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31  Capturing urban scaling laws via 
spatio- temporal correlated clusters1

Anna Carbone, Sérgio Luiz da Silva,  
and Giorgio Kaniadakis

31.1 Introduction

A variety of urban features have been reported to exhibit quite universal behav-
iour depending on population size N. Scaling laws Y ∼ Nβ linking socio- economic 
and infrastructural features to population size, either with β > 1 or with β < 1, 
imply that a more concentrated population corresponds to better socio- economic 
performances and less costly infrastructural investments [1– 4]. The probability 
density function (pdf) of the population size follows a power- law of N with an 
exponent approximately equal to 2 [5,6]. Models of monocentric cities have 
been proposed where individuals commute from home to a central business dis-
trict (CBD) and back by private or public transportation in a homogeneous iso-
tropic space [7– 10]. In such models, population density shows an exponential 
dependence on the distance from the CBD. Recently, urban landscapes with 
distinct multicentric activity centres have been envisioned to emerge as popu-
lation size increases [11] with the monocentric urban organization stable up to 
a threshold value N* when a transition to a multicentric structure takes place 
characterized by a number of business clusters varying with population size as 
Ce =  Nσ with σ =  µ/  (µ +  1) < 1 and 0 < µ < 1 depending on the congestion level 
[12,13].

Overall, the scaling features indicate that urban organizations behave as het-
erogeneous complex systems. Hence, understanding urban microstructure and its 
evolution over multiple spatio- temporal scales has become a scientific priority with 
direct practical implications for the sustainable management of big cities [14– 17]. 
The focus of the scientific community has been increasingly drawn towards urban 
feature description in terms of pointwise rather than cumulative functions of the 
population size N. In this scenario, the increasing availability of high- resolution 
spatio- temporal data (phone, satellites) can contribute to investigating models of 
urban areas and quantifying related phenomena at the local level.

Statistical physics concepts put forward within the subfield of complex systems 
science have proved relevant to the description of socio- economic and infrastructural 
urban systems featured by increasing population size and heterogeneity. The investi-
gation of inter-  and intra- urban features in heterogeneous multicentric structures has 
been carried out in terms of spatio- temporal clustering driven by socio- economic 
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and/ or geographical/ infrastructural phenomena. A growing number of studies have 
been addressed to the application of clustering methods in relation to percolation, 
fractality, self- similarity, self- organization concepts and their statistical significance 
in the context of urban modelling [18– 37]. The Diffusion Limited Aggregation 
(DLA) model is among the early attempts to describe urban growth phenomena in 
terms of only one large fractal cluster with a tree- like dendritic structure developed 
around the central business district, where additional units are randomly added at 
the periphery. Models where long- range correlated rather than random clusters add 
to form the city topology could better suit the real urban organization. A percolation 
process with long- range correlation and an exponential dependence on the distance 
from the central business district is proposed in [35,36]. A two- dimensional frac-
tional Brownian field is adopted to model the urban grid infrastructure where a set 
of long- range correlated clusters is generated according to the approach proposed 
in Ref. [37]. This method is able to reproduce the heterogeneous self- similar urban 
structure without requiring the assumption of an exponential distribution of the 
population density with respect to the city centre. Furthermore, it does not operate 
via a constant thresholding clustering approach, as it is based on a locally varying 
average function of the spatial field.

This work aims to provide a brief review focused on the adoption of statistical 
clustering concepts to quantify complexity features of urban landscapes. Special 
attention will be paid to how scaling laws emerge from long- range correlated 
clusters with a specific focus on the works [35– 37]. This chapter is organized as 
follows. In Section 31.2 (Statistical clustering) the main concepts of clustering 
algorithms are briefly recalled. In Section 31.2.1 the main steps of the (Detrending 
moving average) algorithm are presented. In Section 31.3 (Discussion), a com-
parison among the methods is provided and the main outcomes, potential 
implications, and directions for future work are summarized.

31.2 Statistical clustering

Clustering is becoming increasingly relevant for making sense of large amounts of 
correlated data, where the main aim is identifying patterns intrinsically emerging in 
the data (natural clusters) rather than building artificial partitions. Several methods 
and optimization criteria have been proposed that in turn lead to different classes 
of clustering algorithms. In general, clustering refers to partitioning a dataset into 
subsets according to some criterion. Let X =  {x1, ..., xn} be a set of n data points. 
Centre- based clustering operates via a partition C =  {C1, ..., Ck} of X into k clusters 
with corresponding centres c1, ..., ck and allocating data points according to some 
optimization criterion. The k- centre, k- median, and k- means methods minimize, 
respectively, the maximum, the sum, and the sum of squares of distances between 
ck and any data point. Despite extensive interesting applications of centre- based 
clustering, the method suits convex- shaped clusters and requires prior knowledge 
of the number of cluster k input parameters. An alternative is offered by density- 
based clustering, which is not affected by these drawbacks as the clusters are built 
as varying density areas of some relevant feature of the data surrounded by density 
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values lower than a threshold. Density- based clusters are usually built as sets of 
points resulting from the intersection through a density function δ(r) relevant for 
the data at a certain density level δ¯ (r) (threshold level). Each intersection generates 
separate connected regions in the feature space where the probability density is 
higher than the threshold value (see Figure 31.1). Each region corresponds to 
a cluster defined over all the data points falling into this region. The threshold 
δ¯ (r) is usually defined as a constant over the whole data domain. If the threshold 
density level is too small, several clusters will result in being merged together. 
If the threshold density level is too large, large clusters will not show up. The 
choice of the threshold is critical to the cluster region definition. In particular, the 
assumption of a constant threshold is an issue when the relevant feature is not a 
constant but varies as a long- range correlated quantity of space and time. Such 
a situation occurs in many real- world systems and is particularly interesting for 
urban data (e.g., the population size N).

31.2.1 Detrending moving average algorithm

For the sake of completeness, before discussing the application of the detrending 
moving average (DMA) algorithm to urban landscapes, the main concepts under-
lying the algorithm together with the essential analytical relationships will be 
briefly recalled [39,40]. The DMA can be classified as a density- based clustering 
method with a position- dependent threshold.

Two- dimensional long- range correlated data, such as those featuring urban 
landscapes, can be modelled in terms of random fields [41,42]. Interesting classes 
of models for random fields are the fractional Gaussian noise (fGn) and fractional 
Brownian motion (fBm). A fractional Brownian field f rH ( ) is a scalar function 
with r x x xd= ( )1 2, ,...,  the spatial coordinates, d the dimension of the Euclidean 
domain. The fractional Gaussian noise (fGn) is obtained from the fBm increments 
fH(r +  1) −fH(r). The fGn is a stationary process with zero mean and covariance 
given by:

 
ρ λ σ λ λ λ

λ

( ) = +( ) − + −





∼ −( ) −

2
2

2
2

2 2

2
1 2 1

2 1

H H H

HH H           

 (31.1)

where λ λ λ λ= ( , ,..., )1 2 d  is the scale factor and λ λ λ λ== + + +( )1
2

2
2 2 1 2
 d

/ . The 
parameter H ∈[ ]0 1, is called the Hurst exponent and is linked to the fractal dimen-
sion Df by the relationship Df =  d − H. The above properties indicate that fractional 
Brownian motion and fractional Gaussian noise exhibit long- range correlation and 
self- similarity.

According to Refs. [39,40] the density threshold is defined by the moving 
average function f rH

 ( ) , that for a two- dimensional space with d =  2, r =  (x1, x2) 
and λ =  (n1, n2) writes:
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The function f x x n nH


1 2 1 2, ; ,( ) is evaluated at each pair of coordinates x1, x2 over 
sub- arrays with different sizes n1 × n2. The clustering is obtained by the intersection 

of the function f x xH 1 2,( ) with the locally dependent threshold f x x n nH


1 2 1 2, ; ,( )  
estimated recursively over sub- regions of the grid by varying the values of n1 × 

n2. The difference between the function f x x f x x n nH H1 2 1 2 1 2, , ; ,( ) − ( )  generates 
clusters of increasing area depending on the value of n1 × n2.

In Figure 31.2, the function f x x n nH


1 2 1 2, ; ,( ) is plotted for n1× n2 equal to (a)   
15 × 15, (b) 25 × 25, and (c) 35 × 35. For a rectangular urban grid with size N1 × 
N2, the coordinates x1, x2 correspond to each single cell and n1 × n2 corresponds to 
a cell array, i.e., a rectangular sub- area of the urban grid.

In Refs. [39,40], the generalized two- dimensional variance σDMA
2  of f x xH 1 2,( )  

around the moving average function f x x n nH


1 2 1 2, ; ,( ) is defined as:
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which can be rewritten as:

 σDMA

H
n n n n2

1 2 1
2

2
2

2

, ~ .( ) +   (31.4)

Eq. (31.4) is again a power- law indicating long- range correlation and self- 
similarity. Hence a log– log plot of σDMA

2  as a function of the scale s n n= +1
2

2
2  

would yield a straight line with slope H.
The procedure can be applied to real- world two- dimensional data as for example 

done in Refs. [37,38]. The scaling behaviour of the DMA method (Eq. 31.4) when 
implemented on real data as the urban landscape satellite images provides the 
Hurst exponent of the data. Real- world heterogeneous long- range correlated data 
are not ideal fractional Brownian motions. Therefore, the subscript H is dropped 
when the method is applied to real- world data, remarking that a- priori data are not 
ideal fBms. Contrarily to fractional Brownian functions fH(r) defined to exist at all 
scales, real- world datasets barely behave as ideal fractals. Being characterized by 
finite sizes, setting upper and lower limits to the detection of small and large scales, 
deviations from the ideal scaling behaviour should be expected.

The Hurst exponent H and the fractal dimension Df of urbanized regions have 
been estimated by implementing the two- dimensional detrending moving average 
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(DMA) algorithm on satellite images in Refs. [37,38]. The purpose of the inves-
tigation is twofold: to provide accurate estimates of H and Df and shed light on 
the models of interurban and intraurban scaling laws. The analysed urbanized or 
rural areas are drawn from satellite images. Before implementing the DMA algo-
rithm, raw data are converted from the unit8 to the double format. The algorithm is 

Figure 31.2  Two- dimensional (d =  2) Fractional Brownian motion field with H =  0.5 (a) and 
moving averages f x x n nH



1 2 1 2, ; ,( )  estimated by using Eq. (31.2). The size n1 × 
n2 refers to the local areas over which the moving average is estimated. Values 
of n1 × n2 are (a) 15 × 15, (b) 25 × 25, and (c) 35 × 35.
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implemented separately on each sub- image, to grasp the variability of the scaling 
properties of different areas (partially mountainous, suburban, and centrally 
located areas). Further technical details and results for several intraurban regions 
of different cities can be found in Ref. [37] and are not repeated here.

The moving average clustering optimization criterion can be interpreted as a 
minimization of an information measure over a partition generated by the threshold 
f x x n nH


1 2 1 2, ; ,( ) which is a coarse- grained description of the observed system 

Figure 31.2 Continued
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obtained by smoothing out the fine details of the real data [43]. As the system 
becomes coarser, randomness and entropy increase. In the detrending moving 
average clustering threshold f x x n nH



1 2 1 2, ; ,( ) is obtained by performing a local 
average over each cell of the partition in phase space (Figure 31.3).

The difference f x x x x n nf H1 2 1 2 1 2, , ; ,( ) − ( ) generates a set of regions for each 
sub- array n1 × n2 corresponding to a finite partition Cn,j =  {Cn,1, Cn,2, ...} of clusters. The 
difference f x x x x n nf H1 2 1 2 1 2, , ; ,( ) − ( )  quantifies the error, i.e., the loss of infor-
mation of the coarse- grained two- dimensional structure compared to the real data. 
The spatial coordinates (x1, x2) where the difference f x x x x n nf H1 2 1 2 1 2, , ; ,( ) − ( )  
becomes zero correspond to the cluster boundaries (Figure 31.4).

Figure 31.3  The density- based clustering with a non- constant threshold function 
f i i n nH


1 2 1 2, ; ,( ) is adopted in Ref. [37]. The threshold function f i i n nH


1 2 1 2, ; ,( )  
is defined as a local average and is estimated over a rectangular subset of area 
n1 × n2. The threshold function yields smoother replicas of the original density 
function as shown in Figure 31.2 where the procedure is implemented on a 
fractional Brownian motion random field with H =  0.5.
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31.3 Clustering and scaling laws

The density- based clustering methods of Refs. [35,37] are based on different 
models: the former adopts percolation, while the latter has a fractional Brownian 
motion description. Despite this difference, they share the common statistical fea-
ture of introducing a two- point long- range correlation among urban cells. The 

Figure 31.4  Image N48- 181 (Vienna) of the Urban Atlas of WorldView- 2 satellite 
European Cities collection [44]. The image is multi- spectral with size 1080 ×    
1080.



Urban scaling laws via spatio-temporal correlated clusters 319

outcome of the two approaches provides the correlation exponent that has been 
used to estimate the exponent β of the scaling laws. In particular, the correlation 
exponent is related to exponent of the Gibrat law in Ref. [35], while in Ref. [37] 
a relationship between the correlation exponent is discussed against the models 
[45– 47]. The main features of the two approaches will be discussed and compared 
in this section. The cluster construction starts with the identification of a relevant 
feature corresponding to a discrete function f (x1, x2) at each cell (x1, x2) of the urban 
grid. Next a suitable threshold f¯(x1, x2) is defined at each cell. A constant threshold 
f¯(x1, x2) =  0 is used in Ref. [35], while the procedure Ref. [37] adopts is a locally 
dependent threshold f¯(x1, x2) =  f (x1, x2; n1, n2) defined in Eq. (31.2). The diffe-
rence between the data and the threshold quantifies the fluctuations of the relevant 
urban feature as, for example, the pointwise population density. The fluctuations 
are found to be scale- invariant, obeying a scaling law with a given correlation 
exponent.

The common assumption is that the clusters are long- range correlated, hence the 
two- point correlation is expressed by:

 f x x f x x f x x f x x
x x x x

i j i j i j i j

i j i

, , , ,

, ,
( ) − ( )( ) ( ) − ( )( ) ∼

( ) −
′ ′ ′ ′

′

∆2

′′( )j α  (31.5)

where x xi j,( ) and x xi j′ ′( ),  denote a pair of cell coordinates of the urban grid and 
α is the correlation exponent (0 < α < 2). For fluctuations modelled as fractional 
Gaussian noise, as in Ref. [37] the correlation exponent is related to the Hurst 
exponent H (see Eq. 31.1). The correlation of the relevant urban feature (e.g., the 
population density) decays as a power- law of the distance between cells, implying 
long- range scale- free correlations in the clustering process.

According to Ref. [35], a cluster is defined through the following main steps. 
A populated cell is selected. The cluster is built by adding all nearest- neighbour 
cells with a population density larger than a constant threshold. The cluster stops 
growing when there is no neighbouring cell outside the cluster with population 
density larger than the threshold which is usually set to zero. The population 
in a cluster Ni is defined as the sum of the population of all the cells within the 
cluster.

The continuum CCA [36] proceeds as in the above case but the cluster stops 
growing when no cell with population density larger than the threshold is found 
at a distance smaller than the coarse graining level. For a population growth rate 
lower than 1, the mean µ and the standard deviation of the populations σ1(Ni) vary 
according to a scaling law. For large clusters, one has:

 σ
θ

α α

α

1
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where a2 is the area of each cell and rc the radius of the cluster. Since rc ∼ Nia2, one 
can write:

 σ α
1
2 2 2~ Ni

/−  (31.7)

with the exponent 2 2− α/  larger than 1 and smaller than 2 being 0 < α < 2.
The standard deviation of the population density σ1

2  can be related to the standard 
deviation of the growth rate σ β

0
2

0~ S − . By using S N ni0 �� = , it results in β =  α/ 4, with 
0 < β < 1/ 2 as 0 < α < 2. If α =  0, the standard deviation of the populations growth 
rates has no dependence on the population size (β =  0), as expected by Gibrat’s law.

The long- range correlation exponents yield in Ref. [37] have been used to esti-
mate the scaling exponents β of the scaling law Y ∼ Nβ proposed in Refs. [45– 47]. 
This comparison is made by expressing the exponent β of the scaling law in terms 
of the fractal dimension Df of the urban landscape. The infrastructural and socio- 
economic features are written as power laws of the population size Y ∼ Nβ respect-
ively with exponents βi < 1 and βs > 1. According to Ref. [45], the scaling law 
exponents are defined as:

 β βi
f

f
s

f

f

D
d d D

D
d d D

= −
+( ) = +

+( )1 1 and  (31.8)

that can be rewritten in terms of the long- range correlation exponent by using the 
relationship Df =  d−H. According to Eq. (31.3), the clustering is obtained by the 
intersection of the density function mapped from the satellite image with the locally 
dependent threshold estimated recursively over sub- regions of the grid (pixel by 
pixel) by varying the values of n1 × n2. The log– log plot of σDMA

2  as a function of 
the scale s n n= +1

2
2
2  provides the H value.

Acknowledgments

This work received financial support from the TED4LAT project (a WIDERA ini-
tiative within the Horizon Europe Programme, Grant Agreement: 101079206).

Note

 1 https:// iop scie nce.iop.org/ arti cle/ 10.1088/ 2632- 072X/ ac7 18e

References

[1]  Newling, B. E. (1969). The spatial variation of urban population densities. 
Geographical Review, 59(2), 242– 252.

[2]  Nordbeck, S. (1971). Urban allometric growth. Geografiska Annaler. Series B, 
Human Geography, 53(1), 54– 67.



Urban scaling laws via spatio-temporal correlated clusters 321

[3]  Bettencourt, L. M. A., Lobo, J., Helbing, D., Kühnert, C., & West, G. B. (2007). 
Growth, innovation, scaling, and the pace of life in cities. Proceedings of the National 
Academy of Sciences, 104(17), 7301– 7306.

[4]  Rybski, D., Arcaute, E., & Batty, M. (2019). Urban scaling laws. Environment and 
Planning B: Urban Analytics and City Science, 46(9), 1605– 1610.

[5]  Zipf, G. K. (1949). Human behavior and the principle of least effort. Cambridge, MA 
(USA): Addison Wesley Press.

[6]  Gabaix, X. (1999). Zipf’s law for cities: An explanation. Quarterly Journal of 
Economics, 114(3), 739– 767.

[7]  Alonso, W. (1964). Location and Land Use. Toward a General Theory of Land Rent. 
Cambridge (USA): Harward University Press.

[8]  Mills, E. S. (1972). Urban Economics. Glenview. Scott: Foreman, & Company.
[9]  Muth, R. F. (1969). Cities and Housing: The Spatial Pattern of Urban Residential 

Land Use. Chicago and London: The University of Chicago Press.
[10] Brueckner, J. K. (1987). The structure of urban equilibria: a unified treatment of the 

muth- mills model. Handbook of Regional and Urban Economics, 2, 821– 845.
[11] Dubin, R. (1991). Commuting patterns and firm decentralization. Land Economics, 

67(1), 15– 29.
[12] Louf, R., & Barthelemy, M. (2013). Modeling the polycentric transition of cities. 

Physical Review Letters, 111(19), 198702.
[13] Louf, R., & Barthelemy, M. (2014). How congestion shapes cities: From mobility 

patterns to scaling. Scientific Reports, 4, 5561.
[14] Cumbers, A., & MacKinnon, D. (2004). Introduction: Clusters in Urban and Regional 

Development. Urban Studies, 41(5– 6), 959– 969.
[15] Phelps, N. A. (2021). Which city? Grounding contemporary urban theory. Journal of 

Planning Literature, 36(3), 345– 357.
[16] Wu, H., Levinson, D., & Sarkar, S. (2019). How transit scaling shapes cities. Nature 

Sustainability, Nature, 2(12), 1142– 1148.
[17] Keuschnigg, M., Mutgan, S., & Hedström, P. (2019). Urban scaling and the regional 

divide. Science Advances, 5(1), eaav0042.
[18] Barthelemy, M. (2019). The statistical physics of cities. Nature Reviews Physics, 1(6), 

406– 415.
[19] Reia, S. M., Rao, P. S. C., Barthelemy, M., & Ukkusuri, S. V. (2022). Spatial structure 

of city population growth. Nature Communications, 13(1), 5931.
[20] Lengyel, J., Roux, S. G., Abry, P., Sémécurbe, F., & Jaffard, S. (2022). Local 

multifractality in urban systems- the case study of housing prices in the greater Paris 
region. Journal of Physics: Complexity, 3(4), 045005.

[21] Portugali, J. (1997). Self- Organization, Cities, Cognitive Maps and Information 
Systems. In: Hirtle, S.C., Frank, A.U. (eds), Spatial Information Theory A Theoretical 
Basis for GIS. COSIT 1997. Lecture Notes in Computer Science, vol 1329. Berlin, 
Heidelberg: Springer. https:// doi.org/ 10.1007/ 3- 540- 63623- 4_ 59

[22] Rauws, W., Cozzolino, S., & Moroni, S. (2020). Framework rules for self- organizing 
cities: Introduction. Environment and Planning B: Urban Analytics and City Science, 
47(2), 195– 202.

[23] Delloye, J., Lemoy, R., & Caruso, G. (2020). Alonso and the scaling of urban profiles. 
Geographical Analysis, 52(2), 127– 154.

[24] Portugali, J. (2012). Self- organization and the city. Berlin, Heidelberg: Springer 
Science & Business Media. https:// doi.org/ 10.1007/ 978- 3- 662- 04099- 7



322 Anna Carbone et al.

[25] Haken, H., & Portugali, J. (2021). Urban Scaling, Urban Regulatory Focus and Their 
Interrelations. In: Hermann H., Portugali J. (eds), Synergetic Cities: Information, 
Steady State and Phase Transition. Cham: Springer Series in Synergetics. Springer, 
199– 215. https:// doi.org/ 10.1007/ 978- 3- 030- 63457- 5

[26] Batty, M., & Longley, P. A. (1987). Fractal- based description of urban form. 
Environment and Planning B: Planning and Design, 14(2), 123– 134.

[27] Frankhauser, P. (1998). The fractal approach. A new tool for the spatial analysis of 
urban agglomerations. Population: An English Selection, 10(1), 205– 240.

[28] Shen, G. (2002). Fractal dimension and fractal growth of urbanized areas. International 
Journal of Geographical Information Science, 16(5), 419– 437.

[29] Tannier, C., & Thomas, I. (2013). Defining and characterizing urban boundaries: A 
fractal analysis of theoretical cities and Belgian cities. Computers, Environment and 
Urban Systems, 41, 234– 248.

[30] Lemoy, R., & Caruso, G. (2021). Radial analysis and scaling of urban land use. 
Scientific Reports, 11, 22044.

[31] Liang, B., & Weng, Q. (2018). Characterizing urban landscape by using fractal- 
based texture information. Photogrammetric Engineering & Remote Sensing, 84(11), 
695– 710.

[32] Yakubo, K., Saijo, Y., & Korošak, D. (2014). Superlinear and sublinear urban scaling 
in geographical networks modeling cities. Physical Review E, 90(2), 022803.

[33] Dong, L., Huang, Z., Zhang, J., & Liu, Y. (2020). Understanding the mesoscopic 
scaling patterns within cities. Scientific Reports, 10, 21201.

[34] Altmann, E. G. (2020). Spatial interactions in urban scaling laws. PLoS One, 15(12), 
e0243390.

[35] Rozenfeld, H. D., Rybski, D., Andrade, J. S., Jr, Batty, M., Stanley, H. E., & Makse, 
H. A. (2008). Laws of population growth. Proceedings of the National Academy of 
Sciences of the United States of America, 105(48), 18702– 18707.

[36] Rozenfeld, H. D., Rybski, D., Gabaix, X., & Makse, H. A. (2011). The area and 
population of cities: New insights from a different perspective on cities. American 
Economic Review, 101(5), 2205– 25.

[37] Carbone, A., Murialdo, P., Pieroni, A., & Toxqui- Quitl, C. (2022). Atlas of urban 
scaling laws. Journal of Physics: Complexity, 3(2), 025007.

[38] Valdiviezo- Navarro, J. C., Castro, R., Cristóbal, G., & Carbone, A. (2014). Hurst 
exponent for fractal characterization of LANDSAT images. In Remote Sensing and 
Modeling of Ecosystems for Sustainability XI. International Society for Optics and 
Photonics, 9221, 922103.

[39] Carbone, A., Castelli, G., & Stanley, H. E. (2004). Analysis of clusters formed by 
the moving average of a long- range correlated time series. Physical Review E, 69(2), 
026105.

[40] Carbone, A. (2007). Algorithm to estimate the Hurst exponent of high- dimensional 
fractals. Physical Review E, 76(5), 056703.

[41] Isichenko, M. B. (1992). Percolation, statistical topography, and transport in random 
media. Reviews of Modern Physics, 64(4), 961.

[42] Hristopulos, D. T. (2020). Random Fields for Spatial Data Modeling: A Primer for 
Scientists and Engineers. Netherlands: Springer.

[43] Carbone, A., & Ponta, L. (2022). Relative cluster entropy for power- law correlated 
sequences. SciPost Physics, 13(3), 076.



Urban scaling laws via spatio-temporal correlated clusters 323

[44] Urban Atlas, last visit on 07/ 2021. The ESA third party mission collection of the lar-
gest European urban areas recorded by the WorldView- 2 satellite https:// tpm- ds.eo.
esa.int/  oads/ access/ collection/ WorldView- 2.

[45] Bettencourt, L. M. A. (2013). The origins of scaling in cities. Science, 340(6139), 
1438– 1441.

[46] Ribeiro, F. L., Meirelles, J., Ferreira, F. F., & Neto, C. R. (2017). A model of urban 
scaling laws based on distance dependent interactions. Royal Society Open Science, 
4(3), 160926.

[47] Molinero, C., & Thurner, S. (2021). How the geometry of cities determines urban 
scaling laws. Journal of the Royal Society Interface, 18(176), 20200705.




