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Abstract:We consider the non-symmetric coupling of finite and boundary elements to solve second-order non-
linear partial differential equations defined in unbounded domains. We present a novel condition that ensures
that the associated semi-linear form induces a strongly monotone operator, keeping track of the dependence
on the linear combination of the interior domain equation with the boundary integral one. We show that an
optimal ellipticity condition, relating the nonlinear operator to the contraction constant of the shifted double-
layer integral operator, is guaranteed by choosing a particular linear combination. These results generalize those
obtained by Of and Steinbach [Is the one-equation coupling of finite and boundary elementmethods always sta-
ble?, ZAMM Z. Angew. Math. Mech. 93 (2013), no. 6–7, 476–484] and [On the ellipticity of coupled finite element
and one-equation boundary element methods for boundary value problems, Numer. Math. 127 (2014), no. 3,
567–593], and by Steinbach [A note on the stable one-equation coupling of finite and boundary elements, SIAM
J. Numer. Anal. 49 (2011), no. 4, 1521–1531], where the simple sum of the two coupling equations has been consid-
ered. Numerical examples confirm the theoretical results on the sharpness of the presented estimates.

Keywords: Finite Elements, Boundary Elements, Non-symmetric Coupling

MSC 2010: 65N30, 65N12, 65N38

1 Introduction

The coupling of finite and boundary element methods is well established in many applications, in particular
when considering partial differential equations defined in unbounded domains, with non-constant coefficients
restricted to a bounded region.

At least two types of coupling have been proposed and extensively studied: the symmetric (or Costabel–
Han) coupling [4, 9] and the non-symmetric (or Johnson–Nédélec) one [3, 11]. The former approach, relying
on the symmetric formulation of the exterior Steklov–Poincaré operator, yields a symmetric and non-positive
definite scheme, providing stability and a satisfying error analysis. However, involving a boundary integral
operator of hypersingular type, it turns out to be quite onerous from the computational point of view and, even
if there are efficient implementations available, its use is still not very popular in more advanced applications.
On the contrary, the non-symmetric coupling, relying only on the use of single- and double-layer boundary
integral operators, turns out to be cheaper and easier to implement and, consequently, more appealing from
the engineering point of view.

In [11], Johnson and Nédélec have proved that this coupling is a well-posed and stable procedure, assuming
the compactness of the double-layer boundary operator and, hence, provided that smooth interfaces boundaries
are considered. In [15], Sayas proved the stability of the non-symmetric coupling in case of arbitrary inter-
faces for free-space transmission problems. Successively, in [17], the ellipticity of the related bilinear form was
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obtained. These results were further extended and improved in [12, 13] where a sufficient and necessary con-
dition, relating the diffusion matrix and the contraction constant of the shifted double-layer integral operator,
was given. The necessity of conditions weaker than those present in literature, even for problems with constant
coefficients, is of particular interest when dealing with the coupling of a generalized Galerkin method, such as,
e.g., the recent virtual element method, with a boundary one. Indeed, the ellipticity constants of the approxi-
mated bilinear formsmay not be explicitly known, or they could be badly dependent on the order of themethod.
For these couplings, the stability on arbitrary interfaces is still an open issue (see [6, 7]).

In this paper, we generalize the results given previously in [12, 13, 17]. Moreover, we adapt the approaches
of [1, 2] to deal with (possible) nonlinearities. The novelty of the paper consists in studying the dependence of the
ellipticity constant on the linear combination coefficients of the interior domain equation with the boundary
integral one. We show that there exists an optimal computable choice of these coefficients which ensures the
weakest ellipticity condition in terms of the ellipticity constant of the nonlinear operator. The proof relies on
a generalization of the contraction property of the shifted double-layer integral operator; see [19]. We mainly
consider exterior boundary value problems, and in the last section, we present a similar result for transmission
interface problems. The theoretical analysis presented here can be extended to the solution of other boundary
value problems, as done in [13].

The paper is organized as follows. In the next section, we present the model problem and its variational
formulation for the one-equation coupling of finite with boundary elements. In Section 3, we present a gener-
alization of the contraction property proved in [19], in a general framework involving arbitrary Hilbert spaces.
In Section 4, the main result for an exterior boundary value problem on the ellipticity of the semi-linear form
related to the non-symmetric coupling is proved. In Section 5, we present two numerical tests which confirm
the sharpness of the theoretical results. Finally, in the last section, we show how to adapt the main ideas to
transmission interface problems.

2 Model Problem and Variational Formulation

Let Ω0 ⊂ ℝn (n = 2, 3) be a bounded domain with a Lipschitz boundary Γ0 = ∂Ω0 having positive Hausdorff
measure. Its exterior region is decomposed in two non-overlapping subdomains Ω and Ω∞ with interface Γ, i.e.

ℝn \ Ω0 = Ω∞ ∪ Γ ∪ Ω.

We consider an exterior boundary value problem in the unknown u, u∞,

{
− div(U∇u(x)) = f (x), x ∈ Ω,
−Δu∞(x) = 0, x ∈ Ω∞ ,

(2.1)

with boundary, transmission and radiation conditions

{{{{
{{{{
{

u(x) = 0, x ∈ Γ0 ,

u(x) = u∞(x), n(x) ⋅ (U∇u(x)) = −n∞(x) ⋅ ∇u∞(x), x ∈ Γ,

u∞(x) = γ + O(
1
‖x‖)

, ‖x‖→∞.

(2.2)

We assume f ∈ L2(Ω), the asymptotic behavior of u∞ at infinity γ ∈ ℝ, and U : ℝn → ℝn a coefficient function
Lipschitz continuous and strongly monotone, i.e. there exists cell(U) > 0 such that

(U∇v − U∇w, ∇v − ∇w)L2(Ω) ≥ cell(U)|v − w|2H1(Ω) (2.3)

for all v, w ∈ H1(Ω). Here, ( ⋅ , ⋅ )L2(Ω) denotes the L2(Ω)-scalar product, and | ⋅ |H1(Ω) the H1(Ω)-seminorm.
Note thatn, n∞ denote the exterior normal vectors on Γwith respect to the domainsΩ andΩ∞, respectively.

Introducing λ(x) := n(x) ⋅ (A(x)∇u(x)) for x ∈ Γ, to ensure the correct radiation condition for u∞, we observe
that λ ∈ H−

1
20 (Γ) := {λ ∈ H−

1
2 (Γ) : ⟨1, λ⟩Γ = 0}, where ⟨ ⋅ , ⋅ ⟩Γ represents the duality pairing between H 1

2 (Γ) and
H− 12 (Γ).
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By considering the Neumann transmission condition in (2.2), the variational formulation of the interior
Poisson equation in (2.1) is to find u ∈ H1

0,Γ0 (Ω) := {u ∈ H
1(Ω) : u(x) = 0, x ∈ Γ0} such that

(U∇u, ∇v)L2(Ω) − ⟨v, λ⟩Γ = (f, v)L2(Ω) (2.4)

is satisfied for all v ∈ H1
0,Γ0 (Ω). Moreover, the weak formulation of the boundary integral equation related to the

Laplace equation in Ω∞ reads as follows: find λ ∈ H−
1
20 (Γ) such that

⟨Vλ, μ⟩Γ + ⟨(
1
2 I − K)u, μ⟩Γ

= 0 (2.5)

for all μ ∈ H−
1
20 (Γ), where V and K represent, respectively, the single- and double-layer integral operators,

defined by
Vχ(x) := ∫

Γ

G(x, y)χ(y) dΓy Kw(x) := ∫
Γ

w(y)n(y) ⋅ ∇yG(x, y) dΓy

for χ ∈ H− 12 (Γ), w ∈ H 1
2 (Γ) and x ∈ Γ, with

G(x, y) :=
{
{
{

− 1
2π log‖x − y‖ for n = 2,
1
4π

1
‖x−y‖ for n = 3

the fundamental solution of the Laplace operator.
Combining (2.4) and (2.5), the weak formulation of the exterior boundary value problem (2.1)–(2.2) associ-

ated to the one-equation coupling reads as follows: find (u, λ) ∈ H1
0,Γ0 (Ω) × H

− 120 (Γ) such that

{{
{{
{

(U∇u, ∇v)L2(Ω) − ⟨v, λ⟩Γ = (f, v)L2(Ω) for all v ∈ H1
0,Γ0 (Ω),

⟨(
1
2 I − K)u, μ⟩Γ

+ ⟨Vλ, μ⟩Γ = 0 for all μ ∈ H−
1
20 (Γ).

(2.6)

To illustrate the main result, we need to list several properties of boundary integral operators and related
norm equivalences. We recall that the single-layer integral operator V : H− 12 (Γ)→ H 1

2 (Γ) is H−
1
20 (Γ)-elliptic

(see [10]), i.e. there exists a constant cV > 0 such that

⟨Vμ, μ⟩Γ ≥ cV‖μ‖2H− 1
2 (Γ) for all μ ∈ H−

1
20 (Γ). (2.7)

Let us define the subspace of H 1
2 (Γ),

H
1
2
0 (Γ) := {v ∈ H

1
2 (Γ) : ⟨v, μeq⟩Γ = 0},

where μeq is the natural density, μeq := V−11. Since V : H−
1
20 (Γ)→ H

1
2
0 (Γ) is positive definite and bounded,

‖ ⋅ ‖V := √⟨V ⋅ , ⋅ ⟩Γ defines an equivalent norm in H−
1
20 (Γ) (see, e.g., [16, Theorem 2.6]), and correspondingly,

‖ ⋅ ‖V−1 := √⟨ ⋅ , V−1⋅ ⟩Γ defines an equivalent norm in H
1
2
0 (Γ).

The ellipticity results obtained in [12] are mainly based on the contraction property of the double-layer
integral operator (first obtained in [19])

(1 − cK)‖v‖V−1 ≤

(
1
2 I + K)v

V−1
≤ cK‖v‖V−1 for all v ∈ H

1
2
0 (Γ), (2.8)

with the positive constant

cK :=
1
2 +
√ 1
4 − cVcD . (2.9)

Here, cV is defined in (2.7), and cD > 0 is the ellipticity constant of the hypersingular boundary integral operator

Dv(x) := −n(x) ⋅ ∇x(∫
Γ

n(y) ⋅ ∇yG(x, y)v(y) dΓy), x ∈ Γ,

in the Hilbert space H
1
2
0 (Γ), i.e.

⟨v, Dv⟩Γ ≥ cD‖v‖2H 1
2 (Γ) for all v ∈ H

1
2
0 (Γ). (2.10)
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We define the interior Steklov–Poincaré operator S : H
1
2
0 (Γ)→ H−

1
20 (Γ) as

Sv(x) := n(x) ⋅ ∇u(x) x ∈ Γ, (2.11)

where u ∈ H1(Ω ∪ Γ0 ∪ Ω0) solves the Dirichlet–Laplace problem

{
Δu(x) = 0, x ∈ Ω ∪ Γ0 ∪ Ω0 ,
u(x) = v(x), x ∈ Γ.

It is worth to point out that this operator can be characterized also by

S = V−1(12 I + K). (2.12)

A strictly related operatormore suitable for exterior problems like the onewe are considering is Sint, the interior
Steklov–Poincaré operator associated to the following Dirichlet–Laplace boundary value problem

{{{
{{{
{

Δu(x) = 0, x ∈ Ω,
u(x) = v(x), x ∈ Γ,
u(x) = 0, x ∈ Γ0 .

As in (2.11), the definition of Sint is
Sintv(x) := n(x) ⋅ ∇u(x), x ∈ Γ. (2.13)

The operators S and Sint are related by the spectral equivalence inequality

μmin⟨v, Sv⟩Γ ≤ ⟨v, Sintv⟩Γ for all v ∈ H
1
2
0 (Γ), (2.14)

for a positive constant μmin > 0. Now we are able to state the main result of the paper.
In order to analyze the stability of the coupled system (2.6), we introduce the semi-linear formsAβ

α , multiply-
ing and summing (2.4) and (2.5) by two coefficients α, β ∈ ℝ \ {0}. For ̂u = (u, λ), ̂v = (v, μ) ∈ H1

0,Γ0 (Ω) × H
− 120 (Γ),

we then obtain

A
β
α( ̂u, ̂v) := α[(U∇u, ∇v)L2(Ω) − ⟨v, λ⟩Γ] + β[⟨Vλ, μ⟩Γ + ⟨(

1
2 I − K)u, μ⟩Γ

]. (2.15)

The coupling of equations (2.4) and (2.5) is equivalent to finding ̂u ∈ H1
0,Γ0 (Ω) × H

− 120 (Γ) such that

A
β
α( ̂u, ̂v) = α(f, v)L2(Ω)

for all ̂v = (v, μ) ∈ H1
0,Γ0 (Ω) × H

− 120 (Γ). By varying α and β, all these problems are equivalent, but the ellipticity
of the semi-linear forms Aβ

α clearly depends on the choice of α and β. By scaling, it suffices to consider α = 1,
although, in the next section, we will show some properties of the inherited operator (α − 1

2β)I + βK for general
α and β.

Johnson and Nédélec in [11] have shown (for U = I) that A2
1 is a Fredholm operator when we assume that

the double-layer integral operator K : H 1
2 (Γ)→ H 1

2 (Γ) is compact, but the compactness of K allows only the
consideration of Γ being Lyapunov regular, i.e. of class C1,θ for some θ > 0. Steinbach in [17], and successively the
same author with Of in [12, 13], has shown thatA1

1 is elliptic, also for Lipschitz interfaces, whenU is a coefficient
matrix, whose minimal eigenvalue is bigger than cK

(4μmin) . We recall that cK ∈ [ 12 , 1) is the contraction constant
defined in (2.9), depending only on Γ, and μmin > 0 is defined in (2.14), depending both on Γ and Γ0. The analysis
in [17] was extended to nonlinear operators by Aurada et al. in [1] by showing the strong monotonicity of the
associated semi-linear forms. In the next sections, we will show that, for each fixed Γ, we can choose β∗ such
thatAβ∗

1 is a strongly monotone semi-linear form for a larger range than that obtained in [12]. Precisely, we will
obtain that if

cell(U) >
1 − 2√cK(1 − cK)

4μmin(1 −√cK(1 − cK))
,

then A
β∗
1 is strongly monotone. In particular, if Γ is a circle, and so cK = 1

2 , then A2
1 induces always a strongly

monotone operator.
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Remark 1. Wepoint out that the computation of cK is not needed in the applications. Indeed, the choice of a par-
ticular scaling parameter β is only useful in the theory to prove the stability since solving the scaled problem is
equivalent to solving the coupling with coefficient β = 1.

3 Generalized Contraction Properties

In order to improve the results in [12], we first need a generalized contraction property for (α − 1
2β)I + βK.

Costabel, in [5], observed that the contraction property (2.8) of 1
2 I + K is essentially based on the following idea:

“if a number is bigger than its square, then it must lie between 0 and 1”. For operators, this idea can be stated
as follows.

Lemma 1. Let A, B1 be bounded operators on a Hilbert spaceH, with B1 self-adjoint. If it holds

B1 = B21 + A (3.1)

and there exists cA > 0 such that (Av, v)H ≥ cA‖v‖2H for all v ∈ H, then cA ≤ 1
4 and B1 is a contraction satisfying

(1 − cup)‖v‖H ≤ ‖B1v‖H ≤ cup‖v‖H for all v ∈ H,

with

cup := 12 +
√ 1
4 − cA . (3.2)

This lemma can be usedwith A = VD and B1 = 1
2 I + K, in theHilbert spaceH = H

1
2
0 (Γ) equipped the norm ‖ ⋅ ‖

2
V−1 .

Property (3.1) reduces to
1
2 I + K = (

1
2 I + K)

2
+ VD,

but this is exactly the well-known relation (see, e.g., [10])

(
1
2 I + K)(

1
2 I − K) = VD.

The symmetry relation KV = VK (see, e.g., [16]) with the adjoint double-layer operator integral operator K,
implies that B1 = 1

2 I + K is self-adjoint in the ( ⋅ , ⋅ )H scalar product. In fact, we can write, for v, w ∈ H
1
2
0 (Γ),

(B1v, w)H = ⟨w, V−1(
1
2 I + K)v⟩Γ

= ⟨v, (12 I + K
)V−1w⟩

Γ
= ⟨(

1
2 I + K)w, V

−1v⟩
Γ
= (v, B1w)H .

Finally, since the operator VD is positive semi-definite in the inner product ⟨ ⋅ , V−1 ⋅ ⟩Γ with ellipticity constant
cA = cVcD, with cV and cD defined in (2.7) and (2.10), respectively, the contraction property (2.8) for 1

2 I + K easily
follows from Lemma 1.

We want to apply a similar result to the operators VD and (α − 1
2β)I + βK. Since condition (3.1) is not, in

general, satisfied by these operators, we extend the previous lemma to the following situation.

Lemma 2. Let A, B2 be bounded operators on a Hilbert spaceH, with B2 self-adjoint. If it holds

γ1B2 = B22 + γ2A + γ3I (3.3)

for non-negative numbers γ1, γ2 and γ3 ∈ ℝ, and there exists cA > 0 such that (Av, v)H ≥ cA‖v‖2H for all v ∈ H,
then γ2cA ≤

γ21
4 − γ3 and B2 is a contraction satisfying

(γ1 − cupγ1 ,γ2 ,γ3 )‖v‖H ≤ ‖B2v‖H ≤ c
up
γ1 ,γ2 ,γ3‖v‖H for all v ∈ H,

with

cupγ1 ,γ2 ,γ3 :=
γ1
2 +
√ γ

2
1
4 − (γ2cA + γ3). (3.4)
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Proof. Using the self-adjointness of B2, assumption (3.3), the ellipticity of A and Cauchy–Schwarz, we obtain

‖B2v‖2H = (B2v, B2v)H = (B
2
2v, v)H = ((γ1B2 − γ2A − γ3I)v, v)H

≤ γ1(B2v, v)H − cAγ2‖v‖2H − γ3‖v‖
2
H ≤ γ1‖B2v‖H‖v‖H − (cAγ2 + γ3)‖v‖

2
H .

Defining t := ‖B2v‖H‖v‖H , the latter inequality is equivalent to t2 − γ1t + cAγ2 + γ3 ≤ 0, which implies

γ1 − cupγ1 ,γ2 ,γ3 ≤ t ≤ c
up
γ1 ,γ2 ,γ3 ,

with cupγ1 ,γ2 ,γ3 defined in (3.4).

To show that the choice B2 = (α − 1
2β)I + βK satisfies condition (3.3) with A = VD for some γ1, γ2 and γ3, we

prove an auxiliary result: if an operator B2 is a linear combination of an operator B1, satisfying property (3.1),
and the identity, i.e. it holds

B2 = ω1B1 + ω2I and B1 = B21 + A (3.5)

for some ω1 , ω2 ∈ ℝ, then condition (3.3) is fulfilled with

γ1 = ω1 + 2ω2 , γ2 = ω2
1 and γ3 = ω1ω2 + ω2

2 . (3.6)

Indeed, this is an easy calculation:

B22 = (ω1B1 + ω2I)2 = ω2
1B

2
1 + ω

2
2I + 2ω1ω2B1 = ω2

1B1 − ω
2
1A + ω

2
2I + 2ω1ω2B1

= ω1B2 − ω1ω2I − ω2
1A + ω

2
2I + 2ω2B2 − 2ω2

2I = (ω1 + 2ω2)B2 − ω2
1A − (ω1ω2 + ω2

2)I.

The latter remark turns out to be useful in our case since it holds

(α − 12β)I + βK = β(
1
2 I + K) + (α − β)I. (3.7)

Summarizing the previous results, we obtain the following contraction property.

Theorem 1. Let α, β ∈ ℝ, satisfying 2α − β ≥ 0. Then it holds

(2α − β − cα,βK )‖v‖V−1 ≤

((α − 12β)I + βK)v

V−1
≤ cα,βK ‖v‖V−1

for all v ∈ H
1
2
0 (Γ), with

cα,βK := 2α − β2 + |β|
√ 1
4 − cVcD . (3.8)

Proof. We take A = VD, and B2 = (α − 1
2β)I + βK in Lemma 2. These operators satisfy (3.5) with B1 = 1

2 I + K,
ω1 = β and ω2 = α − β by virtue of (3.7). Then condition (3.3) is satisfied with, recalling (3.6),

γ1 = 2α − β, γ2 = β2 and γ3 = α(α − β).

Easy calculations prove the assertion, observing that the assumption 2α − β ≥ 0 is equivalent to γ1 ≥ 0.

To collect all the tools useful to prove our main result, it remains to show a generalization of the bound that
relates (α − 1

2β)I + βKwith the interior Steklov–Poincaré operator S defined in (2.11). In [12], in fact, was proved
that, for all v ∈ H

1
2
0 (Γ), there holds the inequality


(
1
2 I + K)v



2

V−1
≤ cK⟨v, Sv⟩Γ . (3.9)

Observing that, using the characterization (2.12), we can write, for v ∈ H = H
1
2
0 (Γ) endowed with the norm

‖ ⋅ ‖V−1 ,
⟨v, Sv⟩Γ = (B1v, v)H ,

where B1 = 1
2 I + K, we see that (3.9) is exactly

‖B1v‖2H ≤ c
up(B1v, v)H .

As we did before for the contraction property, now we derive a generalization of inequality (3.9) for arbitrary
operators.
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Lemma 3. Let A, B1 , B2 be bounded operators on a Hilbert space H, with B1 self-adjoint. Assume the following
hold:

B1 = B21 + A, B2 = ω1B1 + ω2I (3.10)

for some ω1 , ω2 ∈ ℝ satisfying ω1 + 2ω2 > 0, ω1 > 0, and there exists cA > 0 such that (Av, v)H ≥ cA‖v‖2H for all
v ∈ H. Moreover, suppose that ω2

1cA − ω
2
2 ≥ 0. Then it holds

‖B2v‖2H ≤
(cupω1 ,ω2 )

2

cup
(B1v, v)H for all v ∈ H,

where

cupω1 ,ω2 :=
ω1 + 2ω2

2 + |ω1|√
1
4 − cA . (3.11)

Proof. We recall that, by virtue of assumptions (3.10), there exist γ1 , γ2 , γ3 ∈ ℝ such that

γ1B2 = B22 + γ2A + γ3I, (3.12)

precisely those defined in (3.6). Multiplying the second equation of (3.10) by γ1 and using (3.12), we can deduce

γ1ω1B1 = γ1B2 − γ1ω2I = B22 + γ2A + (γ3 − γ1ω2)I.

Testing with v ∈ H, using the ellipticity of A and the self-adjointness of B2, we obtain

γ1ω1(B1v, v)H = (B22v, v)H + γ2(Av, v)H + (γ3 − γ1ω2)‖v‖2H
≥ ‖B2v‖2H + (γ2cA + γ3 − γ1ω2)‖v‖2H .

Assuming that γ2cA + γ3 − γ1ω2 ≥ 0, i.e.ω2
1cA − ω

2
2 ≥ 0, the latter term canbe boundedusing Lemma 2, provided

that γ1 ≥ 0, i.e. ω1 + 2ω2 ≥ 0, as

γ1ω1(B1v, v)H ≥ ‖B2v‖2H +
γ2cA + γ3 − γ1ω2
(cupγ1 ,γ2 ,γ3 )2

‖B2v‖2H .

By using (3.6), we rewrite the above inequality only in terms of ω1 and ω2 as follows:

(ω1 + 2ω2)ω1(B1v, v)H ≥ (1 +
ω2
1cA − ω

2
2

(cupω1 ,ω2 )2
)‖B2v‖2H ,

where cupω1 ,ω2 is defined in (3.11). Since it easy to verify that

1 +
ω2
1cA − ω

2
2

(cupω1 ,ω2 )2
= ω1(ω1 + 2ω2)

cup

(cupω1 ,ω2 )2
,

with cup as in (3.2), we conclude that

ω1(ω1 + 2ω2)(B1v, v)H ≥ ω1(ω1 + 2ω2)
cup

(cupω1 ,ω2 )2
‖B2v‖2H ,

and this prove the assertion.

In the boundary operators setting, the previous lemma translates in the following.

Corollary 1. Let α, β ∈ ℝ, with β > 0, satisfying 2α − β > 0 and

α − |α|√cVcD
1 − cVcD

≤ β ≤ α + |α|√cVcD1 − cVcD
.

Then it holds

((α − 12β)I + βK)v



2

V−1
≤
(cα,βK )

2

cK
⟨v, Sv⟩Γ for all v ∈ H

1
2
0 (Γ). (3.13)

Remark 2. We remark that, when cK = 12 , choosing α = 1 and β = 2 in Theorem 1 gives us directly that ‖Kv‖V−1 = 0
for all v ∈ H

1
2
0 (Γ). Therefore, even if not included in the hypotheses of Corollary 1, when cK =

1
2 , the result (3.13)

holds as well with the choice α = 1 and β = 2 since c1,2K = 0.
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4 The Main Result

By virtue of the results obtained in the previous section, we are able to state our main theorem on the stability
of the non-symmetric coupling of the finite element and the boundary element methods.

Theorem 2. Let β > 0 be such that

1 −√cK(1 − cK)
1 − cK(1 − cK)

≤ β ≤ 1 +
√cK(1 − cK)

1 − cK(1 − cK)
.

Let also

cell(U) >
(c1,βK )

2

4βμmincK
be satisfied, with μmin defined in (2.14), and c1,βK defined in (3.8). Then the semi-linear formA

β
1 , as defined in (2.15),

is H1
0,Γ0 (Ω) × H

− 120 (Γ)-strongly monotone satisfying

A
β
1 ( ̂p − ̂v, ̂p − ̂v) ≥ C

β
stab[|p − v|2H1(Ω) + ‖δ − μ‖

2
V] (4.1)

for all ̂p = (p, δ), ̂v = (v, μ) ∈ H1
0,Γ0 (Ω) × H

− 120 (Γ), where

Cβstab := min{cell(U),
1
2[cell(U) + β −

√(cell(U) − β)2 +
(c1,βK )2

μmincK
]}. (4.2)

Proof. As in the proofs given in [17, Theorem 2.2], [12, Theorem 3.1] and [13, Section 5.2], we start using (2.3), the
strong monotonicity of U,

A
β
1 ( ̂p − ̂v, ̂p − ̂v) = (U∇p − U∇v, ∇w)L2(Ω) + β⟨Vχ, χ⟩Γ − ⟨((1 −

1
2β)I + βK)w, χ⟩Γ

≥ cell(U)|w|2H1(Ω) + β‖χ‖
2
V − ⟨((1 −

1
2β)I + βK)w, χ⟩Γ

,

where we have denoted ̂p − ̂v = ŵ = (w, χ). We split w = w1 + w2, w1 and w2 being the solutions of the Poisson
problems

{{{{{
{{{{{
{

Δw1(x) = Δw(x), x ∈ Ω,

w1(x) = 0, x ∈ Γ,

w1(x) = −
⟨w, μeq⟩Γ
⟨1, μeq⟩Γ

, x ∈ Γ0 ,

{{{{{
{{{{{
{

Δw2(x) = 0, x ∈ Ω,

w2(x) = w(x), x ∈ Γ,

w2(x) =
⟨w, μeq⟩Γ
⟨1, μeq⟩Γ

, x ∈ Γ0 ,
(4.3)

where μeq is the natural density μeq = V−11. Observing that

|w|2H1(Ω) = |w1|2H1(Ω) + 2⟨w1 , nΓ0 ⋅ ∇w2⟩Γ0 + |w2|2H1(Ω) , (4.4)

where nΓ0 is the exterior normal from Ω0, we deduce

A
β
1 (ŵ, ŵ) ≥ cell(U)[|w1|2H1(Ω) + 2⟨w1 , nΓ0 ⋅ ∇w2⟩Γ0 + |w2|2H1(Ω)] + β‖χ‖

2
V − ⟨((1 −

1
2β)I + βK)w2 , χ⟩

Γ
. (4.5)

Since all the properties we have shown in the last section hold in H
1
2
0 (Γ), now we also split

w2 = w∗2 +
⟨w, μeq⟩Γ
⟨1, μeq⟩Γ

,

where w∗2 ∈ H
1
2
0 (Γ). Integration by parts yields

|w2|2H1(Ω) =

w2 −
⟨w, μeq⟩Γ
⟨1, μeq⟩Γ



2

H1(Ω)
= ⟨w∗2 , Sintw

∗
2 ⟩Γ , (4.6)

where Sint is the interior Steklov–Poincaré operator defined in (2.13). Combining (4.5) and (4.6), we obtain

A
β
1 (ŵ, ŵ) ≥ cell(U)[|w1|2H1(Ω) + 2⟨w1 , nΓ0 ⋅ ∇w2⟩Γ0 + ⟨w∗2 , Sintw

∗
2 ⟩Γ]

+ β‖χ‖2V − ⟨((1 −
1
2β)I + βK)w

∗
2 , χ⟩

Γ
,
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where we also used that

⟨((1 − 12β)I + βK)w2 , χ⟩
Γ
= ⟨((1 − 12β)I + βK)w

∗
2 , χ⟩

Γ
,

due to the fact ( 12 I − K)1 = 1 and that χ ∈ H
− 120 (Γ).

From the equivalence inequalities (3.13), we continue estimating

A
β
1 (ŵ, ŵ) ≥ cell(U)[|w1|2H1(Ω) + 2⟨w1 , nΓ0 ⋅ ∇w2⟩Γ0 + ⟨w∗2 , Sintw

∗
2 ⟩Γ]

+ β‖χ‖2V −

((1 − 12β)I + βK)w

∗
2
V−1
‖χ‖V

≥ cell(U)[|w1|2H1(Ω) + 2⟨w1 , nΓ0 ⋅ ∇w2⟩Γ0 + ⟨w∗2 , Sintw
∗
2 ⟩Γ]

+ β‖χ‖2V −
c1,βK
√cK
√⟨w∗2 , Sw

∗
2 ⟩Γ‖χ‖V .

Finally, using the spectral equivalence inequality (2.14), we obtain

A
β
1 (ŵ, ŵ) ≥ cell(U)[|w1|2H1(Ω) + 2⟨w1 , nΓ0 ⋅ ∇w2⟩Γ0 + ⟨w∗2 , Sintw

∗
2 ⟩Γ]

+ β‖χ‖2V −
c1,βK
√μmincK

√⟨w∗2 , Sintw
∗
2 ⟩Γ‖χ‖V

= cell(U)[|w1|2H1(Ω) + 2⟨w1 , nΓ0 ⋅ ∇w2⟩Γ0 ]

+ (
√⟨w∗2 , Sintw

∗
2 ⟩Γ

‖χ‖V
)

T

(
cell(U) −

c1,βK
2√μmincK

− c1,βK
2√μmincK β

)(
√⟨w∗2 , Sintw

∗
2 ⟩Γ

‖χ‖V
).

Since cell(U) + β > 0, the quadratic form in the right-hand side of the above estimate is positive definite if and
only if



cell(U) −
c1,βK

2√μmincK

− c1,βK
2√μmincK β


= βcell(U) −

(c1,βK )
2

4μmincK
> 0.

Calculating the smallest eigenvalue of the matrix above, we can bound

A
β
1 (ŵ, ŵ) ≥ C

β
stab[|w1|2H1(Ω) + 2⟨w1 , nΓ0 ⋅ ∇w2⟩Γ0 + ⟨w∗2 , Sintw

∗
2 ⟩Γ + ‖χ‖

2
V],

which proves the assertion by virtue of (4.6) and (4.4).

To obtain the optimal condition on cell(U) that guarantees the stability of the coupling, we look for β∗ such that
(c1,βK )

2

β is minimized. Using definition (3.8), we equivalently write

(c1,βK )
2

β
=
(1 − β)2

β
+ βc2K + 2(1 − β)cK

and easily obtain that, since cK ∈ [ 12 , 1), the optimal choice is

β∗ = 1 +
√cK(1 − cK)

1 − cK(1 − cK)
. (4.7)

With the latter choice, we deduce a stability condition of the form

cell(U) >
1 − 2√cK(1 − cK)

4μmin(1 −√cK(1 − cK))
. (4.8)

To concretely observe what we have earned in condition (4.8) with respect to the one obtained in [12, 13], which
were essentially

cell(U) >
cK

4μmin
, (4.9)

we compare the functions y = x and y = 1−2√x(1−x)
1−√x(1−x)

for x ∈ [ 12 , 1) in Figure 1.
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Figure 1: Comparison between conditions (4.8) and (4.9).

5 Numerical Results

In this section we provide two 2D numerical examples to support the results of Theorem 2. We first consider
a ring domain, where we are able to test the sharpness on the ellipticity estimate (4.1); then we deal with an
elliptic domain with a circular inclusion to test the optimality of β∗ as in (4.7).

For the discretization of the coupled variational formulation (2.4)–(2.5), we use a globally quasi-uniform
triangular finite element mesh in Ω with piecewise linear continuous basis functions {Φi}

NF
i=1, and the inherited

boundary element mesh on Γ with piecewise linear basis functions {φj}NB
j=1, where NF and NB are the numbers

of degrees of freedom related to the finite and boundary elements, respectively. In particular, we consider the
case ofU = sI for s ∈ (0, 1]. We remark that, whenU is a coefficient matrix, cell(U) is the minimal eigenvalue of
U(x) by varying x ∈ Ω, and the strongly monotone semi-linear formA

β
1 is indeed an elliptic bilinear form with

the ellipticity constant Cβstab.
We compute the discrete approximations of the ellipticity constant by the Rayleigh quotient

Cβstab = min
̂v=(v,μ)∈H1

0,Γ0
(Ω)×H− 1

20 (Γ)
̂v ̸=(0,0)

A
β
1 ( ̂v, ̂v)

|v|2H1(Ω) + ‖μ‖
2
V
= min
̂v=(v,μ)∈H1

0,Γ0
(Ω)×H− 1

20 (Γ)
̂v ̸=(0,0)

A
Sym,β
1 ( ̂v, ̂v)
|v|2H1(Ω) + ‖μ‖

2
V

with the symmetrized bilinear form, for ŵ = (w, χ), ̂v = (v, μ) ∈ H1
0,Γ0 (Ω) × H

− 120 (Γ),

A
Sym,β
1 (ŵ, ̂v) := s(∇w, ∇v)L2(Ω) + β⟨Vχ, μ⟩Γ −

1
2⟨((1 −

1
2β)I + βK)w, μ⟩Γ

−
1
2⟨v, ((1 −

1
2β)I + βK

)χ⟩
Γ
.

An approximation of the ellipticity constant Cβstab is now given by the minimal eigenvalue of the algebraic
eigenvalue problem

(
s𝔸 − 12 (1 −

1
2β)ℚ

T − 1
2β𝕂

T

− 12 (1 −
1
2β)ℚ −

1
2β𝕂 𝕍

)(
w
χ
) = σ(𝔸 𝕆
𝕆 𝕍
)(

w
χ
), (5.1)

where the entries of the single blocks are given by

ℚij := ⟨Φi |Γ , φj⟩Γ , 𝔸il := (∇Φi , ∇Φl)L2(Ω) , 𝕂ij := ⟨KΦi |Γ , φj⟩Γ , 𝕍kj := ⟨Vφk , φj⟩Γ

for i, l = 1, . . . , NF and j, k, = 1, . . . , NB.
We compute the minimal eigenvalue of problem (5.1) for a sequence of coefficients si := i

100 , i = 1, . . . , 100,
by using the Matlab eigenvalue solver eigs.
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Figure 2: (Ring domain). Minimal eigenvalues of (5.1) for s ∈ (0, 1] and β = 0.7 (left plot), β = 0.9 (right plot).
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Figure 3: (Ring domain). Minimal eigenvalues of (5.1) for s ∈ (0, 1] and β = 1.5 (left plot), and β = β∗ = 2 (right plot).

For particular domains, like circles, ellipses or rectangles, the contraction constant cK, as given in (2.9), is
explicitly known. However, in general, cK is unknown and, proceeding as in [18, Section 3.2], one can compute
an approximation of it by using the characterization via the Rayleigh quotient

c2K = max
v∈H

1
2
0 (Γ)

(
1
2 I + K)v


2
V−1

‖v‖2V−1

.

As afirst example,we consider a ring domainwith internal radius 1 and external radius 2. In Figures 2 and 3,
the computed minimal eigenvalues for two refinement levels are compared with the behavior of the constant
in the ellipticity estimate (4.1) as a function of the variable s, for some choices of β. The first refinement level
is associated with a mesh of diameter h = 1.13e−01, while the second level of diameter h = 5.68e−02, having
h = maxi,j‖xi − yj‖ by varying all the vertices of the meshes xi and yj . The lines of both refinement levels are on
top of the expected ones given by (4.2). We remark that, for a circle, we know cK = 1

2 , and so the optimal scaling
parameter is β∗ = 2. As we can see in Figure 3 (right plot), the bilinear formA2

1 is elliptic for all s.
As a second example, we consider the case when Γ is an ellipse of semiaxes a = 1.5 and b = 5, and Γ0 is

again a circle of radius 1. In this case, the contraction constant cK has been analytically derived in [14], precisely
cK = b
(a+b) , which in our case reduces to cK = 10

13 . In Figure 4, we observe that the theoretical optimal value
β∗ ≈ 1.73, obtained with formula (4.7), is confirmed in the practice by varying β and fixing a level of refinement
with mesh parameter h = 3.36e−01.
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Figure 4: (Elliptic domain with a circular inclusion). Minimal eigenvalues of (5.1) for s ∈ (0, 1] and various choices of β to test the
optimality of β∗ ≈ 1.73.

6 Transmission Interface Problems

The analysis developed in Section 4 can be applied also to the coupling of finite and boundary elements to
solve nonlinear interface problems. In this situation, Ω ⊂ ℝn (n = 2, 3) is a bounded domain with Lipschitz
boundary Γ, and Ωext := ℝn \ Ω with exterior normal vectors n, next, respectively. We consider the following
transmission interface problem:

{{{{{{{{{{{
{{{{{{{{{{{
{

− div(U∇u(x)) = f (x), x ∈ Ω,

−Δuext(x) = 0, x ∈ Ωext ,

u(x) − uext(x) = u0(x), x ∈ Γ,

n(x) ⋅ (U∇u(x)) + next(x) ⋅ ∇uext(x) = λ0(x), x ∈ Γ,

uext(x) = O( 1
‖x‖
), ‖x‖→∞.

(6.1)

The given data (f, u0 , λ0) ∈ L2(Ω) × H
1
2 (Γ) × H− 12 (Γ) satisfy, when n = 2, the compatibility condition

(f, 1)L2(Ω) + ⟨λ0 , 1⟩Γ = 0

to guarantee the radiation condition at infinity of uext.
When applying the weak formulation of the one-equation coupling for problem (6.1), one does not need,

a priori, to restrict the density λ to H−
1
20 (Γ), but it is possible to allow for the bigger space H− 12 (Γ). This is due

to the compatibility condition on f and λ0, and the absence of an interior Dirichlet boundary condition. How-
ever, to guarantee the ellipticity of the single-layer operator V in H− 12 (Γ), when n = 2, we need to assume that
diam(Ω) < 1. The semi-linear form associated to the weak formulation of (6.1) is the following:

Bβ( ̂u, ̂v) := (U∇u, ∇v)L2(Ω) + cell(U)⟨u, μeq⟩Γ⟨v, μeq⟩Γ − ⟨v, λ⟩Γ + β[⟨Vλ, μ⟩Γ + ⟨(
1
2 I − K)u, μ⟩Γ

] (6.2)

for ̂u = (u, λ), ̂v = (v, μ) ∈ H1(Ω) × H− 12 (Γ), and β ∈ ℝ \ {0}. As in [17], we have added the stabilizing term
cell(U)⟨ ⋅ , μeq⟩Γ⟨ ⋅ , μeq⟩Γ . The key idea is that (see [16, Theorem 2.6])

‖v‖2H1(Ω),Γ := ∫
Ω

|∇v(x)|2 dx + [⟨v, μeq⟩Γ]2 (6.3)

defines an equivalent norm in H1(Ω).



M. Ferrari, Developments on the Stability of the Non-symmetric FEM/BEM Coupling  385

Remark 3. It is worth noting that, in [1] (see also [8]), it has been shown that, to guarantee the stability of the
weak formulation of problem (6.1), the stabilization term cell(U)⟨ ⋅ , μeq⟩Γ⟨ ⋅ , μeq⟩Γ is not needed. The authors
have shown that there exists a semi-linear form, associated to an equivalent problem, which can be proved to
be strongly monotone. We point out that our analysis does not directly apply to the artificial semi-linear form
introduced in [1]. However, it is worth asking if similar results to those obtained in this paper can be obtained
as well, with applications of Theorem 1, and this might be the subject of future investigations.

Proceeding along the lines of the proof of Theorem 2, we can show the following results regarding the strong
monotonicity of the semi-linear formBβ with respect two different Sobolev spaces. In the first case, we consider
Bβ defined in H1(Ω) × H−

1
20 (Γ), and the result we report is, essentially, the analogue of Theorem 2. However,

although both variational formulations are equivalent to each other, the ellipticity results for the semi-linear
form Bβ are rather different when considering the space H1(Ω) × H− 12 (Γ). Indeed, the final ellipticity condi-
tion on cell(U) is in general stronger with respect to the one in H1(Ω) × H−

1
20 (Γ) since we had to introduce an

additional splitting for the density function in H− 12 (Γ).

Theorem 3. Let β > 0 be such that
1 −√cK(1 − cK)
1 − cK(1 − cK)

≤ β ≤ 1 +
√cK(1 − cK)

1 − cK(1 − cK)
.

(1) The case H−
1
20 (Γ). Let

cell(U) >
(c1,βK )

2

4βcK
be satisfied, with c1,βK defined in (3.8). Then the semi-linear form Bβ , as defined in (6.2), is H1(Ω) × H−

1
20 (Γ)-

strongly monotone satisfying

Bβ( ̂p − ̂v, ̂p − ̂v) ≥ Dβ
stab[‖p − v‖2H1(Ω),Γ + ‖δ − μ‖

2
V]

for all ̂p = (p, δ), ̂v = (v, μ) ∈ H1(Ω) × H−
1
20 (Γ), where

Dβ
stab := min{cell(U),

1
2[cell(U) + β −

√(cell(U) − β)2 +
(c1,βK )2

cK
]}.

(2) The case H− 12 (Γ). Let

cell(U) > max{
(c1,βK )

2

4βcK
, (1 − β)

2

4β⟨1, μeq⟩Γ
} (6.4)

be satisfied, with c1,βK defined in (3.8), and μeq := V−11. If n = 2, suppose diam(Ω) < 1. Then the semi-linear
formBβ , as defined in (6.2), is H1(Ω) × H− 12 (Γ)-strongly monotone satisfying

Bβ( ̂p − ̂v, ̂p − ̂v) ≥ Eβstab[‖p − v‖2H1(Ω),Γ + ‖δ − μ‖
2
V]

for all ̂p = (p, δ), ̂v = (v, μ) ∈ H1(Ω) × H− 12 (Γ), where

Eβstab := min{cell(U),
1
2[cell(U) + β −

√(cell(U) − β)2 +
(c1,βK )2

cK
],

1
2[cell(U) + β −

√(cell(U) − β)2 +
(1 − β)2
⟨1, μeq⟩Γ

]}.

Proof. In the first case, the proof is very similar to the proof of Theorem 2, without the spectral equivalence
(2.14). Moreover, instead of the splitting (4.3), we use (in the same spirit of [17]) the simpler one, w = w̃ + wΓ ,
wΓ being the harmonic extension of w|Γ and w̃ ∈ H1

0(Ω).
In the second case, for arbitrary ̂p, ̂v ∈ H1(Ω) × H− 12 (Γ), we consider

Bβ( ̂p − ̂v, ̂p − ̂v) = (U∇p − U∇v, ∇w)L2(Ω) + cell(U)[⟨w, μeq⟩Γ]2 + β⟨Vχ, χ⟩Γ

− ⟨((1 − 12β)I + βK)w, χ⟩Γ
≥ cell(U)[|w̃|2H1(Ω) + |wΓ|2H1(Ω) + [⟨wΓ , μeq⟩Γ]2] + β‖χ‖2V

− ⟨((1 − 12β)I + βK)wΓ , χ⟩
Γ
, (6.5)
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where we have denoted ̂p − ̂v = ŵ = (w, χ) and we have used, like in the first case, the splitting w = w̃ + wΓ ,
wΓ being the harmonic extension of w|Γ and w̃ ∈ H1

0(Ω). We introduce the splitting

wΓ = w∗Γ +
⟨wΓ , μeq⟩Γ
⟨1, μeq⟩Γ

,

where w∗Γ ∈ H
1
2
0 (Γ). By applying Green’s first formula, we obtain

|wΓ|2H1(Ω) = ⟨w
∗
Γ , Sw
∗
Γ⟩Γ , (6.6)

where S is the interior Steklov–Poincaré operator defined in (2.11). We introduce a last splitting for χ, precisely

χ = χ∗ + ⟨1, χ⟩Γ
⟨1, μeq⟩Γ

μeq ,

where χ∗ ∈ H−
1
20 (Γ). One can readily deduce that

‖χ‖2V = ‖χ
∗‖2V +
[⟨1, χ⟩Γ]2
⟨1, μeq⟩Γ

(6.7)

and that

⟨((1 − 12β)I + βK)wΓ , χ⟩
Γ
= ⟨((1 − 12β)I + βK)w

∗
Γ , χ
∗⟩

Γ
+ (1 − β)

⟨wΓ , μeq⟩Γ⟨1, χ⟩Γ
⟨1, μeq⟩Γ

, (6.8)

using ( 12 I − K)1 = 1, w
∗
Γ ∈ H

1
2
0 (Γ) and χ∗ ∈ H

− 120 (Γ).
Combining (6.5) with (6.7), (6.6) and (6.8), we obtain

Bβ(ŵ, ŵ) ≥ cell(U)[|w̃|2H1(Ω) + ⟨w
∗
Γ , Sw
∗
Γ⟩Γ + [⟨wΓ , μeq⟩Γ]2] + β[‖χ∗‖2V +

[⟨1, χ⟩Γ]2
⟨1, μeq⟩Γ

]

−

((1 − 12β)I + βK)w

∗
Γ
V−1
‖χ∗‖V + (1 − β)

⟨wΓ , μeq⟩Γ⟨1, χ⟩Γ
⟨1, μeq⟩Γ

.

From the equivalence inequalities (3.13), we finally estimate

Bβ(ŵ, ŵ) ≥ cell(U)[|w̃|2H1(Ω) + ⟨w
∗
Γ , Sw
∗
Γ⟩Γ + [⟨wΓ , μeq⟩Γ]2] + β[‖χ∗‖2V +

[⟨1, χ⟩Γ]2
⟨1, μeq⟩Γ

]

−
c1,βK
√cK
√⟨w∗Γ , Sw

∗
Γ⟩Γ‖χ
∗‖V + (1 − β)

⟨wΓ , μeq⟩Γ⟨1, χ⟩Γ
⟨1, μeq⟩Γ

= cell(U)|w̃|2H1(Ω)

+(

√⟨w∗Γ , Sw
∗
Γ⟩Γ

‖χ∗‖V
⟨wΓ , μeq⟩Γ
⟨1,χ⟩Γ
√⟨1,μeq⟩Γ

)

T

((

(

cell(U) −
c1,βK
2√cK

0 0

− c1,βK
2√cK

β 0 0
0 0 cell(U) 1−β

2√⟨1,μeq⟩Γ

0 0 1−β
2√⟨1,μeq⟩Γ

β

))

)

(

√⟨w∗Γ , Sw
∗
Γ⟩Γ

‖χ∗‖V
⟨wΓ , μeq⟩Γ
⟨1,χ⟩Γ
√⟨1,μeq⟩Γ

).

Since cell(U) + β > 0, the quadratic form is positive definite if and only if

cell(U)β −
(c1,βK )

2

4cK
> 0 and cell(U)β −

(1 − β)2
4⟨1, μeq⟩Γ

> 0.

Calculating the smallest eigenvalue of the matrix above, we can bound

Bβ(ŵ, ŵ) ≥ Eβstab[|w̃|2H1(Ω) + ⟨w
∗
Γ , Sw
∗
Γ⟩Γ + [⟨wΓ , μeq⟩Γ]2 + ‖χ∗‖2V +

[⟨1, χ⟩Γ]2
⟨1, μeq⟩Γ

],

which proves the assertion thanks to (6.3), (6.6) and (6.7).
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We remark that assumption (6.4) is, again, a generalization of that proposed in [12]; in fact, for β = 1, this condi-
tion reduces to that one. The quantity ⟨1, μeq⟩Γ is also called capacity of Γ, and for a circle of radius R, this can
be computed analytically (see [13, Section 4]),

⟨1, μeq⟩Γ = −
log R
2π .

Therefore, recalling that, in this case, cK = 1
2 , for a circle of radius R, condition (6.4) reduces to

cell(U) > max{
(2 − β)
4β , − (1 − β)

2 log R
8πβ }. (6.9)

For R ∈ (0, 1), one can show that the optimal β∗ ∈ [ 23 , 2] that minimizes the right-hand side of (6.9) is

β∗ =
log R + π −√π2 − 2π log R

log R ,

and the condition attained is

cell(U) >
log R − π +√π2 − 2π log R

4(log R + π −√π2 − 2π log R)
.
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