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Abstract We apply an explainable artificial intelligence framework to interpret quality of transmission
predictions produced by a machine learning model. The framework identifies the combinations of fea-
tures’ values relevant to drive the prediction process. ©2022 The Author(s)

Introduction

Artificial Intelligence (AI) and Machine Learn-
ing (ML) are key tools for network operators to
achieve zero-touch network management. In op-
tical networks, these tools are being increasingly
adopted to tackle a wide range of tasks, including
automated fault management and lightpath Qual-
ity of Transmission (QoT) estimation[1],[2]. How-
ever, the majority of these applications rely on
complex ML models, such as ensemble and deep
learning models, due to the desired powerful pre-
diction capabilities they possess in contrast to
simpler learning methods such as decision trees
and linear regression. The drawback of complex
ML models is the lack of interpretability[3]. In other
words, these models do not expose their internal
mechanics nor the decisional processes adopted
to associate outputs with the set of feature val-
ues provided as input. This hinders model under-
standing and prevents practitioners from fully in-
terpreting their behavior, and hence, from achiev-
ing a reliable zero-touch network management.

To mitigate this shortcoming, eXplainable Artifi-
cial Intelligence (XAI) frameworks can be adopted
to explain the decision making process, with the
final goal of improving the interpretation of the
models and enhancing trust in ML-based sys-
tems[4],[5]. Specifically, XAI frameworks provide
explanations describing the model’s behavior, i.e.,
how the model correlates inputs features to its de-
cisions, based on features’ values and their inter-
actions, thus allowing practitioners to debug the
model’s reasoning[6]. Such explanations also al-
low extracting useful insights that could be lever-
aged to better understand the nature of the prob-
lem at hand and, in some cases, to reverse-teach
domain experts, especially when ML models re-
veal previously unknown correlations between in-

put features and outputs.
In this paper, we focus on the problem of ML-

assisted lightpath QoT estimation and we exploit
an XAI framework to explain the ML model’s rea-
soning. We formalize the QoT estimation task
as a regression problem, which consists on pre-
dicting the value of the Bit Error Rate (BER) as-
sociated with the transmission along a perspec-
tive lightpath. Additionally, each BER value is as-
sociated with a binary class label that indicates
whether the BER of the lightpath is above or be-
low the system’s acceptability threshold T .

In our previous work[7], we made a first attempt
to demonstrate the benefits of applying XAI in op-
tical networking by framing the QoT estimation
problem as a classification task. In this work, we
take a step forward, by developing supervised ML
regression models leveraging eXtreme Gradient
Boosting (XGB) to estimate the lightpaths’ BER.
Then, we use a XAI framework named SHapley
Additive exPlanations (SHAP)[6] to explain the de-
cision process of the developed regressors. Our
study aims at 1) identifying the main features that
drive the decision process; and 2) quantifying to
what extent each of the features, on the basis
of its value and interactions with the other fea-
tures, impacts the estimation of the lightpath’s
BER. Results show that a number of simple clas-
sification rules can be extracted from the obser-
vation of the models’ explanations, which could
be leveraged by network operators for future de-
ployments. While the specific outcomes extracted
from the application of XAI to BER estimation de-
pend on the model developed and hence, on the
characteristics of the dataset used to train it, we
argue that our application of XAI opens a new di-
rection in the understanding of automated light-
path QoT problem, which can be generalized to



Tab. 1: Characteristics of the two considered datasets
Dataset DSA Dataset DSB

Class 0 Class 1 Class 0 Class 1
Mod Order Mod Order Mod order Mod order

32-QAM 64-QAM 16-QAM 32-QAM 64-QAM 8-QAM 16-QAM 32-QAM 64-QAM BPSK QPSK 8-QAM 16-QAM 32-QAM 64-QAM
Nr. Samples 97860 273910 66538 475231 407913 45207 26189 27192 3749 580054 335894 278540 45798 10027 5670
Num Spans 12-20 6-12 12-21 6-14 2-7 48-76 24-39 12-21 6-12 1-105 1-106 1-56 1-28 1-14 1-7

Path Len (km) 668-1313 324-709 668-1382 324-903 84-490 3466-5359 1679-2639 747-1359 365-719 24-7797 24-7797 24-4109 24-2080 24-1070 24-554
Freq (max) 195.7 195.7 194.7 195.7 194.7 193.2

other datasets and network scenarios.

Datasets Description
We used two datasets from the QoT dataset col-
lection made publicly available to the research
community[8]. Both datasets comprise an in-
depth description of every active lightpath of an
emulated optical network with WDM grid and dy-
namic traffic allocated with First Fit (FF) policy.
Each dataset X ∈ RD×N includes D samples
with N scalar features describing the lightpath
and the status of all links the lightpath passes
through. The input set of features to the regres-
sion algorithm in both datasets includes N = 35

different features, among those: lightpath mod-
ulation format (Mod Order ), carrier frequency
(Freq), length in km (Path Len) and number of
hops (Num Hops) of the path over which the light-
path is provisioned. Each sample is associated
with a BER value. Dataset DSA (DSB) consists of
around 1.3 (1.4) million samples, with 28% (8%)
of them representing lightpaths with BER above
T (T = 0.0038). For DSA (DSB), 3 (5) modulation
formats are used to provision lightpaths. How-
ever, in DSA (DSB) no samples for lightpaths with
BER above T (indicated by class 0) use 16-QAM
(BPSK and QPSK). Indeed, transmission param-
eters characterizing each sample is not random
but reflect the criteria adopted by the network op-
erator. Tab. 1 summarizes the main character-
istics of the two datasets (see Ref.[8] for a com-
plete description). The breakdown of the ranges
of Num Spans and Path Len, as well as the max-
imum Freq, per modulation format and lightpath
class, is shown in Tab. 1.

Results and Discussion
ML and XAI Models: We rely on XGB as ML re-
gression model for BER estimation. The SHAP
XAI framework is a model-agnostic framework
that explains the output of ML models by estimat-
ing each feature’s contribution (Shapley value, or
SHAP value) on the model’s output. To this aim,
SHAP compares the model’s output without using
vs when using the considered feature, while iter-
ating through all permutations of input features.
Note that, for the regression problem at hand,
the SHAP value of a feature (which can be ei-

ther positive or negative) indicates how much a
feature contributed to model’s prediction, by ei-
ther increasing or decreasing the predicted BER
value. The XGB models trained and tested for
DSA (DSB)1 show a regression mean squared er-
ror of 2.7 ·10−08 (1.05 ·10−08). Then, we classified
each data sample based on estimated BER, i.e.,
whether it exceeds T , and classification accuracy
is 99.3% (99.4%) for DSA (DSB).

Features’ Contribution to BER: Focusing first
on DSA, in Fig. 1(a) we show SHAP summary
plots, which correlate features’ impact (SHAP
value) with features’ value and model’s prediction.
The y-axis lists features in descending order of
importance. Each point on the plot represents a
given feature and a given data point and is as-
sociated to a color that quantifies the feature’s
value in a low-to-high scale. The plot shows that
predictions are mainly driven by Mod Order and
Num Spans, which exhibit a significantly larger
ranges of SHAP values than all the other features.
Specifically, high values of Mod Order and Num
Spans (red points) increase the BER prediction
by up to 0.01 and 0.007, respectively, while low-
medium values (blue points) of Mod Order and
Num Spans, decrease the prediction by up to -
0.006 and -0.004, respectively.

Outcome 1: Since the range of SHAP values of
other features is relatively smaller with respect to
that of Mod Order and Num Spans, we can con-
clude that the estimation of BER for a lightpath
with a high Mod Order can only be lower than T if
characterized by a low Num Spans. Similarly, the
estimation of BER for a lightpath with a high Num
Spans, in many cases, can only be lower than T if
a low-order modulation format is assigned to the
lightpath. To analyze this aspect in more detail,
we report in Fig. 1(b) and (c) two SHAP depen-
dency plots, which show the SHAP value for Num
Spans with respect to Num Spans feature values
(x-axis) and values of Mod Order (color scale),
and the SHAP value for Sum Link Occ with re-
spect to Sum Link Occ feature values (x-axis) and
values of Mod Order (color scale), respectively.

1The hyperparameters of the models are: learning rate =
0.2 and maximum depth of tree = 9, while subsample is 0.9
and 0.7 for models of DSA and DSB, respectively.
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Fig. 1: Summary plot and dependence plots for dataset DSA
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Fig. 2: Summary plot and dependence plots for dataset DSB

From Fig. 1(b) the impact of Num Spans raises
(and hence, the estimated BER increases) as
Num Spans grows, with different patterns, based
on value of Mod Order. With high modulation or-
der (red-colored points), medium values of Num
Spans (around 10) show a high impact on the
estimated BER (up to 0.006). On the contrary,
with low modulation order (blue-colored points),
increasing Num Spans increments the estimated
BER only mildly.

Regarding Sum Link Occ in Fig. 1(c), it in-
creases the estimated BER for increasing values,
but its impact is larger with high-order modulation
formats than with low-order modulation formats.

Outcome 2: When correlated with high mod-
ulation order, high values of Sum Link Occ play
a significant role in raising the BER estimation,
increasing it by up to 0.002. In particular, the im-
pact of Sum Link Occ on the BER of lightpaths us-
ing 64-QAM is on average 4 times higher than on
the BER of lightpaths using 16-QAM. These re-
sults hint that wavelength assignment policies tai-
lored per modulation format would be more effec-
tive than FF in ensuring acceptable lightpath de-
ployments, e.g., by privileging lightly loaded links
to allocate lightpaths with high-order modulation
formats. Moreover, useful bounds could be de-
rived to guide the operator in the choice of trans-
mission parameters: for example, when using 16-
QAM (associated to a SHAP value ≤ −0.004), the
lightpath can be routed on highly-loaded links with
an arbitrary number of spans, since the maximum
increase to the BER will be around 0.003 (for Num

Spans, see Fig. 1(b)) plus 0.0006 (for Sum Link
Occ, see Fig. 1(c)), which ensures that the BER
will be lower than T even if the lightpath length
is extremely high (as the maximum BER increase
given by Path Len is 0.003, see Fig. 1(a)).

We now briefly discuss the same set of ex-
planations for the model trained on DSB, which
is generated considering a much larger network
topology than DSA. Fig. 2(a) is SHAP’s sum-
mary plot, which shows that, similarly to the case
of DSA, Mod Order, Num Spans, Path Len and
Sum Link Occ are the features most impacting
the model’s prediction, while the rest of features
barely having an impact. However, differently
from the of DSA, Mod Order has a much larger
impact than Num Spans. In some cases of high
Mod Order (red-colored points), Mod Order con-
tributes by 0.0125 to the BER estimation, while
low value of Num Spans, in the best cases, de-
creases model’s estimation of BER by 0.004. In
Fig. 2(b), it is shown that when 32-QAM (respec-
tively 64-QAM) is used, Num estimation, giving a
negative a contribution for values below 25 (re-
spectively below 10) and a positive contribution
otherwise.

Outcome 3: In a large-sized network topol-
ogy, the BER estimation provided by the model
is largely reliant on lightpath’s modulation order,
disregarding information provided by most of the
rest of the features. As far as Sum Link Occ
(Fig. 2(c)) is concerned, explanations confirm the
same outcomes obtained for the model trained on
DSA (see Outcome 2).
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