
21 December 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A Case Study on Formal Equivalence Verification Between a C/C++ Model and Its RTL Design / Raia, Gaetano; Rigano,
Gianluca; Vincenzoni, David; Martina, Maurizio. - ELETTRONICO. - 1:(2024), pp. 373-389. (Intervento presentato al
convegno Formal methods tenutosi a Milano (Italy) nel 9-13 September 2024) [10.1007/978-3-031-71177-0_23].

Original

A Case Study on Formal Equivalence Verification Between a C/C++ Model and Its RTL Design

Publisher:

Published
DOI:10.1007/978-3-031-71177-0_23

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2992530 since: 2024-09-16T17:57:11Z

Springer

A Case Study on Formal Equivalence
Verification Between a C/C++ Model

and Its RTL Design

Gaetano Raia1, Gianluca Rigano2, David Vincenzoni2(B),
and Maurizio Martina1

1 Politecnico di Torino, Torino (TO), Italy
gaetanomaria.raia@studenti.polito.it, maurizio.martina@polito.it

2 STMicroelectronics, Agrate Brianza (MB), Italy
{gianluca.rigano,david.vincenzoni}@st.com

Abstract. In the field of communication system products, most datap-
ath Digital Signal Processing algorithms are initially developed at a high-
level in MATLABR© or C/C++. Subsequently, design engineers use these
models as a reference for implementing Register Transfer Level designs.
The conventional approach to verify their equivalence involves extensive
Universal Verification Methodology dynamic simulations, which can last
for months and require significant verification efforts. However, some elu-
sive errors might still occur because it is infeasible to explore all input
combinations with this method. On the other hand, Formal Equivalence
Verification aims to verify that a Register Transfer Level design is func-
tionally equivalent to the reference high-level C/C++ model across all
possible legal states. With recent advancements in formal solver tech-
nology, Formal Equivalence Verification provides a distinct benefit by
using mathematical methods to ensure that the Register Transfer Level
(timed) matches the original high-level C/C++ model (untimed). This
drastically reduces the verification time and ensures the exhaustive cov-
erage of the design state space. This paper presents an in-depth explo-
ration of complex Finite State Machine with datapath verification, specif-
ically focusing on Multiplier-Accumulator, Tone Generator, and Auto-
matic Gain Control, by employing the formal equivalence methodology.
Although these signal processing blocks were previously verified through-
out Universal Verification Methodology dynamic simulations, Formal
Equivalence Verification was able to identify hard-to-find bugs in just
a few weeks by utilizing the new workflow, thereby streamlining the ver-
ification process.

Keywords: Formal Equivalence Verification · JasperTM C2RTL App ·
C/C++ model · RTL design · Formal datapath verification

1 Introduction

Integrated circuits have become a cornerstone in both commercial and industrial
domains. As the demand for more sophisticated electronic devices has surged,
c© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14934, pp. 373–389, 2025.
https://doi.org/10.1007/978-3-031-71177-0_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71177-0_23&domain=pdf
https://doi.org/10.1007/978-3-031-71177-0_23

374 G. Raia et al.

the intricacy of these devices has considerably increased. This has necessitated
continuous evolution in design methodologies and verification processes to meet
the advancing technological requirements, as the cost of finding and solving bugs
has grown exponentially throughout the design process [14,16].

Verification is a critical process designed to confirm that a Device Under Ver-
ification (DUV) maintains its intended behavior throughout its implementation.
In the domain of System-on-a-Chip, a variety of verification technologies has
been established. These technologies are essential for ensuring the functional-
ity of these devices, which are complex designs integrating multiple disciplines.
While various categories of design flaws contribute to integrated circuits re-spins,
functional flaws remain the leading cause of bugs [18].

Additionally, the median percentage of total integrated circuit project time
dedicated to functional verification is approximately between 50% and 60% [17].
This figure can vary depending on the design; projects that utilize existing pre-
verified Intellectual Property (IP) may require less verification time, whereas
those with newly developed IP could require more. In general, test planning and
testbench development are the areas in which verification engineers spend the
most of their time, respectively 47% and 21% [17].

Over the last decade, functional verification has been mainly conducted
through the use of Universal Verification Methodology (UVM) testbench envi-
ronments. A testbench serves as a verification framework that administers a
predefined set of input patterns, also referred to as stimuli, to the Register
Transfer Level (RTL) design. The primary function of a testbench is to facil-
itate the observation of whether the DUV yields the correct outputs, compared
to a reference model, in reaction to these stimuli, as shown in Fig. 1.

C/C++
Reference Model

RTL
Implementation

==Input pattern
Output equivalence checks

Fig. 1. Conceptual representation of functional equivalence verification between a
C/C++ reference model and an RTL implementation

However, specifying millions of test vectors for exhaustive verification
becomes impractical in simulation-based approaches due to the exponential
increase in scenarios with the number of input bits: for instance, a 32× 32 bit

C-vs-RTL Formal Equivalence Verification 375

integer multiplier would have 264 total input combinations, at one million com-
binations checked per second, resulting into hundreds of thousands of processor
years. Random simulations are a practical alternative, providing a statistical
overview of compliance with specifications rather than exhaustive verification.
Yet, purely random inputs can miss corner cases or produce unrealistic scenarios.
Constrained-random simulations address this by guiding random input genera-
tion within defined parameters, improving coverage but still not guaranteeing
full design space exploration.

Moreover, this approach is resource-intensive due to the number of compo-
nents involved and is likely prone to subtle errors during the construction of the
verification environment. Ultimately, the UVM requires considerable effort to
verify its correctness prior to initiating the verification process. This results in
prolonged verification cycles, which may prove sub-optimal for projects facing
strict time-to-market constraints or operating with limited resources.

As electronic designs have become more complex and the time allocated
for design cycles has decreased, the industry has developed a suite of verifica-
tion methodologies and Electronic Design Automation (EDA) tools to address
these challenges. This paper introduces an innovative verification flow that lever-
ages Formal Equivalence Verification (FEV) to check that RTL designs match
C/C++ models. This approach, based on mathematical properties, ensures
exhaustive coverage and a significant reduction in verification time when com-
pared to traditional UVM dynamic simulations. The comprehensive version of
this paper, which includes in-depth discussions of the validated designs and the
methodologies employed, is available for reference [15].

2 Formal Equivalence Checking in C-vs-RTL Scenarios

Functional verification is an essential step in the design process, aimed at con-
firming that the implementation reflects the design intent. The reconvergence
model [2] suggests that the purpose of verification consists in ensuring that the
result of some transformation, such as RTL coding, is as expected. This can be
accomplished through a secondary path reconverging with the primary design
path at a shared origin, namely the specification model (see Fig. 2).

RTL Coding

RTL
Implementation

High-level
Specification

Equivalence Checking

Fig. 2. Recovergence model of functional verification through equivalence checking

376 G. Raia et al.

Formal equivalence checking employs mathematical reasoning to confirm that
an implementation adheres to a specification. Formal verification leverages a
language with precisely defined syntax and semantics to encapsulate the sys-
tem’s intended behavior, utilizing the IEEE standard for SystemVerilog Asser-
tion (SVA) [8]. Through mathematical proofs, formal verification ensures the
correctness of the Device Under Verification regardless of the input values, as it
implicitly consider any legal case in the design state space. Two models are con-
sidered equivalent if, upon exhaustive analysis of all possible cases, the formal
verification tool has not identified any discrepancies - commonly referred to as
counterexamples - that would negate the equivalence.

To elucidate the mechanisms employed in today’s equivalence-checking tools,
it is instructive to consider a common computational equivalence model known
as miter. This model effectively acts as a product machine that combines two
Finite State Machine (FSM) designs by aligning each corresponding pair of pri-
mary inputs and connecting each pair of outputs to an XOR gate, as shown in
Fig. 3. Establishing equivalence between two machines, denoted as Mspec(X) for
the specification machine and Mimpl(X) for the implementation machine, neces-
sitates the demonstration that for any given input sequence X = (x1, x2, . . . , xn),
the outputs of the product machine consistently yield a zero value. Equivalence is
thus confirmed by proving the nonsatisfiability of Eq. 1 across all possible inputs
X, where ⊕ denotes the XOR gate operation.

Mspec(X) ⊕ Mimp(X) (1)

While there are various methods to address this challenge, such as Binary
Decision Diagrams (BDDs) and Satisfiability (SAT) algorithms [14,16], they are
beyond the scope of this paper.

Finite State Machine
Specification

Finite State Machine
Implementation

Ispec

Iimp

Ospec

Oimp

= 0 ?

Primary inputs Primary outputs

Fig. 3. Miter model of two FSM designs to verify through formal equivalence

C-vs-RTL Formal Equivalence Verification 377

2.1 JasperTM C2RTL App

The advent of a novel category of formal engines embedded in Cadence R©

JasperTM C2RTL App, specifically optimized for evaluating RTL datapath
implementations against their C/C++ algorithmic specifications, has marked
a significant leap in verification performance. These specialized engines are now
capable of delivering performance that is up to 100 times more efficient than
that of traditional general-purpose formal engines [10]. This innovation repre-
sents a substantial breakthrough for semiconductor companies, which frequently
depend on robust, standardized EDA tools to manage the complexities inherent
to design processes.

The integration of early-design formal verification checks into the design
cycle can dramatically enhance the efficiency and effectiveness of the verification
efforts. Nevertheless, it is essential to demonstrate that C/C++ models accu-
rately capture the design intent, as these models often serve as the starting point
for computational block development due to their abstraction capabilities, sim-
ulation speed, verification efficiency, and standard usage in the semiconductor
industry. High-level C/C++ models can be easily verified at system level com-
pared to RTL, to understand if they fulfill with their specifications: if so, they
become the golden reference for the related RTL implementation. Implement-
ing a redundancy layer enhances verification reliability by pinpointing whether
inconsistencies stem from RTL coding mistakes or inaccuracies in translating
design intent into C/C++, thereby preserving design integrity.

For the sake of clarity and focus, this paper does not delve into the specifics
of formal engines, as their intricate details fall outside the scope of the current
discussion (refer to [3,4] for any insight). The emphasis here is on the broader
implications of these advanced tools and their impact on the semiconductor
industry’s verification practices, rather than on the technical nuances of the
engines themselves.

3 The Verification Flow

In formal verification, intended behaviors are encapsulated as properties, which
represent collections of logical and temporal relationships among subordinate
Boolean and sequential expressions, usually written in SVA language. Over the
past decades, verification engineers have been compelled to develop extensive
sets of properties to capture all conceivable behaviors for verification. This app-
roach has been both time-consuming and prone to risk, as the potential for
overlooking certain properties could lead to incomplete verification and unde-
tected design errors. The pivotal advantage of FEV in C-vs-RTL scenarios lies
in the automatic comparison of the two models facilitated by the automatic
generation of assertions. Concisely, an assertion is a declarative statement that
specifies a property which must always hold. This automation streamlines the
verification process, significantly reducing the manual effort and the associated
risk of human error in property specification. Within this context, the formal

378 G. Raia et al.

tool possesses the capability to generate mathematical properties checking that
both the designs produce identical outputs under the same input conditions.

Although the verification methodology enhances autonomy in property gen-
eration and checking, it is not fully independent and continues to necessitate
human guidance for configuring the verification environment, delineating the
state space of the design, and addressing convergence issues that arise from
state-space explosion in intricate digital circuits.

Despite these challenges, JasperTM C2RTL App is able to handle a large
variety of datapath algorithms, such as unit arithmetic operations, high-level
image processing algorithms, and encryption/decryption models [13]: in addition,
it handles pipelines, feedback loops, floating-point and more [10]. The following
list describes the innovative verification flow to apply FEV in verifying digital
circuits, without the need to develop verification components and test vectors:

1. C/C++ Model Compilation: the tool adheres to the latest ANSI C++
standards and integrates with prevalent math libraries [10].

2. RTL Compilation: the tool supports SystemVerilog RTL implementations
[10]. For non-SystemVerilog Hardware Description Language (HDL), equiva-
lence checking tools ensure consistency with the original design [5,11].

3. I/O Port Mapping: verification engineers map input and output ports
between the specification and implementation.

4. Clock and Reset Definition: the clock signal is identified in the RTL, and
reset signal polarity is specified to detect the reset state.

5. Input Assumptions: engineers define input signal dynamics and protocols,
acting as constraints to exclude illegal behaviors and prevent spurious coun-
terexamples.

6. Formal Engine Configuration: while engineers can select optimizations for
datapath-specific issues, leveraging the tool’s machine learning-based config-
uration may yield optimal results [13], especially at the beginning.

7. Coverage Property Specification: engineers outline coverage properties
to evaluate the DUV in targeted scenarios. These are employed by the user
to prove the existence of at least one legal case fulfilling a specific condition,
thereby facilitating the identification of the most concise path satisfying it.

8. Proof Execution: the tool checks for discrepancies between models using
automatically generated and manually written assertions.

For the sake of clarity, Table 1 outlines all possible outcomes when proving an
assertion. If the verification runs extensively without finding bugs, the verifica-
tion user may decide to conclude the process, especially under tight design cycle
deadlines. Generally, if a proof runs for more than 24 h without a result, it may
be necessary to rewrite or decompose the proof or to try different engine modes
[4]. This paper endeavors to delineate the challenges associated with managing
sophisticated real-world digital circuits developed by STMicroelectronics and to
outline effective strategies for ensuring convergence. To this end, it is advisable
to construct a comprehensive verification strategy that establishes objectives,
stages the complexity, and identifies coverage points.

C-vs-RTL Formal Equivalence Verification 379

Table 1. Possible proof status of formal verification

Proof status Description

Unprocessed The property is excluded from the proof target, even if declared

Undetermined Neither full pass nor counterexample found over the run time

Counterexample Property violated in at least one legal case

Proven Property exhaustively proven in all the legal cases

Cover The intended behavior can occur at least once

Unreachable The intended behavior is never possible

4 Reconstruction of FSM-Like Datapath Behavior

In Digital Signal Processing (DSP) applications, numerous digital circuits exhibit
behavior similar to FSM, where the next state is determined by the current
state. This characteristic is straightforward to replicate in RTL designs due to
the presence of memory elements such as registers that can hold state infor-
mation. However, in C/C++ models, which are inherently untimed, managing
state transitions to drive the next state can be challenging. In this section, the
FEV process on checking the functional equivalence of a Multiplier-Accumulator
(MAC) is described in detail.

The MAC unit finds extensive application across various DSP fields, includ-
ing but not limited to audio and speech processing, image and video compres-
sion, telecommunications, radar and sonar systems, as well as biomedical signal
processing. Specifically, it enables rapid computation for tasks such as filtering,
convolution, and Fourier transforms in embedded systems. The main purpose
of MAC is to repetitively add the product between two input signals to previ-
ously obtained intermediate results of the same nature. More precisely, such a
functionality can be modeled under a mathematical point of view, according to
Eq. 2. Given a(k), b(k) as input signals sampled at k-th cycle, the multiplication
operation produces an intermediate result which is added to the sum of those
computed during the k − 1 previous cycles.

result =
N∑

k=0

a(k) · b(k) (2)

4.1 Specifications

The Device Under Verification is a Floating-Point MAC compliant to the IEEE-
754 Standard for Floating-Point Arithmetic [7], patented by STMicroelectronics
[19], whose interface and computational block diagrams are shown in Fig. 4.
The block accepts three floating-point operands (namely fp a, fp b, fp c) and a
starting condition triggering a new operation to execute, that is indicated by
fp opcode i (refer to List. 1.1 and List. 1.2 in [15] for C and RTL pseudo-codes).

380 G. Raia et al.

Operational stability requires that, once the execution phase begins, the input
signal fp op start remains inactive, while the input operands and the opcode sig-
nal retain their values until the completion of the computational phase. The block
supports both straight and recursive arithmetical operations, involving multipli-
cation, addition, and subtraction. On the output side, two distinct floating-point
results (fp m and fp z) are provided, respectively containing the sampled out-
comes produced by the multiplier and the adder/subtractor blocks.

Multiplier
Accumulator

fp_a
fp_b
fp_c

fp_op_start
fp_opcode_i

RESET
CCLK

fp_m
fp_z

fp_a

fp_b

fp_c

x fp_m

+ fp_z

32

32

32

4

32

32

F
S
M

S0

S2

S3

S1

S0
S1

S3
S2

fp_op_start
fp_opcode_i

Fig. 4. Interface and computational block diagrams of the MAC

4.2 Verification Strategy

The verification aimed to affirm the RTL implementation’s equivalence with its
C model. The circuit comprised a pipelined floating-point multiplier and a com-
binatorial floating-point adder from a third-party IP, complicating direct formal
verification. Focus thus shifted to verifying the control logic and feedback mech-
anism, using fixed-point behavioral models to represent the floating-point units
analytically. Recursive operations in the RTL allow reusing previous outputs as
operands for current computations, challenging to replicate in untimed C/C++
models due to their instantaneous computation on the same formal analysis
cycle. While appropriate latency was easily introduced in model comparisons to
properly handle the gap in pipelined designs, the formal tool lacked features to
enable the C/C++ model to retain past values.

The most promising strategy consisted in extending the interface of the
C/C++ model (see List. 1.1 in [15]), in a way that output values could be
brought back as operands for recursive operations. Within this framework, SVA
assumptions were essential to ensure the feedback continuity, forcing that fp m in
corresponds to the prior cycle’s fp m out, and similarly for fp z in and fp z out,
as delineated in List. 1.3 in [15].

Further strategies to achieve complete convergence in useful time consisted
in scaling down the bit-width of the arithmetical operands, from 32-bit to 8-bit

C-vs-RTL Formal Equivalence Verification 381

and 16-bit. In fact, design scaling simplifies the state space and thus accelerates
convergence in formal verification by diminishing the computational complexity
and the number of potential states to explore. Moreover, a case-splitting strat-
egy, guided by opcode values, was implemented to isolate and address the most
challenging cases for the verification tool, uncovering bottlenecks tied to specific
algorithmic attributes. Consequently, manual assertions were crafted to refine
the scope of auto-generated properties, as reported in List. 1.4 in [15].

To alleviate the verification load and ensure comprehensive equivalence,
assertions were reformulated. This entailed incorporating the triggering condi-
tion and confirming the initial congruence of output signals from the preceding
cycle. Stability of the summation outputs was verified over the calculation span
of six cycles, whereas the multiplication output from the RTL was validated to
not changing within the five-cycle interval post-triggering, concurrently main-
taining equivalence with the C model in the subsequent cycle (see List 1.5 in
[15]).

4.3 Results

Table 2 encapsulates the verification methodology for the MAC block. Despite
some instances of undetermined proof results arose, we ultimately established
complete equivalence across all cases by advancing through the verification
sequence, confirming the functional correctness of the control part of the MAC
block. Table 3 reports the run-times obtained at the last verification stage by bit-
width value, illustrating the substantial influence of design scaling on formal tool
performance. Additionally, Table 4 provides run-times from an earlier verifica-
tion phase, demonstrating how case-splitting helps identify the most challenging
scenarios for proof, namely recursive operations.

Table 2. Staging complexity in the verification of the MAC

Stage Description

1 Verification of the control logic with fixed-point behavioral operators

2 Reconstruction of the feedback mechanism using SVA assumptions

3 Scaling down the bit-width to reduce the complexity of the formal problem

4 Application of case-splitting technique and manually written properties

5 Reformulating the manually written assertions to lighten the verification load

Table 3. Final run-times of the MAC verification considering all the opcodes

Opcode 8-bit 16-bit 32-bit

[0x00, 0x0C] 17.27 s 58.66 s 99.32 s

382 G. Raia et al.

Table 4. Run-times at stage 4 of the MAC verification sequence (* stands for unde-
termined proof result, while apex symbol indicates the value at the previous cycle)

Opcode Equation 8-bit 16-bit 32-bit

0x00 fp z = fp b + fp c 0.32 s 0.50 s 0.59 s

0x01 fp z = fp b − fp c 0.35 s 0.64 s 1.42 s

0x02 fp z = fp z′ + fp c 0.34 s 1.44 s 1.34 s

0x03 fp z = fp z′ − fp c 0.33 s 1.39 s 1.88 s

0x04 fp z = fp m′ + fp c ≈ 12 h * ≈ 12 h * ≈ 12 h *

0x05 fp z = fp m′ − fp c 2.85 s 4.69 s 17.81 s

0x06 fp m = fp a · fp b 7.54 s 39.57 s 131.97 s

0x07 fp m = fp m′ · fp b ≈ 12 h * ≈ 12 h * ≈ 12 h *

0x08 fp m = fp z′ · fp a 2.62 s 21.35 s 0.88 s

0x09 fp z = fp a · fp b + fp c 10.62 s 91.52 s 175.57 s

0x0A fp z = fp a · fp b − fp c 10.04 s 76.93 s 186.11 s

0x0B fp z = fp z′ + fp a · fp b 13.4 s 63.97 s 530.02 s

0x0C fp z = fp z′ · fp a + fp c 11.56 s 65.89 s 211.05 s

5 Decomposition of a Complex Cone of Influence

Utilizing the JasperTM C2RTL App facilitates equivalence checking to ascertain
the functional correctness of an RTL design without necessitating manual prop-
erty specification. Nevertheless, the automatic generation of end-to-end prop-
erties aimed at confirming output signal consistency under equivalent inputs
can engender an intricate Cone Of Influence (COI). The COI, pivotal in formal
verification, circumscribes the relevant RTL logic impacting a given property,
enabling the exclusion of non-influential logic (refer to Fig. 5).

A case study on an STMicroelectronics-designed pipelined, frequency-
tunable, and programmable-gain tone generator was undertaken to investigate
methods for decomposing the COI in the context of challenging automatically
generated properties. The tone generator is crucial for calibrating audio DSP sys-
tems, developing signal processing algorithms, and testing telecommunications
networks.

inputs result

Fig. 5. Conceptual representation of the Cone Of Influence

C-vs-RTL Formal Equivalence Verification 383

5.1 Specifications

The tone generator accepts inputs such as the tone setup choice mode i (either
single or double tone), phase steps ΔΦ single and ΔΦ double, and programmable
gains gain single and gain double, as shown in Fig. 6. It then generates outputs
that consist of either one or two tones in the in-phase (I) and quadrature (Q)
components, Y I and Y Q respectively. The phase step sets the incremental
change in phase between successive samples, thereby setting the frequency of
the tone(s), while gain controls the amplitude scaling applied to the output
signal (see C and RTL pseudo-codes in List. 1.6 and List. 1.7 in [15]).

Tone
generator

Phase
accumulator

Address
computation

Phase
amplitude
converter

D Q TruncationX

Saturation
and

rounding
+

Phase
accumulator

Address
computation

Phase
amplitude
converter

D Q TruncationX

2

6

6

21

21 12

12

Fig. 6. Interface and computational block diagrams of the tone generator

The protocol governing input signals mandates static values within their
defined legal ranges throughout execution:

– mode i signal assumes values within the set {0, 1, 2}, where 0 denotes the
idle state, 1 corresponds to single tone mode, and 2 to double tone mode.

– gain single and gain double signals are constrained to [0, 63] and [0, 31].
– ΔΦ single and ΔΦ double signals are restricted to the range [0, (221 − 1)].

5.2 Verification Strategy

The verification’s primary objective was to establish the complete equivalence of
the RTL implementation of the tone generator with its corresponding C/C++
model. Central to the block’s functionality is a phase accumulator unit designed
to iteratively compute the subsequent phase value, (Φ(t + 1)), from the current
phase, (Φ(t)), and the input phase increment, (ΔΦ), as described by the equation
(Φ(t + 1) = Φ(t) + ΔΦ). To manage the inherent feedback within the phase
accumulator, a verification strategy analogous to that delineated in Sect. 4 was
employed. This strategy proved ineffective, except for large phase step values,
primarily due to the extensive bit-width and the vast array of potential cases
which could not be exhaustively verified.

Given the design’s intrinsic architecture, reducing parallelism was not feasible
without altering the models, a course of action avoided due to the potential for

384 G. Raia et al.

introducing errors. Consequently, an alternative strategy was adopted, which
involved overconstraining the current phase value node in both the RTL and
C/C++ models to accept any value within its legal range, independent of the
phase step. The overconstraint ensured that the subsequent phase value would
correspond to the overconstrained phase node’s value from the previous cycle,
thereby emulating the phase accumulator’s functionality (see List. 1.8 in [15]).
Overconstraining the internal phase node had not compromised the functionality
of the circuit, since it affected both downstream and upstream logic.

Despite promising, overconstraining the internal phase node did not result as
a completely satisfactory strategy because of the long time required to achieve
the full proof. Because this was mainly due to the high complexity of the com-
putational load, a more powerful technique, consisting in inserting extra asser-
tions by leveraging intermediate equivalent points between the C/C++ and RTL
models, was employed. While it may appear that adding more assertions could
increase the workload for the verification tool, proven assertions at the inter-
mediate key points can actually aid the formal tool in verifying more complex
automatically generated end-to-end properties (see List. 1.9 [15]). In this case,
intermediate equivalent points were placed at data processing stages (refer to
Fig. 6), such as:

– Sample values coming out from the phase amplitude converter.
– Sample values scaled by the input gain and then truncated.

A more sophisticated and efficient verification strategy involved explicitly
instructing the formal verification tool to utilize proven assertions at interme-
diate equivalent key points within the design. By doing so, these assertions act
as simple blocks within a more complex chain of end-to-end properties. As the
verification tool progresses through the smaller properties, it utilizes the proven
assertions as helper assumptions for subsequent assertions in the verification
chain. An end-to-end property is considered proven if all its helper assumptions
are also proven. Consequently, the assume-guarantee method was employed as
the terminal verification technique to expedite the attainment of a comprehensive
proof. This approach mitigated the complexity of the global Cone Of Influence
by partitioning challenging monolithic assertions into discrete, tractable formal
verification sub-problems, each with a correspondingly narrowed COI.

5.3 Results

The application of FEV techniques successfully confirmed the functional equiv-
alence between the C/C++ model and the RTL implementations. For the sake
of clarity, proof convergence was achieved by following the verification sequence
reported in Table 5. Table 6 reports the infeasibility of feedback reconstruction
using SVA assumptions, highlighting the formal tool’s difficulty with diminish-
ing phase step values. Table 7 summarizes the run-times by verification stage
and working mode, proving the advantage of determining the equivalence at
intermediate points to aid the formal tool in achieving convergence.

C-vs-RTL Formal Equivalence Verification 385

Table 5. Staging complexity in the verification of the tone generator

Stage Description

1 Reconstructing the feedback of the phase accumulator

2 Overconstraining the current phase node using SVA assumptions

3 Proving the equivalence at intermediate points inserting extra assertions

4 Applying the assume-guarantee to leverage equivalence at intermediate points

Table 6. Run-times at stage 1 of the tone generator verification sequence

Input phase step Proof status Run-time

220 Proven 17.6 s

219 Proven 62.8 s

218 Proven 29 min

217 Proven ≈ 12 h

216 Undetermined ≈ 24 h

Table 7. Run-times at different stages of the tone generator verification sequence

Single tone mode Stage 2 Stage 3 Stage 4

Run-times 221 min 132 min 26 min

Proof status Proven Proven Proven

Time reduction 40% 80%

Double tone mode Stage 2 Stage 3 Stage 4

Run-times 48 h 111 min 33 min

Proof status Undetermined Proven Proven

Time reduction N/A 70%

6 Proving the Equivalence with a MATLABR©-derived C
Code

Significant algorithmic differences between high-level C/C++ models and RTL
designs present notable challenges in proving functional equivalence using FEV
techniques. This is especially the case for C code derived from MATLAB R© where
complexity can increase due to several factors, such as the variations in data
types and bit-width choices. Despite casting procedures are supported by the
formal tool, it is highly recommended to minimize type discrepancies between
RTL and C/C++ representations. This approach was employed in the verifica-
tion of an Automatic Gain Control (AGC) design.

386 G. Raia et al.

6.1 Specifications

The main purpose of an AGC circuit, within a receiver in a communication
system, is to maintain a constant output amplitude level of a signal despite
variations in the amplitude of input signal, as represented in Fig. 7. The device
under analysis is an AGC (targeting IEEE 802.15.4g protocol [6]) designed by
STMicroelectronics, governed by an FSM with datapath mechanism. Due to
confidentiality constraints, detailed information about the specific block cannot
be disclosed in this publication. The AGC accepts inputs from a Received Signal
Strength Indicator (RSSI) block through rssi result signal, providing an output
gain value to a Programmable Gain Amplifier (PGA) using gain signal, as shown
in Fig. 7. Configuration of the AGC is achieved by setting the mode signal,
initializing the gain with start gain, and adjusting the gain using gain step.

Automatic
Gain ControlRSSIA/D converter

DSP

Antialias filterPGAReceived
signal

Automatic
Gain Control

gain
mode

start_gain
gain_step

rssi_result

reset_n
clk

Fig. 7. System level representation of the Automatic Gain Control

6.2 Verification Strategy

Significant algorithmic differences between the two models precluded to lever-
age intermediate equivalent key points to aid the formal tool. Consequently,
beyond feedback reconstruction technique described in Sect. 4 to emulate the
FSM behavior, further modifications were implemented. To alleviate verification
overhead, all double data types in the C/C++ model - automatically converted
from MATLAB R© codes using MATLAB Coder [12] - were converted to int data
types to align with the RTL design specifications. This conversion necessitated
the creation of new functions within the C/C++ code, which are listed in Tab. 10
in [15]. Additionally, to prevent state explosion issues commonly associated with
counters, their maximum count values were deliberately constrained to zero to
avoid multiple accumulation of samples. This cap was not overly restrictive,
as the accumulation underwent separate verification from the gain computation
under specific input scenarios, namely the main target of the verification process.

6.3 Results

The verification of this case was particularly challenging due to algorithmic diver-
gences between the high-level and low-level models and the design’s complex con-
trol logic. Table 8 outlines the verification sequence utilized for the AGC block,
which ultimately resulted in the run-times presented in Table 9. Despite the
full equivalence was not proven in all cases, the application of FEV techniques

C-vs-RTL Formal Equivalence Verification 387

resulted valuable by quickly identifying two mismatches between the C/C++
model and the RTL design, corresponding to subtle overflow cases that were not
discovered during previous UVM dynamic simulations.

Table 8. Staging complexity in the verification of the AGC

Stage Description

1 Reconstructing the feedback mechanism to emulate the FSM behavior

2 Converting the data types of the C/C++ model from double to int

3 Disabling counters to avoid multiple accumulation of samples

Table 9. Run-times at the final stage of the AGC verification sequence

Mode Description Proof result Run-time

Mode 1 Fixed-gain configuration Proven 0.34 s

Mode 2 Gain can only decrease Proven 121.74 s

Mode 3 Gain can only decrease until a certain value Proven 754.10 s

Mode 4 Gain can both increase and decrease Undetermined ≈ 48 h

Mode 5 Gain is determined by non-trivial RSSI conditions Undetermined ≈ 48 h

7 Conclusion

This paper presented a case study on applying various FEV techniques within
the context of verifying the functional equivalence between three-real world high-
level C/C++ models and RTL designs using the JasperTM C2RTL App. This
innovative approach enables exhaustive exploration of the design state space,
potentially revealing bugs that traditional verification methods might miss.
Moreover, by utilizing high-performance formal engines, the verification time for
typical DSP components has been significantly reduced - from months to just a
few weeks per case study -compared to UVM dynamic simulations, specifically:

– UVM environment setup traditionally requires six weeks, whereas C2RTL
preparation, including port mapping, adaptation of C/C++ models, and ver-
ification plan formulation, is completed within one week.

– Test development in UVM extends over five weeks, in contrast to the two
weeks needed for incorporating appropriate constraints in C2RTL. This
entails specifying legal input signal values and protocols, methodically explor-
ing the design state space, and applying effective verification techniques to
ensure convergence.

388 G. Raia et al.

– Debugging in UVM, which involves analyzing dynamic simulation waveforms,
typically spans two weeks. Conversely, C2RTL reduces this to a matter of
days, benefiting from the provision of succinct counterexample waveforms
and facilitated root cause analysis.

Customizing the formal tool to accommodate the specific characteristics of
each DUV proved to be a non-trivial task. There is no replacement for the verifi-
cation user’s knowledge of the expected behavior and the selection of appropriate
techniques to assist the tool in handling FSM-like behaviors, large COI and sig-
nificant algorithmic difference between high-level C/C++ models and the RTL
designs. In conclusion, this paper has demonstrated that the strategic applica-
tion of FEV techniques, facilitated by the JasperTM C2RTL App, significantly
enhances the efficiency and effectiveness of DSP component verification.

References

1. Albin, K.: Oracle labs: the cost of SoC bugs. In: Design and Verification Conference
and Exhibition, U.S. (2016)

2. Bergeron, J.: Writing Testbenches using SystemVerilog . 1st edn. Springer, (2006)
3. Cadence Design System: Jasper C to RTL Equivalence Checking App User Guide

(2023)
4. Cadence Design System: Jasper Engine Selection Guide (2023)
5. Formality Equivalence Checking. https://www.synopsys.com/glossary/what-is-

equivalence-checking.html. Accessed 15 June 2024
6. IEEE: IEEE Standard for Local and metropolitan area networks–Part 15.4: Low-

Rate Wireless Personal Area Networks (LR-WPANs) Amendment 3: Physical
Layer (PHY) Specifications for Low-Data-Rate, Wireless, Smart Metering Utility
Networks, pp. 1–252, IEEE Std 802.15.4g-2012 (2012)

7. IEEE-754: Standard for Floating-Point Arithmetic. IEEE Std 754-2008, pp. 1–58.
IEEE (2008)

8. IEEE Computer Society and IEEE Standards Association Corporate Advisory
Group: IEEE Standard for SystemVerilog- Unified Hardware Design, Specification,
and Verification Language (IEEE Std 1800TM-2017). IEEE, New York (2017)

9. Jasper C Apps. https://www.cadence.com/en US/home/tools/system-design-
and-verification/formal-and-static-verification/jasper-c-formal-verification.html.
Accessed 13 June 2024

10. Jasper C Apps. https://community.cadence.com/cadence blogs 8/b/breakfast-
bytes/posts/jasperc2rtl. Accessed 14 June 2024

11. Jasper SEC App. https://www.cadence.com/zh TW/home/tools/system-design-
and-verification/formal-and-static-verification/jasper-gold-verification-platform/
jaspergold-sequential-equivalence-checking-app.html. Accessed 15 June 2024

12. MATLAB Coder. https://it.mathworks.com/products/matlab-coder.html.
Accessed 19 Jun 2024

13. Mittal, V., Roy, S., Singhal A.: Embracing datapath verification with Jasper
C2RTL App. In: Design and Verification Conference, India (2022)

14. Perry, D.L., Foster, H.: Applied Formal Verification: For Digital Circuit Design.
1st ed. McGraw Hill LLC (2005)

https://www.synopsys.com/glossary/what-is-equivalence-checking.html
https://www.synopsys.com/glossary/what-is-equivalence-checking.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-c-formal-verification.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-c-formal-verification.html
https://community.cadence.com/cadence_blogs_8/b/breakfast-bytes/posts/jasperc2rtl
https://community.cadence.com/cadence_blogs_8/b/breakfast-bytes/posts/jasperc2rtl
https://www.cadence.com/zh_TW/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform/jaspergold-sequential-equivalence-checking-app.html
https://www.cadence.com/zh_TW/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform/jaspergold-sequential-equivalence-checking-app.html
https://www.cadence.com/zh_TW/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform/jaspergold-sequential-equivalence-checking-app.html
https://it.mathworks.com/products/matlab-coder.html

C-vs-RTL Formal Equivalence Verification 389

15. Raia, G., Vincenzoni, D., Rigano, G., Martina, M.: A Case Study on Formal Equiv-
alence Verification between a C/C++ Model and its RTL Design: A Long Com-
panion Version. Zenodo (2024). https://doi.org/10.5281/zenodo.12591803

16. Seligman, E., Schubert, T., Kirankumar, M.: Formal Verification: An Essential
Toolkit for Modern VLSI Design, 1st edn. Morgan Kaufmann Publishers Inc, San
Francisco (2015)

17. The 2022 Wilson Research Group Functional Verification Study (Part 8). https://
blogs.sw.siemens.com/verificationhorizons/2022/12/12/part-8-the-2022-wilson-
research-group-functional-verification-study/. Accessed 13 June 2024

18. The 2022 Wilson Research Group Functional Verification Study (Part
12). https://blogs.sw.siemens.com/verificationhorizons/2023/01/09/part-12-the-
2020-wilson-research-group-functional-verification-study-2/. Accessed 13 June
2024

19. Vincenzoni, D., Raffaelli, S.: Circuit for performing a multiply-and-accumulate
operation. (10089078, 3299952,10437558) (2016)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.5281/zenodo.12591803
https://blogs.sw.siemens.com/verificationhorizons/2022/12/12/part-8-the-2022-wilson-research-group-functional-verification-study/
https://blogs.sw.siemens.com/verificationhorizons/2022/12/12/part-8-the-2022-wilson-research-group-functional-verification-study/
https://blogs.sw.siemens.com/verificationhorizons/2022/12/12/part-8-the-2022-wilson-research-group-functional-verification-study/
https://blogs.sw.siemens.com/verificationhorizons/2023/01/09/part-12-the-2020-wilson-research-group-functional-verification-study-2/
https://blogs.sw.siemens.com/verificationhorizons/2023/01/09/part-12-the-2020-wilson-research-group-functional-verification-study-2/
http://creativecommons.org/licenses/by/4.0/

	A Case Study on Formal Equivalence Verification Between a C/C++ Model and Its RTL Design
	1 Introduction
	2 Formal Equivalence Checking in C-vs-RTL Scenarios
	2.1 JasperTM C2RTL App

	3 The Verification Flow
	4 Reconstruction of FSM-Like Datapath Behavior
	4.1 Specifications
	4.2 Verification Strategy
	4.3 Results

	5 Decomposition of a Complex Cone of Influence
	5.1 Specifications
	5.2 Verification Strategy
	5.3 Results

	6 Proving the Equivalence with a MATLAB®-derived C Code
	6.1 Specifications
	6.2 Verification Strategy
	6.3 Results

	7 Conclusion
	References

