < 0

i€l i€l i€l kel
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Vjed t=1,...,T (19)
S hijewie < Quue Vi€l VieJ (20)
iel
Zijt = Tige +Yje — 1 Viel, Vied t=1,...,T (21)
Zijt < Tijt Viel,Vjed t=1,...,T (22)
Zijt < Yjt Viel, Vjeld t=1,...,T (23)
Wikt > Tije +Trje —1 Vi, kel , Vjeld t=1,...,T (24)
Wikjt < Tijt Vi,kel, Vjed t=1,...,T (25)
Wikjt < Thjt Vi,kel, VjeJ t=1,...,T (26)
Zijt, Wikt € {0, 1} Vi,kel, Vjed t=1,...,T (27)

The mathematical model NDM PLM amended with constraints (19) - (27),
and the auxiliary variables, define the proposed model.

6.2 Coordinate transformation

The transformation in (28) was applied in order to convert the GPS coordi-
nates of the demand nodes and facility locations, specified on the map, into the
Cartesian coordinates, which is consistent with the Euclidean distance axiom.

x = R x cos(C x 3.14/180) x (s x 3.14/180)
(28)
y=Rxtx3.14/180
where (z,y) and (s,t) represent the Cartesian and the GPS coordinates, re-

spectively, R is the approximate earth radius, and C' shows the latitude of a
hypothetical center point over the region.

Table 9 Location coordinates of population centers at zones 1-3

Zone Population center Location coordinates Zone Population center Location coordinates

T Yy T Y
1 (@) 5069.3 32945 2 ) 5077.1 3289.4
1 (2) 5069.3 3297.8 2 (10) 5076.3 3290.2
1 (3) 5071.2 3296 2 (11) 5075.6 3290.1
1 (4) 5072.6 3295.3 2 (12) 5076.4 3291.1
1 (5) 5070.8 3293.6 2 (13) 5076.2 3291.5
1 (6) 5072.3 3293.9 2 (14) 5077.1 3291.7
1 (7) 5071.8 3292.6 2 (15) 5077.1 3292.3
1 ©) 5074.1 3291.8 3 (1) 5085.7 3287.7
1 (9) 5075.1 3292.1 3 (2) 5081.1 3288.5
1 (10) 5073.4 3293.3 3 (3) 5080.3 3289.6
1 (11) 5076.1 3292.8 3 (4) 5079.7 3290.3
1 (12) 5077.2 3293.8 3 (5) 5078 3293.3
2 (1) 5078.7 3287 3 (6) 5079 3292.9
2 (2) 5078.3 3288.2 3 (7 5079.8 3202.7
2 (3) 5080.9 3287.2 3 (8) 5079.4 3291.6
2 (4) 5079.5 3287.9 3 (9) 5078.6 3292.4
2 (5) 5079.9 3288.8 3 (10) 5080.4 3290.6
2 (6) 5079.1 3289 3 (11) 5082.2 3289.3
2 (7) 5079 3290.1 3 (12) 5081.5 3291.9
2 (8) 5078 3289.1 3 (13) 5082.3 3292.4
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Table 10 Location coordinates of population centers at zones 4-9

Zone Population center Location coordinates Zone Population center Location coordinates

x Y T Y
1 (@) 5080.7 3292.2 6 (@) 5070.7 3300

4 (2) 5071.6 3289.3 6 (2) 5070.1 3299.8
4 (3) 5074 3289.8 6 (3) 5069.3 3299.1
4 (4) 5072.1 3290.5 7 (1) 5078.3 3291.4
4 (5) 5070.3 3291 7 (2) 5084.3 3285.3
4 (6) 5070.1 3292.5 7 (3) 5083.3 3286

4 (7) 5071.3 3202 7 (4) 5082.4 3286.4
4 (8) 5073.6 3287.5 7 (5) 5082.5 3287.9
4 (9) 5072.8 3291.4 7 (6) 5083.5 3287.3
4 (10) 5073.9 3290.7 7 (7) 5085.2 3287.4
4 (11) 5075.1 3290.9 8 (1) 5074.6 3294

5 (1) 5078.2 3285.4 8 (2) 5078.1 3289.8
5 (2) 5076.1 3286.7 8 (3) 5077.1 3290.6
5 (3) 5074.7 3287.3 8 (4) 5077.9 3290.6
5 (4) 5076.1 3288.1 9 (1 5075.8 3285.5
5 (5) 5074.7 3288.8 9 (2) 5071.5 3286.6
5 (6) 5077.4 3288.5 9 (3) 5070.2 3288.9
5 (1) 5075 3289.8 9 (4) 5068 3291.1

Table 11 The coordinates of potential facility sites

Facility Location coordinates Facility —Location coordinates
J z y J z y
1* 5071 3300 13 5081 3293
2* 5070 3300 14 5081 3291
3* 5070 3208 15 5078 3293
4* 5068 3292 16 5080 3285
5% 5080 3287 17 5079 3289
6* 5073 3292 18 5076 3290
7 5078 3299 19 5077 3286
8 5084 3283 20 5078 3291
9 5087 3288 21 5073 3294
10 5083 3287 22 5069 3295
11 5087 3285 23 5070 3290
12 5081 3288 24 5077 3288

* Existing nursing homes
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Table 12 Distance traveled by covered demands

Demand node period Demand node period
% t=1 t=2 t=3 % t=1 t=2 t=3
1 - 4.76 2.405 39 1.815 1.815 1.815
2 - 3.586 3.586 40 3.396 2.582 2.582
3 3.866 3.866 1.014 41 4.753 3.726 3.318
4 4.992 4.992 4.992 42 2.969 2.969 2.969
5 3.941 3.941 1.368 43 3.202 3.202 2.567
6 - 3.546 1.226 44 4.55 4.55 2.934
7 4.62 3.21 2.017 45 3.867 1.963 0.154
8 4.796 2.169 0.605 46 4.094 4.094 2.635
9 3.229 1.901 1.901 47 4.448 4.448 4.392
10 3.521 2.253 2.253 48 3.324 3.324 3.289
11 2.719 1.101 1.101 49 2.35 2.35 2.35
12 2.501 2.501 1.553 50 1.64 1.64 1.64
13 2.663 2.663 2.284 51 2.706 2.706 2.706
14 1.019 1.019 0.665 52 4.404 4.404 4.404
15 1.471 1.471 1.471 53 4.758 4.758 4.758
16 1.148 1.148 1.148 54 0.327 0.327 0.327
17 1.985 1.985 1.874 55 1.512 1.512 1.512
18 2.67 2.67 1.075 56 2.42 2.42 1.659
19 3.023 2.35 1.48 57 - 3.703 3.182
20 3.977 3.977 1.435 58 - 4.022 2.126
21 3.62 0.311 0.311 59 4.631 4.631 4.606
22 3.066 0.357 0.357 60 3.688 3.688 1.689
23 3.522 0.939 0.939 61 4.735 4.735 1.908
24 3.239 1.292 1.292 62 2.392 2.392 2.353
25 4.21 1.892 1.453 63 1.653 1.653 1.653
26 4.182 4.182 1.991 64 3.68 3.68 0.778
27 - 2.092 2.092 65 4.392 4.392 1.231
28 - 1.626 1.626 66 3.936 3.936 3.12
29 - 0.867 0.867 67 2.649 1.917 1.917
30 4.691 3.742 3.742 68 2.054 2.054 2.015
31 - 0.56 0.56 69 1.366 1.366 1.366
32 4.755 2.768 2.768 70 2.66 2.66 1.362
33 3.748 3.748 3.748 71 3.025 2.785 2.785
34 2.991 2.991 2.991 72 1.724 1.724 1.724
35 2.38 2.38 2.38 73 4.109 3.571 3.571
36 1.49 1.49 1.49 74 0.229 0.229 0.229
37 1.209 1.209 1.209 75 1.314 1.314 1.314

38 2.255 2.255 2.255 76 2.231 1.148 1.148
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