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Abstract
Robust condition monitoring of geared wind turbine drive-train is in general very challenging because of the
complex non-stationary operation conditions to which the machine is subjected. Nevertheless, this issue is
particularly important because gearbox damages account for at least the 20% of wind turbines unavailability
time. In this work, a new method for wind turbine drive-train condition monitoring is proposed: the gen-
eral idea is that vibrations are measured at the tower, instead that at the drive-train. The strength point of
this approach is that measurements can be easily performed in industrial plants without security issues and
without interrupting the normal operation. The drawback is that extracting knowledge about the drive-train
from tower vibration data is challenging: in this work, the main idea for circumventing this issue has been
to measure vibrations simultaneously at the highest possible number of wind turbines in the wind farm of
interest. The general idea for processing the data is selecting one wind turbine as target for the validation and
the other wind turbines as references for training and testing. The data are analysed in the time domain and
the most common statistical features (root mean square, peak, crest factor, skewness, kurtosis) are computed
on independent chunks of the vibration time series. The resulting data set in the feature space therefore
reduces to a matrix, from which the rows corresponding to the target wind turbine, if there is a damage,
should be highlighted as statistically distinguishable with respect to the rest of the matrix. The application of
this algorithm is justified by univariate statistical tests on the selected time-domain features and by a visual
inspection of the data set via Principal Component Analysis. Finally, a novelty index based on the Maha-
lanobis distance is used to detect the possible anomalous conditions at the target wind turbine. The present
work is based on field measurement campaigns, performed by the authors at the wind farms owned by the
Renvico company during years 2018 and 2019 and 2020: this has allowed testing the data processing meth-
ods on several damage test cases of different severity and the main result is that it is possible to successfully
individuate damaged wind turbines.

1 Introduction

The diagnosis of gears and bearings faults of gearbox-based systems [1] is particularly challenging, espe-
cially if the operation conditions are non-stationary.

This is true in particular for modern horizontal-axis wind turbine technology: wind turbines operate in field
under non-stationary conditions that can likely be extreme and are affected by the ambient turbulence. In the
recent review [2] about wind turbine gearbox condition monitoring through vibration analysis, the study in
[3] is cited, basing on which gearbox failures account for the order of 25% of all the wind turbine failures;
furthermore, the average downtime for this kind of failures is particularly high [4]. In [5], it is estimated that
bearings cause around 70% of gearbox downtime and 21–70% of generator downtime depending on wind
turbine size: 21% on small generators (rated power lower than 1 MW), 70% on medium generators (rated



power between 1 MW and 2 MW) and 50% on large generators (rated power higher than 2 MW).

On these grounds, it is evident that an efficient vibration-based wind turbine drive-train condition monitoring
passes through the separation of the faulty signatures from the masking signals, due to the other rolling
elements like the gears or the shafts and this is a complex objective because wind turbines are subjected to
non-stationary conditions. A powerful methodology is based on the fact that the signatures due to gears and
shafts are deterministic and fault signatures are stochastic and can be treated as cyclo-stationary [6] around
their fundamental period. The downside of this kind of analysis is that the angular speed of the rotor must
be measured with high sampling rate and therefore its application to wind turbines operating in field is far
from obvious: for this reason, several studies deal with numerical simulations [7] and laboratory test rig
measurements [8].

Real world data are analyzed for example in [9], where Signal Intensity Estimator is employed for tackling
not only high-dimensionality field data but also very extremely modulated data; furthermore, visual inspec-
tion (through Principal Component Analysis) of statistical features extracted from the data sets of interest
result being particularly useful for the prognostic analysis.

Basing on these considerations, the general idea of the present study is inquiring if it is possible to detect
wind turbine drive-train damages by processing appropriately vibration measurements collected at the tower.
The rationale for this purpose is that tower vibrations have the great pro that they can be collected without
impacting on wind turbine operation and therefore could in perspective be used as unsupervised diagnostic
tool on vasts wind turbine portfolios; the drawback is that this kind of measurements must be treated like
a black box in lack of the transfer function from the component of interest to the tower. The study in
[10] provides meaningful indications of the fact that it is possible diagnosing wind turbine drive-train faults
through tower vibration measurements: this kind of measurements is processed through Empirical Mode
Decomposition and the outcomes are correlated with the vibration signals acquired directly from the target
damaged generator bearings.

The objective of this study is renouncing to the crosscheck against vibration measurements collected at the
damaged subcomponent because the perspective is contributing to a framework for unsupervised condition
monitoring: therefore, only tower vibration measurements collected by the authors are employed for the
present study. The keystone for reliably detecting anomalies is comparing wind turbines in the same wind
farm: measurements are acquired simultaneously or nearly-simultaneously at the highest possible number of
wind turbines.

Measurements have been collected at a wind farm sited in Italy, owned by the Renvico company, featuring
six 2 MW wind turbines. Five wind turbines have been selected for this study: three reference healthy
ones and two target ones. The former target wind turbine is damaged at the high-speed shaft bearing (as
independently indicated by oil particle counting analysis), the latter target wind turbine had a planetary shaft
bearing damage and the bearing of interest was substituted some weeks before the measurement campaign
was conducted. It should be noticed that further measurement campaigns and further test case studies had
to be conducted in the early months of 2020 but it resulted impossible due to the COVID-19 outbreak and
therefore the present study has overlaps with [11].

If the methods proposed in this work are reliable, it should be possible to distinguish the damaged target wind
turbine with respect to the reference healthy ones, while the recovered wind turbine should be indistinguish-
able with respect to the reference ones. In this study, it is shown that this is indeed the case. Summarizing,
the post-processing algorithm proceeds as follows: vibration measurements are analyzed in the time domain
through a multivariate Novelty Detection algorithm based on the analysis of simple statistical features; the
application of this algorithm is supported on the ground of visual inspection of the statistical features data set
through Principal Component Analysis. Finally, a novelty index based on the Mahalanobis distance is used
to distinguish the target from the reference wind turbines.

The structure of the manuscript is therefore the following: in Section 2, the test case and the measurements
are described; Section 3 is devoted to the methods; in Section 4 the results are collected and discussed;
finally, in Section 5 conclusions are drawn and further directions of this study are indicated.



2 Test case description

The wind farm is composed of six 2 MW wind turbines and it is sited in southern Italy. The layout of the wind
farm is reported in Figure 1: the damaged wind turbine (WTG03) is indicated in red, the healthy reference
wind turbines (WTG02, WTG04, WTG05) are indicated in green and the recovered wind turbine (WTG06)
is indicated in blue. The damage at WTG03 regards the high speed shaft bearing, the recovered damage at
WTG06 regarded a planetary bearing. WTG03 has been independently diagnosed on the basis of oil particle
counting and it has operated for four months from detection to intervention. When the measurements for this
work have been conducted, WTG03 was operating normally.

Figure 1: The layout of the wind farm. The healthy wind turbines are indicated in green, the damaged in red
and the recovered in blue.

The measurement procedure is the following: accelerometers have been employed inside the tower of the
wind turbine, measuring the longitudinal (x-axis) and transversal (y-axis) vibrations at a a height of the order
of two meters with respect to the tower base. A sketch is reported in Figure 2. Each acquisition therefore
consists of 2 channels and these are sampled at 12.8 kHz for at least 2 minutes.

Figure 2: Definition of the reference frame for the longitudinal and the transversal directions.

The vibration time series have been organized as indicated in Table 1. It is important to notice that acqui-
sitions have been performed within 3 hours, but there are always two contemporary acquisitions (one at a



reference wind turbines and one at the target ones), so that the risk that operational or environmental effects
could be confounded for damage is reduced.

Table 1: The time series selection

TS number Wind turbine Wind turbine status Acquisition time Use Generator rpm
1 WTG02 healthy 14:15 reference - calibration 1362
2 WTG04 healthy 14:55 reference - calibration 1199
3 WTG05 healthy 15:25 reference - calibration 1185
4 WTG02 healthy 14:25 reference - validation 1242
5 WTG04 healthy 15:05 reference - validation 1376
6 WTG05 healthy 15:35 reference - validation 1083
7 WTG06 repaired 13:00 target - validation 1694
8 WTG06 repaired 13:10 target - validation 1584
9 WTG06 repaired 13:20 target - validation 1537
10 WTG03 damaged 13:00 target - validation 1585
11 WTG03 damaged 13:10 target - validation 1468
12 WTG03 damaged 13:20 target - validation 1579
13 WTG03 damaged 14:15 target - validation 1338
14 WTG03 damaged 14:25 target - validation 1399
15 WTG03 damaged 14:55 target - validation 1333
16 WTG03 damaged 15:05 target - validation 1365
17 WTG03 damaged 15:25 target - validation 1274
18 WTG03 damaged 15:35 target - validation 1207

3 Methods

The data pre-processing proposed in this work consists of three steps:

1. a pre-treatment of the single accelerometric tracks to remove possible non-physical trends (due, for
example, to disturbances);

2. the extraction of the selected statistical features;

3. a multivariate anomaly cleaning, in order to remove from the analysis the chunks of the signal that
likely describe the wind turbine in adaptation to a change of the work condition.

The method for damage detection is divided in three sub-analyses [12]:

1. at first the goodness of the selected features and of the pre-processing is assessed univariately. This
is performed as a univariate test of hypothesis exploiting the ANOVA (Univariate Analysis of Vari-
ance) to investigate the damage detection ability of the single features extracted from the two different
channels.

2. Then, in order to visualize the multivariate dataset, a Principal Component Analysis is performed.

3. Finally, an unsupervised damage detection implemented in terms of multivariate Novelty Detection is
used to detect the damaged wind turbine distinguishing from the other machines.

A scheme of the work flow is reported in Figure 3.



Figure 3: Block diagram of the data analysis procedure.

3.1 Data pre-processing

Some available acceleration signals have non-physical trends, probably due to the strong electromagnetic
fields which can interest the area around wind farm. In signal processing, it is very common to deal with
trends by considering them as the low-frequency content of the signal, which can be then divided into a
long-term contribution (i.e. the trend), and a short term (high frequency) contribution. Hence, a trend can be
highlighted by low-pass filtering the original signal to remove the high-frequency fluctuations: in the present
study, the moving average filter [13] with a cut-off of the order of 500 Hz has been employed.

Furthermore, some abnormal spikes can still be found in the residual signal. In order to compensate also for
this effect, a Hampel filter is used. The Hampel filter is an on-line two steps procedure meant to identify
univariate local outliers and substitute such samples with more plausible values. To ensure robustness, the
local outliers are not identified through the usual 3σ rule, but using the median and the Median Absolute
Deviation (MAD) [14, 15]. If a sample from the windowed signal sw (i.e., a chunk of the signal in the
±MM samples range) falls out of the confidence interval of

|sw −median(sw)| ≤ 3 · 1.4826MAD (1)

it is considered an outlier and is removed and substituted with the median value median(sw). In this work, a
window of MM = ±22 samples was used.

The final result of data pre-processing in depicted in Figures 4 and 5. Figure 4 deals with a sample time
series and Figure 5 deals with the zoom on a time series excerpt. The upper plots in Figure 4 and 5 represent
the raw data and the data trend (filtered with the moving average), the lower plots represent the data trend
and the data trend removed of the outliers (through the Hampel filter).
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Figure 4: A sample time series of the raw and processed signal.
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Figure 5: Zoom on a sample time series of the raw and processed signal.

3.2 Features extraction

The following statistical features have been selected for this study:

1. Root Mean Square;

2. Skewness;

3. Kurtosis;

4. Peak;

5. Crest Factor.

To guarantee the reliability of the method, many measurement points are necessary [16]. The above features
have therefore been extracted on independent (no overlap) excerpts of the original signals: each acquisition
is divided in 100 sub-parts on which the five features are computed. Doing this, one obtains a features matrix
X where the number of columns is n = 10 and it is given by the product of the number of channels (2)
times the number of computed features (5); the number of rows is d = 1800 and it corresponds to number of
chunks extracted from the 18 acquisitions of Table 1 placed consecutively.

3.3 Multivariate data cleaning

An automatic routine is here proposed for removing the data-points in the 10-dimensional (d = 10) feature
space (5 features, 2 channels) which are multivariate outliers with respect to the sample of 100 observations
corresponding to that particular acquisition. The routine is based on the multi-dimensional generalization of
the 3σ rule.

This can be easily implemented through the Mahalanobis distance, which corresponds to the standard-
ized distance of a point from the centroid

(
X̄
)

of the ellipsoid defined by the covariance matrix S =
1
N

(
X − X̄

) (
X − X̄

)T The Mahalanobis distance MD is defined as (Equation 2):

MD =
√(

X − X̄
)
S−1

(
X − X̄

)
, (2)

so that, if the estimates X̄ and S can be confused with the true values and X is assumed normal, the simple
confidence interval based on the chi-squared (χ2) critical value holds (Equation 3):

MD <
√
χ2
d;0.997. (3)



If the assumption of a χ2 distribution for the MD does not hold, a simple but effective method for getting
robust estimates of X̄ and S is thorough the Minimum Covariance Determinant (MCD) [17].

3.4 Hypothesis test

The ANOVA (univariate Analysis Of Variance) is a statistical method based on the analysis of variance
and it is employed to test the null hypothesis H0 that all the considered groups populations come from the
same distribution: in other words, the null hypothesis corresponds to the fact that no significant difference
is detectable among the groups. The null hypothesis will be accepted or rejected according to a statistical
summary F̂ :

F̂ =

σ2
bg

G−1

σ2
wg

N−G

' F (G− 1, N −G), (4)

where

σ2bg =

G∑
j=1

nj
N

(ȳ − µj)2 , (5)

σ2wg =
1

N

G∑
j=1

nj∑
i=1

(ȳij − µj)2 , (6)

with G being the number of groups of size nj , N being the global number of samples with overall average ȳ,
σ2bg being the variance between the groups, σ2wg being the variance within the groups (basically the average
of the variance computed in each group).

The null hypothesis H0 will be accepted with a confidence level 1−α if the summary F̂ is less extreme than
a critical value Fα(G− 1, N −G). The corresponding p-value is computed: it represents the the probability
that the summary is more extreme than the observed F̂ , assuming that H0 is true. If the p-value is less than
α (a typical threshold selection is 5%), H0 is rejected. These concepts are sketched in Figure 6.

Figure 6: F (G− 1, N −G) distribution, with highlighted the 5% critical value and the concept of p-value.

For this analysis, the data sets are divided in 2 groups: the former one contains the healthy samples (TS1-
TS6) and the latter one includes the features extracted from the time series of the damaged wind turbine
(TS10-18).



3.5 Principal Component Analysis

The PCA [18] is a space rotation to convert a set of correlated quantities into orthogonal variables called
principal components: the first principal component explains the largest variance of the data set and each
succeeding component explains the largest variance under the constraint of orthogonality with the preceding
ones. This technique is widely employed in multivariate statistics and it is powerful for visualizing multi-
dimensional data sets by projecting them to the first principal components, i.e. those explaining the largest
amount of the variance. In the present study, the statistical features matrix is PCA-rotated and projected to
the first principal components, in order to highlight distinguishable features of the damaged wind turbine
with respect to the reference ones.

3.6 Novelty Index

The Mahalanobis distance is particularly appropriate for highlighting data discordance in multi-dimensional
spaces, because it is non-dimensional and scale-invariant, and takes into account the correlations of the data
set. The Mahalanobis distance between one measurement z and the X distribution, whose covariance matrix
is S, is given by

MD =
√(

z − X̄
)
S−1

(
z − X̄

)
. (7)

In this study, the reference X distribution is selected as the statistical features matrix extracted from the
calibration data set of Table 1 (TS 1-3). The target z is selected as the statistical features matrix extracted
from the target data set of interest in Table 1. For example, computing the Mahalanobis distance, according
to Equation 7, for each features observation in TS 4-18, it is possible to appreciate the different statistical
novelty of the target (healthy, damaged and repaired) wind turbines with respect to the reference healthy
ones.

4 Results

The statistical features computed on the cleaned data sets are reported in Figure 7. The vertical lines divide
each plot in four areas corresponding respectively to healthy calibration data, healthy validation data, repaired
validation data, damaged validation data. From Figure 7, it clearly arise that the damaged wind turbine is
clearly distinguishable with respect to the healthy wind turbine and with respect to the repaired wind turbine
as well. Some difference arise in the repaired wind turbine with respect to the healthy wind turbines, but it
considered not relevant. For this reason, therefore, the data for the hypothesis test are grouped as follows: the
ANOVA is performed to test if significant differences can be found between the healthy turbines observations
(TS 1 to 9) and the damaged turbines observations (TS 10 to 18) and the results are reported in Table 2. As it
can be easily seen, all the features prove to be clearly good for detecting the damage, except the Crest Factor
of the accelerations from y-direction channel.

The four data sets (healthy training, healthy validation, repaired validation, damaged validation) are further
analyzed via visual inspection in Figure 8. The plots are two-dimensional, in the form of projections of the
data set on the first principal components (P1-P2, P1-P3, P2-P3, P3-P4). It can be noticed that the dispersion
of the damaged cloud (in red) is much larger, so that the red observations (in particular on the P2-P3 and
P3-P4 planes) result more scattered and distinguishable.

Finally, in Figure 9 the Novelty Index (Mahalanobis distance) is reported. The plots is divided by vertical
lines similarly to Figure 7, corresponding to healthy calibration data, healthy validation data, repaired valida-
tion data, damaged validation data. In red, a threshold is reported for novelty detection based on Montecarlo
simulations. It should be noticed that the repaired turbine data seems to show some differences with respect
to the original healthy data, but the main novelty detection (consistently with the expectation) regards the
damaged wind turbine. In this sense, it can be observed that the Mahalanobis distance is a very responsive
metric, because it highlights also some relevant difference between the repaired wind turbine and the healthy
wind turbines: these differences do not arise clearly from the qualitative analysis of the statistical features,



also if they are projected to the principal component planes (Figures 7-8). This strongly supports the use of
Mahalanobis distance for novelty detection and therefore for early fault diagnosis.

Figure 7: The statistical features computed on the cleaned data set. The different acquisitions are ordered
according to their corresponding TS number.

Table 2: The ANOVA p-values considering two groups: Healthy (TS 1 to 9) vs Damaged (TS 10 to 18)

Channel RMS Skewness Kurtosis Crest Factor Peak
1 (X-dir) 0 0.28 1.4 · 10−14 8.2 · 10−7 0
2 (Y-dir) 0 9.4 · 10−7 1.9 · 10−35 0.59 0



Figure 8: The statistical features computed on the cleaned data set. The different acquisitions are ordered
according to their corresponding TS number.

Figure 9: The Novelty Index computed via Mahalanobis Distance.



5 Conclusions

This study has been devoted to the investigation of the possibility of reliably diagnosing wind turbine drive-
train damages through the analysis of vibrations measured at the tower. The rationale for inquiring this
possibility is the perspective of setting up an unsupervised condition monitoring approach that can be em-
ployed on a large scale, without intervening on wind turbines operation. There are studies [10] supporting
that this objective is achievable, basing on the analysis of the correlation between tower vibrations and vi-
brations collected at a damaged generator bearing. The objective of this study has been renouncing to the
crosscheck against vibrations at the target sub-components: the keystone has been comparing the wind tur-
bines at the same wind farm, by measuring consecutively or almost consecutively at the highest possible
number of wind turbines. The problem therefore translates in highlighting the distinguishable features of the
tower vibrations at the damaged wind turbine with respect to the reference undamaged wind turbines.

A test case has been discussed in this work: it is a wind farm featuring six 2 MW wind turbines, one of
which had a damage at the high speed shaft bearing when the measurements were collected. Three reference
healthy wind turbines have been selected and a further target wind turbines has been individuated because it
suffered a planetary bearing damage and was recovered when the measurements have been collected.

The collected data have been appropriately pre-processed and statistical features (root mean square, skew-
ness, kurtosis, peak, crest factor) have been computed on independent excerpts of the time series. Through
Univariate Analysis of Variance, Principal Component Analysis, Novelty Analysis through the Mahalanobis
distance it has been possible to clearly distinguish the damaged wind turbine, while the recovered wind
turbine resulted being substantially indistinguishable with respect to the healthy reference wind turbines.

In general, the algorithm proved to be an excellent damage detection routine, considering the quickness, the
simplicity and the full independence from human interaction, which makes it suitable for real time imple-
mentations. Another important development of this research is empowering the experimental techniques, in
order to have high-frequency rotor angular speed measurements: this direction is currently being explored
through video-tachometer [19] because it preserves the zero-impact philosophy of the approach. The avail-
ability of this kind of information, as well as of the gearbox geometry, is decisive for obtaining a precise
identification of the damage location.

A further direction is being explored and it has been inspired by the impossibility of performing on site
measurement during the period of COVID-19 outbreak: it deals with this kind of analysis applied on the data
provided by the industrial condition monitoring system of the wind turbines, where available.
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[5] H. D. M. de Azevedo, A. M. Araújo, and N. Bouchonneau, “A review of wind turbine bearing condition
monitoring: State of the art and challenges,” Renewable and Sustainable Energy Reviews, vol. 56, pp.
368–379, 2016.

[6] J. Antoni, “Cyclic spectral analysis in practice,” Mechanical Systems and Signal Processing, vol. 21,
no. 2, pp. 597–630, 2007.

[7] Z. Feng, X. Chen, and M. Liang, “Iterative generalized synchrosqueezing transform for fault diagnosis
of wind turbine planetary gearbox under nonstationary conditions,” Mechanical Systems and Signal
Processing, vol. 52, pp. 360–375, 2015.

[8] X. Wang, X. Yan, and Y. He, “Weak fault feature extraction and enhancement of wind turbine bearing
based on ocycbd and svdd,” Applied Sciences, vol. 9, no. 18, p. 3706, 2019.

[9] M. Elforjani, “Diagnosis and prognosis of real world wind turbine gears,” Renewable Energy, vol. 147,
pp. 1676–1693, 2020.

[10] E. Mollasalehi, D. Wood, and Q. Sun, “Indicative fault diagnosis of wind turbine generator bearings
using tower sound and vibration,” Energies, vol. 10, no. 11, p. 1853, 2017.

[11] F. Castellani, L. Garibaldi, A. P. Daga, D. Astolfi, and F. Natili, “Diagnosis of faulty wind turbine
bearings using tower vibration measurements,” Energies, vol. 13, no. 6, p. 1474, 2020.

[12] A. P. Daga and L. Garibaldi, “Machine vibration monitoring for diagnostics through hypothesis testing,”
Information, vol. 10, no. 6, p. 204, 2019.

[13] S. W. Smith et al., “The scientist and engineer’s guide to digital signal processing,” 1997.

[14] H. Liu, S. Shah, and W. Jiang, “On-line outlier detection and data cleaning,” Computers & chemical
engineering, vol. 28, no. 9, pp. 1635–1647, 2004.

[15] R. K. Pearson, Y. Neuvo, J. Astola, and M. Gabbouj, “The class of generalized hampel filters,” in 2015
23rd European Signal Processing Conference (EUSIPCO). IEEE, 2015, pp. 2501–2505.

[16] A. P. Daga, A. Fasana, S. Marchesiello, and L. Garibaldi, “The politecnico di torino rolling bearing test
rig: Description and analysis of open access data,” Mechanical Systems and Signal Processing, vol.
120, pp. 252–273, 2019.

[17] M. Hubert and M. Debruyne, “Minimum covariance determinant,” Wiley interdisciplinary reviews:
Computational statistics, vol. 2, no. 1, pp. 36–43, 2010.

[18] H. Abdi and L. J. Williams, “Principal component analysis,” Wiley interdisciplinary reviews: computa-
tional statistics, vol. 2, no. 4, pp. 433–459, 2010.

[19] A. P. Daga and L. Garibaldi, “Ga-adaptive template matching for offline shape motion tracking based
on edge detection: Ias estimation from the survishno 2019 challenge video for machine diagnostics
purposes,” Algorithms, vol. 13, no. 2, p. 33, 2020.


	Introduction
	Test case description
	Methods
	Data pre-processing
	Features extraction
	Multivariate data cleaning
	Hypothesis test
	Principal Component Analysis
	Novelty Index

	Results
	Conclusions

