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We present a fully Eulerian hybrid immersed-boundary/phase-field model to simulate 
wetting and contact line motion over any arbitrary geometry. The solid wall is described 
with a volume-penalisation ghost-cell immersed boundary whereas the interface between 
the two fluids by a diffuse-interface method. The contact line motion on the complex 
wall is prescribed via slip velocity in the momentum equation and static/dynamic contact 
angle condition for the order parameter of the Cahn-Hilliard model. This combination 
requires accurate computations of the normal and tangential gradients of the scalar order 
parameter and of the components of the velocity. However, the present algorithm requires 
the computation of averaging weights and other geometrical variables as a preprocessing 
step. Several validation tests are reported in the manuscript, together with 2D simulations 
of a droplet spreading over a sinusoidal wall with different contact angles and slip length 
and a spherical droplet spreading over a sphere, showing that the proposed algorithm 
is capable to deal with the three-phase contact line motion over any complex wall. The 
Eulerian feature of the algorithm facilitates the implementation and provides a straight-
forward and potentially highly scalable parallelisation. The employed parallelisation of 
the underlying Navier-Stokes solver can be efficiently used for the multiphase part as 
well. The procedure proposed here can be directly employed to impose any types of 
boundary conditions (Neumann, Dirichlet and mixed) for any field variable evolving 
over a complex geometry, modelled with an immersed-boundary approach (for instance, 
modelling deformable biological membranes, red blood cells, solidification, evaporation and 
boiling, to name a few).

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Motion of a three-phase contact line occurs in a variety of industrial fields from coating to energy conversion processes, 
nucleate boiling, droplet dynamics, two-phase flow in porous media, and microelectronics cooling, to name a few [43,44,48]. 
Despite numerous studies have been performed on the contact line motion, the underlying physics is still a matter of debate. 
The difficulty in studying the contact line movement originates in the so-called “contact line singularity” which was first 
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Symbols Definitions Units in (SI)

AP1 Averaging points for the first interpolation point –
AP2 Averaging points for the second interpolation point –
C Concentration –
Ca Capillary number –
Cn Cahn number –
dn Distance between Gijk and Ii jk m
d1 Distance between Ii jk and tMi jk m
d2 Distance between Mijk (or I P 2) point and I P 1 m
f Free energy per unit volume J/m3

f i Immersed boundary force N
fbi Body forces N
Gijk Ghost point –
Ii jk Intersect point –
I P1 First interpolation point –
I P2 Second interpolation point –
ls Slip length m
M Mobility coefficient m4/N s
M∗ Non-dimensional mobility coefficient –
Mijk Mirror point –
ni Normal vector –
P Pressure N/m2

Pe Péclet number –
Re Reynolds number –
S Stabilisation parameter –
ui Face centred velocity vector m/s
us Slip velocity m/s
u∗ First prediction velocity m/s
u∗∗ Second prediction velocity m/s
ũi Cell centred velocity vector m/s
V s Non-dimensional contact line friction coefficient –
W1 Weight of the averaging points for I P 1 –
W2 Weight of the averaging points for I P 2 –
xim Coordinate of the mirror point m
α Fluid volume fraction –
αs Coefficient of the Helmholtz equation 1/m2

� Auxiliary variable for semi-implicit method 1/m2

�r Contact angle relaxation time s
γ The ratio d1/dn –
�tc Convection time scale s
�tν Viscous time scale s
�tσ Surface tension time scale s
�t Time step s
ε Interface thickness m
μ Dynamic viscosity N s/m2

μ f Contact line friction coefficient N s/m2

θeq Contact angle Degree
ρ Mass density kg/m3

σ Surface tension coefficient N/m
φ Chemical potential per unit volume J/m3

F Total free energy J

discussed by Moffatt [28] and Huh and Scriven [16]. These authors showed that the fluid flow, close to the contact line, is in 
the Stokes regime and exhibits singularities in both the shear stress and the pressure [22]. In general, three main solutions 
have been proposed to remove the singularities close to the moving contact line. As the first solution, a slip velocity (Navier 
boundary condition) can be applied at the surface near the contact line [13]. Modelling the dynamic contact angle and the 
formation of a precursor film are the two other well-known solutions [43].

In order to model the moving contact line problem, different methods have been implemented for tracking the inter-
face and reconstructing the contact line. Renardy et al. [36] used a Volume of Fluid (VOF) method to model the contact 
line problem. A piecewise linear interface construction scheme was used to reconstruct the interface based on an indicator 
function. Afkhami et al. [1] presented a mesh-dependent contact angle model to remove the stress singularity at the con-
tact line. Mukherjee and Kandlikar [29] proposed a Level-Set approach to study bubble growth during an ebullition cycle. 
Spelt [42] used an extended Level-set method to simulate multiple moving contact lines. The model accounts for flow iner-
tia, contact line slip velocity and contact-line hysteresis. A front-tracking method was used by Muradoglu and Tasoglu [30]
to model the impact and spreading of viscous droplets on solid walls. Izbassarov and Muradoglu [18] studied the effects 
of viscoelasticity on drop impact and spreading on a flat solid surface using a front-tracking method together with finitely 
extensible nonlinear elastic-Chilcott-Rallison model for fluid elasticity. They showed that during the spreading phase, vis-
coelastic effects increase the spreading. O’Brien et al. [33] studied the role of surface wetting on interface instability and 
penetration modes in a porous medium consisting of two immiscible fluids. Their results suggest that the displacement 
2
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patterns depend on both the capillary number and the surface wetting properties. They also examined the well-known 
Haines jumps (sudden interface jumps from one site to another) by analysing the characteristic time and length scales of 
the jumps.

Diffuse interface models have also been used extensively to study the contact line dynamics. Among different diffuse 
interface models, the phase-field method has drawn more attentions during the last decades. In a diffuse interface model, 
an order parameter (concentration) is defined to distinguish between different phases. The interface has a finite thickness 
within which the order parameter and the fluid properties vary smoothly (but significantly) from one phase to another 
one. This assumption allows tracking the interface by solving an advection-diffusion equation for the order parameter. In 
this context, the Allen-Cahn model [2] is a reaction-diffusion phase-field equation which has been used to study phase 
separation in multi-component systems. Among others, Ben Said et al. [4] studied the equilibrium wetting of a system 
of immiscible fluids on a flat substrate using the Allen-Cahn model. As concerns dynamic wetting, however, the Cahn-
Hilliard model (see [6]) has been shown to be more reliable to remove the contact line singularity: imposing a dynamic 
contact angle boundary condition together with slip velocity at the wall is straight-forward in the Cahn-Hilliard formulation. 
Moreover, the Cahn-Hilliard equation provides the global conservation of the indicator function. Jacqmin [19] introduced a 
dynamic boundary condition for the contact angle together with a model for the contact line slip velocity. More recently, 
Carlson et al. [9] discussed the importance of a dynamic contact angle model for rapid wetting problems. Lācis et al. [25]
employed molecular dynamics (MD) simulations together with the Cahn-Hilliard formulation of the phase-field model to 
study the contact line motion of water over a no-slip substrate. By comparing the results of the MD simulations and those 
of the phase-field model, these authors suggest that the phase-field mobility parameter and the local slip length are of 
great importance for the accuracy of the continuum model. From mathematical and numerical perspectives, solving the 
Cahn-Hilliard equation (a non-linear fourth order partial differential equation), together with dynamic contact angle and 
slip velocity boundary conditions, is a cumbersome task. The difficulty increases for complex wall geometries, especially if 
a body conformal mesh is used. Generating a high-quality body conformal numerical mesh on a complex geometry requires 
a significant effort. Moreover, a new mesh is needed to study a different solid substrate. An alternative to a body conformal 
numerical mesh are the immersed boundary methods [35], a powerful tool to model fluid flows over complex geometries. 
This approach has been extensively used to simulate fluid-solid interaction problems, mainly for a single phase fluid. The 
idea of the immersed boundary method is to solve the system of equations on a cartesian numerical mesh (regardless of 
the solid geometry), and imposing the boundary conditions by adding forces at specific grid points close to the boundary.

During the last decades, immersed boundary methods have been adopted with different interface tracking approaches, 
front-tracking [10], volume of fluid [34], level set [46], phase field [23,32], with the aim to simulate the interaction between 
a multiphase fluid flow and a solid boundary. However, to the best of our knowledge, a fully Eulerian numerical approach 
for modelling the dynamic motion of a three phase contact line together with contact line slip velocity over any arbitrary 
geometry has not been reported yet. Since both the immersed boundary method and the phase field model proposed 
here are fully Eulerian, parallelisation of the algorithm is straight-forward and potentially highly scalable. The existing 
parallelisation of the underlying Navier-Stokes solver can be used for the multiphase part as well.

The goal of this paper is to present a fully Eulerian modular hybrid algorithm for studying contact line motion on any 
arbitrary solid substrate. To properly model the contact line motion and remove the contact line singularity, we choose the 
Cahn-Hilliard phase-field formulation to track the interface; hence, an immersed boundary method is used together with the 
phase-field model with dynamic contact angle and slip velocity boundary conditions. The emphasis is on coupling the phase 
field model to the immersed boundary method. Depending on the problem under study and the available computational 
resources, each of the modules of the proposed hybrid algorithm can be modified and extended independently. For instance, 
for simplicity of presentation, all the equations are solved explicitly in the manuscript. A more-efficient semi-implicit version 
of the algorithm is presented in Appendix A. Indeed, previous studies show that a semi-implicit implementation enables us 
to increase the numerical time step, increases the stability of the method, and reduces the numerical error [12,15,41,50]. 
Here, we report numerical validations to show that the proposed algorithm provides accurate results for various test cases, 
for both choices of time integration (explicit and semi-implicit).

The outline of the manuscript is as follows. In section 2, we explain the main concept behind the phase field model 
together with the corresponding boundary conditions. In section 3, we summarise the implemented numerical schemes, 
whereas we elaborate on the proposed hybrid phase field-immersed boundary model in section 4. To validate and test our 
implementation, we report results from several numerical tests in section 5. We conclude our work in section 6, and finally 
present a more accurate semi-implicit version of the algorithm in Appendix A.

2. Phase field model

Eulerian interface tracking approaches can be divided into two main groups, namely, sharp interface methods and diffuse 
interface methods. In diffuse interface methods, the interface is assumed to have a finite thickness. Although the interface is 
much thicker than the real physical one, this assumption provides resolvable properties which vary continuously within the 
interface. Such a continuum model avoids any requirement for jump conditions at the interface or interface reconstruction. 
Moreover, fluid properties are conserved within the interface. During the last decades, the Phase Field Model (PFM) has 
become more and more popular in the multiphase flow community for these properties. It originates from Van der Waals 
model for free energy [45] where the bulk free energy and the interfacial free energy are added to give the total free energy 
3
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per unit volume, f , of a system of two immiscible fluids as follows:

f = 1

2
εσ

∂C

∂xi

∂C

∂xi
+ σ

ε
ψ(C), (1)

where C is the concentration (order parameter) which distinguishes different phases; it varies from −1 in one phase to +1

in the other. The variation of C through the interface is smooth but rapid. ψ is a double-well function, ψ = (C2 − 1)
2
/4, 

with two minima for each stable phase. σ and ε denote the surface tension coefficient between the two phases and the 
interface thickness, respectively. The first term in equation (1) represents the contribution of the interfacial energy, whereas 
the second one models the bulk free energy density [19].

Considering the requirement of minimum free energy in the equilibrium state, and defining the chemical potential φ as 
the variation of the total free energy (F = ∫

f dV ) with respect to the concentration, i.e., φ = ∂F/∂C , Cahn and Hilliard 
proposed an equation for the evolution of the concentration where the motion of a diffuse interface within a binary fluid is 
modelled by the so-called Cahn-Hilliard equation [6,7]:

∂C

∂t
+ ui

∂C

∂xi
= 3

2
√

2

∂

∂xi

(
M

∂φ

∂xi

)
, (2)

where ui , and M represent the fluid velocity vector and the mobility coefficient. The Cahn-Hilliard equation is an advection-
diffusion equation which, in the limit of zero diffusivity, reduces to a sharp interface model. Plenty of studies have 
considered the sharp interface limit, obtaining an appropriate range of values for the mobility coefficient based on the 
interface thickness [26,47].

The difference in the chemical potential between the two phases at the interface is the mechanism driving the interface 
motion (besides the advection of the interface by the mean flow). Theoretically, the chemical potential is the variation of 
the free energy with respect to the concentration and can be calculated with the following equation:

φ = σ

ε
ψ ′(C) − σε

∂

∂xi

(
∂C

∂xi

)
. (3)

To couple the Cahn-Hilliard equation (2) with the fluid flow, a term is added to the right hand side of the Navier-Stokes 
equation which accommodates for the surface tension forces at the interface [19].

∂(ρui)

∂t
+ ∂

∂x j
(ρuiu j) = − ∂ P

∂xi
+ ∂

∂x j

(
μ(

∂ui

∂x j
+ ∂u j

∂xi
)

)
+ φ

∂C

∂xi
,

∂(ρui)

∂xi
= 0,

(4)

where ρ and μ are the density and dynamic viscosity of the fluid, varying from ρ1 and μ1 in one phase to ρ2 and μ2 in 
the other one, defined as

ρ(C) = [(C + 1)ρ2 − (C − 1)ρ1]/2

and

μ(C) = [(C + 1)μ2 − (C − 1)μ1]/2;
P is the pressure and φ∂C/∂xi represents the surface tension force at the interface. The second equation represents mass 
conservation for incompressible fluids.

In the presence of a solid substrate, a third term is added to eq. (1), the contribution of the solid substrate to the total 
free energy of the system [9]:

F =
∫ (

1

2
εσ

∂C

∂xi

∂C

∂xi
+ σ

ε
ψ(C)

)
dV +

∫ (
σsg + (σsl − σsg)

)
g(C)d�, (5)

where σsg and σsl are the surface tension coefficients between solid-gas and solid-liquid, respectively. According to Young’s 
equation [49], the equilibrium contact angle θe depends on the surface tension coefficient between each pair of the three 
phases, σ , σsl , and σsg (see Fig. 1) as

σsg − σsl − cos(θe)σ = 0.

The boundary condition for the concentration necessary to impose a prescribed contact angle is therefore obtained by 
minimising the energy at the solid wall [19,20],

μ f ε

(
∂C

∂t
+ ui

∂C

∂xi

)
= σε

3

2
√

2

∂C

∂xi
ni + σ cos(θeq)g′(C),

∂φ
ni = 0,

(6)
∂xi

4
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Fig. 1. Sketch of contact angle. According to Young’s equation [49], the equilibrium contact angle can be expressed as function of the surface tension 
coefficients between the different phases.

where μ f , θeq , and ni are the contact line friction coefficient, the equilibrium contact angle, and the vector normal to the 
solid surface. The first boundary condition in eq. (6) models the dynamics of the contact line motion, where the contact line 
friction coefficient is inversely proportional to the time needed by the contact line to relax to its prescribed static contact 
angle [8,47]. In this equation, g(C) = (2 + 3C − C3)/4 is a function which varies smoothly between zero and 1 from one 
stable phase to the other. The second boundary condition in equation (6) guarantees impermeability at the wall.

Finally, in the case of non-zero wall slip velocity, the following equation can be solved together with the other boundary 
conditions to obtain the slip velocity at the wall [8]:

μ

ls
u js t j = μ

∂(u jt j)

∂(xini)
−

[
3

2
√

2

∂C

∂xi
ni + σ cos(θeq)g′(C)

]
∂C

∂x j
t j, (7)

where us , ls , and t j are the slip velocity, slip length, and the unit vector tangent to the surface.

3. Numerical method

The full system of equations introduced above can be summarised as follows:

∂(ρui)

∂t
+ ∂

∂x j
(ρuiu j) = − ∂ P

∂xi
+ ∂

∂x j

(
μ(

∂ui

∂x j
+ ∂u j

∂xi
)

)
+ φ

∂C

∂xi
+ f i + fbi ,

∂(ρui)

∂xi
= 0,

∂C

∂t
+ ui

∂C

∂xi
= 3

2
√

2

∂

∂xi

(
M

∂φ

∂xi

)
,

φ = σ

ε
ψ ′(C) − σε

∂

∂xi

(
∂C

∂xi

)
,

(8)

where f i represents the immersed boundary force used to account for the complex wall geometry, explained in section 3.2, 
and fbi indicates all the other body forces (e.g. the gravitational force). The complete boundary conditions at the wall are

μ f ε

(
∂C

∂t
+ ui

∂C

∂xi

)
= σε

3

2
√

2

∂C

∂xi
ni + σ cos(θeq)g′(C),

∂φ

∂xi
ni = 0,

μ

ls
u js t j = μ

∂(u jt j)

∂(xini)
−

[
3

2
√

2

∂C

∂xi
ni + σ cos(θeq)g′(C)

]
∂C

∂x j
t j,

∂ P

∂xi
ni = 0,

uini = 0

(9)

As mentioned above, in the following we will introduce the numerical algorithm assuming a fully explicit approach. How-
ever, this set of equations can also be solved semi-implicitly as discussed in Appendix A. Note that we use both the 
algorithms alternatively in the numerical tests discussed later on, the differences between the results being negligible once 
the step is chosen correctly. However, the semi-implicit algorithm allows, on average, a 10 times larger time step.

3.1. Time integration and spatial discretisation

We solve the system of equations ((8) and (9)) on a Cartesian mesh with a staggered arrangement, where the velocity 
components are defined at the faces and the pressure, the chemical potential and the order parameter are defined at the cell 
centres. The second-order finite difference scheme is used for spatial discretisation and the different terms are advanced in 
5
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time explicitly using the Adams-Bashforth scheme. Finally, the fractional-step method for incompressible two-fluid systems 
is implemented as in Dodd and Ferrante [11]. The baseline solver has been extensively validated in the previous works (see 
among others [14,38–40]).

3.2. Immersed boundary method

During the last decades, a variety of immersed boundary methods (IBM) have been used for modelling fluid-solid inter-
actions with moving and fixed bodies [27]. In most of the IBM formulations, the solid boundary is represented by a set of 
Lagrangian points whose locations are tracked by solving an extra set of equations. An auxiliary force is added to the mesh 
cells surrounding each of the Lagrangian points to impose the no-slip and no-penetration conditions at the solid boundaries. 
However, there are also fully Eulerian IBM formulations where the immersed boundary forces are computed directly on the 
numerical grid points, especially for the case of fixed objects.

In this paper, we use a simple Eulerian IBM formulation, namely, the volume penalisation model proposed by Kajishima 
et al. [21] to impose the no-slip velocity boundary condition at and zero velocity inside the solid wall. For the slip velocity 
and the dynamic/static contact angle boundary conditions we use a ghost-cell approach, discussed in the next section. The 
Eulerian approach proposed here for the IBM formulation facilitates the implementation and especially the code parallelisa-
tion.

Let us define the fluid volume fraction at each grid cell as the ratio of the volume of the cell which is occupied by the 
fluid to the total cell volume and denote it by αi jk with (i, j, k) the cell index. The volume fraction varies between zero (for 
a cell entirely located in the solid) to one (for a cell entirely located in the fluid). Kajisjima et al. suggested to calculate the 
IBM force, f i , and to modify the prediction velocity, u∗

i jk , obtained by integrating in time the momentum equations under 
the action of viscous stresses and surface tension only, as follows

f i jk = (1 − αi jk)
(usol − u∗)i jk

�t
,

u∗∗
i jk = u∗

i jk + �t f i jk,

(10)

where u∗∗
i jk is the second prediction velocity and usol is the solid wall velocity within the corresponding grid cell. In the case 

of stationary wall (usol = 0), equation (10) reduces to the following simpler form,

u∗∗
i jk = u∗

i jkαi jk. (11)

4. The hybrid PFM-IBM algorithm

To impose the boundary conditions for the order parameter and slip velocity at the wall, we need to calculate the values 
of the different quantities appearing in equations (9) (the order parameter, velocity components, derivatives of the order 
parameter, etc.) at the wall, separating tangential and normal components with respect to the wall surface. To accomplish 
this, we need to pre-compute some different quantities, e.g. solid volume fraction, normal vector, averaging weights, etc. 
Having performed this initialisation step, it is possible to integrate in time the governing equations with general boundary 
conditions at the wall. We now proceed to provide a numerical recipe to solve the system at hand with corresponding 
boundary conditions for slip velocity and order parameter at the wall for a two-dimensional system. The method can be 
easily extended to three-dimensional problems, as shown in the result section.

4.1. Preliminary computations

In this section, we elaborate the details of the preliminary calculations needed for the proposed algorithm (green dashed 
box in Fig. 5).

4.1.1. Volume fraction and normal vectors
In order to impose all the boundary conditions introduced in equations (6) and (7) together with the volume penalisation 

immersed boundary method (equation (11)), we should first calculate the liquid and solid volume fraction of each grid cell, 
αi jk . This needs to be done for all the four numerical cells on a staggered-grid, namely, one cell-centred cell and three 
face-centred cells for each grid point i jk.

We propose a simple approach for computing the volume fractions. Let us consider a cell-centred cell at the grid point 
(i, j, k) and, first, divide the cell into a sufficient number of subgrid points in both directions as shown in Fig. 2 (our tests 
suggest that 100 points in each direction are enough). Under the assumption that the coordinates of each subgrid point in 
the cell are known, we can determine whether the point is inside or outside the solid wall. Hence, the volume fraction α
is simply the ratio of the number of subgrid points outside the solid to the total number in the cell. Having calculated the 
volume fraction on each cell, the solid wall normal vectors are approximated with the gradient of the volume fraction. To 
this aim, we first compute the derivative of the volume fraction at the four cell corners [17], e.g.,
6
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Fig. 2. Computing the volume fraction of each cell. Blue line represents the solid wall border, green dots are the subgrid points located inside the solid and 
the red dots are those in the fluid phases. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

mx1i+1/2, j+1/2
= αi+1, j + αi+1, j+1 − αi, j − αi, j+1

�x1i + �x1i+1

,

mx2i+1/2, j+1/2
= αi, j+1 + αi+1, j+1 − αi, j − αi+1, j

�x2i + �x2 j+1

.

(12)

The value of the derivatives can be calculated in the three other corners in a similar fashion and then be used altogether to 
compute the normal vector at the cell centre as

nx1i, j
=

�x1i mx1i j√
(mx1i j

)2 + (mx1i j
)2 + ε0

,

nx2i, j
=

�x2i mx1i j√
(mx1i j

)2 + (mx2i j
)2 + ε0

,

(13)

where ε0 is a very small positive number used to avoid division by zero and

mx1i j
=

mx1i+1/2, j+1/2
+ mx1i+1/2, j−1/2

+ mx1i−1/2, j+1/2
+ mx1i−1/2, j−1/2

4
,

mx2i j
=

mx2i+1/2, j+1/2
+ mx2i+1/2, j−1/2

+ mx2i−1/2, j+1/2
+ mx2i−1/2, j−1/2

4
.

(14)

4.1.2. Ghost points, intersections, mirror and interpolation points
Next, we need to identify four groups of points: the ghost, intersect, mirror, and interpolation points. In this section 

we use the term temporary array to refer to lists that are defined and used only in the initialisation steps and can be 
deallocated later on. On the other hand, the term permanent array refers to lists that contain variables required during the 
whole simulation.

According to Fig. 3, we define the ghost points (Gijk) as the cell-centred points inside the solid having at least one 
neighbour in the fluid phase. In addition to the ghost points, we need to find the intersect points: starting from the ghost 
point, we march along the normal direction towards the fluid phase with a small enough step size. At each marching step, 
we verify whether the new point is inside or outside the solid; the first point outside the solid is labelled as the intersect 
point, Ii jk corresponding to the ghost point Gijk . The distance dn between each ghost point and the corresponding intersect 
point is saved in a permanent array for later use.

For each ghost point Gijk we also identify a mirror point Mijk , such that the ghost point, intersect point, and the mirror 
point are all aligned on a straight line normal to the wall; the distance between the intersect point and the mirror point (d1) 
is the same for all the ghost points and is chosen long enough to ensure that the mirror point Mijk and the corresponding 
ghost point Gijk are not located in the same numerical cell (d1 > |dxi |/2, |dxi | being the length of a cell diagonal). The 
coordinates are saved in a three dimensional temporary array whose index (i, j, k) refer to the ghost point location. For 
instance, x1m(i, j, k), x2m(i, j, k), and x3m(i, j, k) represent the coordinate of the mirror point corresponding to the ghost 
point with index i, j, k.

Finally, we identify two additional sets of points, the interpolation points denoted I P1 and I P2. These points will be used 
to extrapolate the magnitude of any quantity at the mirror point as discussed later. The interpolation points are located on 
the same straight line as the mirror, intersect, and ghost points. Note that the distance between the two interpolation 
points and between the first interpolation point and the mirror one is the same (i.e. d2 in Fig. 3). The magnitude of d2
7
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Fig. 3. Schematic of the IBM treatment and interpolation procedure.

Fig. 4. Schematics of the inverse distance weighting averaging method used to obtain the values of a field variable � in I P from 5 surrounding points.

is chosen smaller that d1, as function of the Reynolds number of the problem under investigation. As explained later, the 
magnitude of any arbitrary parameter at the mirror point is linearly extrapolated from the magnitudes at the corresponding 
interpolation points. This assumptions is valid if the interpolation points and the mirror points are located inside the inner-
part of a boundary layer where a linear profile can be safely assumed. In general, it is well known that as the Reynolds 
number increases, the boundary layer becomes thinner; thus the numerical grid should be finer to resolve the boundary 
layer properly (regardless of the IBM algorithm). Nevertheless, it is important to check that the interpolation points and 
the mirror points are located inside the inner part of the boundary layer (and if not, tune the value of d2). Note, finally, 
that we also need to identify the cells in which the interpolation points are located and store their indices in a permanent 
array.

4.1.3. Coordinate transformation
Although we solve the governing equations using a simple Cartesian coordinate system (X1, X2 for two-dimensional 

problems), the phase field boundary conditions are expressed in a coordinate system following the solid boundary, with 
normal and tangential vectors n j and t j . Therefore, we need to transform between the two systems using the calculated 
normal vector, ni . For an arbitrary variable �, subject to a coordinate transformation, we have

�n = �X1n1 + �X2n2, �t = �X1n2 − �X2n1,

�X1 = �nn1 + �tn2, �X2 = �nn2 + �tn1,
(15)

where the suffixes n and t indicate the components in the frame following the boundary.

4.1.4. Inverse distance weighting averaging and linear extrapolation
Let us consider any arbitrary variable, say �, whose approximated value is needed at point M. As first step, we average 

the value of � at the 2 interpolation points (I P1 and I P2 in Fig. 3). To do so, we identify from the coordinates of each 
of the interpolation points the grid points surrounding each of them (A P1 to A P5 in Fig. 4). We then perform the aver-
aging through an inverse distance weighting: for a two-dimensional problem, the average uses five points (A P1, A P2, A P3, 
A P4 and A P5), with weights equal to the inverse of the squared distance between the averaging points (A Pi ) and the 
interpolation point (I P ), denoted here 1/h2. The interpolated value can thus be calculated as follows:
i

8
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�I P = 1

q

5∑
i=1

ω(i)�(i)

ω(i) =
(

1

hi

)2

, q =
5∑

i=1

wi

(16)

where w(i) is the weight of the ith averaging point and q is the sum of all the weights. Depending on the geometry, the 
interpolation point can overlap with one of the averaging points, in which case hi goes to zero and the interpolated value 
can be taken as the value at the averaging point. To carry out the computation of the boundary condition, we therefore 
define two other permanent arrays, W 1(i, j, k, A P ) and W 2(i, j, k, A P ): W 1(i, j, k, A P ) contains the weight of each av-
eraging point (A P 1 to A P 5) corresponding to the first interpolation point I P 1 of any ghost point Gijk , and similarly for 
W 2(i, j, k, A P ) containing the weights for the second interpolation point I P 2.

At the end of this preliminary phase, we are ready to use, during the simulation, the weight arrays to compute the 
averaged value of the variable � at each of the interpolation points and then use these to find the value at the mirror point 
by linear extrapolation

�M = 2�I P 1 − �I P 2. (17)

4.2. Solution algorithm

In this section we describe the solution of the system of equations and the algorithm used to impose the boundary 
conditions on a fixed wall of arbitrary shape.

4.2.1. Solving the Cahn-Hilliard equation
We first solve the Cahn-Hilliard equation to update the order parameter from time Cn to Cn+1. Note that irrespective of 

the time integration method (explicit or semi-implicit), by solving the Cahn-Hilliard equation, we update the correct value 
of the order parameter in all the numerical grid points (even inside the solid) except for the ghost points. The details of the 
semi-implicit algorithm adopted for the Cahn-Hilliard equation are presented in appendix A. For the explicit algorithm, we 
use the second-order central finite difference scheme for the spatial discretisation and second order Adam-Bashforth for the 
temporal discretisation.

Cn+1 − Cn

�t
= 3

2

(
−un

i
∂Cn

∂xi

)
+ 1

2

(
un−1

i

∂Cn−1

∂xi

)

+ 3

2

[
3

2
√

2

∂

∂xi

(
M

∂φn

∂xi

)]
− 1

2

[
3

2
√

2

∂

∂xi

(
M

∂φn−1

∂xi

)]
.

(18)

4.2.2. Imposing the boundary conditions for the order parameter
Of relevance here, we impose the contact angle and the no mass penetration boundary conditions at the ghost points 

using the IBM algorithm. According to equation (6), the boundary conditions for the order parameter are defined based 
on the fluid properties and their derivatives at the wall. Particularly, we need the value of the order parameter, C , and 
its derivatives in the normal and the tangential directions (∂C/∂n, ∂C/∂xt ), and the wall-normal and tangential veloc-
ity components at the wall (Vn , Vt ). Note that, we denote the derivative in the normal direction by ∂/∂n, while in 
tangential direction by ∂/∂xt to avoid confusion with the time derivative ∂/∂t . The aforementioned values at the wall 
are found by using the properties of the fluid at the ghost points and the interpolated values at the mirror points 
together with the coordinate transformation from (X1, X2) to (n, t). The boundary conditions (equation (6)) are solved 
at the cell centre; therefore, all the velocity components are first interpolated at the cell centre (here denoted by a 
tilde).

To impose the boundary conditions, we proceed as follows. Let us define γ as the ratio of the distance between the ghost 
and the intersect points to the distance between the intersect point and the mirror point (γ = d1/dn). The value of the order 
parameter, the derivatives of the order parameter, and the velocity components at the intersect point can be calculated as

C I
n+1 = γ ĈG + Cn+1

M

γ + 1
,

(
∂C

)n+1

=
γ

(
∂C
∂ X1

)n+1

G
+

(
∂C
∂ X1

)n+1

M ,

∂ X1 I γ + 1

9
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(
∂C

∂ X2

)n+1

I
=

γ
(

∂C
∂ X2

)n+1

G
+

(
∂C
∂ X2

)n+1

M

γ + 1
, (19)

ũn
1I

= γ ũn
1G

+ ũn
1M

γ + 1
,

ũn
2I

= γ ũn
2G

+ ũn
2M

γ + 1
.

As already mentioned, we do not update the magnitude of the order parameter at the ghost point when solving the 
Cahn-Hilliard equation. Therefore, we use here ĈG which is an estimation of the order parameter at the ghost point at time 
n + 1, defined as ĈG = 2Cn

G − Cn−1
G . The different quantities are then projected from X1, X2 to n, t

vt
n
I = u1

n
I n2 − u2

n
I n1,(

∂C

∂x j
t j

)n+1

I

=
(

∂C

∂ X1

)n+1

I
n2 −

(
∂C

∂ X2

)n+1

I
n1,

(
∂C

∂n

)n+1

I
= Cn+1

M + (γ 2 − 1)Cn+1
I − γ 2ĈG

γ (γ − 1)dn
.

(20)

Finally, we can compute ∂C/∂t at the wall as(
∂C

∂t

)n+1

I
= −vt

n
I

(
∂C

∂x j

)n+1

I

+
(

1

μ f ε

)[
σε

3

2
√

2

(
∂C

∂n

)n+1

I
+ σ cos(θeq)g′(Cn+1

I )

]
. (21)

By integrating in time, we find the updated value of the order parameter at the wall C (n+1)
I which is used to update the 

order parameter at the corresponding ghost point as

Cn+1
G = (γ + 1)Cn+1

I − Cn+1
M

γ
. (22)

We can now update the chemical potential and impose the corresponding boundary condition (∂φ/∂n = 0) in a similar 
way. Finally, the density and viscosity are updated using the new values of C .

4.2.3. Calculating the first and the second prediction velocities
As illustrated in Fig. 5, the next step is to solve the Navier-Stokes equations. Similar to the Cahn-Hilliard equation, we 

calculate the first and the second prediction velocities using either an explicit or semi-implicit algorithm. The details of 
the semi-implicit implementation are provided in appendix A. For the explicit algorithm, we use second order central finite 
differences for the spatial discretisation and we integrate all the terms in time using the second order Adam-Bashforth 
scheme. Note that we solve the Navier-Stokes equation for all the numerical grid points except at the ghost points, which 
we will use to impose the boundary conditions.

u∗
i − un

i

�t
= −

(
3

2

∂

∂x j
(un

i un
j ) − 1

2

∂

∂x j
(un−1

i un−1
j )

)
+

(
3

2

φn+1

ρn+1

∂Cn+1

∂xi
− 1

2

φn+1

ρn+1

∂Cn+1

∂xi

)

+
[

3

2

∂

∂x j

(
μn+1(

∂un
i

∂x j
+ ∂un

j

∂xi
)

)
− 1

2

∂

∂x j

(
μn+1(

∂un
i

∂x j
+ ∂un

j

∂xi
)

)]
+

(
3

2
f n
bi

− 1

2
f n−1
bi

)
,

u∗∗
i = u∗

i α

(23)

We recall that fbi is the summation of all the external body forces (such as gravity). The last equation, the step between u∗
i

and u∗∗
i , is the IBM penalisation discussed above, which imposes zero velocity inside the solid. In the cases with slip, the 

boundary condition at the wall is modified using the ghost point, so that the fluid has a slip velocity. This is detailed in the 
next section.

4.3. Enforcing the velocity boundary conditions

We impose the slip velocity boundary condition at the ghost point using the IBM algorithm. To impose the velocity 
boundary conditions, we first interpolate the calculated second prediction velocity u∗∗ at the cell centres. Next, we use the 
interpolation scheme introduced in section 4.1.4 to calculate the magnitude of any cell-centred velocity component at the 
mirror points. Due to the no penetration boundary condition at the wall, the normal component of the velocity at the wall 
is equal to zero. Therefore, the normal component of the velocity at the ghost point can be updated as
10
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V ∗∗
nG

= − V ∗∗
nM

γ
. (24)

The boundary conditions for the tangential component of the velocity at the wall can be obtained from equation (7)

μ

ls
V ∗∗

ts
= μ

∂V ∗∗
t

∂n
−

[
∂Cn+1

∂n
+ σ cos(θeq)g′(Cn+1)

]
∂Cn+1

∂xt
. (25)

After discretizing the equation, we can obtain the tangential velocity at the ghost point by solving the following equation:

μ

ls

γ V ∗∗
tG

+ V ∗∗
tM

γ + 1
= μ

V ∗∗
tM

+ (γ 2 − 1)V ∗∗
t I

− γ 2 V ∗∗
tG

γ (γ + 1)dn
−

[
∂Cn+1

∂n
+ σ cos(θeq)g′(Cn+1)

]
∂Cn+1

∂xt

V ∗∗
tG

= V ∗∗
tm

(ls − dn)

ls + γ dn
−

[
∂Cn+1

∂n
+ σ cos(θeq)g′(Cn+1)

]
∂Cn+1

∂xt

ls(γ + 1)dn

μ(ls + γ dn)
.

(26)

By transforming back from boundary-fitted (n, t) to the cartesian coordinates (X1, X2), the updated value of ũ∗∗
i at the 

ghost points can be found

ũ∗∗
1 = V ∗∗

nG
n1 + V ∗∗

tG
n2,

ũ∗∗
2 = V ∗∗

nG
n2 + V ∗∗

tG
n1.

(27)

Finally, the velocity components at the corresponding faces are found by interpolating the cell-centred values.

4.4. Correction step

For the current implementation, we follow the approach in Dodd and Ferrante [11] to correct the calculated second 
prediction velocity and satisfy the divergence free condition when the density is not uniform. First, we update the pressure 
field by solving the following equation:

∂2

∂xi∂xi
Pn+1 = ∂

∂xi

[
(1 − ρ0

ρn+1 )
∂

∂xi
P̂

]
+ ρ0

�t

∂

∂xi
u∗∗

i , (28)

where ρ0 = min(ρ1, ρ2) and P̂ = 2Pn − Pn−1. The choice of the numerical algorithm for solving the Poisson’s equation 
depends on the problem setup and the implementation. For instance, we employed a fast Fourier transform to solve equation 
(28) which requires periodicity in the flow direction. However, any other algorithm (such as iterative methods, multi-grid 
approach, etc.) can be used to solve the pressure equation.

Having updated the pressure field, we correct the second prediction velocity and calculate the divergence-free velocity 
as follows:

un+1
i = u∗∗

i − �t

[
1

ρ0

∂

∂xi
Pn+1 +

(
1

ρn+1 − 1

ρ0

)
∂

∂xi
P̂

]
. (29)

Details of the algorithm can be found in the above reference. The algorithm proposed here, with the different steps, is 
summarised in Fig. 5.

5. Numerical tests

To validate the developed code and the numerical model, different simulations are performed. First, we validate the 
PFM module of the code by comparing results for a droplet spreading on a flat wall and a two phase Couette flow in a 
channel against previous studies [3,31]. Next, simulations of the phase separation problem presented in Nishida et al. [32]
and of droplet spreading on an inclined flat wall are performed to validate the hybrid IBM-PFM algorithm. To test the new 
approach in more complex geometries, we simulate a droplet spreading over 2 sinusoidal walls and finally present the 
results pertaining a three-dimensional droplet spreading over a three-dimensional solid curved wall.

5.1. Droplet spreading on a flat plate

A two-dimensional circular droplet is initially placed just above a flat wall so that the interface is almost tangent to the 
wall. Nakamura et al. [31] assumed that the droplet is so small that the gravitational forces are negligible compared to the 
surface tension forces. The Reynolds (Re), capillary (Ca), and Cahn numbers (Cn) are defined with reference to the initial 
droplet radius (R), the reference velocity (Uref = σ/μ), the density of the liquid phase (ρL ), the surface tension coefficient 
(σ ), and the interface thickness (ε). The density and viscosity ratio between the two phases are equal to 100 and

Re = ρUref R = 4, Ca = μUref = 1, Cn = ε = 0.022. (30)

μ σ R

11
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Fig. 5. Block diagram of the Hybrid IBM-PFM algorithm.

Note that throughout the paper we use the same definition for all the non-dimensional parameters as in equation (30). 
In this simulation, the wall friction coefficient μ f is set to zero. The computational domain is [0, 10R] × [0, 10R] and 
the number of grid points per droplet diameter is equal to 320. Fig. 6 shows the evolution of the normalised wetting 
radius versus the non-dimensional time (t∗ = t/(ρR3/σ )

(1/2)
) for two different contact angles (θeq = 45◦ and 135◦) and two 

different slip lengths (ls = 0.25R and 0.5R). The solid lines represent the results of the present simulations with θeq = 45◦ , 
the dashed lines those with θeq = 135◦ , and the symbols the results in Nakamura et al. [31]. The blue and the red colours 
illustrate different wetting radii, ls = 0.25R and ls = 0.5R . This simulation used the explicit time integration with time step 
equal to 10−5. The proper choice of the time step depends on the three physical time scales of the problem, namely, the 
convective time scale (�tC ), the viscous time scale (�tν ), and surface tensions time scale (�tσ ) and a safety factor which 
is required for the stability of the Cahn-Hilliard equation (≈ 0.1). We. estimate the time step of the simulations as follows 
[11]:
12
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Fig. 6. Evolution of the normalised wetting radius (r/R) versus the non-dimensional time (t∗ = t/(ρR3/σ )
(1/2)

). The solid lines indicate the results of the 
present simulations with θeq = 45◦ , the dashed lines those with θeq = 135◦ , and the symbols the data in Nakamura et al. [31] for the same configuration. 
The blue and the red colours pertain cases with wetting radius ls = 0.25R and ls = 0.5R .

�tc = �X

|U |max
,

�tν = Re�X2

6
,

�tσ =
√

ReCa(ρ1 + ρ2)�X3

4π
,

�t ≤ 1

10
min(�tc,�tν,�tσ )

(31)

As shown in the figure, the results of our simulations are in good agreement with those by Nakamura et al. [31].

5.2. Two phase Couette flow

As the second validation for the PFM module, a two phase Couette flow is simulated and the results compared with those 
by Bao et al. [3]. The simulation domain is [0, 1] × [0, 0.25]. Two interfaces are initially located at x = 0.25 and x = 0.75
with a tangent hyperbolic variation of the order parameter from one phase to the other according to:

C(X1, X2, t = 0) = tanh

(
1√
2Cn

(0.25L X1 − |X1 − 0.5L X1 |)
)

. (32)

In this simulation, the wall velocity is uw = 0.2, Re = 5 (defined as above with U Ref = uw ), ls = 0.0025, Cn = 0.004, and 
Ca = 1/12. As in Bao et al. [3], the mobility coefficient is defined in non-dimensional form M∗ = (3Mσ)/(2

√
2Uref Lref

2) =
0.0005 and the wall friction coefficient is expressed in terms of the relaxation time V s = (3σ�r Lref )/(2

√
2Uref ) = 200, 

where Lref is the channel height and � = 1/(μ f ε)). We solved the system of equations using the explicit approach and 
with a time step equal to 10−5.

We report in Fig. 7 the contour of the order parameter at t∗ = 1.875 and, for an easier comparison, the digitised interface 
location from the simulation by Bao et al. [3] in a second panel. The blue lines represent the results of our simulation and 
the red dots those by Bao et al. [3], with a good match between the two data sets.

5.3. Phase separation problem

To validate the complete hybrid IBM-PFM model, first, we consider a phase separation problem in a square box. The 
computational domain has size [0, 1] × [0, 1] and the phase field order parameter is initialised in the same way as in the 
simulations by Nishida et al. [32]:

C(X1, X2, t = 0) = 0.5 + 0.12 cos(2π X1) cos(2π X2) + 0.2 cos(π X1) cos(3π X2) (33)

Two cases are simulated: in the first case, the phase separation occurs in the absence of any velocity field, while in the 
second one, the initial velocity field is initialised as

u1(X1, X2, t = 0) = −sin2(π X1) sin(2π X2),

u (X , X , t = 0) = sin2(π X ) sin(2π X ).
(34)
2 1 2 2 1
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Fig. 7. Top: Contour of the order parameter at t∗ = 1.875. Bottom: interface profile at t∗ = 1.875. The blue lines represents the results of our simulation 
and the red dots those of Bao et al. [3].

Fig. 8. Contours of the order parameter for the phase separation in the absence of flow and with contact angle equal to 90◦. The first row represents the 
results of the PFM code, the second and the third rows are the results of the PFM-IBM code with a box rotation angle equal to αr = 0◦ and 45◦ , where 
the thin solid line indicates the location of the walls modelled by the IBM. The non-dimensional times in the first, second, third, and fourth column are 
t∗ = 0.04, 0.1, 1.0, and 45.0.

No-slip velocity boundary conditions are imposed on the four sides of the simulation box. The Reynolds and cap-
illary numbers are set equal to 100 and 1. The mobility coefficient (M) is defined using a Peclet number, Pe =
(2

√
2Uref εLref )/(3Mσ) = 1 where Uref = σ/μ and Lref is the box height. The contact angle, wall friction coefficient, and 

slip length are set equal to θeq = 90◦ , μ f = 0, and ls = 0. For each of the 2 phase separation problems (with and without 
flow), the simulations are first performed with the previously validated PFM code (without any immersed boundary), using 
the explicit time integration with time step equal to 10−5. Then, we define the square box boundaries by means of the IBM 
with two different rotation angles, αr = 0◦ and 45◦ . For the IBM simulations, the time step is reduced to 10−6. Fig. 8 shows 
the contours of the order parameter extracted from our PFM simulations and from the two PFM-IBM simulations for the 
case without flow at four different non-dimensional times. The results of the hybrid PFM-IBM code are in good agreement 
with those of the validated PFM code with wall conditions imposed directly at the domain boundaries.

The total energy of the system is calculated and compared with the one obtained by Nishida et al. [32]. This is defined 
as the summation of the kinetic and interfacial energy

E(t)) =
∫
�

1

2
(uiui)dV + 1

Re Ca ε

∫
�

(
1

4
C2(1 − C)2 + ε2

2

∂C

∂xi

∂C

∂xi

)
dV . (35)

The evolution of the total energy is depicted in Fig. 9 for the different simulations: the red solid line shows the results 
of our PFM simulations, the red dots are the results Nishida et al. [32], and the blue and black symbols represent the results 
of our hybrid PFM-IBM code for box rotations αr = 0◦ , and 45◦ .
14
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Fig. 9. Evolution of the total energy of the system for the phase separation problem in the absence of flow. Red solid line indicates the results of our PFM 
code, the red dots are the results by Nishida et al. [32], and the blue and black symbols the results of our hybrid PFM-IBM code for αr = 0◦ , and 45◦ , 
respectively.

Fig. 10. Contours of the order parameter for two-fluid phase separation with flow and contact angle equal to 90◦ . The first row represents the results of 
the PFM code, the second and the third rows are the results of the PFM-IBM code with a box rotation angle of αr = 0◦ and 45◦ , where the thin solid line 
indicates the location of the walls modelled by the IBM. The non-dimensional times in the first, second, third, and fourth column are t∗ = 0.1, 0.6, 0.8, 45.0.

The contours of the order parameter for the phase separation problem with flow are reported in Fig. 10. Again, the 
contact angle, wall friction coefficient, and slip length are set equal to θeq = 90◦ , μ f = 0, and ls = 0. The corresponding 
evolution of the total energy of the system is presented in Fig. 11. According to Fig. 10 and Fig. 11 good agreements 
between the results of our PFM code, hybrid PFM-IBM code and those obtained by Nishida et al. [32] is again achieved.

5.4. Droplet spreading on a rotated wall without gravity

To validate our hybrid code for different slip lengths, we reproduce once more the results of a droplet spreading on a 
flat wall by Nakamura et al. [31] but modelling the wall with the IBM module and adding a rotation of the computational 
box of αr = 45◦ , as shown in Fig. 12. The computational domain is [0, 20R] × [0, 20R] and the edge length of the rotated 
box is 10R . All the other simulation parameters are the same as previously reported in section 5.1. In this case, both the 
explicit and the semi-implicit algorithms with time steps equal to 10−5 and 10−4, are tested.

Fig. 13 displays the evolution of the normalised wetting radius versus the non-dimensional time. Solid lines show the 
results for θeq = 45◦ , dashed lines those for θeq = 135◦ , filled circles the results by Nakamura et al. [31] and filled squares 
our simulations using the semi-implicit algorithm. Blue and red colours represent cases with slip length ls = 0.25R and 
ls = 0.5R , respectively.

As shown in Fig. 13, the results of the hybrid PFM-IBM code are in good agreement with the reference data.
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Fig. 11. Evolution of the total energy of the system for the phase separation problem with flow. The red solid line indicates the results of our PFM code, the 
red dots are the results by Nishida et al. [32]. Blue and black symbols represent the results of our hybrid PFM-IBM code for rotations of the computational 
box αr = 0◦ , and 45◦ .

Fig. 12. Initial configuration of the simulation of a droplet spreading on a flat wall in a rotated computational domain. Left: PFM setup, Right: IBM setup.

Fig. 13. Evolution of the normalised wetting radius (r/R) versus the non-dimensional time (t∗ = t/(ρR3/σ )
(1/2)

). Solid lines show the results for θeq = 45◦ , 
dashed lines those for θeq = 135◦ , the filled circles represent the results by Nakamura et al. [31], and the filled squares indicate the results of our simulations 
using the semi-implicit algorithm. Blue and red colours represent slip lengths ls = 0.25R and ls = 0.5R .

5.5. Droplet spreading over sinusoidal surfaces

To examine the capability of the developed model to simulate more complex geometries, we simulate a droplet spreading 
over two sinusoidal surfaces with same wave length but a phase shift of π/2 with respect to the initial droplet position. 
The wall geometry is defined by

y(x) = hw�y sin

(
(2n − 1)π − m

π
)

x + hb�y, (36)

Lx 2
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Fig. 14. Droplet spreading over two sinusoidal surfaces for two different initial droplet locations. The first and the third rows represent the results of 
spreading without any slip velocity whereas the second and the fourth rows show the results of droplet spreading over surfaces with slip length equal to 
ls = 0.25R0.

Fig. 15. Evolution of the droplet equivalent spreading radius for two different initial positions with the respect to the wall crests. The red and the blue 
colours indicate the cases with slip and no-slip velocity boundary conditions, whereas solid line denotes the results for a hydrophilic wall and the dashed-
line those for the hydrophobic wall.

where hw is the number of grid points defining the amplitude of the wave, hb the number of grid point below the cen-
treline of the sinusoidal wave, n the number of peaks of the sinusoidal function and m = 0 or 1 to shift the wave. For 
the results presented here, the computational domain is [0, 20R] × [0, 10R], R being the droplet radius, and the Cartesian 
grid consists of 1280 × 640 grid points. hw and hb are set to 30 and 60, respectively. The non-dimensional parameters 
pertaining these simulations are Re = 4.0, Ca = 1.0, Cn = 0.02, and Pe = 2

√
2Uref Rε/3Mσ = 104. Two equilibrium contact 

angles are considered to model a hydrophobic (θeq = 135◦) and a hydrophilic (θeq = 45◦) wall. The droplet is initially placed 
at (10R, 5R + (hw + hb)dz). The wall friction coefficient and the slip length are zero and a quarter of the droplet radius, 
μ f = 0, ls = 0.25R0. The simulations are performed using the explicit code with a time step equal to 10−5.

Fig. 14 shows the contour of the order parameter for two different wall geometries and two different slip lengths at six 
different time instances.

In this case, we define an equivalent spreading radius as the horizontal distance between two contact lines, reported in 
Fig. 15 normalised with the initial radius of the droplet (for m = 0 in Fig. 15a and m = 1 in Fig. 15b). The red and the blue 
colours indicate the cases with slip and no-slip velocity boundary conditions, respectively. The solid line denotes the results 
for the hydrophilic wall and the dashed-line those for the hydrophobic wall.

Figs. 14 and 15 show that the wall geometry makes a significant difference in the droplet spreading. When the droplet is 
initially placed on a cavity (see Fig. 14c and Fig. 14d), the trapped gas inside the cavity cannot leave it; hence, to conserve 
the mass of the trapped gas, the droplet wets the surface by forming an arc shape. As a consequence the static contact 
angle is reached faster and the spreading is limited. Therefore, a static configuration is achieved faster without significant 
spreading. On the other hand, in the absence of any trapped gas (see Fig. 14a and Fig. 14b), the droplet fully wets the 
wall and spreads over the surface. The spreading continues until the equilibrium contact angle is attained; however, given 
the computational cost, we stopped the simulations at t∗ ≈ 47. In addition, we note that a slip velocity remarkably speeds 
up the spreading when the droplet fully wets the wall (compare Fig. 14a and Fig. 14b). Finally, as shown in Fig. 15, the 
spreading radius on a hydrophobic wall is much less than that on its hydrophilic counterpart.

Fig. 16 depicts the velocity contours inside the droplet for the cases with slip length, ls = 0.25R . Panels a and b show 
the velocity contour at t∗ ≈ 47 for the case with the droplet initially placed on the wall crest, and at t∗ ≈ 33.5 when the 
17
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Fig. 16. Samples of velocity contour inside the droplet for the cases with slip length, ls = 0.25R0. Panels a and b represent the contour of velocity at 
t∗ ≈ 46.99 for the case m = 0, and t∗ ≈ 33.56 for m = 1.

Fig. 17. Grid convergence for ls = 0.25R and m = 0 (left panel) and evolution of the droplet shrinkage for the converged grid size (right panel).

droplet is initially placed on the cavity. Note that the velocity vectors shown in Fig. 16 are not scaled and only indicate the 
velocity direction. The magnitude of the velocity is displayed by the background colour.

To examine the convergence of the algorithm, we performed the same simulations as in Fig. 14b for three additional 
grid sizes, namely, 2560 × 1280, 1600 × 800, and 960 × 480. For all of the simulations, we calculate the evolution of the 
wetting radius. We consider the results of the finest grid size (2560 × 1280) as the reference values (Rref ) and calculate 
the normalised error obtained with the coarser numerical grids, see Fig. 17a. Note that to reduce the computational costs, 
we performed the simulations up to t∗ = 2. According to Fig. 17a, for the grid sizes equal to or smaller than 122/640, the 
results of the simulations are almost independent of the grid size. It is worth to mention that due to the combinations of 
the different parameters affecting the necessary grid size (geometry, velocity boundary condition, contact angle boundary 
condition, etc.), a grid study should be performed for each specific problem under study.

Mass leakage is a well-known problem of any phase-field model [15]. Different numerical methods have been proposed 
for solving the Cahn-Hilliard equation and to reduce the droplet shrinkage. In Fig. 17b, we report the evolution of the 
relative change in the volume of the droplet for a case with slip velocity boundary condition (ls = 0.25R) at the sinusoidal 
wall without any phase shift (m = 0) obtained with 1280 × 640 grid points. Our result illustrates that up to t∗ = 12, the 
mass loss is less than 0.3% which shows that the proposed IBM algorithm does not introduce additional mass leakage.

5.6. Three-dimensional droplet spreading

As mentioned in section 4, the algorithm presented above can be extended to three-dimensional formulations. In this 
section, we present the results of a simulation performed to model the spreading of a three-dimensional initially spherical 
droplet over a three-dimensional surface. The simulation is performed using the semi-implicit algorithm with a time step 
equal to 10−4.

A droplet of radius R is initially placed at [X1, X2, X3] = [4R, 4R, 3.185R]. The solid wall is generated as a portion of 
a sphere with radius R w = 9R and centre located at [X1, X2, X3] = [4R, 4R, −27R/4]. The simulation domain is [0, 8R] ×
[0, 8R] × [0, 8R] (discretised with 640 × 640 × 640 grid points). The non-dimensional parameters of these simulations are 
Re = 4, ca = 1, Pe = 104, Cn = 0.022, θeq = 45◦ , ls = 0, and μ f = 0.

Fig. 18 shows the evolution of the droplet spreading over the surface at eight different time instants. The time evolution 
of the equivalent normalised wetting radius is presented in Fig. 19. Filled circles and red contours show the wetting radii 
and the two-dimensional cross-sections of the interface at the same times as the images Fig. 18.

The results of this simulation prove the capability of the algorithm to model three-dimensional droplet spreading over 
any arbitrary stationary wall. Moreover, since all the variables required for the IBM treatment (coordinates of ghost points, 
normal vectors at the wall, coordinates of averaging points, and averaging weights are stored in permanent arrays, the IBM 
module of the code does not add significant computational cost to the base PFM solver.

6. Conclusion

We have presented a fully Eulerian hybrid immersed-boundary phase-field model for simulating contact line dynamics on 
any arbitrary fixed solid wall. The algorithm consists of two independent modules, namely, a phase field and an immersed 
boundary module. The Navier-Stokes and Cahn-Hilliard equations are solved on a cartesian numerical mesh yet impos-
ing boundary conditions on any complex wall geometries using a volume-penalisation and ghost-cell immersed boundary 
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Fig. 18. Spreading of a three-dimensional droplet over a three-dimensional wall.

Fig. 19. Time evolution of the equivalent spreading radius of a three-dimensional droplet over a three-dimensional wall. The filled circles and the red 
contours represent the equivalent spreading radii and the interface contours at eight time instants of Fig. 18.

method. The proposed algorithm is capable modelling both static and dynamic-contact angle boundary conditions with 
possibly slip velocity at the wall. The proposed algorithm has the following novel properties:

• The fully Eulerian approach facilitates an efficient implementation and, in particular, parallelisation and accelerated 
architectures.
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• It consists of an initialisation step during which all the auxiliary quantities necessary for the immersed boundary treat-
ment of the complex wall are calculated and stored (coordinates of ghost points, normal vectors at the wall, coordinates 
of averaging points, and averaging weights). Hence, the IBM module does not add significant computational cost to the 
base solver for the system formed by the Navier-Stokes and Cahn-Hilliard equations.

• It suits both two- and three-dimensional simulations, without additional complexities in three-dimensions.
• Due to the modular feature of the algorithm, the phase field formulation, particularly the free energy of the system, 

can be modified with no effect on the solution algorithm, Thus the same strategy presented here can be employed to 
model different near-wall physical phenomena (for instance solidification over a complex wall geometry).

The numerical tests reported in this manuscript validate the algorithm against different results from the literature on 
wetting and two-fluid systems.Hence, the proposed algorithm can be see as an efficient and powerful method to study 
multiphase flows near solid boundaries using free-energy formulations, in particular contact line dynamics over complex 
geometries. However, the IBM module presented here, with the accurate and efficient calculations of normal and tangential 
vectors, interpolation and extrapolation through an immersed boundary, can be used to impose arbitrary mixed boundary 
conditions for flow problems over complex geometries, not only for single phase flows but also multiphase flow simulations 
using other Eulerian approaches to track an interface, e.g. volume-of-fluid and level-set methods. Examples of simulations 
where the approach proposed here could be of help are large-eddy and RANS simulations where wall models are necessary 
[5,37] and heat-transfer problems where boundary conditions involve both the temperature and concentration field as well 
as their gradients [24].
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Appendix A. Semi-implicit algorithm

The semi-implicit algorithm follows the same steps as the fully explicit one but with different numerical procedure for 
the Cahn-Hilliard and Navier-Stokes equations. In this appendix the semi-implicit algorithms are presented as these turn out 
to be more stable and to allow for a longer time step, so they are preferable for an efficient implementation when dealing 
with larger problems.

A.1. Cahn-Hilliard equation

We follow the idea of Yue et al. [51] and Dong and Shen [12] to decompose the Cahn-Hilliard equation, see equation (2)
in the main text, into two Helmholtz equations. First we solve equation (A.1) for the auxiliary variable �.

∇2� − (αs + S

ε2
)� = 1

λM

(
Č

�t
− ∂

∂xi
(ũi

n+1C̃n+1)

)
+ ∇2

[
1

ε2
ψ(C̃n+1) − s

ε2
C̃n+1

]
(A.1)

where λ = 3
2
√

2
σε is the mixing energy density. In equation (A.1), for any arbitrary variable χ we have a first estimation at 

time n + 1 denoted by χ̃n+1. To achieve a second order accuracy in time, we estimate the time derivative at time n + 1 as 
(3/2χn+1 − χ̌ )/dt , where χ̃n+1 and χ̌ are defined as follows [12]:
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χ̌ = 2χn − 1

2
χn−1, χ̃n+1 = 2χn − χn−1. (A.2)

S is the stabilisation parameter and is chosen such that S ≥ ε2
√

6
λM�t .

The coefficient αs of the second Helmhotz equation is also computed following Dong and Shen [12], i.e.

αs = − S

2ε2

⎛
⎝1 +

√
1 − 6ε4

λM�t S2

⎞
⎠ . (A.3)

Next we solve equation a second Helmhotz problem of the form

∇2Cn+1 + αsCn+1 = �, (A.4)

and update the value of the order parameter at time n + 1.
Here, we solve both equations (A.1) and (A.4) by taking Fourier transforms. Note that the boundary conditions for the 

order parameter and the velocity at the wall are imposed through the IBM algorithm. Therefore, in the wall-normal direc-
tion X2 direction, we simply consider Neumann boundary conditions for both � and C together with the no-slip boundary 
condition for the velocity, whereas periodic boundary conditions are considered in the flow direction, X1, for all the vari-
ables.

A.2. Navier-Stokes equations

For the semi-implicit approach, we again use a fractional step method. First we calculate the first and the second predic-
tion velocities, u∗ and u∗∗ . Following the idea of Dong and Shen [12] and Dodd and Ferrante [11], we solve the following 
Helmholtz equation for u∗ ,

u∗
i − un

i

�t
= −

(
3

2

∂

∂x j
(un

i un
j ) − 1

2

∂

∂x j
(un−1

i un−1
j )

)
+

(
3

2

φn+1

ρn+1

∂Cn+1

∂xi
− 1

2

φn+1

ρn+1

∂Cn+1

∂xi

)

+ 1

ρn+1

[
∂

∂x j

(
μn+1(

∂un
i

∂x j
+ ∂un

j

∂xi
)

)]
+ 1

2

(
ν0∇2u∗ − ν0∇2un

)

+
(

3

2
f n
bi

− 1

2
f n−1
bi

)
+ ρ1 − ρ2

2
M

∂φn+1

∂x j

∂un
i

∂x j
,

u∗∗
i = u∗

i α

(A.5)

where ν0 = 1
2

(
μ1
ρ1

+ μ2
ρ2

)
. Note that the last term in equation (A.5) is added to consistently conserve the mass flux at the 

interface (see [15], for a detailed discussion). Finally, we update un+1 and pn+1 similarly to what done with the explicit 
algorithm,

un+1
i − u∗∗

�t
= (

1

ρ0
− 1

ρn+1 )
∂ Pn+1

∂xi
. (A.6)
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