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Abstract: Energy system models have become crucial to assess the effectiveness of possible energy
policies in pursuing the declared environmental objectives. Among bottom-up models, the tools
most widely used by researchers and institutions to perform scenario analyses and policy evaluations
rely on commercial software and closed databases, limiting the transparency of the studies. The
purpose of this work is to demonstrate that open-source tools, relying on open databases, can be
used as a valid alternative to commercial tools, getting equivalent results not only for simple case
studies as done so far, but also for complex (national, regional, or multi-regional) reference energy
systems. Working on the already available open TEMOA optimization framework, a bottom-up
technology-rich model is developed here for the Italian reference energy system on an extended
TEMOA version, comparable in detail and complexity to the equivalent TIMES framework. The
accuracy of the novel TEMOA-Italy model in a business-as-usual scenario is assessed, showing
that the average relative differences with respect to the consolidated TIMES-Italy results are in the
order of few percent. The open-source model, available on Github, is now ready for the test and
implementation of new optimization paradigms, which was not possible in the TIMES framework.

Keywords: energy system modeling; open-source model; open database; optimization models; TEMOA

1. Introduction

Long-term energy planning is crucial in the definition of energy programs for govern-
ments worldwide and keeps proving itself as a valuable tool to assess the effectiveness of
energy transition strategies [1]. In the current framework, where human activity is globally
recognized as the main cause responsible for climate change and its related effects, an
informed policy making based on accredited energy models is fundamental to try and
assess the most compelling pathway for the mitigation of those problems [2].

This work aims at proving that energy models developed in open-source frameworks
can be used to perform scenario analysis with results equivalent to those obtained through
well-accepted and widely used commercial software. This step of verification is necessary
for the long-term goal of overcoming the typical economic optimization paradigm (currently
the only one performed by bottom-up energy system optimization models, ESOMs [3])
and, e.g., to effectively introducing a sustainability accounting/optimization component.
This goal requires the availability of open and reliable tools, guaranteeing at the same time
the accessibility to the source code and a verified robustness of the optimization algorithm
compared to more widely used tools.

While open-source frameworks, such as the Tools for Energy Model Optimization and
Analysis (TEMOA [4]), for instance, are available in principle for the implementation of
new objective functions, their embedded description of the reference energy system (RES)
is not fully comparable and compatible with the one implemented in commercial tools such
as the TIMES model generator [5], so that a one-to-one comparison on models developed
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in the two frameworks on a large RES (at national level) has never been performed to the
best of our knowledge. Since the reliability of an energy model is essential, before moving
to the shift of the objective function to include sustainability features, an open framework
is here selected, enhanced, and extended to a level that the tool becomes comparable to
TIMES. The capability of the resulting open-source framework and tool to replicate the
TIMES framework and tool is assessed by a rigorous benchmark. A test case is built for the
Italian energy system, and a business-as-usual scenario is analyzed both with TEMOA-Italy
and with a well-established TIMES-Italy model, currently used for the quarterly analysis of
the Italian energy system [6].

TIMES and Open-Source Energy System Optimization Modeling Frameworks

Among the wide range of existing ESOMs [7], bottom-up models can take advantage
of a detailed description of the energy technologies involved in each step of the considered
RES. They work with a high disaggregation level, thus needing extensive database of
technical and economic data to support the characterization of each component [3]. One of
the most relevant examples [8] of bottom-up, technology-rich energy modeling framework
is represented by the TIMES model generator [5] (and its ancestor MARKAL [9]). TIMES
combines a technical engineering approach to macroeconomic ingredients, using a linear
programming formulation to produce the least-cost optimized composition of the energy
system under exam over a medium-to-long term time scale under the assumption of partial
equilibrium of competitive markets in a perfect foresight approach [10]. Specific combina-
tions of different policies and developments of the energy system allow the definition of
different scenarios, which provides a set of constraints on technologies, commodities, or
driver evolution. The basis of the TIMES models lay in the identification and description
of a RES, i.e., a network of the interconnections of all the commodities and technologies
composing the energy system under study [11], and of the end-use demands. A complete
RES encompasses, from one side, the description of the main energy consumption sectors,
namely the residential, the commercial, the agriculture, the transport and the industry
sectors, and from the other side the supply sectors (upstream and power sector) for the
extraction and transformation of primary energy sources and electricity and heat produc-
tion. Working over a long-term time scale, the RES typically includes not only the existing
technologies, but also a set of new technologies to be integrated into the energy mix by the
optimization algorithm to satisfy given end-use demands, based on their techno-economic
characterization. Two examples of the required characterization for TIMES technologies
are presented in [12] for the industrial sector and in [13] for the transport sector. End-use
demands can either be estimated through exogenously specified arrays of values obtained
from external sources or by computing them [2]. Methodologies for the calculation of the
demands can be either based on general equilibrium models (e.g., GEM-E3 [14]) or on
simpler autoregressive models as in [15].

Among the different applications of TIMES, the JRC-EU TIMES Model is an example
of policy-relevant modeling tool used by the European Commission for the anticipation and
evaluation of technology policy at the European level [16]. At the global level, the TIMES
framework is at the basis of the analyses carried out by the International Energy Agency
(IEA) for the periodical publication of the Energy Technology Perspectives (ETP) [17], first
issued in 2006, to assess the future role of low-carbon energy generation. Although some of
the (technology) database used in the JRC-EU TIMES Model and ETP are open and publicly
available, the TIMES generator requires the use of commercial software to read the input
data, solve the optimization problem, and postprocess the results.

Recently, a growing awareness is spreading in the scientific community about open
science, i.e., the possibility to freely disseminate data and results of scientific research,
increasing responsiveness and spreading knowledge regardless of the economic status
of the recipients [18]. The importance of that issue is so relevant that it falls within the
priorities of the European Commission [19]. In particular, the open science purpose can
be realized in the field of energy modeling providing open access to both models and
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data, leading not only to higher quality, reliability, and recognition of the results of energy
projection tools [20], but also to the spread of attempts of shaping the energy system
according to non-economical paradigms.

While TIMES model instances cannot be currently defined part of an open modeling
environment, several open-source tools or frameworks have been developed in the recent
years for the energy system optimization and analysis, with some focusing on the opti-
mization of the electricity system alone, e.g., Balmorel [21], pyPSA [22], and Switch [23],
and some others referring to the overall energy system. Two main tools fall in the second
category, namely the Open-Source Energy Modelling System (OSeMOSYS [24]) and the
TEMOA [4], aimed at replicating the TIMES optimization algorithm using linear program-
ming techniques to minimize the system-wide cost of energy supply by optimizing the
deployment and utilization of energy technologies over a user-specified time horizon to
meet end-use demands [25]. So far, however, any of those tools has been developed to allow
use of different objective functions, which would identify the most suitable configurations
of the energy systems meeting a target or paradigm different from the minimum cost of the
system [26].

As of today, OSeMOSYS has been used to develop a large body of model instances used
for deterministic scenario analyses to assess optimal energy transition pathways at different
national and international scales. The tool has been adopted as a support for several
research questions. For instance, the OSeMOSYS-SAMBA has been developed and used
for the analysis of energy security issues in South American countries [27]. Models based
on OSeMOSYS have been developed for the analysis of future electrification pathways in
Tanzania to decarbonize the power sector and ensure universal energy access [28] or for the
study of the integration of renewable energy sources in the power system in Tunisia [29]. An
interesting attempt to expand the OSeMOSYS formulation is shown in [30], where power
plant retrofitting is modeled expanding the mathematical equations of the source code
considering, for instance, possible change of plant (or operation) characteristics, or lifetime
extension, with an application to the Korean RES. Another attempt for the expansion of the
model formulation is presented in [31], where the potential of different demand-response
strategies in the balance between electricity supply and demand is assessed for the case of
the Portuguese power system in three scenarios. Note, however, while no applications of
OSeMOSYS have so far attempted the adoption of objective functions different from the
one implemented in TIMES, the only attempt to compare the two tools on the same case
study is limited just to the power sector [32].

On the other hand, the set of publications involving applications of TEMOA to real
case studies is still quite poor. The main focus of works concerning TEMOA is devoted
to the presentation of the modeling framework [4] and its uncertainty analysis tool for
multi-stage stochastic optimization [33]. An example of application of TEMOA for the
analysis of the United States energy system is presented in [34], where the US is presented
as a single region and projections are drawn from 2015 to 2040 to assess the impact of the
absence of federal climate policies, in response to the withdrawal of the US government
from the Paris Agreement, first announced in 2017, then formalized in 2020 [35] and finally
revoked after the settlement of the President Biden administration at the beginning of
2021 [36]. The dataset used in the cited work is based on the United States Environmental
Protection Agency (EPA) MARKAL model [37] and represents the basis for the Open
Energy Outlook (OEO) project. The OEO is a non-policy biased analysis for the assessment
of possible U.S. energy futures to inform future energy and climate policy efforts [38].
Another TEMOA-based application explores South Sudan electricity planning strategies
using stochastic optimization to produce a near-term hedging strategy on a time horizon
of 20 years from 2017 on [39]. So far, no comparison of the results of a TEMOA-based
model have been compared to the results of an equivalent TIMES model for the sake of
benchmarking of TEMOA.

The paper is structured as follows. In Section 2, the motivations for the selection
of TEMOA as the open modeling framework are discussed, together with the procedure
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followed for the RES database construction, the implementation of drivers and constraints
and the optimization problem which is solved, highlighting the integrations done with
respect to the standard TEMOA framework. Section 3 presents the main features of the
case study at hand, devoted to the Italian energy system. In Section 4, the results obtained
from TIMES-Italy and the new TEMOA-Italy are compared to ensure their correspondence,
and the accuracy of the TEMOA model replicating the TIMES framework algorithm is
assessed. Eventually, the conclusions and the policy implications of the work are presented
in Section 5.

2. Methodology

The following sections present the development of the TEMOA-Italy model, from the
selection of the open-source framework for the model implementation to the construction of
the RES and the implementation of drivers and constraints to the already-available TEMOA
framework. Note that, with respect to the original tool, several technical parameters and
procedure were developed and added to the TEMOA source code, not yet implemented in
the published version of the framework [40], as they were necessary to fully replicate the
parameters used in a TIMES-based model such as the TIMES-Italy. To keep track of all the
changes made to the TEMOA source code, a detailed guide has been issued, allowing to
obtain the version in use of the framework starting from the available one on GitHub. This
guide and the resulting integrated open-source tool are available at [41], on GitHub.

2.1. Selection of the Open-Source Framework

Based on [26], for the implementation of an ESOM with at least the very same po-
tentialities of TIMES from an open-source framework, two tools have been taken into
consideration: OSeMOSYS [24] and TEMOA [4].

Table 1 presents an overview of the main features of the OSeMOSYS and TEMOA open
tools against TIMES. Concerning the input data entering system, OSeMOSYS provides
the Model Management Infrastructure (MoManI), an open-source browser-based platform
which allows model development and the editing and update of the underlying OSeMOSYS
equations [42]. Moreover, TEMOA provides an online user interface for model creation
and management. Anyway, the input dataset for any TEMOA model instance can be
constructed either as a text file or a relational database (preferred in case of larger datasets).
Relational databases for TEMOA include the structure of the different tables filled with
input data for the model and are stored in a text file in .sql format. Once the .sql text file is
complete, it is converted into a .sqlite database in order to be interpreted by the TEMOA
source code. Finally, the TIMES input data system is articulated over two passages: the set
of Excel files containing input data for the model, built following a precise structure and
syntax (the number and complexity of the Excel database can increase a lot with model size
and degree of detail) are fed to the VEDA Front-End [43] model user interface that recalls
the TIMES source code and the solver. OSeMOSYS and TEMOA, differently from TIMES,
in their standard formulation share the infeasibility to set interpolation rules for the future
evolution of parameters.

Concerning the possibility to modify the model structure (possible with OSeMOSYS
and TEMOA), the TIMES source code can be downloaded for free after having signed a Let-
ter of Agreement and requested credentials [44]. More in detail, the optimization problem
(maximization of the consumer and producer surplus or equivalently the minimization of
the cost of the energy system) is formulated in a way that cannot be redefined to include, for
instance, sustainability parameters [45] independent on costs or to shift to a multi-decision
algorithm [46,47] without the ETSAP approval (that obtains the intellectual property of any
approved changes [48]).

The source code for the three modeling frameworks under analysis is based on high-
level programming languages: among them, OSeMOSYS alone provides three different
versions of the source code in GNU [49], Python [50], and GAMS [51], while TEMOA is
only written in Python and TIMES in GAMS. In particular, the choice of Python, with its
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verbosity, its easy access to a rich ecosystem of supporting modeling tools and the support
of a wide user community and documentation is deemed as the most appropriate choice to
reduce the learning curve for new modelers [4].

Table 1. Comparison of available tools for macro-scale energy system optimization.

Feature
Tool

OSeMOSYS TEMOA TIMES

Features of the input data
entering tool

Several steps are required for
the definition of the time scale,
space-scale, and technological
characterizations, but allows a

prompt visualization of the
RES network

Complexity increases with the
complexity of the energy

system, but the code
formulation makes it

straightforward

Complexity increases with the
complexity of the energy

system (especially with the
number of regions), due to the
large number of Excel files to

be managed

Future evolution of
parameters

The required values must be
declared at each desired

time-step

The required values must be
declared at each desired

time-step

The required values must be
declared at each desired

time-step, with the possibility
of assigning different

interpolation rules

Type of programming
language High-level High-level High-level

Programming language(s)
GNU open-source

Python open-source

GAMS commercial
Python open-source GAMS commercial

Optimization software
(solver)

GLPK for GNU open-source

GLPK for Python open-source

CPLEX for GAMS commercial

GLPK for Python open-source

CPLEX for Python
commercial (but can be run on an

external server)

Gurobi for Python
commercial (but available with

free academic license)

COIN-OR CBC open-source 1

CPLEX for GAMS commercial

Features of the
optimization software

Suitable for simple energy
systems if

using-open-source solvers

Suitable for large-scale
energy systems

Suitable for large-scale
energy systems

Possibility to
modify/improve the code Possible Possible Possible, but it requires the

ETSAP approval

Possibility to perform
stochastic optimization

Impossible at present state, but
an extension can be formulated

Possible with an already
implemented Python module

Possible, but time-consuming
and complex due to the
difficult data handling

1 Not available for Windows.

On the other hand, one of the main differences between OSeMOSYS and TEMOA
regards the availability of open-source solvers, thus the complexity of the energy system
that can be optimized by the model. Indeed, using the freely available GLPK [49] solver
coupled with OSeMOSYS, only relatively simple energy systems can be optimized with
acceptable computational cost. On the contrary, with TEMOA there is the possibility to
use freely also solvers allowing the optimization of larger-size energy systems, such as
CPLEX [52] or Gurobi [53] (GLPK can be nevertheless used for simpler study cases). TIMES,
instead, requires a commercial license in order to use CPLEX or other solvers. The other
important difference between OSeMOSYS and TEMOA is that the latter is provided with
an extension of the deterministic code that allows performing a stochastic optimization.
This allows conducting uncertainty analysis with large and complex models to evaluate
the accuracy of the obtained results.

All in all, the OSeMOSYS and TEMOA open-source tools have already proved to be
mature enough to be comparable to TIMES, even though the continuous extension of their
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functionalities (which is also partly taken on in this work concerning TEMOA) would be
beneficial to increase their reliability [20].

In this work, the choice of TEMOA for the development of the case-study, i.e., an
open-source model for the Italian energy system, is mainly due to three reasons: (1) the
possibility to use freely powerful open-source solvers as CPLEX and Gurobi; (2) the use of
Python, allowing to rely on numerous software packages and libraries developed in that
programming language; and (3) the possibility to model large-scale energy systems.

2.2. Enhancement of the TEMOA Framework

This section presents the improvements to the TEMOA framework developed to
empower the capability to model a complex RES and become then comparable to a TIMES
model of the same energy system.

The main sectors composing a generic RES and the connection between its different
sections are shown in Figure 1. The system is composed of three demand-side sectors
(buildings, transport, and industry) and two supply-side sectors (upstream and the power
sector). While the demand-side sectors consume energy to satisfy final energy service
demands, the supply-side sectors produce the energy commodities consumed by the
demand-side (namely: fossil fuels, primary renewable potential, electricity, and heat). For
the correct description and optimization of the energy system, a complete energy system
modeling framework should be structured to include the techno-economic description of
the technologies, the drivers for the demand projection, and a set of constraints. Eventually,
a proper objective function (to be maximized or minimized in a linear programming
problem) should be identified.
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Figure 1. Schematic representation of the general reference energy system of a bottom-up energy
system optimization model.

As shown in Figure 2, the essential items for the definition of the RES structure are
the commodities (labeled as physical, emission, or demand commodities), the technolo-
gies, and the respective efficiency, connecting commodities and technologies to define the
technology chain from extraction of natural resources to the final service demands. The
commodities labeled as “demand commodities” must be the output commodities of at least
one technology and the demand level must be specified in the “Demand” table per each
milestone year labeled as “future” year. The demand and the emission commodities can
only be output commodity for a technology, while the physical commodities (energy or
materials) can be both produced and consumed by different technologies. Then, other very
important parameters are those related to the cost of the technologies, being directly used
in the formulation of the objective function to be minimize (the total cost of the system).
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A list of the main parameters involved in the construction of the database containing
the techno-economic characterization of the Italian RES in the TEMOA model is provided
in Table 2, reporting the parameters description and their names in TEMOA. In particular,
3 categories of parameters are included in the TEMOA formulation:

• Labels used for internal database processing identify the different kinds of commodi-
ties (physical, demand, emissions) and technologies (“supply-side” or “demand-side”
sectors), and the belonging of each time period to the set of “existing” or “future”
years. More in detail, existing (historical) periods represent a base for the model where
the energy system configuration at a certain point in time can be defined and has no
freedom neither associated investment costs as the existing technologies are already
present in the energy system when the analysis begins. Existing periods are also used
to calibrate the energy-use features of the technologies included in the model, based
on energy statistics. Future periods, on the other hand, represent the optimization
horizon in which the total cost of the system has to be minimized.

• Sets associate definite entities to the labels mentioned above. In TEMOA there are
mainly four kinds of sets: periods, sub-annual “time slices”, technologies, and energy
commodities. Periods require to assign the definition of the milestone years considered
as representative of each period. Then, sub-annual time slices subdivide each period
into portions of the day (day, night, and peak) and seasons of the year in order to
better tune the model of the supply part of the RES under exam. Indeed, production
features of some technologies (e.g., renewable plants) can strongly vary according to
the seasonal or daily time slices in which they operate. The technologies set contains
the definition of all the possible energy technologies that the model can build, and the
commodity set contains the definition of all the input and output forms of energy that
the different technologies consume and produce.

• Parameters can be used to define processes or constraints, thus, to assign techno-
economic features, or to assign upper or lower bounds for technologies’ evolution.

The detailed technical discussion of the new parameters and equations added to the
TEMOA framework and of the parameters which formulation has been modified with
respect to the original version of the code is provided in Appendix A. The main aspects
concern the implementation of an annual capacity factor in the framework (in addition to
already available time-slice specific capacity factors), the development of new constraints
for technology groups and the development of an automatic database preprocessing for
the data interpolation/extrapolation along the time, the computation of emission factors,
and the demands projection in time according to driver and elasticity values.
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Table 2. Main items included in the TEMOA database. New parameters introduced within this study
and parameters whose formulation has been modified with respect to the original TEMOA version
are highlighted in bold.

Category Description TEMOA Name

Labels used for internal
database processing

Commodity category commodity_labels
Technology category technology_labels
Time period labels time_periods_labels

Sets

Commodity names commodities
Technology names technologies

Milestone years time_periods
Seasons of the year time_season

Time periods of the day time_of_day

Parameters used to define
processes

Discount rate GlobalDiscountRate
Demands Demand
Efficiency Efficiency

Existing capacity ExistingCapacity

Capacity factors
CapacityFactor

CapacityFactorTech
CapacityFactorProcess

Capacity to activity Capacity2Activity
Fixed O&M cost CostFixed
Investment cost CostInvest

Variable O&M cost CostVariable

Emission factors
CommodityEmissionFactor

EmissionActivity
Economic lifetime LifetimeLoanTech

Technical lifetime
LifetimeTech

LifetimeProcess

Parameters used to define
constraints

Minimum capacity constraint MinCapacity
Maximum capacity constraint MaxCapacity
Minimum activity constraint MinActivity

Maximum activity constraints MaxActivity
Minimum activity for

technology groups MinGenGroupTarget

Maximum activity for
technology groups MaxGenGroupLimit

Maximum production across
time periods MaxResource

Share of input commodity TechInputSplit
Minimum commodity input
share for technology groups MinInputGroup

Maximum commodity input
share for technology groups MaxInputGroup

Share of output commodity TechOutputSplit
Maximum commodity output
share for technology groups MaxOutputGroup

Despite the new constraints added or further developed in TEMOA to allow a fair
comparison to TIMES, there are differences in the set of equations implemented within the
two frameworks, and in the formulation of the optimization algorithm. As an example,
Equations (1)–(3) show the different formulation of the relationship between the total flow
of output commodity of a certain technology and its installed capacity in TIMES [54] and
TEMOA [55], respectively. Given the relevance of the relationship between activity and capac-
ity for the construction of the optimized RES, as they directly determine its cost, we present
here its different implementation in the two modeling frameworks. The two equations are
intended to model the same concept, namely the constrain on the total flow of output com-



Energies 2022, 15, 6505 9 of 37

modities to the capacity multiplied by a conversion factor. However, the TIMES formulation
(Equations (1) and (2)) is far more detailed and complex than the TEMOA one (Equation (3)).

TOTOUT =

{
∑ FLO i f commodity does not contribute to ACT

∑ ACT i f commodity contributes to ACT
(1)

TOTOUT = (NewCAP + OldCAP − RetCAP − O f f lCAP)×
×(CapacityFactor × Capacity2Activity × DTS × FAC)

(2)

∑ ACT + ∑ CUR ≤ CAP × (CapacityFactor × Capacity2Activity × DTS × FAC) (3)

In Equation (1) in the TIMES framework, the contribution of a commodity to the
total commodity output TOTOUT includes commodities contributing or not to the process
activity ACT. As a matter of fact, the summation ∑ ACT is the total activity of a tech-
nology and the summation ∑ FLO is the total commodity production not contributing
to the process activity. This distinction is not present in TEMOA, where a single term is
sufficient to represent the total commodity production of a technology, and namely ∑ ACT
in Equation (2). In addition to the global flow of output commodity ∑ ACT, the term
∑ CUR is used in TEMOA to represent the total curtailment of energy production (useful
for scenarios with high renewable penetration). Note that curtailments (equivalent to
commodity overproduction) are not allowed in TEMOA by default but only if explicitly set
by the modeler, while in TIMES overproduction is generally possible if specific constraints
are not used to avoid this.

Moving now to the right-hand side of Equations (1) and (2), the available capacity
is computed by TIMES and TEMOA in two different ways. TIMES allows distinguishing
among the (positive) contributions of new installations (NewCAP) and residual capac-
ity from past periods (OldCAP), and the (negative) contributions of the retired capacity
(RetCAP) and the started-up, shut-down, and off-line capacities (O f f lCAP). On the other
side, the total capacity is instead represented in TEMOA (Equation (2)) with a single
variable (CAP), including the new, old, and retired capacities.

Concerning the parameters composing the conversion factor from capacity to activity
they are the same in the two formulations and, namely: CapacityFactor, Capacity2Activity, the
Duration of the Time Slice (DTS), and the Fraction of Available Capacity (FAC). Those and
similar differences in the implementation of the two frameworks justify minor discrepancies
between the results from the two models, as it will be commented more deeply in Section 4.

3. Case Study: The Italian Energy System

In the context of energy system models belonging to the TIMES family, the TIMES-Italy
model instance for the analysis of the Italian energy system has been developed throughout
the last years by the Italian National Agency for New Technologies, Energy, and Sustainable
Economic Development (ENEA). TIMES-Italy has gained high policy relevance as it was
used to support the Italian National Energy Strategy (SEN) [56] and is currently used for
the periodic quarterly analysis of the Italian energy system by ENEA [6]. For those reasons,
the TIMES-Italy model has been chosen as reference for the development of the novel
TEMOA-Italy model. The TEMOA-Italy is the implementation of the updated TIMES-Italy
in the TEMOA framework, and it includes in the time horizon only a single existing year,
corresponding to the “base year” in the TIMES-Italy model (set in 2006). For that reason,
all the existing technologies are installed at the base year and their capacity is maintained
for their entire lifetime, while their activity is constrained to a linearly decreasing trend
(as explained in Appendix A.3). The choice of keeping 2006 as the base year is not only
motivated by the necessity to fully replicate the existing TIMES-Italy model, but also by
the possibility to perform a validation of the model comparing the results obtained for the
historical period 2006–2020 with the actual statistical data in terms of energy consumption
and demands evolution. Such a model validation is beyond the scope of this paper and
will be addressed in the future. TIMES-Italy is a single-region model, thus the relationship
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between Italy and the countries related to it via commercial and energy trade is defined
using import-export parameters. The model serves as a tool for energy projections up
to 2050 and has been recently re-calibrated (i.e., it matches the actual energy statistics
provided by the national energy balances, see for instance [15] for the industrial sector) on
2006 historical data, provided by the International Energy Agency [57]. The tool contains a
detailed description of the Italian energy system in 2006, from the extraction and import of
primary energy source to the transportation, buildings, industrial, and agricultural sectors
final energy use.

The RES under analysis for the Italian region [58], summarized in Figure 3, is sub-
divided into five sectors (three demand-side sectors and two supply-side sectors). The
demand-side sectors are buildings (including the agriculture, commercial, and residential
sectors), transport, and industry. The supply-side sectors are the power sector and the
upstream sector. Each sector includes a set of technologies, characterized by several techno-
economic parameters (see also below), used to produce all the commodities necessary
to ensure the production of the required final energy service demands. The upstream
sector is reported in the upper part of the diagram (orange boxes): it includes fossil fuels
extraction, production, and transformation technologies and renewable energy sources
production technologies (i.e., fictitious technologies that transform renewable energy po-
tential in energy commodities). The output commodities of the upstream sector (along
with fuel imports) are inputs for the power sector and the demand-side sectors. Power
sector technologies (yellow boxes) allow further processing of energy commodities, and in
particular for electricity (centralized and distributed) and heat production. Imports from
abroad also contribute to the electricity availability. The demand-side sectors transform
energy commodities from the power and upstream sectors into energy service demands,
and they are sketched in the red boxes in the bottom part of the diagram.

Figure 3 also reports the number of technologies included in the energy system, per
energy sector (transport, industry, buildings, and power) and subsectors (each sector can
satisfy a set of different demands relative to different subsectors). The existing technologies
(at least one final technology per each energy subsector) are those involved in the base year
calibration of the model to reproduce the base year technology chain consuming energy to
satisfy the associated final energy service demand. To match the energy consumption in the
timesteps after the base year, two options are available: to keep the existing technologies
in service, accounting for their postulated increasing efficiency with time, or to constraint
their availability as time goes by, to allow their substitution them with new technologies.
The first option is simpler but does not allow to consider any relevant technology change.
The second requires including in the database the techno-economic description of the
available new technologies; it is more precise and allows the optimization to choose among
a larger number of available options. Concerning the new technologies included in the
TEMOA-Italy, a higher level of detail (corresponding to a larger number of technologies
included in the dataset) is available for those demand categories presenting a higher energy
consumption (for example, residential and commercial space heating or cooling, chemical,
or iron and steel in the industry sector, and road transport). This is reasonable, because
it increases the computational efficiency of the optimization, having a higher accuracy in
the technology description only for the sectors characterized by a higher impact on the
total energy consumption. Eventually, focusing on the power sector, a larger number of
renewable energy technologies, with respect to the fossil fueled technologies, are described
in the model, expecting a higher penetration of renewables in the energy mix for the future.
The current stage of the model does not include nuclear power plants, given that there are
no prospects for the development of the nuclear sources in Italy due to the unambiguous
political choices [59]. The techno-economic characterization of the technologies included in
the TIMES-Italy and TEMOA-Italy models is available at [60]. The detailed input files for
the construction of the Italian RES, as shown in Figure 3, are available in [41]. Among the
many existing and new technologies implemented in the model for the different sectors,
the detail of the techno-economic characterization for the three most energy-consuming
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demand-side subsectors and namely chemical industry, road transport cars, and residential
space heating is reported in Tables A2–A4 (in Appendix B.2), respectively. Investment and
fixed O&M costs have not been reported for existing technologies, since their installed
capacity and their availability in time comes only from the base year calibration and
the associated constraints, i.e., it does not depend on the optimization performed by the
model. For parameters varying in time (e.g., increasing efficiency or decreasing costs), the
minimum and the maximum values have been reported.
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In order to perform future projections in the different sectors, the model relies on a
database of existing and innovative technologies (both at commercial and research and
development stage), while future service demands in each sector of the economy (e.g., driven
distance by car or truck, residential/commercial space heating, industrial production of
steel or paper, etc.) are projected according to a set of drivers and demand elasticities and
must be satisfied by the model at each time step. Future projections are articulated over
several time steps. For the work presented here, the selected time periods are set in 2007,
2008, 2010, 2012, 2014, 2016, 2018, 2020, 2022, 2025, 2030, 2040, and 2050. The time periods
resolution is chosen to be less refined by the end of the time horizon because of the higher
degree of uncertainty about the projections of drivers (see Appendix B.1 for details).

While the annual value of each final service demand of the model is known at the base
year and projected along the time with exogenous drivers and elasticities, the intra-annual
distribution of the demand is also important to consider seasonal and daily variations of
environmental conditions that affect the energy demands. The division of the milestone
year into more refined time-slices is performed in TEMOA-Italy (as in TIMES-Italy) with
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four seasons (spring, summer, fall and winter) and three times of day (day, night and peak),
leading to 12 time slices per year. A percentage of the total time of the year is assigned to
each time-slice, as reported in Table 3. The time repartition among the seasons is uniform
(25% of the total time of year per season), while it reflects the different duration of day and
night in summer and winter.

Table 3. Percentage subdivision of total time of the year among the time-slices (in TIMES-Italy and
TEMOA-Italy) [58].

Times of Day
Seasons Spring Summer Fall Winter

Day 11.5% 12.5% 11.5% 10.5%
Night 12.5% 11.5% 12.5% 13.5%
Peak 1.0% 1.0% 1.0% 1.0%

Final service demands could be distributed among the time-slices according to differ-
ent proportions with respect to those shown in Table 3 to consider their possible significant
dependence on environmental conditions. For instance, that is crucial for lighting and
thermal energy in buildings, being lighting demand influenced by the time of day and
space heating and cooling strongly dependent on the season of the year [58]. Such an un-
balanced time distribution of demands among the time-slices implies that an overcapacity
of technologies producing them is installed, since the energy system must be able to satisfy
the demand even in all the time-slices. While those aspects are fully considered in the
TIMES-Italy model for the interested service demands, at the current state of development
of TEMOA-Italy all the demands are annual. This is because introducing non-annual
demands significantly affects the TEMOA computational cost (as discussed in Section 4.1)
and, for this reason, the intra-annual optimization has been reserved only to the power
sector at the moment.

For what concerns the supply-side, the intra-annual representation of energy produc-
tion is mainly relevant for renewable energy plants in the power sector, as their production
is strongly influenced by weather conditions (e.g., the model must consider that the solar
resource is not available during the night). Those phenomena are modeled (both in TIMES-
Italy and TEMOA-Italy) through a variable capacity factor in the different time slices of
the year, used to represent the uneven availability of the resource during the year for each
renewable plant.

4. Comparison of Results

In this section, the results obtained from both TIMES-Italy and TEMOA-Italy models
are compared in a business-as-usual scenario. The scenario is characterized by:

• Medium level-costs for import of primary sources [58].
• No subsidies to renewable electricity production.
• Neither CO2 emission limits, nor carbon tax applied.
• No carbon capture, utilization, and storage technologies.

4.1. Computational Cost

The first general result to be compared concerns the computational costs associated to
the optimization processes performed by the two tools. This is a relevant aspect to evaluate
the performances of an open tool compared with a commercial competitor, especially
dealing with models that allow also stochastic optimization. A rigorous evaluation of
that parameter is quite difficult, being it dependent on the performances of the machine
where the model is installed. Usually, the most time-consuming phases of an ESOM run are
the construction of the model instance and the resolution of the optimization problem. A
qualitatively evaluation of the computational costs is in the order of 1 min for TIMES-Italy
resolution (few seconds due to the construction of the model instance and the remaining
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due to the optimization) and 10 min for TEMOA-Italy resolution (5 min for both phases).
The non-negligible computational cost required to solve a complex model such as TEMOA-
Italy is the main weakness of TEMOA if compared to TIMES and an important limitation to
possible studies based on stochastic optimization. Moreover, the TEMOA optimization time
is strongly affected by the number of intra-annual technologies and non-annual demands
included in the energy system (for which an optimization on each time-slice is required
and it is not sufficient to optimize the annual production of output commodities).

4.2. Aggregated Results

Figure 4 describes the optimal primary energy consumption (by energy source) in
2030, in terms of: imported energy from abroad (including fossil fuels and electricity);
fossil fuels produced in Italy; and renewable energy sources (such as solar, hydroelectric,
biofuels, geothermal and wind). The results show a very good agreement between the two
models with a swap of 2–3% in the fossil fuel consumption. While the lower natural gas
consumption in TEMOA-Italy is also highlighted in the electricity mix (Figure 5) and will
be discussed in the following, the difference in oil consumption it is not reflected in the
power sector, and it is due to the demand-side. Being oil products mainly consumed in
transports, the investigation of this discrepancy is reported in Section 4.3.2, dedicated to
the transport sectorial results.
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Figure 5 shows the optimal resource consumption for electricity production in 2030.
The share of oil and oil products in the power sector is the same, suggesting that the
difference in the primary energy consumption shown in Figure 4 is due to the demand-side
of the energy system. The natural gas consumption reflects the difference already shown
in Figure 4 for the primary energy consumption (lower in the TEMOA results) and it is
compensated by some of the renewable sources (geothermal and wind, hydroelectric and
solar). Since a significant fraction of the natural gas consumption in the power sector is due
to CHP plants (producing both electricity and heat) in the studied scenario, the adopted
characterization strategy to model this kind of plants is perfectible. A typical information
involved in modeling CHP plants is the ratio between heat and electricity produced. While
that is implemented in TIMES-Italy with a dedicated technical parameter i.e., the coefficient
of heat to power ratio (CHPR) that usually represents an upper limit, in TEMOA-Italy the
ratio between heat and electricity is fixed.

4.3. Disaggregated Results

The output data of an energy model optimization consist of several types of results.
The detailed comparison between the two models has been carried out here focusing on
three main aspects:

• The contribution of each final technology to the production of each demand commodity
and its evolution along the time horizon (technology mix).

• The consumption of each energy commodity, disaggregated by sector, and its contri-
bution along the time horizon (energy mix).

• The associated costs to the selected technologies along the time horizon.

The quantification of the accuracy of the results is evaluated through the relative
differences between the TIMES-Italy and the TEMOA-Italy outputs. The level of detail on
which the analysis is performed is crucial to determine its validity in benchmarking the
TEMOA results. In other terms, to have a precise evaluation of the open model accuracy,
the discrepancies should be calculated at a sufficient disaggregation level. For that reason,
the evaluation is carried out comparing the results for the single technologies production,
sectorial energy consumption, and costs. The relative difference between the two sets of
results is then calculated according to Equation (4), where xi is the commodity production,
consumption, or cost associated to the ith technology and di f f i is the calculated relative
difference.

di f f i =
xi

TEMOA − xi
TIMES

xi
TIMES

(4)

The resulting evaluation of the accuracy for the single technology is very important to
guarantee a detailed assessment but should be complemented by more synthetic indexes at
an aggregated level for entire energy subsectors and sectors of the RES to give an overall
estimation of the open model performances. To achieve that goal, two procedures have
been adopted. The first one targets the evolution of the relative difference di f favg between
the two models results along the entire time horizon for different portions of the RES
(namely an energy subsector or demand-side sector). The value of di f favg is obtained for
each milestone year according to Equation (5), where f i is the associated weighting factor to
the xi

TIMES data and is equal to the ratio between the contribution of the ith commodity and
the total commodity production, consumption, or cost of the selected subsector or sector
(xTIMES). The weighting is based on TIMES-Italy results, coherently with the approach of
taking them as the reference results. In Equation (5), the absolute value operator prevents
the compensation of positive and negative differences.

di f favg[%] = ∑
i

∣∣∣di f f i
∣∣∣· f i = ∑

i

∣∣∣di f f i
∣∣∣· xi

TIMES
xTIMES

(5)
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A summary assessment of the overall results accuracy along the entire time horizon
is also useful to have the possibility to represent with single numbers the precision of the
modeling of entire energy subsectors and sectors. Such evaluation is performed deriv-
ing the cumulative commodity production or consumption (xi

cum for the ith commodity,
Equation (6)) by single technologies along the time horizon (from 2006 to 2050 in the case
study) and evaluating the relative differences and the average relative difference on the
cumulative results, see Equation (7).

xi
cum =

tend

∑
j=t0

xi·∆tj =
2050

∑
j=2006

xi·
(
tj+1 − tj

)
(6)

di f fcum[%] = ∑
i

di f f i
cum ∗ f i

cum = ∑
i

∣∣∣∣∣ xi
cum,TEMOA − xi

cum,TIMES

xi
cum,TIMES

∣∣∣∣∣ ∗ xi
cum,TIMES

xcum,TIMES
(7)

In the following sections, the benchmark results are reported, per each demand-side
sector included in the RES (industry, transport, and buildings).

4.3.1. Industry

Comparing now the resulting technology mixes from the two models (TIMES-Italy
and TEMOA-Italy) and according to Equations (4) and (5), a weighted average error curve
is derived for each industrial subsector, as shown in Figure 6.
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paper and other industries.

The average relative difference is lower for the subsectors with a simple structure,
and namely the non-ferrous metals subsector (Figure 6b) and the so-called other industries
(Figure 6c). The general trends of the curves are characterized by higher errors associated
to the first milestone years and decreases along the time. That decreasing trend is more
pronounced for the chemical subsector (Figure 6a), non-ferrous metals (Figure 6b), and non-
metallic minerals (Figure 6b). The explanation of that behavior is linked to the compresence
of existing technologies (installed since the base year) and new technologies (see also the
detailed data reported in Appendix C). Indeed, as reported in Appendix A.3, the capacity
of the base year technologies is bounded to progressively reach 0 at a certain milestone year,
which in TIMES-Italy and for the industrial sector is usually 2030, to simulate the disposal
and the consequent substitution with new capacity of the existing technologies. The number
of active technologies is higher for time steps characterized by the concurrent operation of
base year technologies (in subsectors including those disposal constraints), increasing the
system complexity and consequently decreasing results accuracy. Moreover, the complexity
of the system amplifies even small discrepancies in the results due to differences in the
implementation of the model equations (as discussed in Section 2). This explanation of
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the global trend is confirmed by the case of the “other industries”, where a quite constant
relative error is found throughout the entire time horizon, since the final production of this
sector is modeled by a single existing technology with increasing efficiency and without
any substitution by a new technology.

A more synthetic evaluation of the model ability to reproduce the optimal technology
mix is given by the average relative difference on the cumulative activity of final technolo-
gies, obtained according to Equation (7). The results are reported in Table 4. In this case,
lower discrepancies are associated to the simplest structured subsectors (such as other
industries and non-ferrous metals), while the values increase for the other more complex
industrial subsectors.

Table 4. Average relative difference between TIMES-Italy and TEMOA-Italy results in cumulative
activity for industrial technologies.

Industrial Subsector diffcum[%]

Chemical 0.31
Iron and steel 2.57

Non-ferrous metals 0.07
Non-metallic minerals 0.62

Pulp and paper 0.86
Other industries 0.02

Passing to the analysis of the energy consumption, Figure 7a shows a stacked diagram
comparing the resulting industrial energy mix in 2030. Figure 7b shows the curve of
average relative error along the entire time horizon (weighted on the consumption of each
commodity with respect to the total energy consumption of the sector per each milestone
year, derived according to Equation (5)).
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Figure 7. Comparison between the optimal industrial energy mix: (a) composition in 2030; (b) average
relative difference curve along the time.

The average error curve associated to the industrial energy consumption is character-
ized by higher values with respect to the curves representing the accuracy of the subsector
technology mixes. That phenomenon is partially due to the higher complexity of the whole
industrial sector, that also includes intermediate industrial service production technologies
(such as technologies to produce steam, machine drive, process heat, etc.) in addition
to end-use commodity production technologies [58]. Furthermore, going up the produc-
tion chain, several parameters contribute to determine the consumption of each energy
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commodity, inevitably leading to an amplification of the margin of error. Indeed, while
for the evaluation of the cheapest technological combination (satisfying the demand and
respecting the constrains set) the model establishes the final technology mix (being this
choice mainly due to the cost of the available technologies), several parameters (with their
accuracy) are involved in the construction of the associated energy mix. For instance, the ef-
ficiency of each selected technology, the minimum/maximum shares of every input/output
commodity could amplify the error passing from the technology to the energy mix. The
resulting accuracy of the industrial energy mix, shown in Figure 7, includes yearly errors
between a minimum of 2.89% in 2010 and a maximum of 6.93% in 2025, with a cumulative
relative difference representative of the energy consumption accuracy of the entire time
horizon of 3.96% (evaluated according to Equation (7)).

Concerning the resulting costs associated to the industrial technologies, Figure 8a
compares the percentage distribution by subsectors of the cumulative industrial sector cost
and Figure 8b shows the time evolution of the total cost of industrial technologies, without
any significant difference between the two models results. This is also confirmed by the
average relative difference between the cumulative industrial costs from the two models,
equal to 2.06% (evaluated according to Equation (7)).
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Figure 8. Comparison between the cumulative total cost of the industrial sector: (a) percentage
sub-sectorial contributions; (b) evolution in time.

Detailed results for the industrial technology mix producing the final service demands
for the industrial sector are reported Table A5 (in Appendix C), where the activity (total
output commodity flow) of each final technology and milestone year, evaluated from both
the TIMES-Italy and the TEMOA-Italy models, are reported as well.

4.3.2. Transport

The analysis of the results for the transport sector is focused on the road transport
categories with a higher degree of detail with respect to the other transportation modes
(aviation, navigation, trains) in view of the higher number of available technologies for
road transport in the RES (and the consequent higher complexity and discrepancies in
results associated to this subsector with respect to non-road), as reported in Figure 3. This
choice is also supported by the fact that most of the energy consumption in transport sector
is associated to the road technologies (approximately the 82% at the base year).

The curves of the average relative difference of the technology mix for road trans-
port modes and for the other transport subsectors (aviation, navigation, rail, and other
transports) are shown in Figure 9. As already commented comparing simpler with more
complex industrial subsectors, results of the average relative differences associated to the
non-road transportation modes (Figure 9b) is at least one order of magnitude lower than
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the difference related to the road transportation modes (with many technologies involved
in the modeling and a very high number of constraints). The results for the transport sector
lead also to an evaluation (Equation (7)) of the average relative difference between the
cumulative activities of the selected technologies of 0.75% for road and 0.07% for non-road.
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Figure 9. Average relative difference curves associated to the optimal technology mix for: (a) road
transport categories; (b) non-road transport categories.

A slightly lower accuracy of road transport results is justified by the absence of de-
tailed constraints on the technology mix in the TEMOA framework at the current state of
development. For that reason, some of the constraints on the future composition of the fleet
of vehicles, expressed in TIMES-Italy in terms of contribution of a certain vehicle category
(e.g., diesel cars, hybrid cars, etc.) to the satisfaction of its transport demand, have been replied
in TEMOA-Italy with equivalent constraints on the energy mix, with a conversion through
an average efficiency of the fleet of vehicles. The adoption of such an average efficiency is
of course an approximation that could be avoided with the introduction of a new constraint
typology with respect to the already implemented ones (as also discussed in Section 5). The
detailed optimal technology mix for cars is reported in Table A6 (in Appendix C).

Concerning the analysis of transport energy consumption, Figure 10a shows the
optimal energy mixes in 2030 split by fuels (derived from the two models) and Figure 10b
shows the curve of average relative error along the entire time horizon (weighted on the
consumption of each commodity with respect to the total energy consumption of the sector
per each milestone year, derived according to Equation (5)). The transport sector energy mix
results to be more accurate with respect to the industrial mix, coherently with the simpler
structure of the transport sector with respect to the industrial technology chain. While
industrial technologies include intermediate commodities for the industrial energy services
and technologies producing them, the transport sector is composed only by technologies
consuming energy to directly produce the final transport demands. This leads to an average
relative difference curve between a minimum value of 0.23% in 2008 and a maximum of
3.65% in 2020, with an average value on the cumulative fuel consumption along the entire
time horizon of 1.51% (see Equation (7)). As shown in Figure 10a, the transport energy
mix in 2030 is mainly composed of oil products (with an almost negligible contribution
from electricity and natural gas), and the associated average relative difference of 1.11% in
2030 partially explain the difference in the overall oil and oil products consumption, also
highlighted by Figure 4.
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Figure 10. Comparison between the optimal transport energy mix: (a) composition in 2030; (b) average
relative difference curve along the time.

Concerning the resulting costs associated to the transport technologies, Figure 11a com-
pares the distribution of the subsectors to the cumulative cost of the sector and Figure 11b
reports the time evolution of the total cost of the present technologies, showing an accor-
dance between the two cost trends. This is also confirmed by the average relative difference
between the cumulative transport costs of the models, equal to 2.37% (evaluated according
to Equation (7)).
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Figure 11. Comparison between the cumulative total cost of the transport sector: (a) percentage
sub-sectorial contributions; (b) evolution in time.

4.3.3. Buildings

Results related to the buildings sector (residential, commercial, and agriculture) are
reported in this section. Since several units of measurement are used to quantify the final
service demands of the sector, used to express properly the different end-uses, it is not
possible to compute an average difference curve synthetically representing the accuracy
of the technology mixes selected by the tools (as it has been done for the other sectors).
For that reason, to quantify the accuracy of the final service demands production and
according to Equation (8), the percentage of maximum value of difference between the
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total production of each final service demand of TIMES-Italy and TEMOA-Italy models
was calculated.

diffmax[%] = max

(∣∣xi
TEMOA − xi

TIMES

∣∣
xi

TIMES

)
(8)

The resulting curve is shown in Figure 12a. To provide a higher detail for the most
energy consuming end-use of the buildings sector, i.e., residential space heating, the
average relative difference comparing the optimal technology mixes is also reported in
Figure 12b. While Figure 12a is useful to compare the accuracy of the demands level
(being the evaluated relative difference less than 1% with the only exception of 2010 value),
Figure 12b shows (as for the other demand-side sectors) the precision in replicating the
selected technology mix for a single end-use category. The residential space heating end
use has been chosen because of being the most energy consuming in the buildings sector
(accounting alone for 62% of the total residential, commercial, and agriculture energy
consumption at the base year). Along the time horizon, the average relative difference
varies from ~2% up to ~7% for the intermediate years (i.e., between 2014 and 2030), while a
decreasing trend for the average relative difference seems to occur for the last time steps
of the time horizon (namely, 2040 and 2050). The detailed optimal technology mix for
residential space heating is reported in Table A7 (in Appendix C).
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Figure 12. (a) Maximum relative difference associated to the total production of residential, commer-
cial and agriculture final service demands. (b) Average relative difference associated to the optimal
technology mix for residential space heating.

It should be also noticed that the optimal technology mix for residential space heating
is affected by the annual representation of all the final service demands in TEMOA-Italy,
different from the intra-annual approach adopted by TIMES-Italy (as already explained
in Section 3).

Focusing now on the evaluation of the resulting energy mix for the buildings sector,
Figure 13a shows the comparison of the optimal energy mixes in 2030 split by fuels and
Figure 13b shows the weighted average relative error along the entire time horizon accord-
ing to Equation (5). Lower discrepancies between the two models are associated to the time
steps close to the base year (up to 2010), with higher differences appearing from 2014 on.
That is consistent with the fact that at the beginning of the time horizon the technology mix
is defined as equal to the base year statistics and consequently the results are constrained
to those values, with higher accuracy. Figure 13a qualitatively shows a rather equivalent
energy mix for the two sets of results in 2030. The accuracy of the sectorial energy mix is
represented by an average relative difference on the cumulative energy consumption of
each fuel along the entire time horizon of 4.11% (evaluated according to Equation (7)).
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Figure 13. Comparison between the optimal buildings energy mix: (a) composition in 2030; (b) average
relative difference curve along the time.

Concerning the resulting costs associated to the residential and commercial technolo-
gies, Figure 14a compares the percentage distribution of the cumulative buildings costs
(agriculture sector is not included in the cost comparison, since it is modeled with a single
existing technology without any associated cost) by subsectors, while Figure 14b reports the
time evolution of the total cost associated to the buildings technologies. Figure 14a shows a
similar cost distribution between the different residential and commercial subsectors, with
higher differences for residential space heating and the other residential subsectors. The
average relative difference between the cumulative costs from the two models evaluated
according to Equation (7) is 4.71%.
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Figure 14. Comparison between the cumulative total cost of the buildings sector: (a) percentage
sub-sectorial contributions; (b) evolution in time.

5. Conclusions and Perspective

Open tools in the framework of partial-equilibrium energy system optimization mod-
els can boost the research, identification, and test of novel set of constraints or optimization
paradigms to achieve, for instance, sustainability targets, which do not follow the mere
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economical paradigm of targeting the minimum cost of the energy system. Aiming at
demonstrating that open modeling tools can be adopted as a valid alternative to com-
mercial tools, the TEMOA framework, already available in an open-source form, was
significantly extended to include functionalities and parameters to allow modeling a com-
plex and realistic reference energy system, and then applied to a case study—the Italian
energy system. The novel open-source TEMOA-Italy has been presented in this paper and
compared on a fair basis to the TIMES-Italy model, used by ENEA as the basis for the
Italian Energy Strategy.

The assessment of the accuracy of the open model, benchmarked with the reference
TIMES-Italy model, demonstrates that the novel tool, when applied to the same reference
energy system in a business-as-usual scenario, is capable to reproduce the main features
of the reference model with an accuracy within few percent (up to 4% concerning the
resulting energy mix) of discrepancy. The accuracy depends strongly on the complexity of
the structure of the analyzed energy systems; the lower the complexity of the technology
chain required to produce the final service demands consuming primary resources, the
higher the accuracy of the novel tool.

Summarizing the comparison of the results from the two tools, a general good agree-
ment has been shown, with some residual discrepancies.

As mentioned in Section 4, the first possible improvement regards CHP plants, pro-
ducing both electricity and heat. The amount of heat produced with respect to electricity
is defined in TIMES by a dedicated parameter (CHPR), usually implemented as an upper
limit. This means that, once the electric efficiency of the plant is defined, the model can
evaluate the optimal amount of heat produced. TEMOA does not include such a parameter,
and the heat production form CHP plants is currently modeled with a fixed proportion
with respect to electricity. The integration of a similar parameter in the tool will allow a
more precise modeling of CHP plants in TEMOA and will help refining results in the power
sector, devoted to the production of heat consumed by the demand-side.

Constraints on minimum and maximum shares of input and output commodities for
a technology or a technology group have been discussed in Section 2. Similarly, the TIMES
framework also allows to set constraints on the consumption or production share of a
certain commodity by a technology or technology group. For instance, this is useful in road
transport to set constraints on the evolution of the technology mix without the adoption of
equivalent constraints on the energy mix (as discussed in Section 4.3.2).

In addition, Appendix A.3 describes the strategy adopted to model the disposal of
existing capacities in TEMOA-Italy, through the derivation of an equivalent constraint on
the technology activity. The drawback of the adopted approach is that the installed capacity
resulting by the model (constant and equal to the existing capacity for a period of time
equal to the technology lifetime) for the involved technologies will not correspond to the
actual residual capacity (linearly decreasing). This complicates the results post-processing
if the installed capacities need to be studied. A proper parameter could be developed and
integrated in the code to model the progressive reduction of available capacity starting
from the existing capacity at the base year and avoiding relying on an equivalent constraint
on the technology activity.

A precise validation of the model results on the historical period 2006–2020 will
increase the reliability of the models results for the future milestone years. Furthermore, the
intra-annual description of non-annual final demands (such as space heating and lighting)
should be implemented in TEMOA-Italy, identifying proper strategies to minimize the
impact of this on the computational time of the tool.

In perspective and for a wider and more challenging set of scenarios including ag-
gressive decarbonization where the adoption of new technologies, such as those proposed
in [12], is crucial, the TEMOA-Italy will be further tested in benchmark to the TIMES-Italy.
In the framework of open-science and transparency and accessibility of data and tools, the
new tool is already available to the scientific community. This eases third party verification
of the input assumptions, adopted methodology, and results, increasing the reliability and



Energies 2022, 15, 6505 23 of 37

the robustness of the results themselves. The targeted transparency will be also an asset
for an independent evaluation of the effectiveness of the energy policies adopted by policy
makers (governments and international organizations) in pursuing the declared objectives
of environmental sustainability.
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Appendix A. Enhancement of the TEMOA Framework

Appendix A.1. Description of the Technologies in the RES

This section presents the parameters involved in the techno-economic description of
technologies in the developed TEMOA-based framework, together with the associated
equations defining their role within the optimization algorithm. The analysis has been
concentrated on the main integrations performed with respect to the original TEMOA
formulation [40].

The first new parameter and the associated equation implemented in the TEMOA
model formulation is the annual CapacityFactor, used to connect the technology capacity
(Cap) to its activity (Act), according to Equation (A1). The Capacity2Activity factor, repre-
senting a conversion factor from capacity to activity unit of measurement, is also included
in the evaluation.

(CapacityFactor·Capacity2Activity)·Cap ≥ Act (A1)

While the activity represents the total flow of output commodities of a technology
(e.g., the activity of a power plant is the energy produced during the year [PJ], the activity
of industrial facilities is the total periodical production in terms of demand commodity
and by-products [Mt], . . . ), the capacity of a technology can be defined as its nominal
production capability as if it was continuously operated at full load. The capacity of a
power plant is for instance its nominal installed power [GW] while the activity corresponds
to the actual electricity output [PJ]; on the other hand, the capacity of industrial facilities
is the maximum production capability [Mt], while the activity is the actual production
output, always accounted for in [Mt]. The capacity factor CapacityFactor is used to account
for the unavailability periods of technology, due to unavailability of its input energy
resources or to maintenance. Figure A1 graphically shows the relation between the capacity
(nominal installed power) and the activity (annual energy produced) for a power plant.
The average annual capacity factor can be evaluated as the annual energy produced over
the product between the nominal installed power and the duration of the year and its
value is graphically represented in Figure A1 by the ratio between the yellow area and
the sum between the yellow area and the green area. The Capacity2Activity factor, for the
example under analysis of a power sector technology, usually represents the maximum

https://github.com/MAHTEP/TEMOA-Italy/releases/tag/1.0
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annual energy producible [PJa] if the plant were constantly operated at its nominal power
[GW], and it is evaluated according to Equation (A2).

Capacity2Activity = 8760
[

h
y

]
· 3600

[ s
h

]
· 10−6

[
PJ
GJ

]
= 31.536

[
PJa
GW

]
(A2)
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As reported in Table 2, TEMOA already included two parameters representing the
capacity factor, namely the CapacityFactorTech and the CapacityFactorProcess. The motivation
behind the introduction of a new formulation for this parameter is the simplification of the
data handling. Indeed, the CapacityFactor is indexed by time period (with a single value per
technology and milestone year), while the CapacityFactorTech (already included within the
TEMOA parameters) is indexed in the TEMOA formulation by time slice (season and time of
the day, which can be assigned to different values within the same milestone years), and the
CapacityFactorProcess is indexed both by time slice and time period. The new CapacityFactor
parameter allows a simpler modeling of the relation between the activity and the capacity
of a technology and is especially useful to account for the availability of certain types of
processes when not depending on the particular time slice (e.g., to account for maintenance
of plants or holidays). The new parameter, however, does not substitute the other two, being
them necessary to define variable capacity factor for different time slices.

The LifetimeTech (constant along the time) and the LifetimeProcess (indexed by time
period) parameters are used to define the lifetime of a technology, while the LifetimeLoanTech
is used to separate the loan lifetime from the useful life of a process.

Moreover, some operations required to be automated to guarantee a manageable
database compilation, namely: the data interpolation/extrapolation and the computation
of the emission factors. An automatic algorithm has been then developed (available at [41])
to perform a preprocessing on the .sql database, (manually compiled), including all the
descriptive parameters of the RES. The new functions to automatically preprocess the data
to obtain the desired RES description consist of:

• An automatic interpolation and extrapolation process (totally missing in the original
TEMOA version [40], that requires the manual specification of the parameters for all
the time periods included in the optimization process), performing the same opera-
tions encompassed in, e.g., the TIMES framework. This feature, including the option
of setting different interpolation and extrapolation rules for different parameters in
the Excel files, is automatically executed by the software. In particular, it is possi-
ble to assign interpolation/extrapolation options to the parameters included in the
TEMOA database to set: (1) the interpolation type (linear or log-linear); (2) whether
interpolation only or also extrapolation should be operated; and (3) whether extrap-
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olation should be performed backward, forward, or both [54]. The most-common
interpolation rule is the linear one, with constant extrapolation forward and, this is
the general rule developed for the case-study presented here, with few exceptions.
Table A1 lists the parameters for which interpolation and extrapolation are required,
specifying the applied rule. Notably, the three main selected rules are: piecewise
constant interpolation (implemented only for the lifetime parameter); piecewise linear
interpolation (for all the parameters except for the lifetime); and constant extrapolation
forward (for all the parameter except for constraint on technology groups’ activity).
For the technology lifetime, a piecewise constant interpolation curve has been chosen,
to maintain an integer value for the parameter. Note that the constraints applied to
technology groups (rather than to single technologies) are only linearly interpolated,
but not extrapolated forward, as it happens for the other parameters. It should be
noted that a constant extrapolation forward could also be easily obtained for all the
constraints on technology groups, simply repeating the last value of the interpolation
in the last time step of the time horizon, without the necessity to change the prepro-
cessing algorithm. This integration strongly simplifies the database construction and
its modification, allowing the energy modeler to build databases representing large
and complex RES.

Table A1. Interpolation/extrapolation rules implemented in the preprocessing Python script.

Parameter
Interpolation/Extrapolation Rule

Piecewise Constant
Interpolation

Piecewise Linear
Interpolation

Forward Constant
Extrapolation

LifetimeProcess X X
Efficiency X X

TechInputSplit X X
TechOutputSplit X X
EmissionActivity X X

CostInvest X X
CostFixed X X

CostVariable X X
MaxActivity X X

MaxGenGroupLimit X
MaxCapacity X X
MinActivity X X

MinGenGroupTarget X
MinCapacity X X

MaxInputGroup X
MaxOutputGroup X
MinInputGroup X
CapacityFactor X X

CapacityFactorProcess X X
CapacityCredit X X

• The automatic evaluation of the technology-based emission factors, which are imple-
mented in TEMOA through the dedicated parameter EmissionActivity, proportional to
the technology activity. Being the EmissionActivity parameter indexed by region (index
r), emission commodity (index e), input commodity (index i), technology (index t),
year (index v), and output commodity (index o), the filling of the database would be
very complex without an automatic computation of the emission factors. Furthermore,
the emissions associated to the consumption of fossil fuels are usually equal for the
same fuel (being dependent on its chemical composition). For that reason, a parameter
representing the emission factors per unit of commodity consumed (CommodityE-
missionFactor) has been added to the database, indexed by the input commodity to
which the emission is associated and the emitted emission commodity. The operation
performed in the preprocessing script (reported in Equation (A3)) is the sum of the con-
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tribution of the Commodity-based Emission Factor CEFi,e, divided by the efficiency of
the technology (E f f iciencyr,i,t,v,o) to obtain the correspondent emission factor per unit
of output, with the Technology-based Emission Factor TEFr,e,i,t,v,o (usually adopted to
model process-related emissions) possibly manually inserted in the EmissionActivity
table of the database, before being preprocessed. The output of the algorithm is the
preprocessed database, with the complete EmissionActivity table.

EmissionActivityr,e,i,t,v,o

[
kt
act

]
=

1

E f f iciencyr,i,t,v,o

[
act
PJi

] ·CEFi,e

[
kt
PJi

]
+ TEFr,e,i,t,v,o

[
kt
act

]
(A3)

Appendix A.2. Drivers for the Energy Service Demands

In ESOM models, the expected levels of energy service demands are projected along
the analyzed time horizon according to socio-economic drivers. The future projection of
energy service demands is performed according to Equation (A4), where Demandt and
Demandt−1 and the service demand levels at time step t and t − 1, respectively, δt and δt−1
are the driver values at time step t and t − 1, respectively, and et is the elasticity associated
to the time step t.

Demandt = Demandt−1 ×
[

1 +
(

δt

δt−1
–1
)
× et

]
(A4)

Elasticities are usually adopted to correct demand projections in order to capture
changing patterns in energy service demands in relation to socio-economic growth, such
as a saturation in some energy end-use demands, increased urbanization, or changes in
consumption patterns once the basic needs are satisfied [10].

The driver projections along the entire time horizon (exogenously provided to the
model and usually taken from studies of statistical institutes such as the European Eu-
rostat [61] and the Italian ISTAT [62] for the test case described in this paper) have been
implemented in the TEMOA formulation and included in the database preprocessing script,
available at [41]. The operation is performed on the basis of the base year demands (manu-
ally inserted in the database) and the associated drivers and elasticities. The demands are
then projected according to Equation (A4).

Appendix A.3. Constraints

Constraints are typically used in ESOMs for two different purposes: (a) defining the
configuration of the existing energy system at the base year and its progressive disposal
along the time; (b) implementing technical, economic and environmental constraints for
the future evolution of the energy system.

As far as the residual capacity of an existing technology (installed at the base year) is
concerned, the existing capacity of a certain technology at the base year should be set, together
with its residual capacity evolution in time. The evolution in time of that capacity is generally
linear starting from the base year value and goes to zero after a certain time interval to model
the disposal of the existing technology in time (according to their lifetime) and to allow the
substitution by new technologies. To mimic a linear decrease of the existing technologies in
the energy mix, a constraint on the maximum activity MaxActivity (linearly decreasing along
the time) has been introduced to all the existing technologies of the subsectors for which new
technologies are included in the database. The constraint is built from the residual capacity
ResidualCapacity, given as an input parameter, with the contribution of the Capacity2Activity
factor and of the CapacityFactor, as shown in Equation (A5).

MaxActivity [act]
= CapacityFactor·Capacity2Activity

[
act
cap

]
·ResidualCapacity [cap]

(A5)
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To allow the definition of the maximum available resources of fossil fuels in the region
under investigation, for the extraction technologies in the upstream sector, the parameter
MaxResource has been redefined. The original formulation of the parameter imposed an
upper bound to the summation of the resulting activity of a technology for each time
period. In the summation operator, the multiplication by the length of each time period has
been added to correctly account for the relative weight of each milestone year to the total
cumulative activity (Equation (A6)).

tlast

∑
i=t f irst

Acti·∆ti ≤ MaxResource (A6)

New constraints on technology groups have also been implemented in the TEMOA
framework. The maximum total activity is used to set an upper bound to the total activity
of a group of technologies (Equation (A7)) in the new constraint is MaxGenGroupLimit,
developed similarly to the analogous minimum constraint MinGenGroupTarget, already
included in TEMOA. Moreover, new constraints on commodity shares have been devel-
oped to set the minimum (MinInputGroup, Equation (A8)) or maximum (MaxInputGroup,
Equation (A9)) percentage that can be assigned to a certain commodity in input to a technol-
ogy group (commodityIN,group) or the maximum (MaxOutputGroup, see Equation (A10))
in output from a technology group (commodityOUT,group). Those constraints are very sim-
ilar to the already implemented TechInputSplit and TechOutputSplit constraints, with the
difference that they are applied to technology groups, while TechInputSplit and TechOut-
putSplit are applied to single technologies, imposing a minimum share to their input and
output commodities.

∑
tech in group

Acttech ≤ MaxGenGroupLimitgroup (A7)

commodityIN,group

∑i commodityi
IN,group

≥ MinInputGroup (A8)

commodityIN,group

∑i commodityi
IN,group

≤ MaxInputGroup (A9)

commodityOUT,group

∑i commodityi
OUT,group

≤ MaxOutputGroup (A10)

Appendix A.4. The Optimization Problem

The optimization problem solved by the TEMOA is fully comparable to that of the
standard TIMES-models [54], based on the minimization of the objective function, which ex-
presses the total cost of the energy system Ctot. The total cost is computed in Equation (A11),
based on the discount factor DiscountFactor (discounted value to the beginning of the time
horizon of a unitary payment, based on GlobalDiscoutRate [55]) and the cost values of the
single technologies selected in the optimal technology mix. Three parameters used in the
technology modeling are crucial for the computation of the objective function, and namely,
the investment cost CostInvest [M€/cap.], the fixed O&M cost CostFixed [M€/cap.], and the
variable O&M cost CostVariable [M€/act.] of the technology [55], see Table 2. While the
investment cost and the fixed O&M cost are proportional to the installed capacity (Capr,t,v)
of a technology, the variable O&M cost is proportional to the total Flow of Output commodi-
ties (FOr,p,s,d,i,t,v,o). The LAr,t,v is the annualization factor used to annualize the investment
cost of a technology, based on the process-specific loan length and the process-specific
discount rate. Those economic parameters are used to evaluate the optimal configuration
of the system that guarantees to minimize Ctot, resulting from the sum of the total invest-
ment cost (Cloans [M€/cap.]), fixed O&M cost (C f ixed [M€/cap.]), and variable O&M cost
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(Cvariable [M€/act.]), to satisfy the final service demands production complying with the
applied constraints.

Ctot = Cloans + C f ixed + Cvariable =
= ∑

r,t,v
(CostInvestr,t,v · LAr,t,v · DiscountFactor · Capr,t,v)

+ ∑
r,p,t,v

(
CostFixedr,p,t,v · DiscountFactor · Capr,t,v

)
+ ∑

r,p,t,v

(
CostVariabler,p,t,v · DiscountFactor · ∑

s,d,i,o
FOr,p,s,d,i,t,v,o

) (A11)

Appendix B. The Italian Energy System

Appendix B.1. Drivers for Demand Projection in Future Years

TEMOA-Italy adopts driver projections from the Italian Integrated National Energy
And Climate Plan (PNIEC) [63], which in turn uses projections taken from the EU Reference
Scenario 2016 [64]. Note that, in the case of the industrial sector, drivers are based on a
Vector Auto Regressive (VAR) analysis described in [15] and formulated to consider the
effects of the COVID-19 pandemic and taking into account historical data up to 2020.

Figure A2 shows the historical growth rate for all drivers considered in the model,
normalized with respect to the initial value in 2006 and obtained using Equation (A4).
Concerning the period 2006-2018, the PNIEC drivers offer good performances following
the historical trends. In particular, the drastic drop of Gross Domestic Product (GDP), see
Figure A2a, and industrial demand, see Figure A2a, and industrial demand, see Figure A2b,
consequent to the 2008 financial crisis and the subsequent period of economic stagnation are
evident in the left part of the figure. Moreover, the effects of COVID-19 are evident in some
industrial subsectors, whereas for agriculture and commercial value added, population,
and GDP, the PNIEC forecasts (developed on the basis of historical data up to 2018) do not
consider the effects of the 2020 pandemic and follow a constantly increasing trend (though
at different rates) from 2018 on.
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Figure A2. 2006-normalized socio-economic drivers included in TEMOA-Italy: (a) agriculture and
commercial value added, population and GDP (2006–2018 are historical data, 2020–2050 are future
projections from [63]); (b) industrial production for each industrial subsector (2006–2020 are historical
data, 2022–2050 are future projections from [15]).
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Appendix B.2. Techno-Economic Characterization of the Main Demand-Side Subsectors

Appendix B.2. reports a summary overview of the techno-economic characterization
of existing and new technologies for the most energy consuming subsector of each demand-
side energy sector (chemical industry, cars for transport, and residential space heating for
buildings). The detailed data are available in [12] for industry, [13] for transport, and [58]
for buildings.

Table A2. Techno-economic characterization for chemical industry technologies [12].

Technology Efficiency
[PJ/Mt]

Availability
Factor Lifetime

Investment
Cost

[M€/cap.]

Fixed O&M
Cost

[M€/cap.]

Existing

Ammonia 65.57 1.00 30 - -
Chlorine 12.85 1.00 30 - -

Aromatics 73.21 1.00 30 - -
Olefins 75.18 1.00 30 - -

Methanol 48.86 1.00 30 - -
Other chemicals 10.00 1.00 30 - -

New

Ammonia

Natural gas steam
reforming 46.08 0.90 25 860.00 21.50

Naphtha POX 48.31 0.90 25 1203.00 30.08
Coal gasification 45.76 0.90 25 2063.00 51.58

Biomass gasification 58.30 0.90 25 6000.00 300.00
Electrolysis 40.34 0.90 25 104.00 2.60

Natural gas steam
reforming with CCS 45.52 0.90 25 930.00 51.00

Chlorine
Mercury 16.11 0.95 30 675.80 6.70

Diaphragm 13.05 0.95 30 675.80 6.70
Membrane 12.33 0.95 30 675.80 6.70

Methanol

Natural gas steam
reforming 37.90 0.85 25 295.00 21.50

COG steam
reforming 52.50 0.85 30 295.00 21.50

LPG steam
reforming 37.80 0.85 30 295.00 21.50

Coal gasification 50.10 0.85 30 710.00 17.75
Biomass gasification 61.40 0.85 30 4900.00 245.00

Electrolysis 23.90 0.95 30 44.00 1.10

HVC

Naphtha steam
cracking 94.20 0.90 30 2057.00 51.40

Ethane steam
cracking 70.60 0.85 30 1487.00 37.20

Gas oil steam
cracking 102.20 0.85 30 2328.00 58.20

LPG steam cracking 93.00 0.85 30 1900.00 47.50
Naphtha catalytic

cracking 74.10 0.85 30 3000.00 75.00

Bioethanol
dehydration 94.90 0.85 30 1328.00 33.20

Olefins
Prophane

dehydrogenation 69.40 0.85 30 1691.00 42.30

Methanol-to-olefins 65.77 0.85 30 1000.00 25.00
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Table A3. Techno-economic characterization for road transport cars [13].

Technology
Efficiency
[Bvkm/PJ]

Availability
Factor Lifetime

Investment Cost
[M€/cap.]

Fixed O&M
Cost [M€/cap.]

Existing

Gasoline car 0.30 1.00 12 - -
Diesel car 0.36 1.00 12 - -
LPG car 0.25 1.00 12 - -

Natural gas car 0.27 1.00 12 - -
Biofuels car 0.44 1.00 12 - -

New

Gasoline car 0.31 ÷ 0.41 1.00 12 1000.00 62.63
Diesel car 0.38 ÷ 0.50 1.00 12 1081.78 62.63
LPG car 0.34 1.00 12 1081.78 64.37

Natural gas car 0.36 1.00 12 1081.78 64.37
Electric car 1.18 ÷ 1.37 1.00 12 2202.34 ÷ 1262.66 51.33

Hybrid electric car 0.45 ÷ 0.69 1.00 12 1284.14 ÷ 1140.63 61.76
Fuel cell car 0.64 ÷ 0.94 1.00 12 4328.62 ÷ 1814.60 70.03 ÷ 60.89

Table A4. Techno-economic characterization for residential space heating technologies [58].

Technology
Efficiency
[PJu/PJf]

Availability
Factor Lifetime

Investment
Cost [M€/cap.]

Fixed O&M
Cost [M€/cap.]

Existing

Natural gas boiler 0.73 0.18 20 - -
Diesel fuel boiler 0.73 0.18 20 - -

LPG boiler 0.68 0.18 20 - -
Wood stove 0.25 0.18 20 - -

Heat exchanger 0.90 0.18 20 - -

New

Diesel fuel boiler 0.81 1.00 20 5.87 0.06
Condensing diesel fuel boiler 0.90 ÷ 0.98 1.00 20 8.72 0.09

Solar and diesel fuel boiler 0.82 ÷ 0.90 1.00 20 23.50 ÷ 21.48 0.07
Natural gas boiler 0.78 ÷ 0.90 1.00 20 4.99 0.05

Condensing natural gas boiler 0.85 ÷ 0.98 1.00 20 6.84 0.07
Solar and natural gas boiler 0.82 ÷ 0.90 1.00 20 22.40 ÷ 20.56 0.06

LPG boiler 0.81 1.00 20 5.47 0.05
Condensing LPG boiler 0.90 ÷ 0.98 1.00 20 7.00 0.07

Solar and LPG boiler 0.82 ÷ 0.90 1.00 20 23.00 ÷ 21.02 0.06
Wood stove 0.50 1.00 20 2.00 0.02

Wood pellet stove 0.76 ÷ 0.83 1.00 20 15.85 0.16
Electric heat pumps 3.30 ÷ 5.75 1.00 20 ÷ 50 47.56 ÷ 66.59 0.48 ÷ 0.67

Multipurpose heat pump 3.30 ÷ 4.71 0.40 20 47.56 0.48
Heat exchanger 0.90 1.00 20 2.88 0.03

Insulation - - 20 ÷ 50 481.32 ÷
2767.65 -

Appendix C. Detailed Results Comparison of Final Technologies Belonging to the
Demand-Side Sectors

Appendix C reports the detailed comparison of models results for each final demand
production technology of industry (Table A5), transport (Table A6), and buildings (Table A7)
in all future milestone years (2007–2050). The cumulative activity of each technology along
the entire time horizon (evaluated according to Equation (6)) is also reported together with
the sub-sectorial average relative difference (evaluated according to Equation (7)).
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Table A5. Activity of final technologies producing industrial service demands and cumulative activity along the entire time horizon, compared for TIMES-Italy and
TEMOA-Italy results. Evaluated average relative difference on cumulative activity associated to the technology mix of each industrial subsector.

Subsector Technology Model

Process Activity [Mt] Cumulative
Activity

[Mt]

diffcum
[%]Year

2007 2008 2010 2012 2014 2016 2018 2020 2022 2025 2030 2040 2050

Chemical

Ammonia existing TIMES-Italy 0.62 0.58 0.50 0.44 0.37 0.30 0.24 0.17 0.10 6.11

0.31

TEMOA-Italy 0.62 0.57 0.50 0.44 0.37 0.30 0.24 0.17 0.10 6.10

Ammonia naphtha POX TIMES-Italy 0.09 0.14 0.14 0.14 0.14 0.14 0.14 0.14 2.69
TEMOA-Italy 0.02 0.02 0.09 0.14 0.21 0.21 0.20 0.00 0.20 0.19 3.30

Ammonia natural gas
steam reforming

TIMES-Italy 0.02 0.02 0.08 0.18 0.27 0.32 0.40 0.52 0.69 0.79 0.90 22.94
TEMOA-Italy 0.00 0.00 0.01 0.11 0.20 0.46 0.35 0.46 0.69 0.79 0.89 22.30

Chlorine existing TIMES-Italy 0.20 0.19 0.18 0.16 0.14 0.13 0.09 0.09 0.07 0.04 2.61
TEMOA-Italy 0.20 0.19 0.17 0.15 0.12 0.10 0.08 0.06 0.03 0.00 2.03

Chlorine membrane
TIMES-Italy 0.01 0.01 0.02 0.03 0.05 0.08 0.12 0.12 0.14 0.17 0.23 0.26 0.30 7.97

TEMOA-Italy 0.01 0.01 0.03 0.05 0.07 0.11 0.14 0.15 0.18 0.22 0.23 0.26 0.30 8.57

Aromatics existing TIMES-Italy 0.77 0.74 0.63 0.60 0.54 0.47 0.40 0.34 0.27 0.17 9.86
TEMOA-Italy 0.77 0.74 0.63 0.60 0.54 0.47 0.40 0.34 0.27 0.17 9.86

Olefins existing TIMES-Italy 2.84 2.64 2.43 2.22 1.98 1.73 1.48 1.24 0.99 0.62 36.33
TEMOA-Italy 2.84 2.64 2.38 2.22 1.98 1.73 1.48 1.23 0.99 0.62 36.21

HVC gas oil steam
cracking

TIMES-Italy 0.11 0.11 0.42 0.54 0.93 1.43 1.86 2.10 2.50 3.05 4.01 4.60 5.23 139.46
TEMOA-Italy 0.12 0.12 0.47 0.55 0.92 1.43 1.86 2.11 2.51 3.05 4.02 4.60 5.24 139.71

Methanol existing TIMES-Italy 0.05 0.05 0.04 0.04 0.03 0.02 0.02 0.01 0.01 0.49
TEMOA-Italy 0.05 0.04 0.04 0.04 0.03 0.02 0.02 0.01 0.01 0.49

Methanol natural gas
steam reforming

TIMES-Italy 0.00 0.00 0.00 0.01 0.02 0.02 0.03 0.04 0.04 0.05 0.05 0.06 0.07 1.96
TEMOA-Italy 0.00 0.00 0.00 0.01 0.01 0.02 0.03 0.04 0.04 0.05 0.05 0.06 0.07 1.98

Other chemicals
TIMES-Italy 16.02 15.01 14.97 14.49 14.79 15.60 16.11 15.79 16.16 16.47 17.26 19.78 22.51 798.30

TEMOA-Italy 16.02 15.02 14.97 14.50 14.79 15.61 16.11 15.81 16.18 16.48 17.27 19.79 22.52 798.69

Iron and
steel

Basic oxygen furnace
existing

TIMES-Italy 11.33 9.48 8.39 6.83 6.08 5.63 4.74 3.70 3.54 2.46 123.95

2.57

TEMOA-Italy 11.30 9.63 8.62 7.27 6.39 5.81 5.10 3.92 3.94 2.46 128.90

Basic oxygen furnace new TIMES-Italy 0.65 0.23 0.44 0.31 0.18 0.36 0.24 0.65 0.65 0.65 0.17 17.57
TEMOA-Italy 0.96 0.00 0.00 0.00 0.00 0.00 0.02 0.25 0.41 0.00 0.00 3.79

HIsarna process TIMES-Italy 1.09 3.59 4.23 4.59 97.44
TEMOA-Italy 1.33 4.24 4.41 4.59 106.90

Electric arc furnace
existing

TIMES-Italy 18.98 17.08 16.50 14.85 13.20 11.55 9.90 8.25 6.60 4.13 242.09
TEMOA-Italy 19.00 16.94 16.50 14.90 13.20 11.60 9.90 8.25 6.60 4.13 242.03

Electric arc furnace new
TIMES-Italy 1.83 0.22 1.48 3.55 6.45 9.04 9.69 12.47 15.00 19.32 20.07 20.91 631.74

TEMOA-Italy 1.54 0.22 1.43 3.57 6.41 9.04 9.70 12.49 15.01 19.32 20.07 20.90 631.43
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Table A5. Cont.

Subsector Technology Model

Process Activity [Mt] Cumulative
Activity

[Mt]

diffcum
[%]Year

2007 2008 2010 2012 2014 2016 2018 2020 2022 2025 2030 2040 2050

Non-
ferrous
metals

Aluminum existing TIMES-Italy 2.03 1.68 1.66 1.43 1.41 1.24 1.06 0.88 0.71 0.44 25.09

0.07

TEMOA-Italy 2.03 1.68 1.66 1.43 1.41 1.24 1.06 0.88 0.71 0.44 25.08

Aluminum new
TIMES-Italy 0.05 0.01 0.05 0.05 0.11 0.36 0.56 0.63 0.86 1.14 1.63 1.75 1.86 51.18

TEMOA-Italy 0.05 0.02 0.05 0.05 0.11 0.36 0.56 0.63 0.86 1.14 1.63 1.75 1.86 51.18

Copper existing TIMES-Italy 0.38 0.32 0.31 0.27 0.27 0.23 0.20 0.17 0.13 0.08 4.72
TEMOA-Italy 0.38 0.32 0.31 0.27 0.27 0.23 0.20 0.17 0.13 0.08 4.72

Copper new TIMES-Italy 0.01 0.00 0.01 0.01 0.02 0.07 0.11 0.12 0.16 0.22 0.31 0.33 0.35 9.64
TEMOA-Italy 0.01 0.00 0.01 0.01 0.02 0.07 0.11 0.12 0.16 0.22 0.31 0.33 0.35 9.63

Other non-ferrous metals
TIMES-Italy 1.40 1.14 1.14 0.99 1.02 1.07 1.09 1.01 1.05 1.06 1.09 1.17 1.25 51.23

TEMOA-Italy 1.40 1.14 1.14 0.99 1.02 1.07 1.09 1.01 1.06 1.06 1.09 1.17 1.25 51.21

Zinc existing TIMES-Italy 0.36 0.30 0.30 0.26 0.25 0.22 0.19 0.16 0.13 0.08 4.51
TEMOA-Italy 0.37 0.31 0.31 0.27 0.25 0.22 0.19 0.16 0.13 0.08 4.55

Zinc new
TIMES-Italy 0.01 0.01 0.01 0.02 0.06 0.10 0.11 0.16 0.21 0.29 0.31 0.33 9.19

TEMOA-Italy 0.01 0.00 0.00 0.02 0.06 0.10 0.11 0.16 0.21 0.29 0.31 0.33 9.15

Non-
metallic
minerals

Dry cement kilns existing TIMES-Italy 33.14 29.10 26.88 22.25 22.81 20.17 17.29 14.41 11.53 7.20 409.53

0.35

TEMOA-Italy 33.10 29.58 25.70 24.20 23.00 20.10 17.30 14.40 11.50 7.20 412.16

Wet cement kilns existing TIMES-Italy 13.21 11.60 10.23 8.87 7.51 8.04 6.89 5.74 4.59 2.87 159.11
TEMOA-Italy 13.20 11.60 11.40 8.88 7.52 8.03 6.89 5.74 4.59 2.87 161.45

Blended cement new
TIMES-Italy 2.57 0.49 1.95 2.57 6.55 10.08 11.02 16.51 23.47 35.54 39.10 42.09 1107.47

TEMOA-Italy 2.63 0.00 0.00 2.37 6.63 10.09 11.03 16.57 23.50 35.52 39.12 42.08 1102.73

Dry clinker new TIMES-Italy 1.70 0.32 1.28 1.70 4.32 6.65 7.27 10.90 15.49 23.46 25.81 27.78 730.93
TEMOA-Italy 1.74 0.00 0.00 1.57 4.38 6.66 7.28 10.93 15.51 23.45 25.82 27.77 727.80

Bricks existing TIMES-Italy 5.88 5.17 4.56 3.95 3.34 2.74 2.13 1.52 0.91 55.44
TEMOA-Italy 5.47 5.17 4.56 3.95 3.34 2.73 2.13 1.52 0.91 55.01

Bricks new
TIMES-Italy 0.33 0.06 0.15 0.25 0.83 1.68 2.22 2.44 3.23 4.26 4.51 4.97 5.35 157.40

TEMOA-Italy 0.74 0.06 0.15 0.25 0.84 1.68 2.22 2.44 3.23 4.26 4.51 4.97 5.34 157.81

Glass existing TIMES-Italy 3.52 3.13 2.73 2.51 2.45 1.99 1.70 1.45 1.22 0.77 42.93
TEMOA-Italy 3.52 3.13 2.75 2.52 2.30 2.14 1.84 1.53 1.21 0.77 43.39

Glass new
TIMES-Italy 0.20 0.09 0.05 0.66 0.90 0.92 1.26 1.78 2.70 2.97 3.20 84.49

TEMOA-Italy 0.12 0.00 0.12 0.43 0.69 0.77 1.19 1.71 2.69 2.98 3.20 82.50

Lime existing TIMES-Italy 5.02 4.41 4.02 3.37 3.29 3.06 2.62 2.18 1.75 1.09 61.64
TEMOA-Italy 5.02 4.41 4.02 3.40 3.28 2.84 2.42 2.08 1.75 1.09 60.63

Lime new
TIMES-Italy 0.28 0.05 0.21 0.28 0.71 1.09 1.19 1.79 2.54 3.85 4.24 4.56 120.05

TEMOA-Italy 0.29 0.06 0.19 0.29 0.93 1.30 1.30 1.79 2.55 3.85 4.24 4.56 121.18
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Table A5. Cont.

Subsector Technology Model

Process Activity [Mt] Cumulative
Activity

[Mt]

diffcum
[%]Year

2007 2008 2010 2012 2014 2016 2018 2020 2022 2025 2030 2040 2050

Pulp and
paper

Paper mill existing TIMES-Italy 9.59 8.90 8.34 7.51 6.67 5.84 5.00 4.17 3.34 2.09 122.89

0.65

TEMOA-Italy 9.59 8.95 8.34 7.51 6.67 5.84 5.00 4.17 3.34 2.08 122.97

Paper mill new TIMES-Italy 0.71 0.31 0.87 1.35 2.45 3.59 4.01 4.77 5.82 7.11 9.40 10.44 11.71 321.81
TEMOA-Italy 0.71 0.26 0.87 1.34 2.45 3.59 4.02 4.78 5.82 7.11 9.40 10.44 11.71 321.84

Chemical pulp existing TIMES-Italy 0.15 0.14 0.13 0.12 0.10 0.09 0.08 0.06 0.05 0.03 1.90
TEMOA-Italy 0.15 0.14 0.13 0.12 0.09 0.07 0.06 0.04 0.02 0.00 1.90

Chemical pulp new TIMES-Italy 0.01 0.01 0.01 0.03 0.04 0.05 0.06 0.07 0.08 0.11 0.11 0.12 3.61
TEMOA-Italy 0.01 0.00 0.01 0.01 0.03 0.04 0.05 0.06 0.07 0.09 0.11 0.11 0.12 3.62

Mechanical pulp existing TIMES-Italy 0.33 0.32 0.29 0.26 0.23 0.20 0.17 0.14 0.12 0.07 4.29
TEMOA-Italy 0.37 0.35 0.30 0.26 0.22 0.18 0.14 0.10 0.06 0.00 3.67

Mechanical pulp new TIMES-Italy 0.04 0.04 0.04 0.07 0.10 0.11 0.13 0.16 0.19 0.25 0.26 0.27 8.28
TEMOA-Italy 0.00 0.00 0.01 0.01 0.04 0.08 0.09 0.12 0.15 0.19 0.25 0.26 0.27 8.01

Recycled pulp existing TIMES-Italy 5.35 5.10 4.65 4.18 3.72 3.25 2.79 2.32 1.86 1.16 68.77
TEMOA-Italy 5.28 5.11 4.59 4.12 3.67 3.20 2.75 2.31 1.84 1.16 68.10

Recycled pulp new TIMES-Italy 0.35 0.43 0.69 1.25 1.82 2.02 2.38 2.88 3.48 4.52 5.04 5.67 156.13
TEMOA-Italy 0.44 0.00 0.54 0.79 1.34 1.92 2.12 2.49 3.01 3.59 4.60 5.03 5.65 159.09

Other
industries

Other industries existing TIMES-Italy 487.4 425.8 409.3 384.8 381.5 405.1 416.3 380.1 394.0 399.1 407.2 416.9 424.9 18,785.8
0.02TEMOA-Italy 487.7 426.1 409.5 384.9 381.8 405.0 416.3 379.9 393.9 399.0 407.0 416.6 424.8 18,781.8

Table A6. Activity of transport road cars and cumulative activity along the entire time horizon, compared for TIMES-Italy and TEMOA-Italy results. Evaluated
average relative difference on cumulative activity.

Technology Model

Process Activity [Bvkm] Cumulative
Activity
[Bvkm]

diffcum [%]Year
2007 2008 2010 2012 2014 2016 2018 2020 2022 2025 2030 2040 2050

Biofuels
existing

TIMES-Italy 0.78 0.75 0.62 0.50 0.37 0.25 0.12 6.00

0.57

TEMOA-Italy 0.81 0.75 0.62 0.50 0.37 0.25 0.12 6.02
Diesel

existing
TIMES-Italy 97.12 92.50 77.08 61.67 46.25 30.83 15.42 744.61

TEMOA-Italy 100.00 92.30 76.90 61.50 46.20 30.80 15.40 746.20
Gasoline
existing

TIMES-Italy 127.34 121.27 101.06 80.85 60.64 40.42 20.21 976.26
TEMOA-Italy 131.00 121.00 101.00 80.60 60.50 40.30 20.20 978.20

LPG existing TIMES-Italy 10.08 9.60 8.00 6.40 4.80 3.20 1.60 77.31
TEMOA-Italy 10.40 9.60 8.00 6.40 4.80 3.20 1.60 77.60
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Table A6. Cont.

Technology Model

Process Activity [Bvkm] Cumulative
Activity
[Bvkm]

diffcum [%]Year
2007 2008 2010 2012 2014 2016 2018 2020 2022 2025 2030 2040 2050

Natural gas
existing

TIMES-Italy 3.84 3.66 3.05 2.44 1.83 1.22 0.61 29.44
TEMOA-Italy 3.96 3.66 3.05 2.44 1.83 1.22 0.61 29.58

Diesel new
TIMES-Italy 22.49 26.78 32.42 46.91 61.90 80.85 100.39 119.69 124.39 126.64 129.70 135.94 126.55 5002.77

TEMOA-Italy 18.14 26.10 33.86 48.73 63.97 83.22 103.54 123.54 124.98 126.88 130.06 135.91 121.01 5016.08

Electric new
TIMES-Italy 0.00

TEMOA-Italy 25.56 76.69

Gasoline new
TIMES-Italy 6.98 12.01 28.32 46.16 64.50 86.79 109.68 132.33 134.22 136.62 139.92 146.29 145.53 5371.07

TEMOA-Italy 4.00 12.80 28.87 46.73 64.82 86.91 109.12 131.24 133.67 136.32 139.54 146.29 145.53 5342.54

LPG new
TIMES-Italy 2.91 2.91 2.91 2.91 2.91 2.91 82.61

TEMOA-Italy 0.17 0.17 0.17 0.17 0.17 0.17 47.31
Natural gas

new
TIMES-Italy 5.30 6.18 7.07 7.96 8.85 9.73 9.83 9.98 10.22 10.22 10.22 404.59

TEMOA-Italy 0.39 0.39 6.23 6.93 7.64 8.34 9.04 9.75 9.85 10.00 10.20 10.20 10.20 411.18

Table A7. Activity of residential space heating technologies and cumulative activity along the entire time horizon, compared for TIMES-Italy and TEMOA-Italy
results. Evaluated average relative difference on cumulative activity.

Technology Model

Process Activity [Mm2] Cumulative
Activity
[Mm2]

diffcum
[%]Year

2007 2008 2010 2012 2014 2016 2018 2020 2022 2025 2030 2040 2050

Wood stove
TIMES-Italy 30.80 33.03 32.20 29.34 28.28 26.72 23.84 20.31 18.23 16.22 19.11 28.49 43.02 1159.02

1.92

TEMOA-Italy 30.24 35.61 32.29 29.13 26.83 24.90 21.89 20.22 18.04 15.50 19.10 28.47 42.99 1148.24

Electric heat pumps TIMES-Italy 4.82 4.61 4.11 4.37 3.10 2.59 2.09 1.58 1.08 0.32 0.00 0.00 0.00 54.52
TEMOA-Italy 5.05 4.99 4.81 5.88 5.16 5.40 5.52 5.80 7.76 8.63 10.99 11.21 11.41 402.81

Geothermal heat
pumps

TIMES-Italy 13.41 13.41 13.41 13.41 13.41 13.41 13.41 13.41 13.41 13.41 13.41 13.41 13.41 616.84
TEMOA-Italy 13.44 13.44 13.44 13.44 13.44 13.44 13.44 13.44 13.44 13.44 13.41 13.41 13.41 617.55

Heat exchanger TIMES-Italy 32.02 30.24 32.36 30.88 27.78 25.49 23.20 22.78 20.76 17.72 12.66 16.75 20.83 925.00
TEMOA-Italy 32.22 34.60 32.89 30.79 28.79 26.69 24.69 22.60 20.58 17.04 12.50 16.66 20.81 935.30

LPG boilers
TIMES-Italy 79.66 72.52 67.96 73.08 67.00 67.95 65.84 61.03 60.76 62.72 63.85 38.27 24.42 2620.76

TEMOA-Italy 79.65 72.46 58.16 59.90 55.67 56.57 52.69 50.81 49.00 47.37 49.83 54.57 59.47 2498.39

Natural gas boilers TIMES-Italy 951.16 966.27 1026.65 1035.61 980.23 1014.44 1038.54 1054.13 1063.66 1065.99 1072.25 1088.90 1106.21 48,633.94
TEMOA-Italy 967.92 947.45 1030.68 1057.38 947.24 977.92 1012.92 1024.60 1059.92 1107.25 1110.46 1082.72 1089.09 48,879.30

Diesel fuel boilers
TIMES-Italy 174.43 169.67 120.04 119.10 195.48 176.55 165.80 165.56 165.38 174.12 182.77 201.22 209.24 8233.18

TEMOA-Italy 158.08 181.54 124.80 109.58 238.44 222.58 201.87 201.65 174.88 141.60 148.13 180.37 180.33 7777.64



Energies 2022, 15, 6505 35 of 37

References
1. IRENA. Scenario for the Energy Transition: Global Experience and Best Practices; IRENA: Abu Dhabi, United Arab Emirates, 2020.
2. IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the

Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2021.
3. Prina, M.G.; Manzolini, G.; Moser, D.; Nastasi, B.; Sparber, W. Classification and challenges of bottom-up energy system

models—A review. Renew. Sustain. Energy Rev. 2020, 129, 109917. [CrossRef]
4. DeCarolis, J.; Hunter, K.; Sreepathi, S. The Temoa Project: Tools for Energy Model Optimization and Analysis; International Energy

Workshop: Stockholm, Sweden, 2010.
5. IEA-ETSAP. TIMES. Available online: https://iea-etsap.org/index.php/etsap-tools/model-generators/times (accessed on 16 June 2021).
6. ENEA. Analisi Trimestrale Del Sistema Energetico Italiano. Available online: https://www.pubblicazioni.enea.it/le-

pubblicazioni-enea/analisi-trimestrale-del-sistema-energetico-italiano.html (accessed on 17 March 2022).
7. IRENA. Planning for the Renewable Future: Long-Term Modelling and Tools to Expand Variable Renewable Power in Emerging

Economies, January 2017. Available online: https://www.irena.org/publications/2017/Jan/Planning-for-the-renewable-future-
Long-term-modelling-and-tools-to-expand-variable-renewable-power (accessed on 28 June 2021).

8. IEA-ETSAP. Energy Systems Analysis Applications. Available online: https://iea-etsap.org/index.php/applications (accessed
on 12 January 2021).

9. IEA-ETSAP. MARKAL. Available online: https://iea-etsap.org/index.php/etsap-tools/model-generators/markal (accessed on
12 January 2021).

10. IEA-ETSAP. Documentation for the TIMES Model Part I: TIMES Concepts and Theory. 18 February 2021. Available online:
https://iea-etsap.org/docs/Documentation_for_the_TIMES_Model-Part-I_July-2016.pdf (accessed on 4 February 2022).

11. IPCC. Climate Change 2014: Mitigation of Climate Change. In Contribution of Working Group III to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2014.

12. Lerede, D.; Bustreo, C.; Gracceva, F.; Saccone, M.; Savoldi, L. Techno-economic and environmental characterization of industrial
technologies for transparent bottom-up energy modeling. Renew. Sustain. Energy Rev. 2021, 140, 110742. [CrossRef]

13. Lerede, D.; Bustreo, C.; Gracceva, F.; Lechón, Y.; Savoldi, L. Analysis of the Effects of Electrification of the Road Transport Sector
on the Possible Penetration of Nuclear Fusion in the Long-Term European Energy Mix. Energies 2020, 13, 3634. [CrossRef]

14. Capros, P.; van Regenmorter, D.; Paroussos, L.; Karkatsoulis, P.; Fragkiadakis, C.; Tsani, S.; Charalampidis, I.; Revesz, T. GEM-E3
Model Documentation; Publications Office of the European Union: Luxembourg, 2013.

15. Oliva, A.; Gracceva, F.; Lerede, D.; Nicoli, M.; Savoldi, L. Projection of Post-Pandemic Italian Industrial Production through
Vector AutoRegressive Models. Energies 2021, 14, 5458. [CrossRef]

16. JRC. JRC-EU-TIMES Model. Available online: https://ec.europa.eu/jrc/en/scientific-tool/jrc-eu-times-model-assessing-long-
term-role-energy-technologies (accessed on 21 June 2021).

17. IEA. Energy Technology Perspectives. Available online: https://www.iea.org/topics/energy-technology-perspectives (accessed
on 12 January 2022).

18. Vicente-Saez, R.; Gustafsson, R.; Van den Brande, L. The dawn of an open exploration era: Emergent principles and practices
of open science and innovation of university research teams in a digital world. Technol. Forecast. Soc. Chang. 2020, 156, 120037.
[CrossRef]

19. European Commission. The EU’s Open Science Policy. Available online: https://ec.europa.eu/info/research-and-innovation/
strategy/strategy-2020-2024/our-digital-future/open-science_en#the-eus-open-science-policy (accessed on 26 June 2021).

20. Pfenninger, S.; DeCarolis, J.; Hirth, L.; Quoilin, S.; Staffell, I. The importance of open data and software: Is energy research lagging
behind? Energy Policy 2017, 101, 211–215. [CrossRef]

21. Risø National Laboratory Denmark. Balmorel: A Model for Analyses of the Electricity and CHP Markets in the Baltic Sea Region;
International Nuclear Information System: Roskilde, Denmark, 2001.

22. Horsch, J.; Hofmann, F.; Schlachtberger, D.; Brown, T. PyPSA-Eur: An open optimisation model of the European transmission
system. Energy Strategy Rev. 2018, 22, 207–2015. [CrossRef]

23. Johnston, J.; Henriquez-Auba, R.; Maluenda, B.; Fripp, M. Switch 2.0: A modern platform for planning high-renewable power
systems. SoftwareX 2019, 10, 100251. [CrossRef]

24. KTH Royal Institute of Technology. OSeMOSYS Documentation. 2021. Available online: https://osemosys.readthedocs.io/en/
latest/ (accessed on 4 February 2022).

25. DeCarolis, J.; Babaee, S.; Li, B.; Kanungo, S. Modelling to generate alternatives with an energy system optimization model.
Environ. Model. Softw. 2016, 79, 300–310. [CrossRef]

26. Groissböck, M. Are open source energy system optimization tools mature enough for serious use? Renew. Sustain. Energy Rev.
2018, 102, 234–248. [CrossRef]

27. Santos, T. Regional energy security goes South: Examining energy integration in South America. Energy Res. Soc. Sci. 2021,
76, 102050. [CrossRef]

28. Rocco, M.V.; Fumagalli, E.; Vigone, C.; Miserocchi, A.; Colombo, E. Enhancing energy models with geo-spatial data for the
analysis of future electrification pathways: The case of Tanzania. Energy Strat. Rev. 2021, 34, 100614. [CrossRef]

29. Dhakouani, A.; Znouda, E.; Bouden, C. Impacts of energy efficiency policies on the integration of renewable energy. Energy Policy
2019, 133, 110922. [CrossRef]

http://doi.org/10.1016/j.rser.2020.109917
https://iea-etsap.org/index.php/etsap-tools/model-generators/times
https://www.pubblicazioni.enea.it/le-pubblicazioni-enea/analisi-trimestrale-del-sistema-energetico-italiano.html
https://www.pubblicazioni.enea.it/le-pubblicazioni-enea/analisi-trimestrale-del-sistema-energetico-italiano.html
https://www.irena.org/publications/2017/Jan/Planning-for-the-renewable-future-Long-term-modelling-and-tools-to-expand-variable-renewable-power
https://www.irena.org/publications/2017/Jan/Planning-for-the-renewable-future-Long-term-modelling-and-tools-to-expand-variable-renewable-power
https://iea-etsap.org/index.php/applications
https://iea-etsap.org/index.php/etsap-tools/model-generators/markal
https://iea-etsap.org/docs/Documentation_for_the_TIMES_Model-Part-I_July-2016.pdf
http://doi.org/10.1016/j.rser.2021.110742
http://doi.org/10.3390/en13143634
http://doi.org/10.3390/en14175458
https://ec.europa.eu/jrc/en/scientific-tool/jrc-eu-times-model-assessing-long-term-role-energy-technologies
https://ec.europa.eu/jrc/en/scientific-tool/jrc-eu-times-model-assessing-long-term-role-energy-technologies
https://www.iea.org/topics/energy-technology-perspectives
http://doi.org/10.1016/j.techfore.2020.120037
https://ec.europa.eu/info/research-and-innovation/strategy/strategy-2020-2024/our-digital-future/open-science_en#the-eus-open-science-policy
https://ec.europa.eu/info/research-and-innovation/strategy/strategy-2020-2024/our-digital-future/open-science_en#the-eus-open-science-policy
http://doi.org/10.1016/j.enpol.2016.11.046
http://doi.org/10.1016/j.esr.2018.08.012
http://doi.org/10.1016/j.softx.2019.100251
https://osemosys.readthedocs.io/en/latest/
https://osemosys.readthedocs.io/en/latest/
http://doi.org/10.1016/j.envsoft.2015.11.019
http://doi.org/10.1016/j.rser.2018.11.020
http://doi.org/10.1016/j.erss.2021.102050
http://doi.org/10.1016/j.esr.2020.100614
http://doi.org/10.1016/j.enpol.2019.110922


Energies 2022, 15, 6505 36 of 37

30. Chung, Y.; Paik, C.; Kim, Y.J. Open source-based modeling of power plants retrofit and its application to the Korean electricity
sector. Int. J. Greenh. Gas Control 2019, 81, 21–28. [CrossRef]

31. Anjo, J.; Neves, D.; Silva, C.A.S.; Shivakumar, A.; Howells, M. Modeling the long-term impact of demand response in energy
planning: The Portuguese electric system case study. Energy 2018, 165, 456–468. [CrossRef]

32. Welsch, M.; Deane, P.; Howells, M.; Gallachóir, B.Ó.; Rogan, F.; Bazilian, M.; Rogner, H.H. Incorporating flexibility requirements
into long-term energy system models–A case study on high levels of renewable electricity penetration in Ireland. Appl. Energy
2014, 135, 600–615. [CrossRef]

33. DeCarolis, J.F.; Hunter, K.; Sreepathi, S. Multi-Stage Stochastic Optimization of a Simple Energy System; North Carolina State
University: Raleigh, NC, USA, 2012.

34. Eshraghi, H.; de Queiroz, A.R.; DeCarolis, J.F. US Energy-Related Greenhouse Gas Emissions in the Absence of Federal Climate
Policy. Environ. Sci. Technol. 2018, 52, 9595–9604. [CrossRef] [PubMed]

35. McGrath, M. Climate Change: US Formally Withdraws from Paris Agreement. BBC. 2020. Available online: https://www.bbc.
com/news/science-environment-54797743 (accessed on 1 September 2022).

36. Blinken, A.J. US Makes Official Return to Paris Climate Pact. 2021. Available online: https://www.state.gov/the-united-states-
officially-rejoins-the-paris-agreement/ (accessed on 1 September 2022).

37. Lenox, R.; Dodder, C.; Dan Loughlin, G.; Kaplan, O.; Yelverton, W. EPA U.S. Nine-region MARKAL Database Database Documentation;
United States Environmental Protection Agency: Washington, DC, USA, 2013.

38. DeCarolis, J.; Venkatesh, A.; Jaramillo, P.; Sinha, A.; Jordan, K.; Johnson, J. Open Energy Outlook for the United States. 2016.
Available online: https://openenergyoutlook.org/ (accessed on 13 August 2021).

39. Patankar, N.; de Queiroz, A.R.; DeCarolis, J.F.; Bazilian, M.D.; Chattopadhyay, D. Building Conflict Uncertainty into Electricity
Planning: A South Sudan Case Study. Energy Sustain. Dev. 2019, 49, 53–64. [CrossRef]

40. TemoaProject. Temoa (GitHub). 9 January 2018. Available online: https://github.com/TemoaProject/temoa (accessed on 31
December 2021).

41. Nicoli, M.; Lerede, D.; Savoldi, L. TEMOA-Italy (GitHub). Available online: https://github.com/MAHTEP/TEMOA-Italy/
releases/tag/1.0 (accessed on 30 March 2022).

42. KTH Royal Institute of Technology. Model Management Infrastructure (MoManI) Training Manual; KTH Royal Institute of Technology:
Stockholm, Sweden, 2017.

43. KanORS-EMR. VEDA Front-End. Available online: https://www.kanors-emr.org/veda-fe (accessed on 5 February 2022).
44. IEA-ETSAP. Acquiring TIMES Source Code. Available online: https://support.kanors-emr.org/Installation/SubFile_Installing/

acquiringtimessourcecode.htm (accessed on 11 August 2021).
45. IAEA; United Nations Department of Economic and Social Affairs; IEA; Eurostat, European Environment Agency. Energy

Indicators for Sustainable Development: Guidelines and Methodologies. Available online: https://sustainabledevelopment.un.
org/content/documents/Pub1222_web.pdf (accessed on 17 March 2022).

46. Li, J.; Zhao, H. Multi-Objective Optimizazion and Performance Assessments of an Integrated Energy System Based on Fuel. Wind
Sol. Energ. Entropy 2021, 23, 431.

47. Falke, T.; Krengel, A.-K.M.S.; Schnettler, A. Multi-objective optimization and simulation model for the design of distributed
energy systems. Appl. Energy 2016, 184, 1508–1516. [CrossRef]

48. IEA-ETSAP. Letter of Agreement. Available online: http://iea-etsap.org/tools/TIMES-LoA.pdf (accessed on 1 September 2022).
49. Free Software Foundation. GNU Linear Programming Kit, Version 4.52; GNU: Boston, MA, USA, 2014. Available online: http:

//www.gnu.org/software/glpk/glpk.html (accessed on 4 February 2022).
50. Python Software Foundation. Python. Available online: https://www.python.org/ (accessed on 5 February 2022).
51. GAMS Development Corporation. GAMS Software GmbH, GAMS. Available online: https://www.gams.com/ (accessed on 5

February 2022).
52. IBM Corp. User’s Manual for CPLEX. 2009. Available online: http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:

User\T1\textquoterights+Manual+for+CPLEX#1 (accessed on 12 August 2021).
53. Gurobi Optimization. Gurobi Optimization. Available online: https://www.gurobi.com/ (accessed on 22 June 2021).
54. IEA-ETSAP. Documentation for the TIMES Model Part II: Reference Manual. 2021. Available online: https://iea-etsap.org/docs/

Documentation_for_the_TIMES_Model-PartII.pdf (accessed on 1 September 2021).
55. North Carolina State University. Temoa Documentation—Objective Function. Available online: https://temoacloud.com/

temoaproject/Documentation.html#objective-function (accessed on 21 January 2022).
56. Ministero dello Sviluppo Economico. Ministero della Transizione Ecologica, Strategia Energetica Nazionale (SEN). 2017. Available

online: https://www.minambiente.it/sites/default/files/archivio/allegati/testo-integrale-sen-2017.pdf (accessed on 29 June 2021).
57. OECD-IEA. Energy Balances of OECD Countries, 2009th ed.; OECD Publishing: Paris, France, 2009.
58. ENEA. Il Modello Energetico TIMES-Italia. 2011. Available online: https://biblioteca.bologna.enea.it/RT/2011/2011_9_ENEA.

pdf (accessed on 12 November 2020).
59. Ministero dello Sviluppo Economico. Energia Nucleare. Available online: https://www.mise.gov.it/index.php/it/energia/

sostenibilita/energia-nucleare (accessed on 30 December 2021).
60. Nicoli, M.; Lerede, D.; Savoldi, L. A TIMES-like Open-Source Model for the Italian Energy System. 2021. Available online:

https://webthesis.biblio.polito.it/18850/ (accessed on 11 February 2022).

http://doi.org/10.1016/j.ijggc.2018.12.005
http://doi.org/10.1016/j.energy.2018.09.091
http://doi.org/10.1016/j.apenergy.2014.08.072
http://doi.org/10.1021/acs.est.8b01586
http://www.ncbi.nlm.nih.gov/pubmed/30129749
https://www.bbc.com/news/science-environment-54797743
https://www.bbc.com/news/science-environment-54797743
https://www.state.gov/the-united-states-officially-rejoins-the-paris-agreement/
https://www.state.gov/the-united-states-officially-rejoins-the-paris-agreement/
https://openenergyoutlook.org/
http://doi.org/10.1016/j.esd.2019.01.003
https://github.com/TemoaProject/temoa
https://github.com/MAHTEP/TEMOA-Italy/releases/tag/1.0
https://github.com/MAHTEP/TEMOA-Italy/releases/tag/1.0
https://www.kanors-emr.org/veda-fe
https://support.kanors-emr.org/Installation/SubFile_Installing/acquiringtimessourcecode.htm
https://support.kanors-emr.org/Installation/SubFile_Installing/acquiringtimessourcecode.htm
https://sustainabledevelopment.un.org/content/documents/Pub1222_web.pdf
https://sustainabledevelopment.un.org/content/documents/Pub1222_web.pdf
http://doi.org/10.1016/j.apenergy.2016.03.044
http://iea-etsap.org/tools/TIMES-LoA.pdf
http://www.gnu.org/software/glpk/glpk.html
http://www.gnu.org/software/glpk/glpk.html
https://www.python.org/
https://www.gams.com/
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:User\T1\textquoteright s+Manual+for+CPLEX#1
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:User\T1\textquoteright s+Manual+for+CPLEX#1
https://www.gurobi.com/
https://iea-etsap.org/docs/Documentation_for_the_TIMES_Model-PartII.pdf
https://iea-etsap.org/docs/Documentation_for_the_TIMES_Model-PartII.pdf
https://temoacloud.com/temoaproject/Documentation.html#objective-function
https://temoacloud.com/temoaproject/Documentation.html#objective-function
https://www.minambiente.it/sites/default/files/archivio/allegati/testo-integrale-sen-2017.pdf
https://biblioteca.bologna.enea.it/RT/2011/2011_9_ENEA.pdf
https://biblioteca.bologna.enea.it/RT/2011/2011_9_ENEA.pdf
https://www.mise.gov.it/index.php/it/energia/sostenibilita/energia-nucleare
https://www.mise.gov.it/index.php/it/energia/sostenibilita/energia-nucleare
https://webthesis.biblio.polito.it/18850/


Energies 2022, 15, 6505 37 of 37

61. European Commission. Eurostat. Available online: https://ec.europa.eu/eurostat (accessed on 30 March 2022).
62. Istat. Istat. Available online: https://www.istat.it/en/ (accessed on 30 March 2022).
63. Ministero dello Sviluppo Economico. Ministero della Transizione Ecologica, Ministero delle Infrastrutture e dei Trasporti,

Piano Nazionale Integrato per l’Energia e il Clima (PNIEC). 2020. Available online: https://www.mise.gov.it/images/stories/
documenti/PNIEC_finale_17012020.pdf (accessed on 24 June 2021).

64. European Commission. EU Reference Scenario 2016. In Energy, Transport and GHG Emissions Trends to 2050; European Commission:
Brussels, Belgium, 2016. Available online: https://ec.europa.eu/energy/sites/ener/files/documents/20160713%20draft_
publication_REF2016_v13.pdf (accessed on 29 December 2021).

https://ec.europa.eu/eurostat
https://www.istat.it/en/
https://www.mise.gov.it/images/stories/documenti/PNIEC_finale_17012020.pdf
https://www.mise.gov.it/images/stories/documenti/PNIEC_finale_17012020.pdf
https://ec.europa.eu/energy/sites/ener/files/documents/20160713%20draft_publication_REF2016_v13.pdf
https://ec.europa.eu/energy/sites/ener/files/documents/20160713%20draft_publication_REF2016_v13.pdf

	Introduction 
	Methodology 
	Selection of the Open-Source Framework 
	Enhancement of the TEMOA Framework 

	Case Study: The Italian Energy System 
	Comparison of Results 
	Computational Cost 
	Aggregated Results 
	Disaggregated Results 
	Industry 
	Transport 
	Buildings 


	Conclusions and Perspective 
	Appendix A
	Description of the Technologies in the RES 
	Drivers for the Energy Service Demands 
	Constraints 
	The Optimization Problem 

	Appendix B
	Drivers for Demand Projection in Future Years 
	Techno-Economic Characterization of the Main Demand-Side Subsectors 

	Appendix C
	References

