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Revolutionizing urban mapping: 
deep learning and data fusion 
strategies for accurate building 
footprint segmentation
P. Dabove 1*, M. Daud 2 & L. Olivotto 2

In the dynamic urban landscape, understanding the distribution of buildings is paramount. Extracting 
and delineating building footprints from high-resolution images, captured by aerial platforms 
or satellites, is essential but challenging to accomplish manually, due to the abundance of high-
resolution data. Automation becomes imperative, yet it introduces complexities related to handling 
diverse data sources and the computational demands of advanced algorithms. The innovative solution 
proposed in this paper addresses some intricate challenges occurring when integrating deep learning 
and data fusion on Earth Observed imagery. By merging RGB orthophotos with Digital Surface 
Models, deriving from the same aerial high-resolution surveys, an integrated consistent four-band 
dataset is generated. This unified approach, focused on the extraction of height information through 
stereoscopy utilizing a singular source, facilitates enhanced pixel-to-pixel data fusion. Employing 
DeepLabv3 algorithms, a state-of-the-art semantic segmentation network for multi-scale context, 
pixel-based segmentation on the integrated dataset was performed, excelling in capturing intricate 
details, particularly when enhanced by the additional height information deriving from the Digital 
Surface Models acquired over urban landscapes. Evaluation over a 21  km2 area in Turin, Italy, 
featuring diverse building frameworks, showcases how the proposed approach leads towards superior 
accuracy levels and building boundary refinement. Notably, the methodology discussed in the 
present article, significantly reduces training time compared to conventional approaches like U-Net, 
overcoming inherent challenges in high-resolution data automation. By establishing the effectiveness 
of leveraging DeepLabv3 algorithms on an integrated dataset for precise building footprint 
segmentation, the present contribution holds promise for applications in 3D modelling, Change 
detection and urban planning. An approach favouring the application of deep learning strategies 
on integrated high-resolution datasets can then guide decision-making processes facilitating urban 
management tasks.

Keywords Segmentation, Building footprint, Data fusion, Urban planning, Deep learning

Building footprint segmentation is the process of identifying and outlining the exact location and shape of 
buildings from aerial or satellite imagery. Building footprints are crucial in various applications, including urban 
planning, infrastructure management, and land use  analysis1. In the context of urban planning, they offer valu-
able insights into building distribution, facilitating efficient land use and development  strategies2. Accurate 
segmentation of building footprints is equally essential for change detection, enabling the identification of new 
constructions, demolitions, or building alterations over  time3.

Beyond urban planning, precise building footprint segmentation holds significance in natural hazard manage-
ment and digital twin model  development4. It contributes to vulnerability assessments, guides disaster response 
strategies, and enhances the fidelity of digital twins for realistic  simulations5. Furthermore, its applications extend 
to 3D city modelling and scene perception, supporting the creation of lifelike visualizations and immersive virtual 
environments within digital twins.

The proliferation of high-resolution orthophotos captured by airborne vehicles, commercial satellites, 
and unmanned devices has made manual building segmentation impractical due to the challenges posed by 
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substantial data volumes. Consequently, exploring automation processes has become imperative, although not 
without challenges such as occlusions, diverse building types, and the complexity of urban landscapes. This shift 
towards automation has become particularly relevant as automatic methods for Building Footprint Segmentation 
can be broadly categorised into three fields.

Rule-based  methods6 rely on predefined criteria and heuristics, while machine learning methods, such as sup-
port vector  machines7 and random  forests8,9, use labelled training data for automatic learning and identification 
of building structures. Nevertheless, limitations can be encountered when using the above-mentioned methods. 
While rule-based approaches struggle in complex urban landscapes and varying building types, machine learn-
ing methods demand extensive labeled data facing newer challenges when being adapted to new environments.

The rise of deep learning  techniques10, particularly convolutional neural networks, has showcased remarkable 
capabilities in capturing complex spatial patterns and semantic information from visual data, making them well-
suited for building footprint segmentation. Despite their effectiveness, most deep learning methods primarily 
leverage RGB imagery, limiting their ability to capture crucial height information in urban contexts. To address 
this limitation, some approaches incorporate multi-source data, such as  LIDAR11–15, synthetic aperture  radar16, or 
multi-spectral  imagery17. However, adopting multi-source data as a strategy for building footprint segmentation 
poses notable challenges, encompassing elevated data acquisition costs, intricate data registration complexities, 
and the imperative demand for algorithm calibration.

Alternatively, adopting sophisticated advanced algorithms emerges as a potential avenue to improve seg-
mentation results; however, the present, frequently leads to greater computational requirements and extended 
processing times. Despite the potential improvement in accuracy, these intricate methodologies counter sub-
stantial tasks related to computational resources and time  efficiency18. Against the increasing prevalence of high-
resolution orthophotos, a critical demand arises for methods aimed towards efficient management of large-scale 
data without compromising either accuracy or integrity.

Facing the above challenges, our approach emphasizes the essential balance between segmentation enhance-
ment and practicality. By integrating various data sources, our method aims to overcome traditional limitations, 
achieving superior accuracy in building footprint segmentation. This highlights the crucial need to advance 
algorithms and data fusion techniques for more resource-efficient solutions in urban environment analysis.

This paper proposes a novel method to address the challenges of building footprint segmentation in urban 
environments. By focusing on improving the quality of data, a unique method has been developed to enhance 
the extraction of accurate and efficient results in complex surroundings, mainly pointing in two directions:

1. The choice of the dataset integrating data acquired from aerial surveys
2. The selection of the segmentation algorithm.

In the first step, high-resolution RGB orthomosaics and Digital Surface Models were combined into a four-
band integrated dataset. Using stereoscopy allows the creation of high-quality Digital Elevation Models from 
RGB imagery, resulting in consistent and unified datasets obtained from a single source. DSM, which stands for 
Digital Surface  Model19, offer elevation details which can significantly improve the contextual understanding 
of natural and artificial structures. This advancement eliminates the need for additional data sources, such as 
LIDAR or multi-spectral optical sensors, to be disposed of which could introduce additional issues. The high-
resolution data produces a high-quality DSM offering detailed elevation information significantly enhancing 
the understanding of the built structures and their related surroundings.

On the other hand, the application of the DeepLabv3 algorithm, designed explicitly for multi-scale context, 
excelled in capturing fine details.  DeepLabv320 is an advanced architecture utilising atrous convolution and 
atrous spatial pyramid pooling (ASPP) modules to capture multi-scale contextual information and refine object 
boundaries becoming a well-suited tool when working with the integrated RGB + DSM datasets. Having com-
pared the performance of DeepLabv3 with the traditional  UNET21 algorithm, the improvement achieved by this 
novel methodology has been demonstrated.

The study area used for evaluation spans 21  km2 over the city of Turin, Italy, encompassing diverse building 
types and a complex urban landscape. The current environment has specifically been chosen as it allows us to 
thoroughly test the effectiveness of the described approach. A 25 cm/pixel RGB orthomosaic and 50 cm/pixel 
Digital Surface Model collected by DigiSky S.r.l. Company have been the input data for the cited analysis. To 
efficiently measure the models’ performance, the recall, F1 score, and IoU techniques have been considered and 
analyzed. The results demonstrate the superiority of the proposed method in terms of accuracy and boundary 
refinement, showcasing the potential for practical applications in 3D modelling, change detection, and urban 
planning. This approach offers a promising solution for precise building footprint segmentation of built envi-
ronments by leveraging high-resolution integrated datasets and state-of-the-art segmentation algorithms. The 
combination of multi-channel data fusion and elevation information significantly enhances the accuracy and 
efficiency of the segmentation process, paving the way for improved urban planning and infrastructure manage-
ment strategies.

Summarizing, there are two main novelties in this research paper:

1. While overcoming the limitations of multi-source data integration challenges, the proposed method focuses 
on a singular yet robust source of data using stereoscopy, streamlining the process and mitigating diverse 
data acquisition costs, registration challenges, and algorithm calibration complexities.

2. Eliminating the need for highly complex algorithms in multi-source fusion, this approach simplifies the 
computational demands and processing time while maintaining effectiveness in building footprint segmen-
tation at the highest quality.
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Related work
The building footprint segmentation literature encompasses three primary domains. Rule-based methods rely 
on predefined rules and thresholds, machine learning employs algorithms used for image classification based on 
feature extraction, and deep learning utilises convolutional neural networks. Furthermore, data fusion integrates 
diverse sources to enhance precision during the building segmentation process.

Rule-based approaches
Within the domain of building parcelling methodologies, rule-based approaches have conventionally leaned 
on pre-established rules or thresholds, leveraging spectral or geometric features for  segmentation6,22. A pivotal 
historical exploration carried out in 1988 by Huertas and Nevatia, outlined a methodology to be used for build-
ing detection applied to aerial images. This method, rooted in edge detection, shadow analysis utilizing the 
direction of illumination, and shape analysis employing rectangular models to represent buildings, facilitated 
the segmentation of the built differentiating it from the surrounding  environment23.

Rule-based building detection faces adaptability and accuracy disputes in high-resolution optical remote 
sensing. Diverse urban structures lead to errors, as evident in the Vaihingen 2D Labeling  Contest24 where rule-
based methods underperformed compared to deep learning strategies. Their limited adaptability and reliance on 
simplistic models made them less favourable, but their potential as post-processing supplements for sophisticated 
methodologies has been  acknowledged25.

Machine learning approaches
Recently, machine learning has become an integral approach in building detection from remotely sensed ortho-
photos, employing various supervised and unsupervised algorithms for pixel or object-based classification. 
These computational methods can be based on features like colour, texture, or  shape26. Various classifiers, such 
as a support vector machine (SVM), have been used, for instance, for texture-based aerial image  segmentation7. 
A random forest (RF) classifier for spectral-based structure segmentation, instead, has been explored when 
operating on satellite  images8,9. Building upon this foundation, a research investigation explored the integration 
of DSM with orthophotos by applying five distinct algorithms, revealing the random forest algorithm as the 
most-performing  method9.

Furthermore, the integration of LiDAR data with high-resolution imagery has been examined in the past to 
enhance feature representation for building extraction. Utilising a building extraction layer with high-resolution 
imagery (HRI) data sees random forest classification being employed for adequate building type distinction in 
urban areas. However, challenges persist when harmonizing diverse data sources and when managing compu-
tational demands for processing multidimensional  data12. Ongoing obstacles in the field include point cloud 
sparsity, high spectral variability, urban object differences, surrounding complexity, and data  misalignment11. 
Feature selection or extraction problems may, furthermore, hinder machine-learning  approaches27. The com-
plexity of building footprints in traditional orthophotos can challenge model learning, leading to segmentation 
inaccuracies requiring a substantial amount of  variables9. Factors like relief displacement causing misalignment 
between the roof outline and the actual building footprint, especially for high-rise buildings, introduce complex-
ity impacting the learning capability of segmentation  models3. Addressing these challenges becomes crucial for 
the advancement of building detection and segmentation applications in complex urban environments.

Deep learning approaches
In the realm of building footprint segmentation, deep learning approaches employing convolutional neural net-
works (CNNs) have become pivotal, showcasing remarkable capabilities in pixel-based or object-based semantic 
segmentation on  orthophotos10,28,29. The extensive array of deep learning algorithms, including AlexNet, fully 
convolutional networks, U-Net, VGG, GoogLeNet, ResNet, DenseNet, LinkNet, pyramid scene parsing network, 
bottom-up and top-down feature pyramid network, and DeepLabv3 and DeepLabv3+, have demonstrated their 
efficiency in achieving both accuracy and robustness during the building footprint segmentation  process30.

While Mask R-CNN combined with building boundary regularization enhances the refinement of building 
polygons, the generalization ability to other contexts remains  limited31. Incorporating multi-source data, such 
as very high-resolution aerial imagery and multi-source GIS data, introduces challenges and opportunities, 
requiring careful consideration to achieve optimal  results32.

An approach where RGB orthophotos are used as the primary input in most deep-learning processes over-
looks the enrichment which elevation information can bring especially if derived from multi-sources. Conversely, 
the richness of details within multi-source data poses challenges in developing accurate deep-learning models 
for building footprint  extraction33. DeepLabv3, known for its edge precision and multi-scale context, can offer 
advantages when applied to a combination of RGB and DSM data, as highlighted by MAP-Net’s  comparison34,35.

While transformers have shown promise in building detection and segmentation tasks, there are limitations to 
consider. For instance, the complexity of transformer models may lead to increased computational requirements 
and training  times36. Additionally, transformers may struggle with capturing fine-grained details in building 
structures, especially in scenarios with limited data or diverse building  types37.

The evaluation of deep learning-based methods, used as a discriminant factor between buildings and the 
background, traditionally prioritizes metrics ensuring the extraction of the bulk of building footprints. However, 
these metrics are not yet fully able to address the computational time and resource requirements, emphasizing a 
comprehensive assessment  framework38. Applying deep learning models in remote sensing for building extrac-
tion tasks has inspired several researchers guiding them towards the exploration of advanced techniques capable 
of addressing the computational complexity inherent in such  tasks1.
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Data fusion approaches
Data fusion combines data coming from different sources to create a new dataset able to provide greater qual-
ity information than their respective sources. Data fusion can be performed at different levels, such as pixel, 
feature, or decision  levels39. In this paper, pixel-level data fusion has been the focus, combining the pixel values 
of different images to create a new dataset with more bands or a higher  resolution40. Data fusion with elevation 
information can therefore improve building footprint segmentation by enhancing the contrast between buildings 
and backgrounds aiding the segmentation process of building boundaries.

Historically, many methods using DSM data for building extraction did not incorporate RGB data, which 
limited their effectiveness. One  study41 used a two-step global optimization process on DSMs but faced chal-
lenges with low-rise and non-rectilinear buildings. Tian et al.42 used DSMs for urban change detection, relying on 
height information and Kullback–Leibler divergence measures, yet lacked the contextual richness that RGB data 
could provide. Bittner et al.43 applied a Fully Convolutional Network (FCN) to DSMs for building mask extrac-
tion, which could have been enhanced with RGB data for better material classification and feature extraction.

In contrast, a recent  study44, integrated RGB data with DSMs and the Visible-band Difference Vegetation 
Index (VDVI), significantly improving the accuracy of building extraction, especially in complex areas where 
buildings are obscured by vegetation. This fusion allowed for better differentiation between buildings and ground 
objects. Despite these advancements, the evolving field of deep learning necessitates more robust algorithms that 
can capture multi-contextual details to further refine segmentation accuracy in complex urban environments.

The study by Marmanis et al.45 examines the improved accuracy in semantic image segmentation of man-
made structures using boundary detection while recognizing the challenges faced when processing vegetation 
classes. A nuanced approach is then proposed as it may impact the result generalization in urban environments 
during data fusion scenarios.

Additional  studies15 highlight a significant achievement, throughout the successful fusion of both aerial 
imagery and LiDAR data, obtained in an active contour segmentation algorithm application. However, once 
again, multi-source data presents tremendous tasks, such as ensuring compatibility between different data for-
mats and the need for calibration front variations in resolution and accuracy, which comes with data fusion.

Literature also addresses the challenges associated with data fusion techniques. For instance, one  study3 
highlighted the misalignment between roof outlines and building footprints in traditional orthophotos, pos-
ing challenges for accurate building footprint extraction, especially for high-rise buildings. Additionally, other 
 evaluations46 discussed overcoming missing and incomplete modalities with Generative Adversarial Networks 
applied to the building footprint segmentation process.

By indicating the complexities involved in fusing diverse data modalities,  research33 demonstrated that incor-
porating additional height information improved the overall segmentation quality for building footprint extrac-
tion, significantly increasing prediction accuracy.

Data fusion emerges as a pivotal technique in building footprint segmentation, harnessing information from 
various sources to create enhanced datasets at different levels: pixel, feature, or decision  levels39. This paper 
concentrates on pixel-level data fusion, specifically blending pixel values from distinct images to yield a new 
image having expanded bands or heightened  resolution40. Highlighting the significance of elevation information 
in data fusion, particularly with Digital Surface Models (DSM), proves how building footprint segmentation 
can be enhanced and refined. Studies indicate that the fusion of RGB and DSM orthophotos outperforms RGB 
orthophotos alone, emphasizing improved accuracy and boundary  delineation32.

Despite the progress made in data fusion techniques, challenges persist. Integrating multi-source data, as 
demonstrated in the studies incorporating RGB with LiDAR data or employing advanced algorithms like the 
Gated Residual Refinement Network, presents hurdles such as compatibility issues, resolution variations, and 
the need for extensive labelled datasets for  training13,47. Notably, traditional orthophotos face misalignment 
challenges between roof outlines and building footprints, impacting accurate extraction, especially for high-rise 
 buildings3. The complexity is further magnified by missing and incomplete modalities, prompting innovative 
solutions, such as Generative Adversarial Networks, to be deployed for building footprint  segmentation46.

In navigating these challenges, recent studies underscore the transformative potential of incorporating addi-
tional height information in the fusion process. The integration of height data enhances the overall segmentation 
quality and significantly boosts prediction  accuracy33. As building footprint segmentation continues to evolve, 
the judicious exploration of data fusion methodologies, their challenges, and innovative solutions stand at the 
forefront, driving advancements in urban planning and within the change detection field.

Methodology
In this section, the methodology adopted by the current study is treated, including the used data sources, data 
fusion techniques, deep learning algorithms deployed, and evaluation metrics adopted.

Dataset description
The two basic raster layers used in this study, have been acquired by aerial photogrammetry campaigns carried 
out by DigiSky S.r.l. Company. The primary input raster files adopted are described as follows:

• RGB Orthomosaic: This raster holds three bands (Red, Green, and Blue) exhibiting a ground sampling resolu-
tion of 25 cm/pix (Fig. 1). It provides spectral information for building footprint segmentation.

• DSM raster layer: This raster file contains one band elevation information holding a resolution of 50 cm/
pixel. It was derived from stereoscopic triangulation processes applied to photogrammetric aerial images. It 
also provides elevation information for building footprint segmentation.
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Data fusion processing
This paper employs pixel-level data fusion, combining RGB and DSM Orthomosaics to create a four-band 
integrated dataset. This fusion (Fig. 2) enhances spectral and elevation information crucial for precise building 
footprint segmentation. The fusion process consisted of the following steps:

• Resampling the DSM raster layer had been resampled from 50 to 25 cm resolution using the nearest neighbour 
method to match the resolution of the RGB Orthomosaic.

• Cropping RGB and DSM Orthomosaics were both cropped to the same extent and size while holding the 
extent of the RGB Orthomosaic as a reference.

• Stacking RGB and DSM layers have been stacked along the band dimension to create a new dataset with four 
bands: Red, Green, Blue, and Elevation.

• Normalization pixel values were normalized as each band featured values ranging from [0, 1] using min–max 
normalization.

The data fusion process enhanced the contrast between buildings and backgrounds strengthening the segmen-
tation process of the building boundaries. Figure 3 displays a simple side-by-side comparison of the RGB, DSM, 
and the training dataset utilized for the present study. It clearly illustrates how the DSM influences boundary 
delineation, as shown in the binary image.

The two inputs mentioned above were used to create datasets for building footprint segmentation analysis:

Figure 1.  Example of different roof types in the case study.

Figure 2.  Schematic diagram of the data fusion process.
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• Primary dataset: This dataset originated using the RGB Orthomosaic (3 Bands). It provides only spectral 
information for building footprint segmentation.

• Integrated dataset: This dataset combines the RGB and DSM Orthomosaics (3 + 1 Bands). It provides both 
spectral and elevation information for building footprint segmentation.

Deep learning algorithms
This study employs U-Net and DeepLabv3, two leading deep learning algorithms utilizing convolutional neural 
networks for pixel-based semantic segmentation on orthophotos. Assigning class labels (building or non-build-
ing) to individual pixels results in one of the focal points of this article. With an extensive analysis, a comparison 
between the performance of these algorithms for both standalone and integrated datasets is carried out, evaluat-
ing accuracy and boundary delineation characteristics.

U‑Net
U-Net is a famous encoder–decoder architecture using skip connections to recover spatial information from 
low-level features. The encoder consists of convolutional layers which progressively reduce the spatial resolu-
tion whilst increasing the feature dimension. The decoder includes deconvolutional layers that progressively 
increase the spatial resolution and decrease the feature dimension. The skip connections link the encoder and 
decoder layers at corresponding resolutions concatenating their features. The output layer generates a pixel-wise 
prediction map exhibiting the same resolution as the input image. Figure 4 describes the architecture of the 
encoder–decoder of the U-Net  Algorithm21:

U-Net presents several advantages for building footprint segmentation. These can be synthesized as follows:

Figure 3.  Side-by-side comparison of RGB, DSM, and training dataset.

Figure 4.  Architecture of U-Net21.
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• Variable input sizes are handled producing output maps with high resolution.
• Capability of capturing both local and global features from different levels of abstraction.
• Fine-grained detail recovery starting from low-level features using skip connections.

However, U-Net also presents some limitations:

• Due to its fixed kernel size, it may not capture sufficient contextual information from large receptive fields.
• Its bilinear interpolation in deconvolutional layers can produce blurry or inaccurate boundaries.

DeepLabv3
DeepLabv3 is an advanced architecture using atrous convolution and atrous spatial pyramid pooling (ASPP) 
modules to capture multi-scale contextual information refining object boundaries. Atrous convolution allows 
the adjustment of the effective field of view of convolutional filters without changing their size or number of 
 parameters48. ASPP is, therefore, a technique that applies atrous convolution with different rates to capture 
features at multiple scales.

Figure  5 defines the architecture of the encoder-decoder of the U-Net Algorithm along with atrous 
 convolution20:

DeepLabv3 presents several advantages for building footprint segmentation, such as:

• It can handle large receptive fields efficiently using atrous convolution.
• It can capture multi-scale contextual information using ASPP modules.
• It can refine object boundaries using atrous rates that match object scales.

Despite the advantages, DeepLabv3 also introduces some limitations, such as:

• It may produce output maps with lower resolution than U-Net algorithms due to its down-sampling opera-
tions, requiring a binary classification in building footprint segmentation.

Training and validation data processing
During the data preparation phase, four hundred and fifty buildings were manually digitized using ArcGIS 
Pro software, relying on visual inspections of the RGB Orthomosaic. This dataset was thoughtfully cured to 
encompass various building characteristics, including varying sizes, shapes, roof types and orientations within 
the urban context. To facilitate the deep learning process, the digitized building footprints were converted into 
binary masks, each with a pixel size of 256 × 256—a binary value of 1 represented by building pixels, while 0 
denoted background pixels. Refer to Fig. 6 for an illustration of a sample binary mask.

The dataset was then partitioned into an 80% training set and a 20% validation set, maintaining the same 
repartition for both the primary and integrated datasets.

Subsequently, for the training and validation processing stages, TensorFlow has been employed as the refer-
ence deep learning framework. Framework complemented by the ArcGIS Pro 3.1 deep learning libraries used for 
tasks such as exporting tiles/masks, visualization, and sample preparation. The selected hardware configuration, 
featuring a 12 GB GDDR6X GPU RTX 3080, an Intel Core i7 9th generation CPU system, and 16 GB of System 
RAM, was specifically tailored to enhance the efficiency of the training and validation processes (Table 1).

Following are the parameters and flops:
Critical configurations for training included:

1. Utilization of the SoftMax activation function and cross-entropy loss function for pixel-wise classification.
2. Implementation of the Adam optimizer with a learning rate of 0.001 and a decay rate of 0.0001 for gradient 

descent.
3. Adoption of a batch size of 8 with 20 epochs for training. A stride of 128 pixels for sliding window inference.

Figure 5.  Architecture of  DeepLabv320.
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4. Incorporation of the orthogonal rotation technique for data augmentation.

Both U-Net and DeepLabv3 architectures utilize ResNet-50 as their backbone, leveraging its renowned skip 
connections to address the degradation problem affecting deep  networks49. This structure enhances feature 
extraction capabilities for accurate and rapid image segmentation across diverse datasets and tasks. The overall 
workflow diagram of the process is depicted in Fig. 7.

Results and analysis
The influence of data fusion and elevation information on building footprint segmentation will be examined in 
the upcoming sections using different evaluation metrics.

Evaluation metrics
Various result metrics have been considered and analyzed to assess our models’ performance for building foot-
print segmentation. These metrics are based on the confusion matrix (shown in Table 2), a table highlighting 
the number of true positives (TP), false positives (FP), true negatives (TN), and false negatives (FN) for each 
class (building or non-building).

The result metrics considered have been listed as follows:

• Precision The ratio of correctly predicted building pixels to the total number of predicted building pixels. It 
measures how precise the model responds during the identification of building pixels.

• Accuracy The ratio of correctly predicted pixels to the total number of pixels. It measures the accuracy of the 
model while identifying building and non-building pixels.

• Recall The ratio between correctly predicted building pixels to the total number of actual building pixels. It 
measures how complete the model is in the identification of building pixels.

• F1 score The harmonic mean of precision and recall. It measures the balance between precision and recall. It 
provides an overall look at how our model is performing and its sensitivity to precision and recall criteria.

Precision =
TP

TP + FP
.

Accuracy =
TP + TN

TP + TN + FP + FN
.

Recall =
TP

TP + FN
.

Figure 6.  Example of a binary mask.

Table 1.  Flops and params for the models.

Flops Parameters (M)

U-Net primary 84.53B 36.4

DeepLabv3 primary 50.08B 37.1

U-Net integrated 104.41B 36.5

DeepLabv3 integrated 62.60B 37.2



9

Vol.:(0123456789)

Scientific Reports |        (2024) 14:13510  | https://doi.org/10.1038/s41598-024-64231-0

www.nature.com/scientificreports/

• IoU (intersection over union) IoU measures the spatial agreement between predicted and actual building 
pixels. It is the ratio of the overlap area to the total area. Higher IoU indicates accurate segmentation.

To provide a more complete analysis, the time necessary to train 20 epochs for each model-dataset combina-
tion was reported, reflecting the computational efficiency of the models.

Performance evaluation
Table 3 reports the result metrics for each algorithm-dataset combination and the time required to train 20 
epochs.

The quantitative results presented in Table 3 reveal a nuanced interplay between model architecture, dataset 
complexity, and computational efficiency in building footprint segmentation. DeepLabv3 Integrated emerged as 
the top performer, achieving a 0.925 recall, 0.926 F1 score, and 0.873 IoU. This represents a notable improvement 

F1 = 2 ·
Precision · Recall

Precision + Recall
.

IoU =
TP

TP+FP+FN
.

Figure 7.  Workflow of a study.

Table 2.  Confusion matrix.

Actual building Actual non-building

Predicted building TP FP

Predicted non-building FN TN
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over DeepLabv3 Primary, with increases of 1.9%, 1.6%, and 3.1% respectively. This result is further supported by 
the visual analysis in Fig. 8, which reveals a clear advantage for DeepLabv3 Integrated across all evaluated metrics.

Both U-Net and DeepLabv3 benefited from the Integrated dataset, with DeepLabv3 showing a more sub-
stantial increase (2.2% on average across all metrics) compared to U-Net (1.9%). This suggests that DeepLabv3’s 
atrous spatial pyramid pooling (ASPP) module, which captures multi-scale contextual information, effectively 
leverages the additional features in the Integrated dataset, particularly in regions with varying building sizes.

Computationally, DeepLabv3 outperformed U-Net consistently in both datasets. DeepLabv3 Primary required 
168 min for 20 epochs, a 68.6% reduction compared to U-Net Primary’s 535 min, due to its efficient use of atrous 
convolutions. Even with the Integrated dataset, DeepLabv3 Integrated trained in 200 min, 64.4% faster than 
U-Net Integrated’s 563 min.

The Integrated dataset’s higher complexity (RGB + Digital Surface Model) enhanced the model’s ability to 
capture intricate details, resulting in improved segmentation performance and higher metrics such as recall, F1 
score, and IoU. The proportionally larger increase for DeepLabv3 likely stems from its enhanced ability to process 
the Integrated dataset’s complex features, offset by substantial gains in metrics, notably a 3.1% improvement in 
IoU in DeepLabv3 Integrated over DeepLabv3 Primary.

These observations are supported by the training and validation loss curves in Fig. 9, which show smooth 
and consistent convergence for the both models around 20 epochs.

These quantitative results underscore the superior performance of DeepLabv3, particularly when coupled 
with the Integrated dataset. The substantial improvement in all metrics, especially the IoU, coupled with its 
relative computational efficiency, positions DeepLabv3 Integrated as the optimal choice for building footprint 
segmentation in this context.

The findings of this study illuminate the pivotal role of data fusion and model architecture in achieving accu-
rate and efficient building footprint segmentation. Leveraging the complementary strengths of RGB and DSM 
data through the Integrated dataset significantly enhances segmentation performance, particularly for Deep-
Labv3, which excels at harnessing multi-scale contextual information. While the Integrated dataset introduces 
a computational overhead, the resulting gains in accuracy, as evidenced by the quantitative metrics, outweigh 
this trade-off.

These quantitative insights lay the groundwork for a deeper qualitative analysis in the subsequent section. 
A visual comparison of segmentation outputs across different model and dataset combinations will provide a 
more nuanced understanding of how data fusion and model architecture impacts the delineation of building 
footprints in complex urban environments. This qualitative analysis will further illuminate the strengths and 

Table 3.  Result metrics for each algorithm-dataset combination.

Precision Recall F1 IoU Time to train 20 epochs

U-Net primary 0.868 0.884 0.876 0.789 8 h 55 min

DeepLabv3 primary 0.914 0.908 0.911 0.847 2 h 48 min

U-Net integrated 0.894 0.891 0.892 0.816 9 h 23 min

DeepLabv3 integrated 0.928 0.925 0.926 0.873 3 h 20 min
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Figure 8.  Performance of each algorithm-dataset combination.



11

Vol.:(0123456789)

Scientific Reports |        (2024) 14:13510  | https://doi.org/10.1038/s41598-024-64231-0

www.nature.com/scientificreports/

weaknesses of each approach, offering valuable guidance for practitioners and researchers seeking to optimize 
urban mapping workflows.

Impact of data fusion and elevation information
Figure 10 provides a comprehensive visual assessment of the impact of data fusion and elevation information 
on building footprint segmentation across eight diverse and challenging urban scenarios. Each scenario features 
distinct building typologies, ranging from simple rectangular structures to those with complex shapes, irregular 
rooftops, and varying surrounding environments. This diversity allows for a nuanced evaluation of model per-
formance under realistic conditions.

The most striking observation is the significant improvement in U-Net’s performance when height infor-
mation is incorporated. In the first example, U-Net Primary struggles to differentiate closely spaced buildings, 
leading to under-segmentation and merged rooftops. This is a common challenge in dense urban areas where 
buildings are tightly packed. However, U-Net Integrated, leveraging the additional height data, clearly delineates 
individual buildings and avoids the merging error, showcasing the value of elevation information in resolving 
ambiguities caused by overlapping structures. This improvement is also evident in the third example, where 
U-Net Primary misclassifies part of a complex rooftop as background due to shadowing effects. The integrated 
model, however, accurately identifies the entire rooftop, highlighting the role of height information in disam-
biguating shadowed regions.

Despite the improvements brought by height information, U-Net Integrated is still surpassed by DeepLabv3 
Primary in most scenarios. This can be attributed to DeepLabv3’s superior architecture, which incorporates 
atrous spatial pyramid pooling (ASPP). This module allows the model to capture multi-scale contextual infor-
mation, enabling it to better understand the complex spatial relationships within the urban scene. In the second 
example, which features a building with an irregular shape and a courtyard, DeepLabv3 Primary produces a 
more accurate and continuous outline compared to U-Net Integrated, which struggles to maintain the build-
ing’s structural integrity. This indicates that DeepLabv3’s ASPP module is more effective at handling complex 
geometries and occlusions.

The integration of height information further enhances DeepLabv3’s already impressive performance. This 
improvement is most evident in the sixth and seventh examples, which depict buildings in areas with varying 
terrain elevation. In the sixth example, DeepLabv3 Primary misclassifies part of building as ground areas due to 
the similar spectral signatures of the building and the elevated ground. DeepLabv3 Integrated, however, leverages 
the height information to accurately distinguish between the building and the terrain, resulting in a cleaner and 
more precise segmentation mask.

In conclusion, the qualitative analysis presented in Fig. 10 visually reinforces the quantitative findings, offer-
ing a comprehensive understanding of how data fusion and model architecture influence building footprint 
segmentation performance. The figure showcases the superiority of DeepLabv3 Integrated across diverse build-
ing typologies and urban environments, highlighting its ability to accurately delineate building footprints even 

Figure 9.  Model complexity and stability of each algorithm-dataset combination.
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in challenging scenarios. The visual comparison of segmentation outputs not only confirms the quantitative 
improvements observed but also provides valuable insights into the specific strengths and weaknesses of each 
model and dataset combination. This qualitative assessment is crucial to understand the nuances of model 
behaviour while tailoring urban mapping workflows to specific contexts and requirements.

Discussion
The findings of this study highlight the transformative potential of data fusion in urban mapping, particularly 
in the context of building footprint segmentation. By synergically combining RGB and DSM data within the 
Integrated dataset, we have achieved significant improvements in segmentation accuracy, precision, and overall 
model performance. This is evident not only in the quantitative metrics presented but also in the qualitative 
visual analysis of Fig. 10, where the Integrated dataset consistently leads to more precise delineation of building 
boundaries, especially in complex urban environments.

While DeepLabv3 emerges as a superior architecture due to its atrous convolutions and ASPP module, which 
effectively capture multi-scale contextual information, the impact of the Integrated dataset is consistent across 
both DeepLabv3 and U-Net models. This demonstrates the generalizability of the data fusion approach and its 
potential for broader applicability in urban mapping tasks.

Interpretation of findings
The results unequivocally identify DeepLabv3 Integrated as the most effective algorithm-dataset combination 
for building footprint segmentation. It consistently outperforms other configurations in terms of recall, F1 score, 
and IoU, and exhibits a favourable trade-off between accuracy and computational efficiency.

Several factors contribute to the superior performance of DeepLabv3 Integrated:

1. Data fusion: The combination of RGB and DSM orthophotos provides a richer feature space for the model 
to learn from. RGB data captures the spectral characteristics of buildings and their surroundings, while 
DSM data offers valuable elevation information. This fusion allows the model to better distinguish between 
buildings and other urban features, particularly in areas with complex roof structures, varying elevations, 
or shadows.

2. DeepLabv3 architecture: The atrous convolutions and ASPP module in DeepLabv3 are particularly adept at 
capturing multi-scale contextual information. This allows the model to effectively integrate information from 
different spatial resolutions, leading to more accurate identification and delineation of building boundaries, 
even in challenging urban landscapes.

Figure 10.  Impact of data fusion and elevation information building footprint segmentation.
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While the effectiveness of DeepLabv3 has been demonstrated in previous studies, this research specifically 
highlights the synergistic impact of data fusion on its performance. The Integrated dataset not only enhances the 
accuracy and precision of DeepLabv3 but also makes it more robust to variations in building types and urban 
environments. This finding underscores the importance of considering data fusion strategies, not just as a means 
to augment existing datasets, but as an integral part of model development and optimization.

Generalizability and limitations
The proposed method demonstrates potential generalizability to other metropolitan areas with similar building 
characteristics, urban layouts, and environmental conditions as those found in Turin, Italy. However, several 
limitations warrant further investigation:

1. Region‑specific challenges: The method’s performance may degrade in regions with significantly different 
building typologies or urban environments. While the integration of DSM data generally improves perfor-
mance in low-contrast scenarios and with complex structures (as evidenced by Fig. 10), extreme cases may 
still pose challenges. For instance, regions with highly reflective surfaces or dense vegetation cover may 
require additional data preprocessing or specialized model adaptations.

2. Dataset limitations: The testing dataset, while representative of Turin’s urban landscape, may not be suffi-
ciently diverse to fully evaluate the model’s performance across different geographic regions or architectural 
styles. Furthermore, the manual digitization and visual inspection process, while carefully executed, may 
still introduce subtle errors or biases in the ground truth data. Future work should focus on expanding the 
dataset to include a wider range of urban environments and exploring automated or semi-automated label-
ling techniques to enhance the quality and diversity of ground truth data.

3. Alternative architectures: While U-Net and DeepLabv3 provide a strong foundation for building footprint 
segmentation, exploring alternative architectures could further improve performance. For instance, models 
like HRNet, which maintains high-resolution representations throughout the network, or PSPNet, which 
utilizes pyramid pooling modules to capture global context, may offer advantages in handling fine-grained 
details and complex urban scenes.

4. Granular analysis: This study focuses on pixel-based segmentation, providing a comprehensive evaluation 
of overall accuracy. However, a more fine-grained analysis that examines segmentation performance across 
specific building categories (e.g., residential, commercial, industrial) or attributes (e.g., roof type, height, 
footprint area) could yield valuable insights for urban planning and management applications.

Conclusions
This paper proposed a new approach combining deep learning and data fusion for accurate building footprint 
segmentation. The method analysed utilizes RGB orthomosaics and Digital Surface Models creating a com-
prehensive dataset with spectral and elevation information. The performance using U-Net and DeepLabv3 
was evaluated, showing improved accuracy and boundary delineation compared to existing methods. Findings 
highlight the benefits of data fusion and the contextual information captured by DeepLabv3. Accurate building 
footprints have significant implications for urban planning and infrastructure management. However, chal-
lenges remain, including generalizability, dataset size, alternative architectures, and fine-grained analysis. Future 
research should address these limitations and apply the approach to different regions and scales with improved 
data quality and quantity. We hope our work inspires further advancements in building footprint segmentation 
using deep learning and data fusion techniques.

Data availability
Data acquired in this study are available on request by contacting the corresponding author.
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